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eAbstra
t. Well-seismi
 data su
h as verti
al seismi
 pro�les (VSP) are supposedto provide detailed information about the elasti
 properties of the subsurfa
e atthe vi
inity of the well. Heterogeneity of sedimentary terrains 
an lead to far fromnegligible multiple s
attering, one of the manifestations of the non linearity involvedin the mapping between elasti
 parameters and seismi
 data. We present a 2Dextension of an existing 1D nonlinear inversion te
hnique in the 
ontext of a
ousti
wave propagation. In the 
ase of a subsurfa
e with gentle lateral variations, wepropose a regularization te
hnique whi
h aims at ensuring the stability of the inversionin a 
ontext where the re
orded seismi
 waves provide a very poor illumination ofthe subsurfa
e. We deal with a huge size inverse problem. Spe
ial 
are has beentaken for its numeri
al solution, regarding both the 
hoi
e of the algorithms and theimplementation on a 
luster based super
omputer. Our tests on syntheti
 data showthe e�e
tiveness of our regularization. They also show that our e�orts in a

ountingfor the non linearities are rewarded by an ex
eptional seismi
 resolution at distan
esof about one hundred meters from the well. They also show that the result is not verysensitive to errors in the estimation of the velo
ity distribution, as far as these errorsremain realisti
 in the 
ontext of a medium with gentle lateral variations.PACS numbers: 00.00, 20.00, 42.10Keywords: re�e
tion seismology, a
ousti
 wave propagation, heterogeneity, nonlinear,regularization, (high) resolution, optimization, domain de
omposition.



A 2D nonlinear inversion of well-seismi
 data 21. Introdu
tionSeismi
 prospe
ting, i.e. the idea of using seismi
 waves to get information about thesubsurfa
e, is understood as a high resolution te
hnique 
ompared with potential meth-ods su
h as gravimetry. Geophysi
ists, as many other physi
ists, always are in questof a higher resolution: they want to get as mu
h detail as possible of the obje
t theyinspe
t. However resolution is not de�ned just by the physi
al means used for s
anningthe obje
t. The way the data are pro
essed, i.e. algorithms, for the obje
t re
on-stru
tion, 
an have strong in�uen
e on the resolution. This is the �eld on whi
h ourwork is to be pla
ed. Another important point is the ability to get quantitative infor-mation about the 
omposition of the obje
t. This is the se
ond motivation for our paper.Data a
quisition for seismi
 prospe
ting mainly 
on
erns the a
quisition of surfa
e data.However well seismi
 data often are interesting for detailed studies of reservoirs. Ifthe data quality is usually better 
ompared with that of surfa
e data, the part of thesubsurfa
e that is illuminated, that is the part that we 
an image, is of very limitedextension. Classi
ally we distinguish:� the a
quisition of verti
al seismi
 pro�les (VSP) in whi
h, the re
eivers 
overingsome depth range within the well, the sour
e is lo
ated at the surfa
e at the vi
inityof the borehole; for su
h a
quisitions waves usually propagate along dire
tions 
loseto the verti
al so that most of the imaging te
hniques ([19℄) rely on a 1D propagationassumption;� the a
quisition of walkaway data in whi
h, the re
eivers still 
overing some depthrange within the well, the sour
e is moved, shot after shot, at di�erent o�setsfrom the borehole; by using su
h a
quisitions we expe
t to enlarge the part of thesubsurfa
e that 
an be imaged.In the following we will make a distin
tion between di�erent zones asso
iated withdi�erent depth ranges: the �overburden� and the �target� separated by the horizontalplane at the depth of the shallower re
eiver. The target itself will be subdivided intothe �upper target� 
orresponding to the depth interval 
overed by the re
eivers and the�lower target� below. Well-seismi
 data (Figure 1) show a �rst arrival whi
h is most oftena downgoing wave. This arrival is usually followed by many downgoing waves: thesewaves have undergone (at least) a �re�e
tion� z at some interfa
e in the overburdenbefore propagating down again. The presen
e of many downgoing waves re�e
t theverti
al heterogeneity of the overburden. Well seismi
 data also show upgoing waveswhi
h are the result of �re�e
tions� that have taken pla
e within either the upper orlower target (or in both). However the tremendous heterogeneity of sedimentary layersleads to a very 
omplex wave propagation and this 
omplexity is not revealed by thez We use quotes to highlight that su
h a des
ription relies on a geometri
al opti
s view of wavepropagation. In our paper, we want to promote waveform inversion and therefore we question su
h aview.



A 2D nonlinear inversion of well-seismi
 data 3visual inspe
tion of the data: what we see is in fa
t the result of interferen
es betweena multitude of wavefronts.Should we want to image well-seismi
 data using the pro
edure whi
h is routinelyused for the imaging of surfa
e seismi
 data, we would apply the data a migration([8℄, [25℄, [5℄, [9℄), after having estimated the propagation velo
ity distribution in thesubsurfa
e. Su
h an imaging te
hnique turns out to be inadequate for our data thathave shown many downgoing waves illuminating the target whereas migration assumesthat a single wavefront illuminates the target. This is the reason why the standardpro
edure for imaging VSP data prefers to a

ount for the 
omplexity of the illuminatingwave�eld at the expense of a tremendous simpli�
ation of the geometri
al aspe
ts ofwave propagation (pre
isely at the expense of a 1D propagation assumption). Howeverit is often attempted to prepro
ess the data so as to get 
loser to the 1D propagationassumption. Should we want to a

ount for the multiple s
attering e�e
ts ([33℄) inwave propagation, we would have to apply a nonlinear imaging te
hnique su
h as thenonlinear inversion of VSP data proposed by [22℄ in a 1D framework. Here the goal is tore
onstru
t the a
ousti
 impedan
e pro�le while a

ounting for the nonlinear 
hara
terof the operator that maps the pro�le and the wave�eld. This nonlinear 
hara
ter is farfrom negligible as soon as the impedan
e pro�le shows important heterogeneity thusgiving rise to important multiple s
attering ([16℄).The nonlinear inverse problem in whi
h we re
onstru
t the impedan
e pro�le forknown velo
ity distribution should not be 
onfused with the inverse problem in whi
h wewant to re
onstru
t the propagation velo
ity distribution from seismi
 data, a problemextensively studied by many authors (see for instan
e [32℄ for an overview). For the 1Dnonlinear inversion of VSP data, measuring the depth in terms of verti
al traveltimeallows us to get rid of the estimation of the velo
ity distribution (ex
ept that we haveto express the depth of the di�erent re
eivers in terms of verti
al traveltime, but the
onversion is simple sin
e the VSP data allow us to evaluate pre
isely the di�eren
e intraveltimes between su

essive re
eivers).In our paper we want to set up a 2D extension of the waveform inversion developedby [22℄. We want not only to get rid of the unrealisti
 1D propagation assumption butalso we want to estimate the impedan
e distribution (as opposed to a single pro�le)in some vi
inity of the well and this with a verti
al resolution (to be understood asseparation power) mu
h better than the one obtained for surfa
e seismi
 data. As in [22℄,we will have to re
onstru
t the illuminating wave�eld in the same time as we re
onstru
tthe impedan
e distribution. Indeed the estimated impedan
e distribution depends onthe illuminating wave�elds and, in some situations, in a very sensitive way ([15℄). There
onstru
tion of this illuminating wave�eld is in fa
t one of the major di�
ulties forour extension sin
e, 
ontrary to the 1D propagation framework and to the migration
ontext, the geometries of the illuminating wavefronts are unknown (Figure 2 left). Thisdi�
ulty will 
onstrain us to only 
onsider media that vary gently along the horizontaldire
tion. In addition we will restri
t ourselves to a
ousti
 wave propagation and assumethe velo
ity distribution 
(x; z) to be known.



A 2D nonlinear inversion of well-seismi
 data 4In a �rst part we introdu
e, in a rather general 
ontext, the formalism for theinversion of walkaway data and study how to struggle against the indeterminationinherent in this inverse problem. In a se
ond part we present the numeri
al methodused for the solution of the inverse problem. Compared with the 1D inverse problemwe are fa
ed to two important di�eren
es: the ne
essity to introdu
e lateral boundariesin the propagation domain and the tremendous in�ation of unknowns. This in�ationwill lead us to be very 
areful for the numeri
al implementation. In the third partwe evaluate, by means of tests on syntheti
 data, the performan
e of our method withspe
ial emphasis on the a

essible verti
al resolution.2. The 2D extension of the 1D problemWe thus 
onsider walkaway data. Di�erent datasets are a
quired by moving the sour
eat di�erent o�sets from the well, supposed here to be verti
al with horizontal lo
ationx = 0. These distan
es will be 
alled o�sets throughout the paper. One dataset is thusasso
iated with a spe
i�
 o�set. We denote by S the number of su
h datasets. There
eivers, lo
ated at depths denoted by z1; :::; zQ, re
ord, as a fun
tion of time t, theparti
le displa
ement velo
ity ve
tor. In a 2D 
ontext this ve
tor is 
hara
terized by itshorizontal and verti
al 
omponents. Our data are thus 
omposed of the measurementsDs;q(t) asso
iated with re
eiver q and with dataset (or o�set) number s, this for t 2 [0; T ℄where T is the re
ording duration. We denote by D the ve
tor in (L2 (℄0; T [))2�S�Q
onstituted of su
h measurements. As in [22℄ we restri
t ourselves to the imaging of thetarget and thus want to get rid of the overburden whose base is at depth z1. This leadsus to introdu
e a boundary 
ondition at this depth. The target 
an only be imageddown to a depth zmax. This depth 
an be 
omputed given the re
ording duration T andthe propagation velo
ity distribution.2.1. The forward problemWe thus 
onsider waves propagating within a domain 
orresponding to depths largerthan z1 and introdu
e a boundary 
ondition at this depth. We also have to spe
ify
onditions at the other boundaries. Use of absorbing layers at the vi
inity of these otherboundaries is essential for a realisti
 modeling. We have 
hosen the PML (Perfe
tlyMat
hed Layer) te
hnique in the framework proposed by [6℄ [7℄ for the 2D and 3DMaxwell equations. LetO = ℄�a; a[� ℄z1; zmax[ (1)be the domain of interest. This is the domain where the velo
ity 
(x; z) and impedan
eI(x; z) distributions are de�ned. The PML domain with width l is de�ned as
 = ℄�X ;X [� ℄z1; Z[ ; (2)where we have set X = a + l and Z = zmax + l. We extend the original velo
ity andimpedan
e distributions to the PML domain by setting (similar expressions also hold
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 data 5for the velo
ity distribution):8>><>>: I(x; z) = I(a; z) for x > a;I(x; z) = I(�a; z) for x < �a;I(x; z) = I(x; z1) for z > z1: (3)Within domain 
, the Euler equation with absorption is written as8>>>>>>>>>><>>>>>>>>>>:
I
 �tux � �x(px + pz) + �x I
 ux = 0;I
 �tuz � �z(px + pz) + �z I
 uz = 0;1I
�tpx � �xux + 1I
�xpx = 0;1I
�tpz � �zuz + 1I
�zpz = 0; (4)

with zero initial 
onditions and the following boundary 
onditions8>>>><>>>>: (px + pz) (x; z1; t) = h (x; t) ;(px + pz) (x; Z; t) = 0;(px + pz) (�X; z; t) = 0;(px + pz) (X; z; t) = 0: (5)The prin
iple of the PML te
hnique 
onsists in splitting the pressure fun
tionp(x; z; t) into two subfun
tions px(x; z; t) and pz(x; z; t), so as to obtain 4 equationsinvolving spatial derivatives along a single dire
tion. Then an absorption term asso
iatedwith this dire
tion is introdu
ed (�x(x) or �z(z)). These absorption terms vanish withinthe domain of interest O and grow a

ording to a polynomial fun
tion within the PMLlayer. They are expressed as�x(x) = ����������� 0 if x 2 [�a; a℄��0x(x + a)3l3 if x 2 [�a� l;�a℄�0x(x� a)3l3 if x 2 [a; a + l℄ (6)
�z(z) = ������� 0 if z 2 [z1; zmax℄�0z(z � zmax)3l3 if z 2 [zmax; zmax + l℄ (7)where �0x and �0z are 
onstants that have been set up in an empiri
 way following thenumeri
al experiments given in [20℄. Thus, by adding the two equations in px and pz, weretrieve the standard a
ousti
 wave equation (written in the form of Euler equations),within the domain of interestO. In addition Diri
hlet homogeneous boundary 
onditionsfor the pressure are spe
i�ed at the boundaries of domain 
 (ex
ept for the part
orresponding to z1).The above equations are written for a generi
 boundary 
ondition h(x; t) at z = z1.However we will 
onsider di�erent displa
ement velo
ity wave�elds us(x; z; t) solutionsof the equations above with boundary 
onditions hs(x; t). In the sequel these boundary
onditions will be refered to as the pressure 
onditions. We 
all parameter a pair
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onstituted of an impedan
e distribution I(x; z) de�ned on O and of a sequen
e of Spressure 
onditions hs(x; t); s = 1; :::; S. We denote by H the ve
tor whose 
omponentsare those S pressure 
onditions. The forward problem thus 
onsists in 
omputing theseismi
 response to su
h parameter, given the velo
ity distribution. Pre
isely the seismi
response is des
ribed by the syntheti
 data U s;q(t) for s = 1; :::; S and q = 1; :::; Q thatare the displa
ement velo
ity ve
tors (with 
omponents us;qx (0; zs; t) and us;qz (0; zs; t))observed by the re
eiver at zq in the dataset number s.We introdu
e the forward modeling operator:M : (I;H) 7�! U = fU s;q(t); s = 1; :::; S; q = 1; :::; Q; t 2 [0; T ℄g :Let us point out again that the solution of the forward problem requires the propagationvelo
ity distribution to be known within domain O (and only within this domain).2.2. The 2D inverse problem: an ill-posed problemWe aim at retrieving the parameters whose seismi
 response best mat
hes the re
ordeddata. The inverse problem 
an thus be formulated asminI;H J (I;H) ; (8)where J (I;H) is the so-
alled seismi
 mis�t fun
tion de�ned by:J (I;H) = kD �M (I;H)k2 ; (9)where k k is the norm in (L2 (℄0; T [))2�S�Q.Thus formulated, the inverse problem appears indetermined: obviously we 
annotretrieve the pressure 
onditions asso
iated with ea
h dataset and therefore we 
annotimage the target. Indeed we la
k information about the geometries of the illuminatingwavefronts. To over
ome indetermination, we need prior information. This priorinformation will be a

ounted for by means of an appropriate regularization.2.3. The regularized 2D inverse problemIf we 
onsider media that are slowly varying along the x dire
tion, we may integrate inthe original obje
tive fun
tion (9) a regularization term R1(I) a

ounting for the lateralvariations of the impedan
e distribution: R1(I) = k�xIk2L2(℄�a;a[�℄z1;zmax[) : But this is notenough: we also need prior information about the pressure 
onditions, an informationrequired, let us point it out again, for the estimation of the impedan
e distribution.As for the 1D inverse problem, we want, through the pressure 
onditions, to a

ountfor the 
omplexity of the wave�eld that illuminates the target. The big di�eren
e, whi
his in fa
t a major di�
ulty for our extension, stems from the fa
t that the wave�eld isonly known at x = 0 (lo
ation of the well) and we 
an hardly 
on
eive a reliable methodto extrapolate the wave�eld when we move away from x = 0: basi
ally we basi
allyla
k information about the wavefront geometries. Su
h wavefronts are shown in Figure2a and b. However we underline that su
h information is in pra
ti
e unavailable: the
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 data 7information displayed in Figure 2 is the result of the modeling experiment presented inse
tion 4.To over
ome this di�
ulty, we apply the walkaway data a Radon transform knownas slant sta
king in the geophysi
al literature ([13℄). We thus obtain well data asso
iatedwith a 
lose to plane wave ex
itation (whi
h would be similar to a pressure 
ondition atz = 0). The ex
itation would be a genuine plane wave if the point sour
es were in�nitely
lose to ea
h other while 
overing the whole of the surfa
e and if the propagationvelo
ity at z = 0 were 
onstant. Under the latter assumption the angle �0 made bythe propagation dire
tion with the verti
al is given by: sin �0 = 
0�t�s , where:� 
0 is the velo
ity at z = 0;� �s is the distan
e between two 
onse
utive sour
es (we thus assume here equidistantsour
es);� �t is the time delay imposed from one sour
e to the next: this delay tunes, as seenfrom the above formula, the propagation dire
tion of the plane wave.Thus we 
an transform our S original re
ordings into Ŝ slant sta
ked datasets. By doingso we �x the �ts; s = 1; :::; bS to be used. The pressure 
ondition at z = z1 asso
iatedwith slant sta
ked data will be denoted by ĥs(s; t); s = 1; :::; bS. We introdu
e the ve
torH gathering the pressure 
onditions ĥs(s; t); s = 1; :::; bS. If we 
hoose bS = S, we mayexpe
t no information loss. The angles �0 (whi
h in fa
t depend on index s) will be
alled illumination angles: they will be 
hosen depending on the interval [z1; zQ℄ wherethe re
eivers are lo
ated and on the part of the subsurfa
e where we want to enhan
ethe resolution of the seismi
 imaging. Here we just mention this point whi
h woulddeserve a whole study.If we deal with a 1D medium, we 
an have pre
ise information about the propagationangle �1 of the plane wave at depth z1 using the 
lassi
al formula: sin �1
1 = sin �0
0 (
1 isthe propagation velo
ity at z1).However the media we will 
onsider are only 
lose to 1D so that, at depth z1, thewavefronts are only approximately plane. We thus assume the pressure 
ondition to varyslowly along lines that are orthogonal to ve
tor 
s (supersript s refers to the datasetobtained by slant sta
king with time delay �ts) de�ned by:
s(x) = " sin �s1(x)� 
os �s1(x) # with sin �s1(x) = 
(x;z1)�ts�s :The pressure 
onditions at z = z1 asso
iated with the slant sta
ked data 
an thusbe assumed to vary gently along dire
tions that are orthogonal to 
s(x). This leads usto introdu
e a se
ond regularization term R2(H) de�ned by R2(H) = PbSs=1 



s � rĥs


2,where k k denotes the norm in L2 (℄�a; a[� ℄0; T [).We point out that, even in the 
ase of a 1D medium, this regularization term is notexa
t: indeed, in this 
ase, the pressure wave�eld at z = z1 is 
onstituted of wavefrontspropagating a

ording to angle �1 but also of wavefronts propagating a

ording to angle
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 data 8��1, the latter wavefronts 
orresponding to �re�e
tions� that rea
h z1 under the formof upgoing waves. Use of inhomogeneous transparent boundary 
onditionsx su
h aspI
 (x; z1; t)�tP (x; z1; t) + �zpIP (x; z1; t) = h(x; t): (10)in repla
ement of the Diri
hlet boundary 
onditions (5) would have been better suitedfor a 
orre
t handling of prior information about the pressure 
onditions at z1. Howeveruse of Diri
hlet boundary 
onditions leads to simpler formulas. In addition, ourprior information asso
iated with the Diri
hlet boundary 
ondition is not unreasonable(Figure 2d): indeed the amplitude of the downgoing part of the wave�eld is mu
h largerthan the amplitude of the upgoing 
ontribution.With these elements we end up with the regularized formulation of the inverseproblem written as:minI;H J� (I;H) (11)with J� (I;H) = J (I;H) + �2D�2I R1(I) + �2D�2HR2 (H) (12)In equation (12) �D; �I and �H represent the un
ertainties asso
iated with theseismi
 data and the pie
es of prior information asso
iated with the impedan
edistribution and pressure 
onditions, respe
tively. In fa
t these un
ertainties 
an hardlybe estimated before hand. We have thus de
ided to set the values for �D�I and �D�H using atrial and error approa
h with the aim of getting a balan
e between the three 
omponentsof the regularized obje
tive fun
tion at the optimum. Our strategy would be justi�edif the assumption of an un
orrelated Gaussian additive noise 
orrupting the di�erentpie
es of information would be realisti
... Although more appropriate strategies ([31℄p.211) 
ould have been used, ours has the advantage of being straightforward.We thus have repla
ed the ill-posed problem (8) by a regularized version that willhopefully be well-posed. Pre
isely we hope that if the un
ertainties �D; �I and �Hare small enough, then the 
omputed impedan
e distribution will be �
lose� to thedistribution we look for. We explain in the next se
tion the reasons on whi
h ourexpe
tations rely.2.4. A justi�
ation of the regularizationThe understanding of the me
hanisms that allows the re
onstru
tion of the impedan
edistribution from well-seismi
 data is essential if we want to know to what extent thesolution of problem (11) provides an approximation of the impedan
e distribution weare looking for.x More sophisti
ated inhomogeneous transparent boundary 
onditions 
an be found in [3℄. For thesake of simpli
ity we just give the simplest version.
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 data 92.4.1. The re
onstru
tion of a 1D medium using plane wave ex
itations In a �rst stepwe 
onsider the 
ase of noise free data (the 
ase of noise 
orrupted data will be skimmedover at the end of this subse
tion).We thus 
onsider a 1D medium ex
ited by a plane wave propagating a

ording toillumination angle �0. We denote by ep(kx; z; !), eux(kx; z; !) and euz(kx; z; !) the 2DFourier transforms of p(x; z; t), ux(x; z; t) and uz(x; z; t), respe
tively. The Fouriertransform ep(kx; z; !) is solution of the Helmholtz equation:�
 !2I 0� 1
2 �  kx! !21A ~p� �z � 
I �z ~p� = 0; (13)while eux(kx; z; !) and euz(kx; z; !) are linked to ep(kx; z; !) by:( !~ux = � 
Ikxep�i!~uz = � 
I�z ~p (14)Fun
tions ~ux(kx; z; !), ~uz(kx; z; !) and ~p(kx; z; !) do not vanish, this is a spe
i�
ityof the regime asso
iated with a plane wave ex
itation, only for values of kx=! su
h thatkx! = 
os �0
0 , so that equations (14) 
an be rewritten as:( ~ux = � 
I 
os �0
0 ep�i!~uz = � 
I�z ~pWe introdu
e the fun
tions ûx(x; z; !), ûz(x; z; !) and p̂(x; z; !), the inverse Fouriertransforms of fun
tions ~ux(kx; z; !), ~uz(kx; z; !) and ~p(kx; z; !), respe
tively. Byintegrating in the variable x the equations above, we obtain the equations( ûx(0; z; !) = � 
I 
os �0
0 p̂(0; z; !)�i!ûz(0; z; !) = � 
I�zp̂(0; z; !)and by dividing these two equations we obtain�z (ln p̂(0; z; !)) = �i! 
os �0
0 ûz(0; z; !)ûx(0; z; !) :In other words, our measurements yield fun
tion p̂(0; z; !) over the measurementinterval, this for whatever value of ! and of the illumination angle, but up to amultipli
ative 
onstant. Integrating equation (13) over kx yields:�
 !2I 0� 1
2 �  
os �0
0 !21A p̂(0; z; !)� �z � 
I �zp̂� (0; z; !) = 0: (15)This equation allows us to understand the me
hanism for the re
onstru
tion of theimpedan
e pro�le from well-seismi
 data. Two 
ases are to be 
onsidered: the 
asez 2 [z1; zQ℄ and the 
ase z > zQ.In the former 
ase, for whatever pair (!; �0), I turns out to be solution of adi�erential equation (derived from (15) that 
an be expli
ited on the whole interval[z1; zQ℄ sin
e we know p̂(0; z; !) on this interval. As a result, the logarithmi
 derivative ofI (we thus assume here I to be di�erentiable) is determined up to an additive 
onstant or,
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 data 10in other words, I is determined up to a multipli
ative 
onstant. Having the informationfor a single ! and a single illumination angle is enough to re
onstru
t the impedan
epro�le on this interval (up to a multipli
ative 
onstant). In this reasoning we haveassumed a 
ontinuum of re
eivers whi
h is not realisti
. However we easily realize that,if the distan
e between su

essive re
eivers is small, the re
onstru
tion of the impedan
epro�le will be a

urate: the resolution (in the sense of separation power) is governed bythe verti
al sampling between re
eivers: we 
an obtain a high verti
al resolution evenfor a small value of !. In pra
ti
e we re
ord bp on interval [z1; zQ℄ for a multitude ofvalues of ! and for several illumination angles: the great amount of redundan
y in theinformation will be very helpful when dealing with noise 
orrupted data. However thisredundan
y is of no help to remove the indetermination asso
iated with the unknownmultipli
ative 
onstant sin
e there is one su
h 
onstant for ea
h (!; �0) pair.The re
onstru
tion of the impedan
e pro�le for z > zQ relies on a fully di�erentme
hanism. Here the understanding of the re
onstru
tion me
hanism is to be foundin the wave equation formulated as an evolution equation in time (that is the equationsatis�ed by the inverse Fourier transform of bp), starting from zero initial 
onditions. Theimportant point 
onsists in realizing that our re
ordings provide us with the informationasso
iated with both the Diri
hlet and Neumann boundary 
onditions at z = zQ, thelatter up to a multipli
ative 
onstant sin
e the value of the impedan
e at z = zQ isunknown. The inverse problem whi
h 
onsists in retrieving the impedan
e pro�le forz > zQ from the two boundary 
onditions has been the obje
t of extensive studiesespe
ially the one by [1℄ and [2℄. We underline two important results:� in the 
ase of noise free data, the uniqueness of the solution (again here up toa multipli
ative 
onstant), a result obtained by di�erent authors using di�erentassumptions; we refer to [10℄ for a review of these results;� the stability of the solution of the inverse problem when the data are noise 
orrupted([2℄); in fa
t this stability strongly depends on the 
omplexity of the pro�le to beretrieved (this 
omplexity is quanti�ed by the total variation of the pro�le) and onthe wavelet smoothness; in parti
ular standard seismi
 wavelets, whose frequen
y
ontent is negligible below 8 Hz are not appropriate to re
over the low frequen
ytrend of the impedan
e pro�le.The results given above stand for a single illumination angle. In pra
ti
e the informationfor di�erent angles is available: again there is some redundan
y in the data. Again thisredundan
y will be very helpful when dealing with noise 
orrupted data but will be ofno help for removing the indetermination asso
iated with the unknown multipli
ative
onstant and for the re
overy of the low frequen
y trend for depths larger than zQ.The results 
on
erning the uniqueness are obtained by exhibiting an analyti
expression for the solution of the inverse problem. This analyti
 expression is of limitedinterest as soon as we deal with noise 
orrupted data. In pra
ti
e, least-squares basedmethods su
h as the one proposed in 1D by [22℄ (whi
h 
an be easily generalized to the
ase of 1D media ex
ited by an oblique plane wave) are better suited, in parti
ular for
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y. Our motivationfor reviewing the theoreti
al results above was to give elements for apprehending thebehavior of inversion softwares whatever they are based on an analyti
 or a least-squaresbased approa
h.2.4.2. The 2D inversion of walkaway data This se
tion aims at justifying the e�
ien
yof the regularization we have introdu
ed to produ
e a reliable estimation of impedan
edistributions with gentle lateral velo
ity variations by inversion of the slant sta
kedwalkaway data.We start by pointing out that our problem is hampered by the same indetermination(�up to some multipli
ative 
onstant�) as the problem studied in subse
tion 2.4.1.Indeed, if we 
onsider the seismi
 response to parameters (I;H), we do not 
hangethis seismi
 response by multiplying the impedan
e distribution I by some 
onstant andea
h of the bS pressure 
onditions by the same 
onstant. This leads us to introdu
eequivalen
e 
lasses and to de�ne a representative for ea
h equivalen
e 
lass by imposingthe 
ondition I(0; z1) = Iref , where Iref is a value to be 
hosen at our 
onvenien
e.We now 
hange the de�nition of pressure 
onditions: instead of 
onsidering theDiri
hlet boundary 
ondition (5) at z = z1, we impose the downgoing wave�eld at thatdepth by means of an outgoing boundary 
ondition (10) (that is a 
ondition that makesthe re�e
tion 
oe�
ient small for a wide interval of in
iden
e angles).For �xed positive real � and �, we introdu
e the set M�; � of equivalen
e 
lassrepresentatives that satisfy the inequalities8>><>>: k�xIk � �;bSXs=1 


rĥs � 
s


2 � �;where kk denotes various L2 norms (they have been previously expli
ited). We 
onsiderthe set E�; � of parameters in M�; � that mat
h our well-seismi
 data (assumed hereto be noise free) and noti
e that this set has a single element if � = � = 0. Ourregularization te
hnique should thus be e�e
tive if we admit that the �size� of the setE�; � does not rapidly in
rease when � and � in
rease. Note that the larger the numberof illuminating angles, the slower the in
rease of the �size� of this set. From a formalstandpoint we 
an de�ne the �size� S(E�; �) of this set by 
onsidering the quantity de�nedby supI;I0 kI � I 0kL2(℄�a;a[�℄z1;zmax[. With this de�nition, we fo
us our attention on thereliability of the re
onstru
ted impedan
e distributions 
onsidering pressure 
onditionsjust as intermediate unknowns. Also with this de�nition we impli
itly 
onsider the L2norm as an appropriate measure of the a

ura
y for the re
onstru
tion of the impedan
edistribution. This is a subje
tive but not unreasonable 
hoi
e. Thus our expe
tation
on
erning the stability of our inverse problem relies on the assumption of a 
ontinuousevolution of S(E�; �) with the (�; �) pair. Su
h an assumption 
an only make senseif the uniqueness in the re
overy of the impedan
e distribution for known pressure
onditions is ensured. As far as we know, there is no proof of su
h a result (ex
ept for
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le for the obtention of su
h a result.However, in pra
ti
e, and eventhough the pressure 
ondition is spe
i�ed as aDiri
hlet boundary 
ondition (and not as the transparent boundary 
ondition (10)),provided that the regularization weights are strong enough, our regularization turns outto be e�e
tive for a stable re
onstru
tion of the impedan
e as we will show in se
tion 4.3. The numeri
al method for the solution of the inverse problem3.1. The numeri
al solution of the forward problemThe PML te
hnique we have used 
onsists in an extension to a
ousti
 wave propagationin heterogeneous media of the 
on
eptual framework proposed by [6℄, [7℄: this authordealt with ele
tromagneti
 wave propagation in a homogeneous medium. Studying thestability of the forward problem formalized by equations (4)(5) is beyond the s
opeof our paper. However the interested reader 
an refer to the work of [23℄, this workfollowing the one of [28℄.The numeri
al solution of the forward problem relies on a dis
retization of equations(4)(5). The aim of our te
hnique is the improvement of the seismi
 resolution: a �nedis
retization of domain 
 is then required. Using a high order �nite di�eren
e s
hemein this 
ontext would make the 
omputation heavier without improving the a

ura
y.We have used the expli
it 
entered se
ond order s
heme proposed by [34℄.3.2. The dis
rete inverse problemThe dis
rete inverse problem 
onsists in the minimization of the obje
tive fun
tionJ� (I;H) in whi
h the fun
tions have been repla
ed by dis
rete fun
tions, namelyve
tors, the forward map by its dis
rete version based on Yee's �nite di�eren
e s
hemeand the regularization terms by their dis
rete version involving a �nite di�eren
eapproximation of the gradients. In order to alleviate the formulas that will follow,we explain the solution of the inverse problem using the formalism of the original (notdis
retized) problem.Let us underline the size of the dis
rete inverse problem: the example presented inse
tion 4 involves typi
ally a million of unknowns. In addition the evaluation of the valueof the obje
tive fun
tion for some parameter requires the solution of bS wave equationsdis
retized using a very �ne grid. If we want the 
omputation to be feasible, the solutionof the dis
rete inverse problem thus 
alls for an e�
ient numeri
al implementation ona 
luster based super
omputer.3.3. An original optimization methodThe minimization of a non quadrati
 obje
tive fun
tion that involves about a million ofunknowns is not a simple job !
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are has to be taken for the 
hoi
e of the minimization method to be used.Classi
ally, for huge size non quadrati
 problems, we preferably attempt at using Quasi-Newton te
hniques. Indeed, information about the Hessian of the obje
tive fun
tion,whi
h would be very 
ompli
ated, is not required. Su
h methods only require theevaluation of the obje
tive fun
tion and of its gradient for some parameter.The adjoint state method ([21℄,[11℄) allows the 
omputation of the gradient of theobje
tive fun
tion rJ� (I;H) at, pra
ti
ally, the same 
ost as the evaluation of thisobje
tive fun
tion. Note that presen
e of unknowns that are of di�erent physi
al nature(an impedan
e distribution and pressure 
onditions) and that a
t on the seismi
 responsein quite di�erent ways leads to an ill-
onditioned optimisation problem. Pra
ti
allyour attempts ([24℄) for a straightforward minimization of the obje
tive fun
tion usinga Quasi-Newton algorithm were led to failure (negligible de
rease of the obje
tivefun
tion).3.3.1. An interlo
ked optimization te
hnique To over
ome the above mentioneddi�
ulty, we have set up a te
hnique exploiting the quadrati
 dependen
y of theobje
tive fun
tion in the pressure 
onditions. Pre
isely we are going to use a Quasi-Newton algorithm for the minimization of a new obje
tive fun
tion that only involvesthe impedan
e distribution as unknown. We explain below how we have pro
eeded.We introdu
e a new obje
tive fun
tion eJ�(I) de�ned byeJ�(I) = J�(I;H(I)); (16)with 8<: H(I) = argminH J�(I;H);H = �ĥ1; :::; ĥŜ� :We 
an easily realize that problem (8) is equivalent to problemminI eJ�(I): (17)Our idea is to use the Quasi-Newton pro
edure (spe
i�
ally a l-BFGS algoritm, [26℄,[27℄) to minimize eJ�(I)). At ea
h iteration, this algorithm asks for the 
omputations ofthe obje
tive fun
tion and of its gradient. These 
omputations require the knowledgeof the pressure 
onditions that are the 
omponents of H(I). The 
omputation of thesepressure 
onditions is 
arried out using a 
onjugate gradient algorithm (spe
i�
ally thealgorithm des
ribed in [18℄): indeed these pressure 
onditions are solution of a quadrati
problem.In addition, the gradient of the new obje
tive fun
tion is straightforwardly obtainedfrom the evaluation of rJ�(I;H), that is with no additional 
omplexity 
ompared witha straightforward minimization of the original obje
tive fun
tion using a Quasi-Newtonalgorithm.Indeed, a disturban
e ÆI brought to I gives rise to a disturban
e ÆH of H(I) andto a disturban
e Æ eJ� of eJ�(I) given by:Æ eJ� = �J��I �I;H(I)� � ÆI + �J��H �I;H(I)� � ÆH:
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e �J��H �I;H(I)� = 0, we 
an avoid the 
ompli
ated 
omputation of ÆH and the
omputation of r eJ� just requires the 
omputation of �J��I �I;H(I)�. However the
omputation of H(I) requires the 
omputation of �J��H (I;H). In summary the kernel isthe 
omputation of rJ�(I;H) (the 
omputation of �J��H (I;H) is required to 
omputeH(I)).3.4. Parallel 
omputation of rJ�(I;H) by the adjoint state te
hniqueThe gradients of the regularization terms R1 and R2 are straightforwardly obtained.But the gradient of J(I;H) is not trivial. The adjoint state te
hnique yields the valueof this gradient at the expense of the solutions of two wave equations: one asso
iatedwith the forward problem and one asso
iated with the adjoint problem. We thus avoidthe 
omputation of the Ja
obian matrix whi
h would require tremendous 
omputerresour
es. This te
hnique has been developed by Lions ([21℄) for the optimal 
ontrol ofsystems governed by PDEs and by Chavent ([11℄) for the identi�
ation of distributedsystems. A review of its appli
ations to inverse problems in geophysi
s is given by [29℄.We give below a sket
h of the adjoint state method. In order to alleviate thenotations, we have removed supers
ript s (we have done so previously when expli
itingthe forward problem) but the 
al
ulations have to be applied for ea
h of the bS valuesof s. We thus 
onsider a ve
tor H involving a single pressure 
ondition h: H = fhg.Also, we only des
ribe the 
omputation of the gradient for an impedan
e distributionde�ned on the PML domain 
 and a pressure 
ondition de�ned on [�X;X℄: from this
omputation we easily obtain the gradient with respe
t to fun
tions asso
iated with theoriginal domain O by appli
ation of the 
hain's rule.3.4.1. The adjoint state There are 8 dual variables 
orresponding to system (4)(5) forthe pressure 
ondition h(x,t). The �rst four are fun
tions of (x; z; t) while the others aretra
es on hyperplanes that 
an be expressed as fun
tions of the �rst four. Let �i; i = 1; 4be the �rst four fun
tions. They are solution of the wave equations:8>>>>>>>>>>>><>>>>>>>>>>>>:
I
�t�1 � �x�3 � �x I
�1 = fx(x; z; t)I
�t�2 � �z�4 � �z I
�2 = fz(x; z; t)1I
�t�3 � �x�1 � �x 1I
�3 = 01I
�t�4 � �z�2 � �z 1I
�4 = 0; (18)
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kwards in time from zero �nal 
onditions a t = T , with the boundary
onditions 8>><>>: �3(�X; z; t) = 0; �3(X; z; t) = 0�4(x; z1; t) = 0; �4(x; Z; t) = 0 (19)and with 8>>>>>>>><>>>>>>>>: fx(x; z; t) = 2 QXq=1 (ux(0; zq; t)�Dqx(t)) ÆMq(x; z)fz(x; z; t) = 2 QXq=1 (uz(0; zq; t)�Dqz(t)) ÆMq(x; z): (20)In the equations above ÆMq(x; z) is the Dira
t delta fun
tion 
entered at the 
oordinates(0; zq) of re
eiver q.A

ording to the geophysi
ist vo
abulary, the 
omputation of the adjoint stateamounts to ba
kpropagate the seismi
 residuals asso
iated with the di�erent re
eivers.3.4.2. Computation of the gradient. On
e the adjoint state has been 
omputed, it iseasy to obtain the gradient of the mis�t fun
tion. The formulas (see [24℄) that giverJ� (I;H) are, for (usx; usz; psx; psz) solution of (4)(5) for a pressure 
ondition hs(x; t),and (�s1; �s2; �s3; �s4) the 
orresponding adjoint state�IJ(I; fĥ1; : : : ; ĥŜg) = bSXs=1 Z T0 �s1 1I �x(psx + psz) + �s2 1I �z(psx + psz)dt� bSXs=1 Z T0 �s3 1I �xusx + �s4 1I �zuszdt: (21)On the other hand,�hsJ(I; fĥ1; : : : ; ĥŜg) = �I
 �s2(x; z1; t): (22)We refer to [24℄ for the expression of the gradient of the dis
rete obje
tive fun
tion.3.4.3. Parallelization of the 
omputations using domain de
omposition. Use of parallel
omputing is essential if we want to avoid an una

eptable elapsed time. The most
omputation intensive part of the algorithm 
onsists in the solution of the forward andadjoint equations. Here domain de
omposition 
omes in. Domain 
 is subdivided into Psubdomains 
i. A dedi
ated pro
essor is in 
harge of the 
omputations for the solutionof the forward and adjoint equations in domain 
i. Of 
ourse, if we leave aside the
ommuni
ations between pro
essors, the smaller the size of the subdomain, the smallerthe 
omputation time is. The parallelization te
hnique is the same for the forward andadjoint equations: we expli
it the te
hnique for the forward equations only.
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essor i is in 
harge of the solution of equations (4) within subdomain 
i.The only noti
eable 
hange lies in the boundary 
ondition that px + pz has to meet.Indeed, domain de
omposition introdu
es �
titious boundaries within domain 
. These�
titious boundaries separate adja
ent subdomains. To spe
ify the boundary 
onditionat these �
titious boundaries, we have to make ea
h subdomain partly 
over itsneighbors. If we a

ept the idea of ex
hanging information between subdomains atea
h time step, the domain de
omposition te
hnique be
omes straightforward for theYee's s
heme. The 
overing is 
onstituted of two rows (or two 
olumns), the points
onstituting the boundary of one subdomain 
orresponding to the row (or 
olumn) ofthe nearest interior points of the neighbor subdomain.This domain de
omposition method allows an e�
ient parallelization of the
omputations for solving the forward and adjoint equations. Communi
ation is requiredat ea
h time step but the volume of information to be ex
hanged at a spe
i�
 time stepis small sin
e only data within the 
overings are to be ex
hanged. So that we end upwith a good �s
aling�. Our numeri
al implementation allows an e�e
tive solution oflarge size 2D problems as shown in the next se
tion.In the 
ase of small subdomains, the memory of the 
omputation 
ores may allowthe storage of the solution of the forward problem. So that the 
omputation of thegradient (espe
ially 
omputation of the integral in (21)) is straightforward: there is noneed of re
omputing this solution by a ba
kward integration in time (syn
hronous withthe solution of the adjoint equation) of the wave equation as it is usually done. Thissaves some 30% of the 
omputing time required for the 
omputation of the gradient.4. Evaluation of the methodThe goal of this se
tion is to evaluate the performan
e of the method using syntheti
data. Spe
ial attention will be paid to the resolution obtained.4.1. The test model and dataThe subsurfa
e model we have used (impedan
e and velo
ity distribution) is displayedin Figure 3. It is de�ned over a 720 m wide and 3400 m deep domain. The model showsgentle lateral variations. For the syntheti
 data generation, 100 re
eivers were pla
edin a verti
al well (at x = 0) every 8 m from z = 1000 m. The seismi
 sour
es wereshot at the surfa
e from x=-360 m to x=360 m every 24 m. The seismi
 wavelet is aRi
ker fun
tion with 25 Hz 
entral frequen
y (Figure 4). We then applied the originaldata (Figure 1) a Radon transform so as to obtain data 
orresponding to a pseudo-planewave ex
itation for illumination angles ranging, at z = 0, between -6�and 6�with a 1�sampling. The transformed data are displayed in Figure 5.Our aim is to invert for the impedan
e distribution given the 13 transformeddatasets and the velo
ity distribution, for z � z1 = 1000 m. In order to preserve seismi
resolution we keep the �ne spatial dis
retization, namely �x = 12 m and �z = 8 m,
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 data.In all the experiments presented below the optimization algorithm is initiated usinga 
onstant impedan
e distribution and zero pressure 
onditions (ex
ept for the situationwhere these pressure 
onditions are known).4.2. Inversion with known pressure 
onditionsWe start with an inversion with known pressure 
onditions: this experiment will serveas a referen
e for the test of our method in whi
h the pressure 
onditions also have to beretrieved. This referen
e is important sin
e we deal here with 2D nonlinear inversion, atopi
 in whi
h we la
k of theoreti
al ba
kground.To 
arry out this arti�
ial experiment we saved the pressure 
onditions at depthz1 (top of the overburden) when modeling the wave�elds generated by the shots. Wethen added these di�erent re
ordings after appli
ation of a shot dependent delay so asto simulate the slant sta
king pro
edure for the 13 
onsidered illumination angles. Someof the so-obtained pressure 
onditions are displayed in Figure 2 
 and d.In this inversion experiment we want to make sure that the optimization algorithmyields a model that mat
hes the seismi
 data and, in 
ase of su

ess, to evaluate to whatextent the inversion allows a re
overy of the impedan
e distribution. It should be notedthat� we do not regularize here; in other words we set �D=�I = �D=�H = 0;� we skip the inner loop of our interlo
ked optimization te
hnique (indeed there is noneed for 
omputing the pressure 
onditions sin
e they are known).The l-BFGS algorithm makes the seismi
 mis�t fun
tion de
rease by 6 orders ofmagnitude after 5000 iterations and by more than four orders of magnitude after1000 iterations. The 
omputed impedan
e distribution mat
hes the exa
t impedan
edistribution pretty well in the upper target (Figure 6 right). However our inversion resulthas no quantitative value in the lower target. This is not surprising in view of se
tion 2.4:the low frequen
y trend of the impedan
e distribution 
annot be retrieved in the lowertarget. Although the re
onstru
ted impedan
e distribution has no quantitative value(Figure 6 left), we 
an however re
ognize some features present in the exa
t impedan
edistribution. We will analyze in greater detail the re
onstru
tion of the impedan
e in thelower target in the next subse
tion. But let us highlight here the di�eren
e between ournonlinear inversion (Figure 6 left) and a migration-like imaging as displayed in Figure7. Leaving aside the quantitative aspe
ts of the re
onstru
tion, the verti
al resolutionis obviously mu
h higher in our nonlinear inversion result than in the migration-likeresult. The verti
al resolution in migration is governed by the frequen
y bandwidthof the sour
e ([4℄) whereas, in our non linear inversion, it is governed by the samplingbetween re
eivers in the upper target. In the lower target, the resolution a

essibleby our nonlinear inversion 
annot be quanti�ed before hand. However, the fa
t thatit is mu
h enhan
ed 
ompared with migration 
an be understood as a kind of super-
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aused by multipled s
attering ([14℄). We will pay mu
hattention to the verti
al resolution in the next subse
tion.4.3. Test of our method (unknown pressure 
onditions)En
ouraged by the results presented in the previous se
tion, we aim here at re
overingsimultaneously the impedan
e distribution and the 13 pressure 
onditions from thewell data asso
iated with the 13 illumination angles. Let us point out that, althoughwe deal with syntheti
 data, this experiment is far from an inversion 
rime (e.g.[30℄)
ontrary to the experiment shown in the previous subse
tion. Of 
ourse the questionis: to what extent the la
k of information about the pressure 
onditions degrades there
onstru
tion of the impedan
e distribution. Spe
ial attention will be paid to theresolution of the imaging te
hnique. But, before adressing these important questions,we need to trust the optimization s
heme whi
h 
onstru
ts the result. Figure 8 displaysthe behavior of the normalized obje
tive funtion (we normalize using the value of theobje
tive fun
tion, whi
h is also here the seismi
 mis�t fun
tion, at iteration 0) duringthe �rst 1000 l-BFGS iterations (whi
h 
orrespond to some 30 hours CPU time using128 
ores of our 
lusterk). We observe a de
rease of this normalized obje
tive fun
tionby almost 4 orders of magnitude, whi
h is 
omparable to the experiment with knownpressure 
onditions although we deal here with 
on�i
ting pie
es of information. Thisillustrates the e�e
tiveness of our interlo
ked optimization s
heme.4.3.1. An analysis of the resolution The 
omparison between the 
omputed and exa
tmodels (Figure 9 and 3, left ) shows that the prior information about the impedan
edistribution has been a

ounted for while allowing some lateral variations. Figure9 right also displays the di�eren
es between these two models: we observe that weobtain a reasonable estimation of the impedan
e distribution in the upper target andonly in this upper target. Again this is no surprise a

ording to what has beenexplained in subse
tion 2.4. Also, by 
omparison with the experiment with knownpressure 
ondition, we observe negligible degradation eventhough the reliability of thequantitative estimation degrades a little when we move away from the well.In order to assess the verti
al resolution of the method, we display, in Figure 10, theimpedan
e pro�les 
orresponding to di�erent horizontal lo
ations. We observe the verygood re
onstru
tion of the impedan
e in the upper target, even for lo
ations as remoteas 200 m. In this upper target, the very �ne verti
al variations of the impedan
e areretrieved: the verti
al resolution is limited by the sampling interval we have 
hosen (weshould have 
hosen an even �ner interval...). In the lower target, eventhough the lowfrequen
y trend is lost, the verti
al variations of the impedan
e are re
overed with greatdetail. In this part, our inversion seems to provide a verti
al resolution mu
h better thanthe one provided by standard seismi
 imaging te
hniques su
h as migration. Again, theenhan
ement of the verti
al resolution 
an be explained by the multiple illuminationk More spe
i�
ally, we have used 8 nodes 
onstituted of 16 
omputation 
ores
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e 
aused by multiple s
attering ([14℄). This explanation is
on�rmed by the relative degradation of verti
al resolution for large depths. Thus oure�orts for solving a nonlinear inverse problem are rewarded by a signi�
ant enhan
ementof the verti
al resolution. However, if the verti
al heterogeneity of the medium had beenless severe, the enhan
ement of the verti
al resolution would have been less signi�
ant.In order to analyze the lateral resolution we �rst display (Figure 11) horizontalimpedan
e pro�les 
orresponding to di�erent depths. For z = 1400 m or z = 1600 mthe pro�les show how good the estimation is. However the a

ura
y of the quantitativeestimation degrades as we move away from the well. At z = 2000 m, in spite of the lossof the low frequen
y trend, we still re
over, although with poor resolution, the horizontalvariations. However the horizontal resolution degrades very fast for larger depths. Inthe transition zone, that is in the depth range at the vi
inity of the boundary betweenthe upper and lower targets (z = 1800 m), the quality of the quantitative estimationdegrades very qui
kly as we move away from the well. This is not that surprising sin
ethis zone 
orresponds to the transition between two di�erent re
onstru
tion me
hanismsas explained in subse
tion 2.4.1 for 1D models.4.4. Sensitivity to the velo
ity modelPra
ti
al use of our method requires the estimation of the distribution velo
ity. Atraveltime analysis of the seismi
 events seen on the re
orded data allow an a

urateestimation of the velo
ity pro�le at the well lo
ation within the depth interval 
overedby re
eivers. However, eventhough traveltime inversion of well-seismi
 data ([12℄) 
anbe of some help, we 
annot expe
t a very a

urate estimation of the velo
ity at somehundred meters of the well. In this se
tion we address the problem of the sensitivity ofthe inversion result to an ina

urate velo
ity model.In this aim we use a 1D velo
ity model su
h that the velo
ity pro�le is the sameas the one of the exa
t model at the well within the interval 
overed by re
eivers andis set to a 
onstant below (the 
onstant is the velo
ity at the deeper re
eiver). Theobje
tive fun
tion is de
reased by almost 4 magnitudes: we mat
h the data almost aswell as when using the exa
t velo
ity model. The re
overed impedan
e distributionis displayed in Figure 12 and some verti
al pro�les are shown in Figure 13. There
onstru
ted impedan
e is still quite good. However we observe some degradationin the resolution along with, in the lower target, some depth varying shifts between theexa
t and re
onstru
ted model. Those shifts are the 
onsequen
es of an erroneous timeto depth 
onversion 
aused by the very erroneous 
onstant velo
ity model used in thelower target and the �t between the pro�les would have appeared mu
h better if theyhad been displayed in terms of a depth measured in traveltime.
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 data 205. Con
lusion and perspe
tivesIn the framework of 2D a
ousti
 wave propagation, we have proposed a method thatattempts at re
overing the impedan
e distribution from walkaway well-seismi
 datagiven the velo
ity distribution. This method is based on a nonlinear waveform inversion.From a physi
al standpoint, this amounts to a

ount for the multiple s
attering 
ausedby the heterogeneity of sedimentary terrains.Basi
ally our method is an extension of a 
lassi
al least-squares based 1D inversionof verti
al seismi
 pro�les. Our 2D extension 
alls for an appropriate regularizationof the seismi
 mis�t fun
tion. This regularization only makes sense in the 
ase ofmedia with gentle lateral variations and is based on a prepro
essing that transformsthe re
orded data into the seismi
 responses to quasi-plane waves ex
itations asso
iatedwith di�erent illumination angles. Our method gets rid of the overburden, that is thepart of the subsurfa
e above the depth of the shallower re
eiver, by re
onstru
ting alsothe boundary 
onditions at that depth for the di�erent 
onsidered illumination angles.The so-formulated nonlinear inverse problem involves a tremendous number ofunknowns (typi
ally one million), an ill-
onditioned obje
tive fun
tion, and a forwardmap based on a numeri
al solution of the wave equation. Our quest for a high resolutionimaging te
hnique led us to deal with �nely sampled impedan
e distributions. In thissituation a se
ond order �nite di�eren
e s
heme is appropriate for the numeri
al solutionof the forward problem. The minimization of the obje
tive fun
tion 
alls for a dedi
atedoptimization method to over
ome the di�
ulties arising from ill-
onditioning. Thismethod is an extension of the l-BFGS optimization te
hnique and makes use of agradient 
omputed by means of the adjoint state. On a problem of this 
omplexitya 
luster based super
omputer is essential as well as an implementation based on adomain de
omposition. Our implementation, although straightforward, turned out tobe very e�e
tive.Our method has been designed as a 2D extension of a well understood 1D nonlinearinversion. Based on this 
onne
tion, an analysis of the stability of the impedan
ere
onstru
tion would be possible if there were some theorem stating, for 2D a
ousti
wave propagation, the uniqueness of the impedan
e re
onstru
tion for known boundary
ondition. As far as we know, su
h a theorem is not available today. Howeverif uniqueness 
annot be expe
ted, our problem then loses its sense. Thus we haveassumed this uniqueness and, by analogy with the 1D problem, foreseen the impedan
ere
onstru
tion me
hanism. It turns out that, in the upper target (the part 
orrespondingto the depth interval 
overed by re
eivers) we obtain a quantitative estimation of theimpedan
e distribution (up to a multipli
ative 
onstant). The verti
al resolution isgoverned by the sampling between re
eivers. In the lower target we lose the lowfrequen
y trend and this, of 
ourse, partly hampers the quantitative estimation. Ournumeri
al experiments on syntheti
 data 
on�rm and 
omplete the above mentionedresults. In parti
ular some lateral resolution 
an be expe
ted only in the upper target.Although the reliability of the quantitative estimation and the lateral resolution degrade
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 data 21as we move away from the well, our method yields a valuable result at about one hundredmeters away from the well. In the lower target, the re
onstru
ted impedan
e, althoughwith poor lateral resolution, is still valuable. The verti
al resolution is mu
h better thanthe one obtained by standard (linear) seismi
 imaging. This is a 
onsequen
e of themultiple illumination 
aused by multiple s
attering and of our e�orts in a

ounting forthese nonlinear e�e
ts. These results were obtained using the exa
t velo
ity distribution.An important question is the sensitivity of the result in the 
hosen velo
itydistribution. In pra
ti
e, the velo
ity pro�le 
an be identi�ed with very good a

ura
yalong the well in the depth interval 
overed by re
eivers. The di�
ulty is the obtention ofthe velo
ity distribution around and below the well. We have 
arried out an experimentto mimi
 this situation. The 
on
lusion is that the result is not very sensitive to theunknown features of the velo
ity distribution as long as we deal with a 
lose to 1Dmedium and with 
lose to verti
al illuminations: we have mainly observed a slightdegradation of the resolution.Of 
ourse important work remains to be done. We have already mentioned theproblem 
on
erning the uniqueness of the solution of the nonlinear inverse problem in2D. From a more pra
ti
al standpoint, a 3D extension, use of inhomogeneous trans-parent boundary 
ondition in repla
ement of our �pressure 
onditions� and update ofthe estimated velo
ity distribution during the inversion would be very interesting exten-sions. Also, how to design a seismi
 a
quisition so as to optimize the reliability of thequantitative estimation and the spatial resolution at a given lo
ation in the subsurfa
eis a point on whi
h we have very limited answers and whi
h, basi
ally, remains an openquestion.6. Referen
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