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Abstract. Well-seismic data such as vertical seismic profiles (VSP) are supposed
to provide detailed information about the elastic properties of the subsurface at
the vicinity of the well. Heterogeneity of sedimentary terrains can lead to far from
negligible multiple scattering, one of the manifestations of the non linearity involved
in the mapping between elastic parameters and seismic data. We present a 2D
extension of an existing 1D nonlinear inversion technique in the context of acoustic
wave propagation. In the case of a subsurface with gentle lateral variations, we
propose a regularization technique which aims at ensuring the stability of the inversion
in a context where the recorded seismic waves provide a very poor illumination of
the subsurface. We deal with a huge size inverse problem. Special care has been
taken for its numerical solution, regarding both the choice of the algorithms and the
implementation on a cluster based supercomputer. Our tests on synthetic data show
the effectiveness of our regularization. They also show that our efforts in accounting
for the non linearities are rewarded by an exceptional seismic resolution at distances
of about one hundred meters from the well. They also show that the result is not very
sensitive to errors in the estimation of the velocity distribution, as far as these errors
remain realistic in the context of a medium with gentle lateral variations.
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1. Introduction

Seismic prospecting, i.e. the idea of using seismic waves to get information about the
subsurface, is understood as a high resolution technique compared with potential meth-
ods such as gravimetry. Geophysicists, as many other physicists, always are in quest
of a higher resolution: they want to get as much detail as possible of the object they
inspect. However resolution is not defined just by the physical means used for scanning
the object. The way the data are processed, i.e. algorithms, for the object recon-
struction, can have strong influence on the resolution. This is the field on which our
work is to be placed. Another important point is the ability to get quantitative infor-
mation about the composition of the object. This is the second motivation for our paper.

Data acquisition for seismic prospecting mainly concerns the acquisition of surface data.
However well seismic data often are interesting for detailed studies of reservoirs. If
the data quality is usually better compared with that of surface data, the part of the
subsurface that is illuminated, that is the part that we can image, is of very limited
extension. Classically we distinguish:

e the acquisition of vertical seismic profiles (VSP) in which, the receivers covering
some depth range within the well, the source is located at the surface at the vicinity
of the borehole; for such acquisitions waves usually propagate along directions close
to the vertical so that most of the imaging techniques ([19]) rely on a 1D propagation
assumption;

e the acquisition of walkaway data in which, the receivers still covering some depth
range within the well, the source is moved, shot after shot, at different offsets
from the borehole; by using such acquisitions we expect to enlarge the part of the
subsurface that can be imaged.

In the following we will make a distinction between different zones associated with
different depth ranges: the “overburden” and the “target” separated by the horizontal
plane at the depth of the shallower receiver. The target itself will be subdivided into
the “upper target” corresponding to the depth interval covered by the receivers and the
“lower target” below. Well-seismic data (Figure 1) show a first arrival which is most often
a downgoing wave. This arrival is usually followed by many downgoing waves: these
waves have undergone (at least) a “reflection” { at some interface in the overburden
before propagating down again. The presence of many downgoing waves reflect the
vertical heterogeneity of the overburden. Well seismic data also show upgoing waves
which are the result of “reflections” that have taken place within either the upper or
lower target (or in both). However the tremendous heterogeneity of sedimentary layers
leads to a very complex wave propagation and this complexity is not revealed by the
I We use quotes to highlight that such a description relies on a geometrical optics view of wave

propagation. In our paper, we want to promote waveform inversion and therefore we question such a
view.
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visual inspection of the data: what we see is in fact the result of interferences between
a multitude of wavefronts.

Should we want to image well-seismic data using the procedure which is routinely
used for the imaging of surface seismic data, we would apply the data a migration
(18], 125], [5], [9]), after having estimated the propagation velocity distribution in the
subsurface. Such an imaging technique turns out to be inadequate for our data that
have shown many downgoing waves illuminating the target whereas migration assumes
that a single wavefront illuminates the target. This is the reason why the standard
procedure for imaging VSP data prefers to account for the complexity of the illuminating
wavefield at the expense of a tremendous simplification of the geometrical aspects of
wave propagation (precisely at the expense of a 1D propagation assumption). However
it is often attempted to preprocess the data so as to get closer to the 1D propagation
assumption. Should we want to account for the multiple scattering effects ([33|) in
wave propagation, we would have to apply a nonlinear imaging technique such as the
nonlinear inversion of VSP data proposed by [22] in a 1D framework. Here the goal is to
reconstruct the acoustic impedance profile while accounting for the nonlinear character
of the operator that maps the profile and the wavefield. This nonlinear character is far
from negligible as soon as the impedance profile shows important heterogeneity thus
giving rise to important multiple scattering ([16]).

The nonlinear inverse problem in which we reconstruct the impedance profile for
known velocity distribution should not be confused with the inverse problem in which we
want to reconstruct the propagation velocity distribution from seismic data, a problem
extensively studied by many authors (see for instance [32] for an overview). For the 1D
nonlinear inversion of VSP data, measuring the depth in terms of vertical traveltime
allows us to get rid of the estimation of the velocity distribution (except that we have
to express the depth of the different receivers in terms of vertical traveltime, but the
conversion is simple since the VSP data allow us to evaluate precisely the difference in
traveltimes between successive receivers).

In our paper we want to set up a 2D extension of the waveform inversion developed
by [22]. We want not only to get rid of the unrealistic 1D propagation assumption but
also we want to estimate the impedance distribution (as opposed to a single profile)
in some vicinity of the well and this with a vertical resolution (to be understood as
separation power) much better than the one obtained for surface seismic data. Asin [22],
we will have to reconstruct the illuminating wavefield in the same time as we reconstruct
the impedance distribution. Indeed the estimated impedance distribution depends on
the illuminating wavefields and, in some situations, in a very sensitive way (|15]). The
reconstruction of this illuminating wavefield is in fact one of the major difficulties for
our extension since, contrary to the 1D propagation framework and to the migration
context, the geometries of the illuminating wavefronts are unknown (Figure 2 left). This
difficulty will constrain us to only consider media that vary gently along the horizontal
direction. In addition we will restrict ourselves to acoustic wave propagation and assume
the velocity distribution ¢(z, z) to be known.
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In a first part we introduce, in a rather general context, the formalism for the
inversion of walkaway data and study how to struggle against the indetermination
inherent in this inverse problem. In a second part we present the numerical method
used for the solution of the inverse problem. Compared with the 1D inverse problem
we are faced to two important differences: the necessity to introduce lateral boundaries
in the propagation domain and the tremendous inflation of unknowns. This inflation
will lead us to be very careful for the numerical implementation. In the third part
we evaluate, by means of tests on synthetic data, the performance of our method with
special emphasis on the accessible vertical resolution.

2. The 2D extension of the 1D problem

We thus consider walkaway data. Different datasets are acquired by moving the source
at different offsets from the well, supposed here to be vertical with horizontal location
x = 0. These distances will be called offsets throughout the paper. One dataset is thus
associated with a specific offset. We denote by S the number of such datasets. The
receivers, located at depths denoted by zi, ..., zg, record, as a function of time ¢, the
particle displacement velocity vector. In a 2D context this vector is characterized by its
horizontal and vertical components. Our data are thus composed of the measurements
D#1(t) associated with receiver ¢ and with dataset (or offset) number s, this for ¢ € [0, T']
where T is the recording duration. We denote by D the vector in (L2 (]0,T[))>***?
constituted of such measurements. As in [22]| we restrict ourselves to the imaging of the
target and thus want to get rid of the overburden whose base is at depth z;. This leads
us to introduce a boundary condition at this depth. The target can only be imaged
down to a depth z,,,,. This depth can be computed given the recording duration 7" and
the propagation velocity distribution.

2.1. The forward problem

We thus consider waves propagating within a domain corresponding to depths larger
than z; and introduce a boundary condition at this depth. We also have to specify
conditions at the other boundaries. Use of absorbing layers at the vicinity of these other
boundaries is essential for a realistic modeling. We have chosen the PML (Perfectly
Matched Layer) technique in the framework proposed by [6] [7] for the 2D and 3D
Maxwell equations. Let

O =]—a,a] X |21, Zmaz| (1)

be the domain of interest. This is the domain where the velocity ¢(z, z) and impedance
I(z, z) distributions are defined. The PML domain with width [ is defined as

O =]-X,X[x]a, 2], 2)

where we have set X = a+ 1 and Z = 2,4, + [. We extend the original velocity and
impedance distributions to the PML domain by setting (similar expressions also hold
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for the velocity distribution

):
I(z,z) =1(a,2) forz > a,
I(x,z) =1(—a,z) forz < —a, (3)
| [(7,2) = I(z,21) forz > 2.

Within domain €2, the Euler equation with absorption is written as
(1 1
_atuw - 8w(pm + pz) T+ Np—Uy = 07

_atuz - a (pa: +pz) + Ty — uz - 0

g (4)
1 1

_atpa: - axux + = NaPs = 07

Ic c

ia — 0u, + — =0

L IC tPz zWz Icnzpz — Y%

with zero initial conditions and the following boundary conditions

[ (pz+ 1) (,21,8) = h(x,t) ,

(pe +p2) (2,2, ) = (5)
(Pe +1p2) (=X, 2,1) = 0

( (Pe +12) (X, 2,1) =

The principle of the PML technique consists in splitting the pressure function

p(x, z,t) into two subfunctions p,(x,z,t) and p,(x,z,t), so as to obtain 4 equations
involving spatial derivatives along a single direction. Then an absorption term associated
with this direction is introduced (n,(z) or n,(z)). These absorption terms vanish within
the domain of interest O and grow according to a polynomial function within the PML
layer. They are expressed as

0 if 2 € [—a,aq]
ne(z) = —77&6(:37;_@ if ©€[—a—1,—d (6)
770$(:U — a)3

B if ©€la,a+1

0 if 2z € [21, Zmaz]
2\%) = — ’ 7
77 ( ) 7702 (Z l3zma£l?) lf z € [ZmaxJ Zmax + l] ( )

where 7y, and 7, are constants that have been set up in an empiric way following the

numerical experiments given in [20|. Thus, by adding the two equations in p, and p,, we
retrieve the standard acoustic wave equation (written in the form of Euler equations),
within the domain of interest O. In addition Dirichlet homogeneous boundary conditions
for the pressure are specified at the boundaries of domain Q (except for the part
corresponding to z1).

The above equations are written for a generic boundary condition h(x,t) at z = 2.
However we will consider different displacement velocity wavefields u*(x, z,t) solutions
of the equations above with boundary conditions h®(x,t). In the sequel these boundary
conditions will be refered to as the pressure conditions. We call parameter a pair
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constituted of an impedance distribution I(zx, z) defined on O and of a sequence of S
pressure conditions h*(x,t), s = 1,...,S. We denote by H the vector whose components
are those S pressure conditions. The forward problem thus consists in computing the
setsmic response to such parameter, given the velocity distribution. Precisely the seismic
response is described by the synthetic data U*?(t) for s =1, ..., S and ¢ = 1, ..., Q) that
are the displacement velocity vectors (with components u$9(0, zy,t) and u$9(0, 2, t))
observed by the receiver at z, in the dataset number s.
We introduce the forward modeling operator:

M:([,H)— U={U(t),s=1,..,5;,q=1, ...Q,t€[0,T]}.

Let us point out again that the solution of the forward problem requires the propagation
velocity distribution to be known within domain O (and only within this domain).

2.2. The 2D inverse problem: an ill-posed problem

We aim at retrieving the parameters whose seismic response best matches the recorded
data. The inverse problem can thus be formulated as

i J (1,H), ®)
where J (I, H) is the so-called seismic misfit function defined by:
J(IH) =D=M H), (9)

where || || is the norm in (L2 (]0, T]))****€.

Thus formulated, the inverse problem appears indetermined: obviously we cannot
retrieve the pressure conditions associated with each dataset and therefore we cannot
image the target. Indeed we lack information about the geometries of the illuminating
wavefronts. To overcome indetermination, we need prior information. This prior
information will be accounted for by means of an appropriate regularization.

2.3. The reqularized 2D inverse problem

If we consider media that are slowly varying along the x direction, we may integrate in
the original objective function (9) a regularization term R, (I) accounting for the lateral
D- But this is not
enough: we also need prior information about the pressure conditions, an information

Z1,Zmax

variations of the impedance distribution: R;(I) = ||&,;I||iz(]_a7a[x]

required, let us point it out again, for the estimation of the impedance distribution.
As for the 1D inverse problem, we want, through the pressure conditions, to account
for the complexity of the wavefield that illuminates the target. The big difference, which
is in fact a major difficulty for our extension, stems from the fact that the wavefield is
only known at © = 0 (location of the well) and we can hardly conceive a reliable method
to extrapolate the wavefield when we move away from z = 0: basically we basically
lack information about the wavefront geometries. Such wavefronts are shown in Figure
2a and b. However we underline that such information is in practice unavailable: the
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information displayed in Figure 2 is the result of the modeling experiment presented in
section 4.

To overcome this difficulty, we apply the walkaway data a Radon transform known
as slant stacking in the geophysical literature ([13]). We thus obtain well data associated
with a close to plane wave excitation (which would be similar to a pressure condition at
z = 0). The excitation would be a genuine plane wave if the point sources were infinitely
close to each other while covering the whole of the surface and if the propagation
velocity at z = 0 were constant. Under the latter assumption the angle 6, made by

coAt

the propagation direction with the vertical is given by: sinfy = =%, where:

e ¢y is the velocity at z = 0;

e Asis the distance between two consecutive sources (we thus assume here equidistant
sources);

e At is the time delay imposed from one source to the next: this delay tunes, as seen
from the above formula, the propagation direction of the plane wave.

Thus we can transform our S original recordings into S slant stacked datasets. By doing
so we fix the At®, s =1, ..., S to be used. The pressure condition at z = z; associated
with slant stacked data will be denoted by ﬁs(s, t),s=1,.., S. We introduce the vector
‘H gathering the pressure conditions ﬁs(s,t), s=1,.., S. If we choose S = S, we may
expect no information loss. The angles 6 (which in fact depend on index s) will be
called llumination angles: they will be chosen depending on the interval [z, 2| where
the receivers are located and on the part of the subsurface where we want to enhance
the resolution of the seismic imaging. Here we just mention this point which would
deserve a whole study.

If we deal with a 1D medium, we can have precise information about the propagation
angle 0, of the plane wave at depth z; using the classical formula: % = % (cp is
the propagation velocity at z;).

However the media we will consider are only close to 1D so that, at depth z;, the
wavefronts are only approximately plane. We thus assume the pressure condition to vary
slowly along lines that are orthogonal to vector v* (supersript s refers to the dataset

obtained by slant stacking with time delay At®) defined by:
sin 07 (x
’}/s(l') — [ 1( )

— cos 0% (z) As
The pressure conditions at z = z; associated with the slant stacked data can thus

] with sin 03 (z) = “@20AL

be assumed to vary gently along directions that are orthogonal to v*(x). This leads us
to introduce a second regularization term Ry(#) defined by Ry(H) = 25:1 "ys - Vh 2,
where || || denotes the norm in L? (]—a, a[ x |0, T).

We point out that, even in the case of a 1D medium, this regularization term is not

exact: indeed, in this case, the pressure wavefield at z = 2; is constituted of wavefronts
propagating according to angle #; but also of wavefronts propagating according to angle
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—0y, the latter wavefronts corresponding to “reflections” that reach z; under the form
of upgoing waves. Use of inhomogeneous transparent boundary conditions§ such as

g(aj, 21, 1)0,P(x, 21,t) + 0.VIP(x,21,t) = h(x, t). (10)

in replacement of the Dirichlet boundary conditions (5) would have been better suited
for a correct handling of prior information about the pressure conditions at z;. However
use of Dirichlet boundary conditions leads to simpler formulas. In addition, our
prior information associated with the Dirichlet boundary condition is not unreasonable
(Figure 2d): indeed the amplitude of the downgoing part of the wavefield is much larger
than the amplitude of the upgoing contribution.

With these elements we end up with the regularized formulation of the inverse
problem written as:

I?;_?J (I,H) (11)
with
. b oD
1 H

In equation (12) op,o; and oy represent the uncertainties associated with the
seismic data and the pieces of prior information associated with the impedance
distribution and pressure conditions, respectively. In fact these uncertainties can hardly
be estimated before hand. We have thus decided to set the values for (;_II) and g—i using a
trial and error approach with the aim of getting a balance between the three components
of the regularized objective function at the optimum. Our strategy would be justified
if the assumption of an uncorrelated Gaussian additive noise corrupting the different
pieces of information would be realistic... Although more appropriate strategies (|31]
p.211) could have been used, ours has the advantage of being straightforward.

We thus have replaced the ill-posed problem (8) by a regularized version that will
hopefully be well-posed. Precisely we hope that if the uncertainties op, oy and oy
are small enough, then the computed impedance distribution will be “close” to the
distribution we look for. We explain in the next section the reasons on which our
expectations rely.

2.4. A justification of the reqularization

The understanding of the mechanisms that allows the reconstruction of the impedance
distribution from well-seismic data is essential if we want to know to what extent the
solution of problem (11) provides an approximation of the impedance distribution we
are looking for.

§ More sophisticated inhomogeneous transparent boundary conditions can be found in [3]. For the
sake of simplicity we just give the simplest version.
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2.4.1. The reconstruction of a 1D medium using plane wave excitations In a first step
we consider the case of noise free data (the case of noise corrupted data will be skimmed
over at the end of this subsection).

We thus consider a 1D medium excited by a plane wave propagating according to
illumination angle §,. We denote by p(k,, 2z, w), U,(ks, 2, w) and @,(k,, 2, w) the 2D
Fourier transforms of p(z, z, t), u,(z, z, t) and u,(z, z, t), respectively. The Fourier
transform p(k;, z, w) is solution of the Helmholtz equation:

—C—?z (0_12 - (%)2) p-0. (S05) =0, (13)

while @, (k,, z, w) and u,(k,, 2z, w) are linked to p(k,, z, w) by:

{ Wiy = —$kep

14
—iwi, = —%9,p (1)

Functions i, (k,, 2, w), @,(ks, z,w) and p(k,, 2, w) do not vanish, this is a specificity

of the regime associated with a plane wave excitation, only for values of k=/u such that

ke = %, so that equations (14) can be rewritten as:
iy = el
—iwi, = —50,p
We introduce the functions i, (z, z,w), G,(z, z,w) and p(z, z,w), the inverse Fourier
transforms of functions @, (k,,z2,w), @,(ks;,2,w) and p(ks, z,w), respectively. By
integrating in the variable = the equations above, we obtain the equations

{ (0, z,w) = —%%ﬁ((),z,w)
—iwi, (0, z,w) = —=$0.p(0, z,w)
and by dividing these two equations we obtain

0y 1,(0, z,
0, (Inp(0, z, w)) = _iwCOS 0 1,(0, z, w)

co Ug(0, z, w)

In other words, our measurements yield function p(0, z, w) over the measurement
interval, this for whatever value of w and of the illumination angle, but up to a
multiplicative constant. Integrating equation (13) over k, yields:

_c_a;2 (i B (cos 90>2) 50, 7. w) — B, <§3z15> (0, 2z, w) = 0. (15)

Co

This equation allows us to understand the mechanism for the reconstruction of the
impedance profile from well-seismic data. Two cases are to be considered: the case
z € [21, 2¢] and the case z > zq.

In the former case, for whatever pair (w,fy), I turns out to be solution of a
differential equation (derived from (15) that can be explicited on the whole interval
[21, 2¢] since we know p(0, z, w) on this interval. As a result, the logarithmic derivative of
I (we thus assume here I to be differentiable) is determined up to an additive constant or,
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in other words, I is determined up to a multiplicative constant. Having the information
for a single w and a single illumination angle is enough to reconstruct the impedance
profile on this interval (up to a multiplicative constant). In this reasoning we have
assumed a continuum of receivers which is not realistic. However we easily realize that,
if the distance between successive receivers is small, the reconstruction of the impedance
profile will be accurate: the resolution (in the sense of separation power) is governed by
the vertical sampling between receivers: we can obtain a high vertical resolution even
for a small value of w. In practice we record p on interval [zy, z¢] for a multitude of
values of w and for several illumination angles: the great amount of redundancy in the
information will be very helpful when dealing with noise corrupted data. However this
redundancy is of no help to remove the indetermination associated with the unknown
multiplicative constant since there is one such constant for each (w, 6y) pair.

The reconstruction of the impedance profile for z > z¢ relies on a fully different
mechanism. Here the understanding of the reconstruction mechanism is to be found
in the wave equation formulated as an evolution equation in time (that is the equation
satisfied by the inverse Fourier transform of p), starting from zero initial conditions. The
important point consists in realizing that our recordings provide us with the information
associated with both the Dirichlet and Neumann boundary conditions at z = zg, the
latter up to a multiplicative constant since the value of the impedance at z = zg is
unknown. The inverse problem which consists in retrieving the impedance profile for
2z > zg from the two boundary conditions has been the object of extensive studies
especially the one by [1] and [2]. We underline two important results:

e in the case of noise free data, the uniqueness of the solution (again here up to
a multiplicative constant), a result obtained by different authors using different
assumptions; we refer to [10] for a review of these results;

e the stability of the solution of the inverse problem when the data are noise corrupted
(]2]); in fact this stability strongly depends on the complexity of the profile to be
retrieved (this complexity is quantified by the total variation of the profile) and on
the wavelet smoothness; in particular standard seismic wavelets, whose frequency
content is negligible below 8 Hz are not appropriate to recover the low frequency
trend of the impedance profile.

The results given above stand for a single illumination angle. In practice the information
for different angles is available: again there is some redundancy in the data. Again this
redundancy will be very helpful when dealing with noise corrupted data but will be of
no help for removing the indetermination associated with the unknown multiplicative
constant and for the recovery of the low frequency trend for depths larger than zg.
The results concerning the uniqueness are obtained by exhibiting an analytic
expression for the solution of the inverse problem. This analytic expression is of limited
interest as soon as we deal with noise corrupted data. In practice, least-squares based
methods such as the one proposed in 1D by [22| (which can be easily generalized to the
case of 1D media excited by an oblique plane wave) are better suited, in particular for
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the separation of signal and noise using the information redundancy. Our motivation
for reviewing the theoretical results above was to give elements for apprehending the
behavior of inversion softwares whatever they are based on an analytic or a least-squares
based approach.

2.4.2. The 2D inversion of walkaway data This section aims at justifying the efficiency
of the regularization we have introduced to produce a reliable estimation of impedance
distributions with gentle lateral velocity variations by inversion of the slant stacked
walkaway data.

We start by pointing out that our problem is hampered by the same indetermination
(“up to some multiplicative constant”) as the problem studied in subsection 2.4.1.
Indeed, if we consider the seismic response to parameters (I,H), we do not change
this seismic response by multiplying the impedance distribution I by some constant and
each of the S pressure conditions by the same constant. This leads us to introduce
equivalence classes and to define a representative for each equivalence class by imposing
the condition (0, z;) = I"/, where I"*/ is a value to be chosen at our convenience.

We now change the definition of pressure conditions: instead of considering the
Dirichlet boundary condition (5) at z = z;, we impose the downgoing wavefield at that
depth by means of an outgoing boundary condition (10) (that is a condition that makes
the reflection coefficient small for a wide interval of incidence angles).

For fixed positive real A and p, we introduce the set M, , of equivalence class
representatives that satisfy the inequalities

10:1]) < A,
> [
s=1

where ||| denotes various L? norms (they have been previously explicited). We consider

2
< u,

the set E) , of parameters in M, , that match our well-seismic data (assumed here
to be noise free) and notice that this set has a single element if A = p = 0. Our
regularization technique should thus be effective if we admit that the “size” of the set
E), , does not rapidly increase when A and y increase. Note that the larger the number
of illuminating angles, the slower the increase of the “size” of this set. From a formal
standpoint we can define the “size” S(E) ,) of this set by considering the quantity defined
by sup; p (11 = I'l| 2 aa[x)o1,omee - WVith this definition, we focus our attention on the
reliability of the reconstructed impedance distributions considering pressure conditions
just as intermediate unknowns. Also with this definition we implicitly consider the L?
norm as an appropriate measure of the accuracy for the reconstruction of the impedance
distribution. This is a subjective but not unreasonable choice. Thus our expectation
concerning the stability of our inverse problem relies on the assumption of a continuous
evolution of S(E) ,) with the (A, ) pair. Such an assumption can only make sense
if the uniqueness in the recovery of the impedance distribution for known pressure
conditions is ensured. As far as we know, there is no proof of such a result (except for
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the 1D problem) and the nonlinearity involved in the forward map seems to be a major
obstacle for the obtention of such a result.

However, in practice, and eventhough the pressure condition is specified as a
Dirichlet boundary condition (and not as the transparent boundary condition (10)),
provided that the regularization weights are strong enough, our regularization turns out
to be effective for a stable reconstruction of the impedance as we will show in section 4.

3. The numerical method for the solution of the inverse problem

3.1. The numerical solution of the forward problem

The PML technique we have used consists in an extension to acoustic wave propagation
in heterogeneous media of the conceptual framework proposed by [6], [7]: this author
dealt with electromagnetic wave propagation in a homogeneous medium. Studying the
stability of the forward problem formalized by equations (4)(5) is beyond the scope
of our paper. However the interested reader can refer to the work of [23], this work
following the one of [28|.

The numerical solution of the forward problem relies on a discretization of equations
(4)(5). The aim of our technique is the improvement of the seismic resolution: a fine
discretization of domain € is then required. Using a high order finite difference scheme
in this context would make the computation heavier without improving the accuracy.

We have used the explicit centered second order scheme proposed by [34].

3.2. The discrete inverse problem

The discrete inverse problem consists in the minimization of the objective function
J? (I,H) in which the functions have been replaced by discrete functions, namely
vectors, the forward map by its discrete version based on Yee’s finite difference scheme
and the regularization terms by their discrete version involving a finite difference
approximation of the gradients. In order to alleviate the formulas that will follow,
we explain the solution of the inverse problem using the formalism of the original (not
discretized) problem.

Let us underline the size of the discrete inverse problem: the example presented in
section 4 involves typically a million of unknowns. In addition the evaluation of the value
of the objective function for some parameter requires the solution of S wave equations
discretized using a very fine grid. If we want the computation to be feasible, the solution
of the discrete inverse problem thus calls for an efficient numerical implementation on
a cluster based supercomputer.

3.3. An original optimization method

The minimization of a non quadratic objective function that involves about a million of
unknowns is not a simple job !
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Great care has to be taken for the choice of the minimization method to be used.
Classically, for huge size non quadratic problems, we preferably attempt at using Quasi-
Newton techniques. Indeed, information about the Hessian of the objective function,
which would be very complicated, is not required. Such methods only require the
evaluation of the objective function and of its gradient for some parameter.

The adjoint state method (|21],[11]) allows the computation of the gradient of the
objective function V.J (I,7) at, practically, the same cost as the evaluation of this
objective function. Note that presence of unknowns that are of different physical nature
(an impedance distribution and pressure conditions) and that act on the seismic response
in quite different ways leads to an ill-conditioned optimisation problem. Practically
our attempts ([24]) for a straightforward minimization of the objective function using
a Quasi-Newton algorithm were led to failure (negligible decrease of the objective
function).

3.8.1.  An interlocked optimization technique To overcome the above mentioned

difficulty, we have set up a technique exploiting the quadratic dependency of the

objective function in the pressure conditions. Precisely we are going to use a Quasi-

Newton algorithm for the minimization of a new objective function that only involves

the impedance distribution as unknown. We explain below how we have proceeded.
We introduce a new objective function .J?(I) defined by

J7(I) = J°(1,H(1)), (16)
with
H(I) = argminy J°(I,H),
{ Ho=(h',...h%).
We can easily realize that problem (8) is equivalent to problem
mlin Jo(I). (17)

Our idea is to use the Quasi-Newton procedure (specifically a I-BFGS algoritm, [26],
[27]) to minimize J7(I)). At each iteration, this algorithm asks for the computations of
the objective function and of its gradient. These computations require the knowledge
of the pressure conditions that are the components of H(I). The computation of these
pressure conditions is carried out using a conjugate gradient algorithm (specifically the
algorithm described in [18]): indeed these pressure conditions are solution of a quadratic
problem.

In addition, the gradient of the new objective function is straightforwardly obtained
from the evaluation of V.J7(I,#), that is with no additional complexity compared with
a straightforward minimization of the original objective function using a Quasi-Newton
algorithm.

Indeed, a disturbance 61 brought to I gives rise to a disturbance dH of H(I) and
to a disturbance 8.J% of J7(I) given by:

0J°

§J7 = o7 (1,H(I)) 01+

0J°
oH

(1,#H(1)) - 0%,
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g

oH

computation of v.J, just requires the computation of

Since (I,ﬁ([)) = 0, we can avoid the complicated computation of 6H and the

JU'
oI
(I,7). In summary the kernel is

o

(I, ﬁ([)). However the

JO'

oH

the computation of V.J7(I,#) (the computation of
H(I)).

computation of H(I) requires the computation of

T (I,H) is required to compute

3.4. Parallel computation of VJ(I,H) by the adjoint state technique

The gradients of the regularization terms R; and R, are straightforwardly obtained.
But the gradient of J(I,H) is not trivial. The adjoint state technique yields the value
of this gradient at the expense of the solutions of two wave equations: one associated
with the forward problem and one associated with the adjoint problem. We thus avoid
the computation of the Jacobian matrix which would require tremendous computer
resources. This technique has been developed by Lions (|21]) for the optimal control of
systems governed by PDEs and by Chavent ([11]) for the identification of distributed
systems. A review of its applications to inverse problems in geophysics is given by [29].

We give below a sketch of the adjoint state method. In order to alleviate the
notations, we have removed superscript s (we have done so previously when expliciting
the forward problem) but the calculations have to be applied for each of the S values
of s. We thus consider a vector H involving a single pressure condition h: H = {h}.
Also, we only describe the computation of the gradient for an impedance distribution
defined on the PML domain 2 and a pressure condition defined on [—X, X]: from this
computation we easily obtain the gradient with respect to functions associated with the
original domain O by application of the chain’s rule.

3.4.1. The adjoint state There are 8 dual variables corresponding to system (4)(5) for
the pressure condition h(x,t). The first four are functions of (x, z, t) while the others are
traces on hyperplanes that can be expressed as functions of the first four. Let A\;,7 = 1,4
be the first four functions. They are solution of the wave equations:

( %@)\1 - 01;)\3 - 771;%)\1 = fx(l’,Z,t)

%@)\2 — 0Z)\4 — 77Z£)‘2 = fZ(ZL', Z,t)
(18)
iat)\g — 81;)\1 — 7]1;i)\3 =0

iat)\z; — 0 — 77zﬁ)\4 =0,
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to be integrated backwards in time from zero final conditions a ¢t = T, with the boundary

conditions
)\3(—X,Z,t) :0, )\3(X,Z,t) :O
(19)
M(z,21,8) =0, M(z, Z,t) =0
and with
( Q
fx(xa 2 t) =2 Z (u$(07 Zq; t) - Dg(t)) 6Mq (l‘, Z)
q=1
(20)

Q
fa(z,2,t) =2 Z (u:(0, 2, t) — DI(t)) 6, (2, 2).

q=1

In the equations above 0y, (, 2) is the Diract delta function centered at the coordinates
(0, z,) of receiver gq.

According to the geophysicist vocabulary, the computation of the adjoint state
amounts to backpropagate the seismic residuals associated with the different receivers.

3.4.2. Computation of the gradient. Once the adjoint state has been computed, it is
easy to obtain the gradient of the misfit function. The formulas (see [24]) that give
VJ? (I,H) are, for (u3,us,ps,ps) solution of (4)(5) for a pressure condition h’(z,t),
and (A, A5, A5, A5) the corresponding adjoint state

IR, .. Y = / N 70.( + ) + N 70.(03 + P2t
(21)
_2/ Agl L+ AL Iazuzdt.
On the other hand,
. . I
One (L AR, 1)) = =~ Nyl 2, 0). (22)

We refer to |24] for the expression of the gradient of the discrete objective function.

3.4.3. Parallelization of the computations using domain decomposition. Use of parallel
computing is essential if we want to avoid an unacceptable elapsed time. The most
computation intensive part of the algorithm consists in the solution of the forward and
adjoint equations. Here domain decomposition comes in. Domain 2 is subdivided into P
subdomains €2;. A dedicated processor is in charge of the computations for the solution
of the forward and adjoint equations in domain €2;. Of course, if we leave aside the
communications between processors, the smaller the size of the subdomain, the smaller
the computation time is. The parallelization technique is the same for the forward and
adjoint equations: we explicit the technique for the forward equations only.
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Processor i is in charge of the solution of equations (4) within subdomain (2;.
The only noticeable change lies in the boundary condition that p, + p, has to meet.
Indeed, domain decomposition introduces fictitious boundaries within domain 2. These
fictitious boundaries separate adjacent subdomains. To specify the boundary condition
at these fictitious boundaries, we have to make each subdomain partly cover its
neighbors. If we accept the idea of exchanging information between subdomains at
each time step, the domain decomposition technique becomes straightforward for the
Yee’s scheme. The covering is constituted of two rows (or two columns), the points
constituting the boundary of one subdomain corresponding to the row (or column) of
the nearest interior points of the neighbor subdomain.

This domain decomposition method allows an efficient parallelization of the
computations for solving the forward and adjoint equations. Communication is required
at each time step but the volume of information to be exchanged at a specific time step
is small since only data within the coverings are to be exchanged. So that we end up
with a good “scaling”. Our numerical implementation allows an effective solution of
large size 2D problems as shown in the next section.

In the case of small subdomains, the memory of the computation cores may allow
the storage of the solution of the forward problem. So that the computation of the
gradient (especially computation of the integral in (21)) is straightforward: there is no
need of recomputing this solution by a backward integration in time (synchronous with
the solution of the adjoint equation) of the wave equation as it is usually done. This
saves some 30% of the computing time required for the computation of the gradient.

4. Evaluation of the method

The goal of this section is to evaluate the performance of the method using synthetic
data. Special attention will be paid to the resolution obtained.

4.1. The test model and data

The subsurface model we have used (impedance and velocity distribution) is displayed
in Figure 3. It is defined over a 720 m wide and 3400 m deep domain. The model shows
gentle lateral variations. For the synthetic data generation, 100 receivers were placed
in a vertical well (at x = 0) every 8 m from z = 1000 m. The seismic sources were
shot at the surface from x=-360 m to x=360 m every 24 m. The seismic wavelet is a
Ricker function with 25 Hz central frequency (Figure 4). We then applied the original
data (Figure 1) a Radon transform so as to obtain data corresponding to a pseudo-plane
wave excitation for illumination angles ranging, at 2 = 0, between -6" and 6° with a 1°
sampling. The transformed data are displayed in Figure 5.

Our aim is to invert for the impedance distribution given the 13 transformed
datasets and the velocity distribution, for z > z; = 1000 m. In order to preserve seismic
resolution we keep the fine spatial discretization, namely Ax = 12 m and Az = 8 m,
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used for modeling the seismic data.

In all the experiments presented below the optimization algorithm is initiated using
a constant impedance distribution and zero pressure conditions (except for the situation
where these pressure conditions are known).

4.2. Inversion with known pressure conditions

We start with an inversion with known pressure conditions: this experiment will serve
as a reference for the test of our method in which the pressure conditions also have to be
retrieved. This reference is important since we deal here with 2D nonlinear inversion, a
topic in which we lack of theoretical background.

To carry out this artificial experiment we saved the pressure conditions at depth
z1 (top of the overburden) when modeling the wavefields generated by the shots. We
then added these different recordings after application of a shot dependent delay so as
to simulate the slant stacking procedure for the 13 considered illumination angles. Some
of the so-obtained pressure conditions are displayed in Figure 2 ¢ and d.

In this inversion experiment we want to make sure that the optimization algorithm
yields a model that matches the seismic data and, in case of success, to evaluate to what
extent the inversion allows a recovery of the impedance distribution. It should be noted
that

e we do not regularize here; in other words we set o0/s; = 70/55, = 0;

e we skip the inner loop of our interlocked optimization technique (indeed there is no
need for computing the pressure conditions since they are known).

The I-BFGS algorithm makes the seismic misfit function decrease by 6 orders of
magnitude after 5000 iterations and by more than four orders of magnitude after
1000 iterations. The computed impedance distribution matches the exact impedance
distribution pretty well in the upper target (Figure 6 right). However our inversion result
has no quantitative value in the lower target. This is not surprising in view of section 2.4:
the low frequency trend of the impedance distribution cannot be retrieved in the lower
target. Although the reconstructed impedance distribution has no quantitative value
(Figure 6 left), we can however recognize some features present in the exact impedance
distribution. We will analyze in greater detail the reconstruction of the impedance in the
lower target in the next subsection. But let us highlight here the difference between our
nonlinear inversion (Figure 6 left) and a migration-like imaging as displayed in Figure
7. Leaving aside the quantitative aspects of the reconstruction, the vertical resolution
is obviously much higher in our nonlinear inversion result than in the migration-like
result. The vertical resolution in migration is governed by the frequency bandwidth
of the source (|4]) whereas, in our non linear inversion, it is governed by the sampling
between receivers in the upper target. In the lower target, the resolution accessible
by our nonlinear inversion cannot be quantified before hand. However, the fact that
it is much enhanced compared with migration can be understood as a kind of super-
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resolution phenomenon (|17]) caused by multipled scattering ([14]). We will pay much
attention to the vertical resolution in the next subsection.

4.3. Test of our method (unknown pressure conditions)

Encouraged by the results presented in the previous section, we aim here at recovering
simultaneously the impedance distribution and the 13 pressure conditions from the
well data associated with the 13 illumination angles. Let us point out that, although
we deal with synthetic data, this experiment is far from an inversion crime (e.g.[30])
contrary to the experiment shown in the previous subsection. Of course the question
is: to what extent the lack of information about the pressure conditions degrades the
reconstruction of the impedance distribution. Special attention will be paid to the
resolution of the imaging technique. But, before adressing these important questions,
we need to trust the optimization scheme which constructs the result. Figure 8 displays
the behavior of the normalized objective funtion (we normalize using the value of the
objective function, which is also here the seismic misfit function, at iteration 0) during
the first 1000 I-BFGS iterations (which correspond to some 30 hours CPU time using
128 cores of our cluster||). We observe a decrease of this normalized objective function
by almost 4 orders of magnitude, which is comparable to the experiment with known
pressure conditions although we deal here with conflicting pieces of information. This
illustrates the effectiveness of our interlocked optimization scheme.

4.3.1. An analysis of the resolution The comparison between the computed and exact
models (Figure 9 and 3, left ) shows that the prior information about the impedance
distribution has been accounted for while allowing some lateral variations. Figure
9 right also displays the differences between these two models: we observe that we
obtain a reasonable estimation of the impedance distribution in the upper target and
only in this upper target. Again this is no surprise according to what has been
explained in subsection 2.4. Also, by comparison with the experiment with known
pressure condition, we observe negligible degradation eventhough the reliability of the
quantitative estimation degrades a little when we move away from the well.

In order to assess the vertical resolution of the method, we display, in Figure 10, the
impedance profiles corresponding to different horizontal locations. We observe the very
good reconstruction of the impedance in the upper target, even for locations as remote
as 200 m. In this upper target, the very fine vertical variations of the impedance are
retrieved: the vertical resolution is limited by the sampling interval we have chosen (we
should have chosen an even finer interval...). In the lower target, eventhough the low
frequency trend is lost, the vertical variations of the impedance are recovered with great
detail. In this part, our inversion seems to provide a vertical resolution much better than
the one provided by standard seismic imaging techniques such as migration. Again, the
enhancement of the vertical resolution can be explained by the multiple illumination

|| More specifically, we have used 8 nodes constituted of 16 computation cores
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of points in the subsurface caused by multiple scattering (|14|). This explanation is
confirmed by the relative degradation of vertical resolution for large depths. Thus our
efforts for solving a nonlinear inverse problem are rewarded by a significant enhancement
of the vertical resolution. However, if the vertical heterogeneity of the medium had been
less severe, the enhancement of the vertical resolution would have been less significant.

In order to analyze the lateral resolution we first display (Figure 11) horizontal
impedance profiles corresponding to different depths. For z = 1400 m or z = 1600 m
the profiles show how good the estimation is. However the accuracy of the quantitative
estimation degrades as we move away from the well. At z = 2000 m, in spite of the loss
of the low frequency trend, we still recover, although with poor resolution, the horizontal
variations. However the horizontal resolution degrades very fast for larger depths. In
the transition zone, that is in the depth range at the vicinity of the boundary between
the upper and lower targets (z = 1800 m), the quality of the quantitative estimation
degrades very quickly as we move away from the well. This is not that surprising since
this zone corresponds to the transition between two different reconstruction mechanisms
as explained in subsection 2.4.1 for 1D models.

4.4. Sensitivity to the velocity model

Practical use of our method requires the estimation of the distribution velocity. A
traveltime analysis of the seismic events seen on the recorded data allow an accurate
estimation of the velocity profile at the well location within the depth interval covered
by receivers. However, eventhough traveltime inversion of well-seismic data ([12]) can
be of some help, we cannot expect a very accurate estimation of the velocity at some
hundred meters of the well. In this section we address the problem of the sensitivity of
the inversion result to an inaccurate velocity model.

In this aim we use a 1D velocity model such that the velocity profile is the same
as the one of the exact model at the well within the interval covered by receivers and
is set to a constant below (the constant is the velocity at the deeper receiver). The
objective function is decreased by almost 4 magnitudes: we match the data almost as
well as when using the exact velocity model. The recovered impedance distribution
is displayed in Figure 12 and some vertical profiles are shown in Figure 13. The
reconstructed impedance is still quite good. However we observe some degradation
in the resolution along with, in the lower target, some depth varying shifts between the
exact and reconstructed model. Those shifts are the consequences of an erroneous time
to depth conversion caused by the very erroneous constant velocity model used in the
lower target and the fit between the profiles would have appeared much better if they
had been displayed in terms of a depth measured in traveltime.
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5. Conclusion and perspectives

In the framework of 2D acoustic wave propagation, we have proposed a method that
attempts at recovering the impedance distribution from walkaway well-seismic data
given the velocity distribution. This method is based on a nonlinear waveform inversion.
From a physical standpoint, this amounts to account for the multiple scattering caused
by the heterogeneity of sedimentary terrains.

Basically our method is an extension of a classical least-squares based 1D inversion
of vertical seismic profiles. Our 2D extension calls for an appropriate regularization
of the seismic misfit function. This regularization only makes sense in the case of
media with gentle lateral variations and is based on a preprocessing that transforms
the recorded data into the seismic responses to quasi-plane waves excitations associated
with different illumination angles. Our method gets rid of the overburden, that is the
part of the subsurface above the depth of the shallower receiver, by reconstructing also
the boundary conditions at that depth for the different considered illumination angles.

The so-formulated nomnlinear inverse problem involves a tremendous number of
unknowns (typically one million), an ill-conditioned objective function, and a forward
map based on a numerical solution of the wave equation. Our quest for a high resolution
imaging technique led us to deal with finely sampled impedance distributions. In this
situation a second order finite difference scheme is appropriate for the numerical solution
of the forward problem. The minimization of the objective function calls for a dedicated
optimization method to overcome the difficulties arising from ill-conditioning. This
method is an extension of the I-BFGS optimization technique and makes use of a
gradient computed by means of the adjoint state. On a problem of this complexity
a cluster based supercomputer is essential as well as an implementation based on a
domain decomposition. Our implementation, although straightforward, turned out to
be very effective.

Our method has been designed as a 2D extension of a well understood 1D nonlinear
inversion. Based on this connection, an analysis of the stability of the impedance
reconstruction would be possible if there were some theorem stating, for 2D acoustic
wave propagation, the uniqueness of the impedance reconstruction for known boundary
condition. As far as we know, such a theorem is not available today. However
if uniqueness cannot be expected, our problem then loses its sense. Thus we have
assumed this uniqueness and, by analogy with the 1D problem, foreseen the impedance
reconstruction mechanism. It turns out that, in the upper target (the part corresponding
to the depth interval covered by receivers) we obtain a quantitative estimation of the
impedance distribution (up to a multiplicative constant). The vertical resolution is
governed by the sampling between receivers. In the lower target we lose the low
frequency trend and this, of course, partly hampers the quantitative estimation. Our
numerical experiments on synthetic data confirm and complete the above mentioned
results. In particular some lateral resolution can be expected only in the upper target.
Although the reliability of the quantitative estimation and the lateral resolution degrade
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as we move away from the well, our method yields a valuable result at about one hundred
meters away from the well. In the lower target, the reconstructed impedance, although
with poor lateral resolution, is still valuable. The vertical resolution is much better than
the one obtained by standard (linear) seismic imaging. This is a consequence of the
multiple illumination caused by multiple scattering and of our efforts in accounting for
these nonlinear effects. These results were obtained using the exact velocity distribution.

An important question is the sensitivity of the result in the chosen velocity
distribution. In practice, the velocity profile can be identified with very good accuracy
along the well in the depth interval covered by receivers. The difficulty is the obtention of
the velocity distribution around and below the well. We have carried out an experiment
to mimic this situation. The conclusion is that the result is not very sensitive to the
unknown features of the velocity distribution as long as we deal with a close to 1D
medium and with close to vertical illuminations: we have mainly observed a slight
degradation of the resolution.

Of course important work remains to be done. We have already mentioned the
problem concerning the uniqueness of the solution of the nonlinear inverse problem in
2D. From a more practical standpoint, a 3D extension, use of inhomogeneous trans-
parent boundary condition in replacement of our “pressure conditions” and update of
the estimated velocity distribution during the inversion would be very interesting exten-
sions. Also, how to design a seismic acquisition so as to optimize the reliability of the
quantitative estimation and the spatial resolution at a given location in the subsurface
is a point on which we have very limited answers and which, basically, remains an open
question.
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