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Schwarz waveform relaxation algorithms are designed for the linear Schr€odinger equation with
potential. Two classes of algorithms are introduced: the quasi-optimal algorithm, based on the

transparent continuous or discrete boundary condition, and the optimized complex Robin

algorithm. We analyze their properties in one dimension. First, well-posedness and convergence
are studied, in the overlapping and the non-overlapping case, for constant or non-constant

potentials. Then discrete algorithms are established, for which convergence is proved through

discrete energies or Fourier transforms, as in the continuous case. Numerical results illustrate the

e±ciency of the methods, for various types of potentials and any number of subdomains.
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1. Introduction

The transient Schr€odinger equation is the basic model in quantum mechanics. It is

also the \parabolic approximation" of the wave equation, used in underwater

acoustics, or in the so-called migration process, an imaging method to search for
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hydrocarbons. The design of optical ¯bers, or new semiconductor devices is based on

numerical simulations of a variety of such equations, linear with a potential, or

nonlinear, or even part of a system, in large domains.3 Resolution is memory and time-

consuming, therefore raising in a natural manner the need for domain decomposition.

Even more important, discontinuities in the coe±cients can be present, as in the earth

for instance, or in semiconductors, and it would be useful to split the domain into

di®erent homogeneous subdomains, or even to couple di®erent models.

New space-time domain decomposition algorithms for wave propagation or

advection-di®usion problems have been developed recently, using two concepts:

waveform relaxation, and optimized absorbing boundary conditions. This approach

leads to e±cient algorithms which solve the problem iteratively in each subdomain on

the whole time interval (with possibly time windows), and exchange information on

the boundary at the end of the time interval. At an early stage, Dirichlet transmission

conditions were used with overlapping subdomains,9 but the convergence depends

heavily on the overlap. Then it was realized that optimal convergence can be

obtained when using transparent boundary operators as transmission operators

between the subdomains. However, these operators are not available for general

geometries and/or equations with variable coe±cients. Therefore absorbing bound-

ary conditions, with coe±cients optimizing the convergence factor, have been used

with or without overlap to improve this exchange of information, thus accelerating

signi¯cantly the convergence. This idea was ¯rst developed for elliptic problems by

Engquist and Zhao,7 and Nataf and co-authors.19 The optimization strategy in the

frequency domain goes back to Japhet's thesis.13 For evolution problems, coupling

these ideas with waveform relaxation leads to optimized Schwarz Waveform

Relaxation (OSWR) algorithms.10,4 They can be used in a sequential or parallel way,

and enable di®erent space-time discretization in di®erent subdomains. They also

open potentiality for space-time re¯nement,11 and act as preconditioners5 for the

resolution of the original problem in an implicit time-discretization setting.

Here we intend to design fast Schwarz waveform relaxation algorithms for

Schr€odinger equations with a potential. A new formulation relies on the transparent

boundary operator.1 Since an exact representation of the transparent operator is

available in one dimension as a convolution in time only, we restrict ourselves to the

one-dimensional case. This case will give hints for the comparison between this

\quasi-optimal" algorithm, and a more classical form with complex Robin trans-

mission conditions, and contains nontrivial convergence proofs for the continuous

and discrete algorithms. The reader interested in the setting of the algorithm with

Dirichlet transmission conditions is referred to Halpern and Szeftel.12

After some preliminary results on Sobolev spaces in Sec. 2, optimal and quasi-

optimal algorithms are introduced in Sec. 3. For a constant potential, we show that

the overlapping and non-overlapping algorithms converge in two iterations for two

subdomains. For a non-constant potential, we prove the convergence of the non-

overlapping algorithm with energy estimates, following an idea of Despr�es,6 which

has widely been used since (see Nataf et al.19 for steady problems, Gander et al.10 for
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evolution equations). Here, for the ¯rst time, it is extended to complex problems and

pseudo-di®erential operators.

In Sec. 4, we introduce complex Robin type transmission conditions, and inves-

tigate the behavior of the corresponding algorithm. Such transmission conditions

were ¯rst proposed by Lions16 for elliptic problems. We ¯rst prove the algorithms to

be well-posed. For overlapping subdomains, we prove convergence of the algorithms

for a constant potential, by Fourier transform in time and exact resolution of the

equation in space. For non-overlapping subdomains, the proof involves energy esti-

mates, and holds for a non-constant potential. We also study the optimization of the

convergence factor for a constant potential.

In Sec. 5, the complex Robin algorithm is discretized with Finite Volumes. In the

interior, it reduces to the Crank�Nicolson scheme, widely used in the linear and

nonlinear computations for the Schr€odinger equation, where the complex Robin

transmission conditions are naturally taken into account. We also introduce a dis-

cretization of the quasi-optimal algorithm using the Crank�Nicolson scheme in the

interior and the discrete transparent boundary condition designed by Arnold and

Ehrhardt1 precisely for the Crank�Nicolson scheme.

In Sec. 6, which is the most technical one, we tackle convergence issues. Using a

discrete Laplace transform in time, we study the overlapping discrete algorithm with

Robin type exchange of data, for a constant potential, for which the quasi-optimal

algorithm converges in two iterations. The convergence of the non-overlapping

complex Robin algorithm is proved with discrete energy estimates and holds for non-

constant potentials.

In Sec. 7, we ¯nally illustrate and extend the results through numerical simu-

lations, for various types of potential, like constant, barrier or parabolic. For two

subdomains, we show how slow the convergence is with Dirichlet transmission con-

ditions, and how the optimized Schwarz waveform relaxation improves the conver-

gence. We also show that the minimal number of iterations by far is obtained by the

discrete quasi-optimal algorithm. To conclude, we show that convergence properties

are preserved for any number of subdomains, and we discuss complexity issues.

Due to the complexity of the analysis, we restrain ourselves to the one-dimensional

case. The multidimensional study contains additional di±culties due to the geometry

and will be the heart of a forthcoming paper.

2. Model Problem and Function Spaces

Let V be a real potential in L1ðRÞ. We consider here the Schr€odinger equation

Lu ¼ i@tuþ @xxu� Vu ¼ f; ð2:1Þ

with the initial condition

uðx; 0Þ ¼ u0ðxÞ: ð2:2Þ
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We ¯rst recall some de¯nitions of functional spaces. Let � be an open subset of R.

The complex Hilbert space L2ð�Þ is equipped with the Hermitian product ðf; gÞ ¼R
�
ðf�gÞðxÞdx and the corresponding norm jj � jj. For r an integer,Hrð�Þ is the Sobolev

space of distributions in D0ð�Þ, whose derivatives of order up to r are in L2ð�Þ,
equipped with the norm jjvjjHrð�Þ ¼ ðPj�j�r jjD�vjj2Þ1=2. If r is not an integer, the

space Hrð�Þ is de¯ned by interpolation. For the time direction, we will use another

characterization. The Sobolev space HrðRÞ for real r is also the set of tempered

distributions u in S 0ðRÞ, whose Fourier transform û is such that ð1þ � 2Þr=2û is in

L2ðRÞ. The space HrðRÞ is equipped with the norm jjujjHrðRÞ ¼ jjð1þ � 2Þr=2ûjj. Then
Hrð½0;T �Þ is the set of restrictions of elements in HrðRÞ, and equipped with the

quotient norm jjujjHrð½0;T �Þ ¼ inffjjU jjHrðRÞ;U ¼ u a:e: inð0;T Þg. Note that if r is an

integer, the second de¯nition is equivalent to the ¯rst one, see Ref. 14.

We recall two classical a priori estimates. If u is a smooth solution to (2.1), (2.2) in

R� ð0;T Þ, then it satis¯es for any positive time t the inequalities:

d

dt
jjuð�; tÞjj2 � jjfð�; tÞjj2 þ jjuð�; tÞjj2; ð2:3Þ

d

dt
jj@xuð�; tÞjj2 � jjfð�; tÞjj2 þ 2jj@tuð�; tÞjj2 þ jjV jj 2L1jjuð�; tÞjj2: ð2:4Þ

There is an existence theorem in L2ð0;T ;H 1ðRÞÞ under convenient assumptions

on u0 and f, but the domain decomposition algorithms will require more regularity.

Therefore we introduce now for any domain � � R the anisotropic Sobolev spaces14

Hr;sð�� ð0;T ÞÞ ¼ L2ð0;T ;Hrð�ÞÞ \Hsð0;T ;L2ð�ÞÞ: ð2:5Þ
If the initial value u0 is in H 2ðRÞ, if the real potential V is in L1ðRÞ, and if the right-

hand side f is in H 1ð0;T ;L2ðRÞÞ, then there exists a unique solution u to (2.1), (2.2)

in H 2;1ðR� ð0;T ÞÞ.
At the interfaces between subdomains, the Schwarz waveform relaxation algor-

ithm will need traces of the subdomain approximations to the solution. Necessary

trace and extension results can be found in the reference book, by Lions�Magenes.14

3. Quasi-Optimal Schwarz Waveform Relaxation Algorithm

We decompose the spatial domain � ¼ R into two subdomains �1 ¼ ð�1;LÞ and

�2 ¼ ð0;1Þ, with L � 0. The Schwarz waveform relaxation algorithm consists in

solving iteratively subproblems on �1 � ð0;T Þ and �2 � ð0;T Þ, using as a boundary

condition at the interfaces �1 ¼ fx ¼ Lg and �2 ¼ fx ¼ 0g values obtained from the

previous iteration in the neighboring subdomain. For any operators B1 and B2, we

de¯ne the algorithm for k � 1 by

Luk
1 ¼ f in �1 � ð0;T Þ; Luk

2 ¼ f in �2 � ð0;T Þ;
uk
1ð�; 0Þ ¼ u0 in �1; uk

2ð�; 0Þ ¼ u0 in �2;

B1u
k
1 ¼ B1u

k�1
2 on �1 � ð0;T Þ; B2u

k
2 ¼ B2u

k�1
1 on �2 � ð0;T Þ:

ð3:1Þ
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An initial guess ðg1; g2Þ is given on the boundary, and the zero iterate is given by

B1u
0
2 � g1;B2u

0
1 � g2. The case where both operators Bj are the identity and the

transmission condition in domain 2 is uk
2 ¼ uk

1 has been de¯ned in previous works as

classical or alternate Schwarz, referring to the seminal work by Schwarz21 on the

Poisson equation in a multiple domain. It has been used for numerical domain

decomposition for a long time, in the alternate or parallel version,15 and has been

analyzed in the context of Schwarz waveform relaxation for the advection-di®usion

by Gander and Zhao,9 and for the wave equation in Gander and Halpern.8 It is known

to converge if a certain amount of overlap is present, but the convergence is very slow.

For a study of that algorithm for the Schr€odinger equation, we refer the interested

reader to Halpern and Szeftel.12 We will give some numerical comparisons in Sec. 7.

3.1. Optimal transmission conditions

We will search operators Bj in a special class, related to the Dirichlet�Neumann map.

They are given by Bj ¼ @x þ Sj; j ¼ 1; 2, where the Sjð@tÞ are pseudo-di®erential

operators in time, with symbol �j de¯ned by the following formula, where �̂ denotes the
Fourier transform in time.

Sj�ðtÞ ¼ ð2�Þ�1=2

Z
ei�t�jð�Þ�̂ð�Þd�:

Theorem 3.1. Let V be a real constant. The sequence of iterates ðuk
1;u

k
2Þ in

algorithm (3.1) converges to the solution u to (2.1), (2.2) in two iterations for every

initial guess ðg1; g2Þ, independently of the size of the overlap L � 0, if and only if the

operators S1 and S2 have the corresponding symbols

�1 ¼ ð� þ V Þ1=2; �2 ¼ �ð� þ V Þ1=2; ð3:2Þ

with

ð� þ V Þ1=2 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
� þ V

p
if � þ V � 0;

�i
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�� � V

p
if � þ V < 0:

8<: ð3:3Þ

Proof. We use the Fourier transform in time with parameter � . By linearity it

su±ces to prove the convergence to zero of the iterates associated with f ¼ 0 and

u0 ¼ 0. We can Fourier transform the equation in time and we get

@xx
cuk
j � ð� þ V Þcuk

j ¼ 0;

which can be solved as

cuk
1ðx; �Þ ¼ �ð�Þe�ð�þV Þ 1=2ðL�xÞ; cuk

2ðx; �Þ ¼ �ð�Þe�ð�þV Þ1=2x:
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With the general transmission conditions in (3.1), we can write

ðð� þ V Þ1=2 þ �1Þcu2
1ðL; �Þ ¼ ð�ð� þ V Þ1=2 þ �1Þcu1

2ðL; �Þ;
ð�ð� þ V Þ1=2 þ �2Þcu2

2ð0; �Þ ¼ ðð� þ V Þ1=2 þ �2Þcu1
1ð0; �Þ:

Now ðcu2
1ðL; �Þ;cu2

2ð0; �ÞÞ vanish for any initial guess, if and only if �ð� þ V Þ1=2 þ
�1 ¼ ð� þ V Þ1=2 þ �2 ¼ 0.

We call these operators optimal, since they lead to convergence in two iterations

for any initial guess. For variable potentials, the optimal operators are in general not

at hand. We present here and compare two approximations of those. The ¯rst one is a

\frozen coe±cients" variant of these operators. The second one replaces them by a

constant, obtaining \Robin type" transmission conditions, and ¯nds the constant by

minimizing the convergence factor.

3.2. The quasi-optimal algorithm

We use as transmission operators the optimal operators for the constant potential

equal to the value of V on the interface. The quasi-optimal algorithm is thus given by

S qo
1 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�i@t þ V ðLÞ

p
; S qo

2 ¼ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�i@t þ V ð0Þ

p
; B qo

j ¼ @x þ S qo
j ; ð3:4Þ

where
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�i@t þ V ðxÞp

is the operator acting only in time with symbol ð� þ V ðxÞÞ1=2.
Though being not di®erential, this operator is still easy to use numerically.1

We call the algorithm with transmission operators (3.4) quasi-optimal, in the

sense that it is optimal for a constant potential, with or without overlap, according to

Theorem 3.1. For a constant potential, the proof of well-posedness relies on Fourier

transform in time and exact computation of the solution. We do not have a proof of

well-posedness in the case where V is a variable potential. On the other hand, we are

able to prove the convergence of the non-overlapping algorithm, i.e. L ¼ 0, and when

T ¼ þ1. The proof is based on energy estimates and follows an idea of Despr�es,6

which has widely been used since. The ¯rst extension to time-dependent problems was

to the one-dimensional wave equations.10 Here it is extended to pseudo-di®erential

operators for the ¯rst time.

Theorem 3.2. Let L ¼ 0. Let the potential V be such that V and V 0 belong to L1ðRÞ.
Then the iterates ðuk

1;u
k
2Þ of algorithm (3.1) with transmission operators (3.4)

converge to the solution to (2.1), (2.2) in ðH 1=4ð0;T ;L2ð�1ÞÞ \H�1=4ð0;T ;
H 1ð�1ÞÞÞ � ðH 1=4ð0;T ;L2ð�2ÞÞ \H�1=4ð0;T ;H 1ð�2ÞÞÞ.
Remark 3.1. The assumption V 0 2 L1ðRÞ is very strong and not suitable for some

of the applications mentioned in the Introduction. In particular, such an assumption

forbids any slow tunnel e®ect for the Schr€odinger equation (2.1). However, we believe

that this assumption is purely technical and that convergence should hold even

without it. This belief is supported by our numerical results (see Sec. 7) which exhibit

fast convergence even in the case of a potential barrier.

2172 L. Halpern & J. Szeftel



Proof. By linearity it su±ces to prove the convergence to zero of the iterates

associated with vanishing right-hand side and initial values. Since L ¼ 0, we have

S qo
1 ¼ �S qo

2 , and we denote this operator by S. Consider the equation on the whole

range of times 0 � t < þ1 with the boundary conditions

ð@x þ SÞuk
1ð0; �Þ ¼ ð@x þ SÞuk�1

2 ð0; �Þ; ð@x � SÞuk
2ð0; �Þ ¼ ð@x � SÞuk�1

1 ð0; �Þ:
ð3:5Þ

We introduce � > 0 satisfying

� � jjV 0jj2=3L1ðRÞ: ð3:6Þ

Let U k
j be the extension of e��tuk

j to �j � R vanishing on �j � ð�1; 0Þ. For any x,

we de¯ne the operator S�ðxÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�i@t þ V ðxÞ � i�

p
. It satis¯es

e��tSe�t ¼ S�:

For k � 1;U k
j ; j ¼ 1; 2, satisfy the equations

ði@t þ @xx � V þ i�ÞU k
1 ¼ 0 in �1 �R;

B1U
k
1 ð0; �Þ ¼ B1U

k�1
2 ð0; �Þ in R;

( ði@t þ @xx � V þ i�ÞU k
2 ¼ 0 in �2 �R;

B2U
k
2 ð0; �Þ ¼ B2U

k�1
1 ð0; �Þ in R;

(
ð3:7Þ

where the transmission operators Bj are given by B1 ¼ @x þ S�ð0Þ, and B2 ¼
@x � S�ð0Þ. For ¯xed x; ��ðxÞ ¼ ð� þ V ðxÞ � i�Þ1=2 is the unique analytic determina-
tion of the square root with positive real part (and hence negative imaginary part).

Multiplying the equation for U k
1 in (3.7) by S�ðxÞU k

1 , taking the real part, integrating
in time, and integrating by parts in space yields

Re

Z
R

Z 0

�1
S 2

�ðxÞU k
1 S�ðxÞU k

1 dxdtþRe

Z
R

Z 0

�1
S�ðxÞ@xU

k
1 @xU

k
1 dxdt

�Re

Z
R

@xU
k
1 ð0; :ÞS�ð0ÞU k

1 ð0; �Þ dt ¼
1

2
Re

Z
R

Z 0

�1
V 0ðxÞ@xU

k
1 ðS�ðxÞÞ�1 U k

1 dxdt:

ð3:8Þ
By using the Plancherel identity in time and

Reða�b Þ ¼ 1

4
ðjaþ bj2 � ja� bj2Þ

we obtain:Z
R

Z 0

�1
Reð��ðxÞÞj��ðxÞj2jcU k

1 ð�;xÞj2dxd�

þ
Z
R

Z 0

�1
Reð��ðxÞÞ j d@xU

k
1 ð�;xÞj2dxd� þ

1

4

Z
R

j@xU
k
1 ð0; �Þ � S�ð0ÞU k

1 ð0; �Þj2dt
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� 1

4

Z
R

j@xU
k
1 ð0; �Þ þ S�ð0ÞU k

1 ð0; �Þj2dt

þ 1

2
jjV 0jjL1

Z
R

Z 0

�1
j��ðxÞj�1j d@xU

k
1 ð�;xÞj jcU k

1 ð�;xÞjdxd�: ð3:9Þ

We have an upper bound for the last term by

1

2

Z
R

Z 0

�1
Reð��ðxÞÞj d@xU

k
1 ð�;xÞj2dxd�

þ 1

8
jjV 0jj2L1

Z
R

Z 0

�1

jcU k
1 ð�;xÞj2

Reð��ðxÞÞj��ðxÞj2
dxd�: ð3:10Þ

Now since

Reð��ðxÞÞ ¼ � þ V ðxÞ þ j��ðxÞj2
2

� �1=2

;

we get

Reð��ðxÞÞ �
�

2
j��ðxÞj�1; ð3:11Þ

which in turn yields

ðReð��ðxÞÞj��ðxÞj2Þ2 �
�2j��ðxÞj2

4
� �3

4
:

Therefore:

jjV 0jj 2L1

8

1

Reð��ðxÞÞj��ðxÞj2
� jjV 0jj2L1

2�3
Reð��ðxÞÞj��ðxÞj2

� 1

2
Reð��ðxÞÞj��ðxÞj2; ð3:12Þ

where we have used (3.6) to get the last inequality. Thus, using (3.9), (3.10)

and (3.12) we obtain:Z
R

Z 0

�1
Reð��ðxÞÞj��ðxÞj2jcU k

1 ð�;xÞj2dxd�

þ 2

Z
R

Z 0

�1
Reð��ðxÞÞjd@xU

k
1 ð�;xÞj2dxd�

þ 1

2

Z
R

jð@x � S�ð0ÞÞU k
1 ð0; �Þj2dt

� 1

2

Z
R

jð@x þ S�ð0ÞÞU k
1 ð0; �Þj2dt: ð3:13Þ
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Introducing the energy in domain �j

JjðwÞ ¼
Z
R

Z
�j

Reð��ðxÞÞ j��ðxÞj2jbwð�;xÞj2 dxd�
þ 2

Z
R

Z
�j

Reð��ðxÞÞjd@xwð�;xÞj2 dxd�; ð3:14Þ

we can rewrite (3.13) as

J1ðU k
1 Þ þ

1

2

Z
R

jB2U
k
1 j2dt �

1

2

Z
R

jB1U
k
1 j2dt: ð3:15Þ

Similarly, we obtain for U k
2

J2ðU k
2 Þ þ

1

2

Z
R

jB1U
k
2 j2dt �

1

2

Z
R

jB2U
k
2 j2dt: ð3:16Þ

Introducing the transmission conditions in the right-hand side of Eqs. (3.15)

and (3.16), adding and summing in k, we ¯ndXK
k¼1

ðJ1ðU k
1 Þ þ J2ðU k

2 ÞÞ þ
1

2

Z
R

ðjB2U
K
1 j2 þ jB1U

K
2 j2Þdt

� 1

2

Z
R

ðjB2U
0
1 j2 þ jB1U

0
2 j2Þdt: ð3:17Þ

The sum of the energies over all the iterates remains bounded. Hence the energy

J1ðU k
1 Þ þ J2ðU k

2 Þ needs to tend to zero.

Finally, using (3.11) and the de¯nitions of J1 and J2, we see that there exists a

constant C > 0 depending on � and jjV jjL1ðRÞ such that

JjðwÞ � Cðjjwjj2H 1=4ð0;T ;L 2ð�jÞÞ þ jj@xwjj2H �1=4ð0;T ;L2ð�jÞÞÞ:

Therefore, algorithm(3.4) converges in�j¼1;2L
2ðð0;T Þ��jÞ\H�1=4ð0;T ;H 1ð�jÞÞ.

Remark 3.2. The previous proof does not provide any convergence rate. Now, the

quasi-optimal algorithm (3.4) uses the optimal transmission conditions for a frozen

potential. Thus, to obtain such convergence rates, one may consider the particular

case of slowly varying potentials. After a unitary change of scale, the problem reduces

to the study of operators of type h2@xx � V ðxÞ for a small parameter h > 0, for which

one may use tools coming from the semiclassical analysis. We refer the reader to Nataf

and Nier18 for an application of the semiclassical calculus to domain decomposition

methods for advection-di®usion equations.

4. The Algorithm with Complex Robin Transmission Conditions

A simpler alternative to the previous approach is to use Robin transmission con-

ditions. This idea was ¯rst suggested by Lions15 in the context of elliptic problems.
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Since the Schr€odinger equation has complex coe±cients, we choose a complex Robin

algorithm rather than the usual Robin algorithm, i.e. we replace the optimal oper-

ators, for a real number p, by

S r
1 ¼ �S r

2 ¼ �ipI; B r
j ¼ @x þ S r

j: ð4:1Þ

Remark 4.1. In the sequel, we will choose p > 0 to ensure well-posedness and

convergence of the algorithm (see Secs. 4.1�4.4).

4.1. Well-posedness of the algorithm

The algorithm is well-de¯ned, provided the initial boundary value problems in each

subdomain are well-posed. Those are non-classical problems, which need a special

treatment. The following proposition gives existence, uniqueness and regularity of

the solution.

Proposition 4.1. Let the real potential V be inL1ð�Þ. Suppose f is inH 1ð0;T ;L2ð�ÞÞ;
u0 in H 2ð�Þ; g1 and g2 are in H 1ð0;T Þ, with the compatibility conditions

B r
1u0ðLÞ ¼ g1ð0Þ; B r

2u0ð0Þ ¼ g2ð0Þ: ð4:2Þ
Then, for p > 0, the boundary value problems (3.1) with Robin transmission

operators (4.1) have unique solutions uj in H 2;1ð�j � ð0;T ÞÞ.
Furthermore, assume L ¼ 0. Then ujð0; �Þ and @xujð0; �Þ are in H 1ð0;T Þ and the

following compatibility relation is satis¯ed:

lim
t!0þ

B r
2u1ð0; tÞ ¼ B r

2u0ð0Þ; lim
t!0þ

B r
1u2ðL; tÞ ¼ B r

1u0ðLÞ: ð4:3Þ

The same conclusion holds when L > 0 provided that V is constant, f is in

H 2ðð0;T Þ � �Þ and u0 is in H 4ð�Þ.
Proof. Without loss of generality, we only study the well-posedness of the

subdomain problem in �1.

(i) First a priori estimates. Multiplying the equation Lu1 ¼ f by �u1, integrating by

parts in space, using the boundary condition and taking the imaginary part, we

obtain

1

2

d

dt
jju1ð�; tÞjj2 þ pju1ðL; tÞj2 ¼ Imððfð�; tÞ;u1ð�; tÞÞ � g1ðtÞ�u1ðL; tÞÞ; ð4:4Þ

where we have used the fact that the potential V is real. By the Cauchy�Schwarz

inequality, we get after integration in time

jju1ð�; tÞjj2 þ p

Z t

0

ju1ðL; sÞj2ds � jju0jj2 þ
Z t

0

jjfð�; sÞjj2dsþ 1

p

Z t

0

jg1ðsÞj2ds

þ
Z t

0

jju1ð�; sÞjj2ds:
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Applying the Gr€onwall Lemma gives the ¯rst bounds for u1:

jju1jj2L1ð0;T ;L2ð�1ÞÞ þ pjju1ðL; �Þjj 2L2ð0;T Þ

� eT jju0jj2 þ jjfjj2L 2ð0;T ;L2ð�1ÞÞ þ
1

p
jjg1jj 2L2ð0;T Þ

� �
: ð4:5Þ

We apply (4.5) to @tu1, with the initial condition @tu1ð�; 0Þ ¼ �iðfð�; 0Þ � @xxu0 þ
Vu0Þ in L2ð�1Þ. By the regularity assumptions on the data, and the Trace Theorem in

time for f, we obtain

jj@tu1jj2L1ð0;T ;L2ð�1ÞÞ þ jj@tu1ðL; �Þjj 2L2ð0;T Þ

� CeT jju0jj2H 2ð�1Þ þ jjV jj2L1ð�1Þjju0jj2L 2ð�1Þ

�
þ jjfjj2H 1ð0;T ;L2ð�1ÞÞ þ

1

p
jjg1jj2H 1ð0;T Þ

�
: ð4:6Þ

(ii) Second a priori estimates. We now multiply the equation by @t�u1, integrate by

parts in space, using the boundary condition, and take the real part. We obtain

� d

dt
jj@xu1jj2 þ 2pReðiu1ðL; �Þ@t�u1ðL; �ÞÞ
¼ �2Reðg1@t�u1ðL; �ÞÞ þ 2ReðVu1ð�; tÞ; @t�u1ð�; tÞÞ
þ 2Reðfð�; tÞ; @t�u1ð�; tÞÞ;

which implies

jj@xu1ð�; tÞjj2 � pjju1ðL; �Þjj2L 2ð0;T Þ þ ðpþ 1Þjj@tu1ðL; �Þjj2L 2ð0;T Þ

þ 2jj@tu1jj2L2ðð0;T Þ��1Þ þ jjV jj 2L1ð�1Þjju1jj2L2ðð0;T Þ��1Þ

þ jjfjj2L 2ðð0;T Þ��1Þ þ jjg1jj 2L2ð0;T Þ þ jj@xu0jj2;
and by (4.5), (4.6),

jj@xu1ð�; tÞjj2L1ð0;T ;L 2ð�1ÞÞ �CeT ðjju0jj2H 2ð�1Þ þ jjV jj2L1ð�1Þjju0jj2L 2ð�1Þ

þ jjfjj 2H 1ð0;T ;L2ð�1ÞÞ þ jjg1jj2H 1ð0;T ÞÞ: ð4:7Þ
Finally, using the equation and (4.6), we have

jj@xxu1ð�; tÞjj 2L1ð0;T ;L 2ð�1ÞÞ �CeT ðjju0jj 2H 2ð�1Þ þ jjV jj2L1ð�1Þjju0jj2L2ð�1Þ

þ jjfjj2H 1ð0;T ;L 2ð�1ÞÞ þ jjg1jj2H 1ð0;T ÞÞ: ð4:8Þ
By (4.5)�(4.8), we have a bound on u1 in H 2;1ð�1 � ð0;T ÞÞ, and on u1ðL; �Þ in

H 1ð0;T Þ. This is su±cient to obtain the existence and uniqueness in these spaces by

the Galerkin method. Furthermore, by the Trace Theorem in H 2;1ð�1 � ð0;T ÞÞ, we
have u1ð0; �Þ in H 3=4ð0;T Þ.
(iii) Third a priori estimates. We assume now that L > 0 and that the potential V is

constant. We prove that u1ð0; �Þ is actually in H 1ð0;T Þ. With the additional
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assumptions on the data, the solution u to (2.1), (2.2) is in H 4;2ð�1 � ð0;T ÞÞ.14 We

introduce the auxiliary problem satis¯ed by z ¼ e�tðu1 � uÞ in �1 � ð0;T Þ:

i@tzþ izþ @xxz� Vz ¼ 0 in �1 � ð0;T Þ;
zð�; 0Þ ¼ 0 in �1;

@xzðL; �Þ ¼ ipzðL; �Þ þ h in ð0;T Þ;

8>>><>>>: ð4:9Þ

with hðtÞ ¼ e�tðg1ðtÞ � B r
1uðL; tÞÞ. The boundary data h is in H 1ð0;T Þ. Due to the

compatibility conditions (4.2), we can extend h inH 1ðRÞ by H, vanishing for negative
t, and we have through Fourier transform in time,

ẑðx; �Þ ¼ Ĥð�Þ
ð� þ V � iÞ1=2 � ip

e�ð�þV�iÞ1=2ðL�xÞ; x < L: ð4:10Þ

Since Imð� þ V � iÞ1=2 � 0 and p > 0, we have jẑð0; �Þj � 1
pjĤð�Þj, and

jjzð0; �ÞjjH 1ð0;T Þ �
1

p
jjhjjH 1ð0;T Þ;

which proves that u1ð0; �Þ is in H 1ð0;T Þ, and
jju1ð0; �Þjj2H 1ð0;T Þ � CeT ðjjujj2H 4;2ð�1�ð0;T ÞÞ þ jjg1jj2H 1ð0;T ÞÞ: ð4:11Þ

To conclude the proof of the proposition, we need to prove (4.3). Since u is in

H 4;2ð�1 � ð0;T ÞÞ, it satis¯es
lim
t!0þ

B r
2uð0; tÞ ¼ B r

2u0ð0Þ:

Therefore we only need to prove that

lim
t!0þ

B r
2zð0; tÞ ¼ 0:

Since hð0Þ ¼ 0, using the boundary condition, this amounts to proving that

limt!0þzð0; tÞ ¼ 0. Since H1 is supported in Rþ, Ĥ 1 is analytic in the half-plane

Im � < 0, and by (4.10) and Paley�Wiener Theorem,20 zð0; �Þ is supported in Rþ.
Since we just proved that zð0; �Þ is in H 1ð0;T Þ, and since H 1ð0;T Þ � Cð½0;T �Þ, by the

Sobolev Embedding Theorem,14 we have limt!0þzð0; tÞ ¼ 0.

Remark 4.2. Let us explain why the results of Proposition 4.1 are weaker in the

case L > 0. Indeed, the compatibility conditions (4.1) together with the energy

estimates (4.5) and (4.6) imply that u1ðL; �Þ belongs to H 1ð0;T Þ. This is su±cient to

conclude in the case L ¼ 0. In the case L > 0, we still have to prove that u1ð0; �Þ
belongs to H 1ð0;T Þ. Now, the interior trace u1ð0; �Þ is a priori less regular than the

boundary data u1ðL; �Þ since it is only in H 3=4ð0;T Þ by the Trace Theorem in

H 2;1ð�1 � ð0;T ÞÞ. To overcome this problem, we consider the case of a constant

potential V in order to take advantage of explicit computations using the Fourier

transform (see part (iii) of the proof of Proposition 4.1).
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Theorem 4.1. Let L ¼ 0 and let V in L1ðRÞ. Let p > 0, and let gL and g0 be given in

H 1ð0;T Þ. Then algorithm (3.1) with Robin transmission operators (4.1) de¯nes a

sequence of iterates ðuk
1;u

k
2Þ in H 2;1ð�1 � ð0;T ÞÞ �H 2;1ð�2 � ð0;T ÞÞ, with uk

1ð0; �Þ;
@xu

k
1ð0; �Þ;uk

2ðL; �Þ and @xu
k
2ðL; �Þ in H 1ð0;T Þ.

The same conclusion holds when L > 0 provided V is a real constant and gL and g0
satisfy the compatibility conditions

@xu0ðLÞ � ipu0ðLÞ ¼ gLð0Þ; @xu0ð0Þ þ ipu0ð0Þ ¼ g0ð0Þ: ð4:12Þ

Proof. The proof is done by induction using Proposition 4.1.

4.2. Convergence of the overlapping algorithm

Theorem 4.2. Let V be a real constant. Let an initial guess ðg1; g2Þ inH 1ð0;T Þ, with
the compatibility conditions (4.12). For p > 0, the solution ðuk

1;u
k
2Þ of algorithm (3.1)

with complex Robin transmission conditions (4.1) converges in L2ð�1 � ð0;T ÞÞ �
L2ð�2 � ð0;T ÞÞ to the solution u in (2.1).

Proof. We de¯ne the errors ekj ¼ uk
j � u, j ¼ 1; 2, solving the homogeneous

algorithm, and introduce the interface functions hk
j ¼ B r

je
k
j . The proof uses Fourier

analysis. Proceeding as in (4.9), we de¯ne the local convergence factor by

�ð�;LÞ ¼ � ð� þ V � iÞ1=2 þ ip

ð� þ V � iÞ1=2 � ip
e�ð�þV�iÞ 1=2L ð4:13Þ

and obtain

Fðe�thk
1; e

�thk
2Þ ¼ �ð�;LÞFðe�thk�1

2 ; e�thk�1
1 Þ:

Thus

jFðe�thk
1; e

�thk
2Þj ¼ j�ð�;LÞjkjFðe�th1; e

�th2Þj:
Since p > 0; j�ð�;LÞj is strictly smaller than 1 for all � . Thus, Lebesgue convergence

theorem immediately yields:

lim
k!þ1

jjðe�thk
1; e

�thk
2ÞjjðH 1ð0;T ÞÞ 2 ¼ 0: ð4:14Þ

Now, using formula (4.10), we obtain:

Fðe�tek
1Þðx; �Þ ¼

Fðe�thk�1
1 Þð�Þ

ð� þ V � iÞ1=2 � ip
e�ð�þV�iÞ 1=2ðL�xÞ; x < L: ð4:15Þ

Thus, we have:

jjFðe�tek1Þð�; �Þjj 2L2ð�1Þ ¼
jFðe�thk�1

1 Þð�Þj2
2Reðð� þ V � iÞ1=2Þjð� þ V � iÞ1=2 � ipj2 : ð4:16Þ
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Using (3.11) with � ¼ 1, we deduce in each subdomain

jje�tek
j jjL 2ð0;T ;L2ð�jÞÞ � e�thk�1

j

�� ��
L2ð0;T Þ � e�thk�1

j

�� ��
H 1ð0;T Þ;

which together with (4.14) yields:

lim
k!þ1

jjekj jjL 2ð�j�ð0;T ÞÞ ¼ 0; ð4:17Þ

which completes the proof.

Remark 4.3. The classical Schwarz algorithm has a convergence factor equal to

e�ð�þV�iÞ 1=2L. Therefore the complex Robin algorithm converges at least as fast as the

classical one. We will see that we can ¯nd p such as to minimize the convergence

factor.

4.3. Convergence of the non-overlapping algorithm

We now assume that there is no overlap, i.e. L ¼ 0. We ¯rst analyze the convergence

of the algorithm in the appropriate Sobolev spaces. The proof, though much easier,

follows the same path as in Sec. 3.2.

Theorem 4.3. Without overlap, L ¼ 0, the complex Robin�Schwarz waveform

relaxation algorithm (3.1) with transmission conditions (4.1) converges for p > 0 in

L1ð0;T ;L2ð�1ÞÞ � L1ð0;T ;L2ð�2ÞÞ to the solution u in (2.1), (2.2) for any initial

guess ðg1; g2Þ in ðH 1ð0;T ÞÞ2 and any real potential V in L1ðRÞ.
Proof. We use the energy estimate (4.4) in�1 for the error e

k
1, and the corresponding

energy estimate in �2 for the error ek
2,

1

2

d

dt
jjek

1jj2 þ Imð@xe
k
1ð0Þek1ð0ÞÞ ¼ 0;

1

2

d

dt
jjek2jj2 � Imð@xe

k
2ð0Þek2ð0ÞÞ ¼ 0:

We rewrite the terms on the interface in the form Imð@xejð0; �Þ ejð0; �ÞÞ ¼
1
4p ðjB r

i ejð0; �Þj2 � jB r
jejð0; �Þj2Þ, for j 6¼ i, and we obtain the new energy estimates

d

dt
jjeki jj2 þ

1

2p
jB r

je
k
i ð0; �Þj2 ¼

1

2p
jB r

i e
k
i ð0; �Þj2:

Replacing the transmission conditions, we ¯nd

d

dt
jjeki jj2 þ

1

2p
jB r

je
k
i ð0; �Þj2 ¼

1

2p
jB r

i e
k�1
j ð0; �Þj2; ði; jÞ ¼ ð1; 2Þ or ð2; 1Þ:

Adding the equations in �1 and �2, and summing in k, we get ¯nallyXK
k¼1

d

dt
ðjjek

1jj2 þ jjek
2jj2Þ þ

1

2p
ðjB r

2e
K
1 j2 þ jB r

1e
K
2 j2Þð0; �Þ

¼ 1

2p
ðjB r

2e
0
1j2 þ jB r

1e
0
2j2Þð0; �Þ: ð4:18Þ

2180 L. Halpern & J. Szeftel



We can now integrate in time, and since the initial values of the error vanish, the

sum of the energies over all the iterates remains bounded. Hence the energy in the

iterates needs to go to zero and the algorithm converges.

4.4. Optimization of the algorithm with overlap

We suppose here the potential to be constant. The errors are given recursively by

Fekþ1
j ¼ 	ð�; p;LÞFekl on �j � ð0;T Þ; j 6¼ l;

where 	ð�; p;LÞ is the convergence factor associated with complex Robin trans-

mission conditions,

	ð�; p;LÞ ¼ ipþ ð� þ V Þ1=2
ip� ð� þ V Þ1=2 e

�ð�þV Þ 1=2L: ð4:19Þ

The smaller the convergence factor, the faster the algorithm. In practical compu-

tations, only a bounded range of frequencies are present: j� j 2 ½�min; �max�. For a

discretization with time-step �t, we have �max ¼ �=�t, �min ¼ �=T . We de¯ne

D ¼ ð��max;��minÞ [ ð�min; �maxÞ, and for a given potential V, the evanescent region

EV ¼ f� 2 D; � > V g, and the propagating region PV ¼ f� 2 D; � < V g. The mod-

ulus of the convergence factor is given by:

j	ð�; p;LÞj ¼
e�

ffiffiffiffiffiffiffi
�þV

p
L � 2 EV ;

p� ffiffiffiffiffiffiffiffiffiffiffiffiffi
� þ V

p

pþ ffiffiffiffiffiffiffiffiffiffiffiffiffi
� þ V

p
���� ���� � 2 PV :

8>><>>: ð4:20Þ

The overlap provides an exponential decay of the convergence factor in the eva-

nescent regime, whereas the parameter p is meant to accelerate the convergence in

the propagating regime. Notice that without overlap, the evanescent modes are not

damped, even if the algorithm converges (see Fig. 5).

The following min�max problem is the key of the minimization in PV . We

introduce the function

fðs; pÞ ¼ p� s

pþ s

���� ���� ; ð4:21Þ

and the best approximation problem: ¯nd p	 > 0 such as to realize

inf
p>0

sup
s2ðsmin;smaxÞ

fðs; pÞ: ð4:22Þ

Problem (4.22) is quite simple and can be treated at hand.

Lemma 4.1. The best approximation problem (4.22) has a unique solution p	,
de¯ned by fðsmin; p

	Þ ¼ fðsmax; p
	Þ, and given by

p	 ¼ ðsminsmaxÞ1=2; s	 ¼ smin; f 	 ¼ fðs	; p	Þ ¼
ffiffiffiffiffiffiffiffiffi
smax

p
�

ffiffiffiffiffiffiffiffi
smin

pffiffiffiffiffiffiffiffiffi
smax

p
þ

ffiffiffiffiffiffiffiffi
smin

p :
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Proof. It is easy to see that for any positive p,

sup
s2ðsmin; smaxÞ

p� s

pþ s

���� ���� ¼
smax � p

smax þ p

���� ���� if p � ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
smaxsmin

p
;

p� smin

pþ smin

���� ���� if p � ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
smaxsmin

p
:

8>>>>><>>>>>:
The function p 7! sups2½smin; smax�j p�s

pþsj is decreasing on ð0; ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
smaxsmin

p Þ and increasing on

ð ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
smaxsmin

p
;þ1Þ. It has a unique minimum, attained for p	 ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

smaxsmin
p

.

It is now very easy to ¯nd the optimal coe±cient p, and the technical details can

be found in Halpern�Szeftel.12

5. Construction of the Discrete Algorithms

The discretization parameters are �x and �t in space and time respectively, the

discrete points in space are denoted by xj ¼ j�x, and in time tn ¼ n�t, with

�t ¼ T=N. The discrete di®erence operators are de¯ned by

Dþ
x Uðj;nÞ ¼ Uðjþ 1;nÞ � Uðj;nÞ

�x
; D�

x Uðj;nÞ ¼ Uðj;nÞ � Uðj� 1;nÞ
�x

;

Dþ
t Uðj;nÞ ¼ Uðj;nþ 1Þ � Uðj;nÞ

�t
; F nþ 1

2

� �
¼ 1

2
ðF ðnÞ þ F ðnþ 1ÞÞ:

ð5:1Þ

We use the Crank�Nicolson scheme for the discretization of the equation in the

interior.

LUðj;nÞ ¼ iDþ
t Uðj;nÞ þDþ

x D
�
x U j;nþ 1

2

� �
� V ðjÞU j;nþ 1

2

� �
¼F j;nþ 1

2

� �
; ð5:2Þ

which is unconditionally stable, second order in time and space. We assume that

L ¼ ‘�x. The points in �1 are numbered from �1 to ‘, and the points in �2 are

numbered from 0 to þ1. We denote the numerical approximation to uk
i ðj�x;n�tÞ

in �i at iteration step k by U k
i ðj;nÞ. The discrete form of algorithm (3.1) is given by

an initial guess ðG0
1;G

0
2Þ and, for k � 1,

LU k
1 ðj;nÞ ¼ F j;nþ 1

2

� �
for �1 < j < ‘; 0 � n � N ;

U k
1 ðj; 0Þ ¼ u0ðxjÞ for �1 < j � ‘;

B1U
k
1 ð‘;nÞ ¼ Gk�1

1 ðnÞ � �x

2
F ‘;nþ 1

2

� �
for 0 � n � N;

8>>>>>>><>>>>>>>:
ð5:3Þ
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LU k
2 ðj;nÞ ¼ F j;nþ 1

2

� �
for 0 < j < þ1; 0 � n � N;

U k
2 ðj; 0Þ ¼ u0ðxjÞ for 0 � j < þ1;

B2U
k
2 ð0;nÞ ¼ Gk�1

0 ðnÞ þ �x

2
F 0;nþ 1

2

� �
for 0 � n � N:

8>>>>>><>>>>>>:
ð5:4Þ

The new values on the boundaries are:

Gk
1ðnÞ ¼ ~B1U

k
2 ð‘;nÞ �

�x

2
F ‘;nþ 1

2

� �
for 0 � n � N;

Gk
2ðnÞ ¼ ~B2U

k
1 ð0;nÞ þ

�x

2
F 0;nþ 1

2

� �
for 0 � n � N:

8>>><>>>: ð5:5Þ

5.1. The complex Robin discrete algorithm

For complex Robin transmission conditions, the discrete transmission operators Br
j

and ~B
r
j are given below

Br
1U1ð‘;nÞ ¼ D�

x U1 ‘;nþ 1

2

� �
� ipU1 ‘;nþ 1

2

� �
� i

�x

2
Dþ

t U1ð‘;nÞ �
�x

2
V ð‘ÞU1 ‘;nþ 1

2

� �
;

Br
2U2ð0;nÞ ¼ Dþ

x U2 0;nþ 1

2

� �
þ ipU2 0;nþ 1

2

� �
þ i

�x

2
Dþ

t U2ð0;nÞ þ
�x

2
V ð0ÞU2 0;nþ 1

2

� �
;

~B
r
2U1ð0;nÞ ¼ D�

x U1 0;nþ 1

2

� �
þ ipU1 0;nþ 1

2

� �
� i

�x

2
Dþ

t U1ð0;nÞ �
�x

2
V ð0ÞU1 0;nþ 1

2

� �
;

~B
r
1U2ð‘;nÞ ¼ Dþ

x U2 ‘;nþ 1

2

� �
� ipU2 ‘;nþ 1

2

� �
þ i

�x

2
Dþ

t U2ð‘;nÞ þ
�x

2
V ð‘ÞU2 ‘;nþ 1

2

� �
:

ð5:6Þ

The previous formulas are useful for the practical implementation of the algorithm.

In the forthcoming convergence analysis, we shall use the transmission conditions in

the form

Br
1U

k
1 ð‘;nÞ ¼ ~B

r
1U

k�1
2 ð‘;nÞ ��xF ‘;nþ 1

2

� �
;

Br
2U

k
2 ð0;nÞ ¼ ~B

r
2U

k�1
1 ð0;nÞ þ�xF 0;nþ 1

2

� �
:

ð5:7Þ
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The above boundary operators are obtained using a ¯nite volume procedure which

is given in details in Halpern�Szeftel.12 This idea was ¯rst introduced in Gander

et al.10 for the wave equation in one dimension.

5.2. The quasi-optimal discrete algorithm

Arnold and Ehrhardt2 designed discrete transparent boundary condition for the

Crank�Nicolson scheme, in the case of a constant potential outside the domain. They

use the operators

Bqo
1 Uð‘;nÞ ¼ Uð‘� 1;nþ 1Þ þ Uð‘� 1;nÞ �

Xnþ1

m¼1

S‘ðn�mþ 1ÞUð‘;mÞ; ð5:8Þ

Bqo
2 Uð0;nÞ ¼ Uð1;nþ 1Þ þ Uð1;nÞ �

Xnþ1

m¼1

S0ðn�mþ 1ÞUð0;mÞ; ð5:9Þ

where the coe±cients SjðmÞ are de¯ned in the following formulas:

R ¼ 2
�x2

�t
; �j ¼ V ðxjÞ�x2;

�j ¼
i

2
ei�j=2 ðR2 þ �2

jÞðR2 þ ð�j þ 4Þ2Þ� �1=4
;


j ¼
ðR2 þ 4�j þ �2

jÞ
ððR2 þ �2

jÞðR2 þ ð�j þ 4Þ2ÞÞ1=2 ;

�j ¼ arctan 2R
�j þ 2

R2 � 4�j � �2
j

 !
;

Sjð0Þ ¼ 1� iR

2
þ �j

2
� �j;

Sjð1Þ ¼ 1þ iR

2
þ �j

2
þ �j
je

�i�j ;

Sjð2Þ ¼
�j

2
e�2i�jð
2

j � 1Þ;

Sjðmþ 2Þ ¼ 2m� 1

mþ 1

je

�i�jSjðmþ 1Þ � m� 2

mþ 1
e�2i�jSjðmÞ; m � 1:

ð5:10Þ

Using these transparent boundary operators as transmission operator in the domain

decomposition process, we write, for k � 1, and 1 � n � N,

Bqo
1 U k

1 ð‘;nÞ ¼ Gk�1
1 ðnÞ; Bqo

2 U k
2 ð0;nÞ ¼ Gk�1

2 ðnÞ; ð5:11Þ
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and de¯ne, for 1 � n � N ,

Gk
1ðnÞ ¼ 4U k

2 ‘;nþ 1

2

� �
� 2U k

2 ‘þ 1;nþ 1

2

� �
�
Xnþ1

m¼1

S‘ðn�mþ 1ÞU k
2 ð‘;mÞ

� 2i
�x2

�t
ðU k

2 ð‘;nþ 1Þ � U k
2 ð‘;nÞÞ

� 2�x2V ð‘ÞU k
2 ‘;nþ 1

2

� �
þ 2�x2F ‘;nþ 1

2

� �
;

Gk
2ðnÞ ¼ 4U k

1 0;nþ 1

2

� �
� 2U k

1 �1;nþ 1

2

� �
�
Xnþ1

m¼1

S0ðn�mþ 1ÞU k
1 ð0;mÞ

� 2i
�x2

�t
ðU k

1 ð0;nþ 1Þ � U k
1 ð0;nÞÞ

� 2�x2V ð0ÞU k
1 0;nþ 1

2

� �
þ 2�x2F 0;nþ 1

2

� �
:

ð5:12Þ

Here, we do not ¯nd Gk
1 and Gk

2 through a ¯nite volume procedure. Instead, we

simply choose them such that we obtain the Crank�Nicolson scheme (5.2) when

U ¼ U1 ¼ U2, i.e. after the domain decomposition method has converged.

Remark 5.1. Other choices of discrete transparent boundary conditions could be

used to discretize the quasi-optimal algorithm.1

6. Convergence of the Discrete Complex Robin Algorithm

For the overlapping algorithm, the convergence will be obtained by a normal mode

analysis, whereas energy estimates will prove the convergence in the non-overlapping

case. We start by studying the discrete Crank�Nicolson scheme.

6.1. The Crank�Nicolson scheme

In this section, V is a real constant. We introduce the normal mode analysis.22 The

discrete Laplace transform of a grid function w ¼ fwngn�0 on a regular grid with time

step �t is de¯ned for � > 0 by

LwðsÞ ¼ bwðsÞ ¼ 1ffiffiffiffiffiffi
2�

p �t
X
n�0

e�sn�twn; s ¼ � þ i�; j� j � �

�t
; ð6:1Þ
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and the inversion formula is given by

wn ¼ 1ffiffiffiffiffiffi
2�

p
Z �

�t

� �
�t

esn�t bwðsÞd� ¼ � iffiffiffiffiffiffi
2�

p
Z
jzj¼e ��t

zn�1 bwðzÞdz:
The corresponding norms are

jjwjj�;�t ¼ �t
X
n�0

e�2�n�tjwnj2
 ! 1

2

; jjbwjj� ¼ Z �
�t

� �
�t

jbwð� þ i�Þj2d�
 !1

2

; ð6:2Þ

and we have Parseval's equality

jjwjj�;�t ¼ jjbwjj�: ð6:3Þ
Suppose now Wðj;nÞ to be a solution to the di®erence equation

iDþ
t W ðj;nÞ þDþ

x D
�
xW j;nþ 1

2

� �
� VW j;nþ 1

2

� �
¼ 0; ð6:4Þ

with initial condition W ðj; 0Þ ¼ 0. We denote by bW ðj; sÞ the discrete Laplace

transform in time of W ðj;nÞ. Equation (6.4) becomes the di®erence equation in one

variable, s acting as a parameterbW ðj� 1; sÞ þ 2ði�hðzÞ � 1��x2V Þ bW ðj; sÞ þ bW ðjþ 1; sÞ ¼ 0; ð6:5Þ
with z ¼ es�t;hðzÞ ¼ z�1

zþ1 and � ¼ �x2=�t. Function h is a well-known homographic

transformation, whose properties we summarize now:

Lemma 6.1. (1) The function h maps the circle of center O and radius 1 onto the

line ReZ ¼ 0.

(2) The function h maps the exterior of the closed disk of center O and radius 1 onto

the half-plane ReZ > 0.

(3) The function h maps any circle of center O and radius a > 1 onto the circle of

center ða2 þ 1Þ=ða2 � 1Þ and radius 2a=ða2 � 1Þ.
We introduce the characteristic second-order equation

r2 þ 2ði�hðzÞ � 1��x2V Þrþ 1 ¼ 0: ð6:6Þ
The roots of (6.6) satisfy

rþr� ¼ 1; rþ þ r� ¼ 2ð1þ�x2V � i�hðzÞÞ: ð6:7Þ

Lemma 6.2. For jzj > 1 (i.e. � > 0Þ, Eq. (6.6) has two distinct roots r
 with

jr�j < 1 < jrþj. Furthermore, these roots are not real.

Proof. Suppose jzj > 1. By (6.7), the ¯rst assertion in the lemma holds true, unless

jr�j ¼ jrþj ¼ 1. In that case we have r� ¼ rþ , and therefore rþ þ r� is real, which

implies by (6.7) that hðzÞ is pure imaginary. This last assertion is equivalent by

Lemma 6.1 to jzj ¼ 1, hence the contradiction.
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6.2. The overlapping complex Robin Schwarz relaxation algorithm

Now we consider algorithm (5.3)�(5.5) with transmission conditions (5.7). If U is the

solution to the Crank�Nicolson scheme in N� f0; . . . ;Ng, it satis¯es Br
1Uð‘;nÞ ¼

~B
r
1Uð‘;nÞ ��xF ð‘;nþ 1

2Þ, and Br
2Uð0;nÞ ¼ ~B

r
2Uð0;nÞ þ�xF ð0;nþ 1

2Þ. Therefore
the errors satisfy the algorithm with vanishing data, and we can use the results of

Sec. 6.1. We deduce from Lemma 6.2 that for � > 0, any solution to (6.5) is a linear

combination of the powers of rþ and r�, and there exist functions ak
i ðsÞ such that

bW k
1 ðj; sÞ ¼ ak

1ðsÞr j�‘
þ ; j � ‘; bW k

2 ðj; sÞ ¼ a2ðsÞr j
�; j � 0: ð6:8Þ

The transmission conditions in (5.7) impose

ak
1ðsÞ ¼ RRðz; �; p; ‘Þak�1

2 ðsÞ; ak
2ðsÞ ¼ RRðz; �; p; ‘Þak�1

1 ðsÞ; with

RRðz; �; p; ‘Þ ¼ �r ‘
�
1þ�x2V � r� � i�hðzÞ þ ip�x

1þ�x2V � r� � i�hðzÞ � ip�x
: ð6:9Þ

Lemma 6.3. For any s with � ¼ Re s > 0, for any p > 0, for any ‘ � 0, the discrete

convergence factor for the complex Robin transmission conditions satis¯es

jRRðz; �; p; ‘Þj < jr�j‘ � 1:

Proof. We de¯ne

�ðz; �; pÞ ¼ 1þ�x2V � r� � i�hðzÞ þ ip�x

1þ�x2V � r� � i�hðzÞ � ip�x
:

The modulus of �ðz; �; pÞ is given by:

j�ðz; �; pÞj ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1þ�x2V �Reðr�Þ þ � ImðhðzÞÞÞ2 þ ð�Imðr�Þ � �ReðhðzÞÞ þ p�xÞ2
ð1þ�x2V �Reðr�Þ þ � ImðhðzÞÞÞ2 þ ðImðr�Þ þ �ReðhðzÞÞ þ p�xÞ2

s
:

Since Re hðzÞ ¼ jzj 2�1
jzþ1j 2 and jzj > 1, we have Re hðzÞ > 0. Also, by Lemma 6.2

and (6.7), we compute

Imðr�Þ ¼
2�ReðhðzÞÞ
jrþj2 � 1

;

which yields Imðr�Þ > 0. Therefore j�ðz; �; pÞj < 1 for any strictly positive p. Since

jjRRjj ¼ j�jjr�j‘, and jr�j � 1 by Lemma 6.2, the lemma follows.

The interested reader can ¯nd a proof of the following result in Halpern�Szeftel12:

Theorem 6.1. Let V be a real constant. Let U k
p be the iterates of algorithm (5.3)�

(5.5). For positive p; ��t su±ciently small but nonzero, and �x su±ciently small, we

have

jjU k
p � U jj�i;�;�t . ð1� ‘��x2=2Þk�1 max

p¼1;2
jjU 1

p jj�p;�;�t:
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6.3. The non-overlapping complex Robin Schwarz relaxation

algorithm

We consider now the case where ‘ ¼ 0. For the complex Robin Schwarz relaxation

algorithm, the convergence factor is �ðz; �; pÞ. For � > 0 and p > 0, we have proved

that j�ðz; �; pÞj < 1. This shows the convergence of the non-overlapping complex

Robin Schwarz relaxation algorithm when V is a real constant.

However, our numerical computations are implemented with non-constant

potentials. Thus, we introduce a proof of convergence based on energy estimates. It is

the discrete analog to the proof of Theorem 4.3. The errorsW k
j are solutions for k � 1

to Eq. (5.2) with F � 0 and vanishing initial values. The transmission conditions are

for k � 2:

B1W
k
1 ð0;nÞ ¼ ~B1W

k�1
2 ð0;nÞ; B2W

k
2 ð0;nÞ ¼ ~B2W

k�1
1 ð0;nÞ for 0 � n � N ;

ð6:10Þ

where the discrete transmission operators Bj and ~Bj are summarized in (5.6). The

algorithm is initialized on the boundary, for 0 � n � N, by

B1W
1
1 ð0;nÞ ¼

�x

2
~G1ðnÞ ¼

�x

2
G1ðnÞ � B1Uð0;nÞ þ�xF 0;nþ 1

2

� �� �
;

B2W
1
2 ðnÞ ¼

�x

2
~G2ðnÞ ¼

�x

2
G2ðnÞ � B2Uð0;nÞ ��xF 0;nþ 1

2

� �� �
:

Theorem 6.2. The discrete non-overlapping Schwarz waveform relaxation algo-

rithm (5.3)�(5.5) converges for p > 0, in l1ð0;N ; l2ð�1; 0ÞÞ � l1ð0;N ; l2ð0;þ1ÞÞ,
to the solution U to (5.2), for any initial guess ðG0;GLÞ and any positive p:

8n; 0 � n � N ; lim
k!þ1

�x
X 0

j�0

jðW k
1 � UÞðj;nÞj2 þ

X 0

j�0

jðW k
2 � UÞðj;nÞj2

" #
¼ 0

ð6:11Þ

with the usual notation
P 0

j� 0Wj ¼ W0=2þ
P

j��1 Wj and
P 0

j� 0Wj ¼ W0=2þP
j� 1 Wj.

Proof. We write energy estimates, using a discrete analogous to (2.3). We start with

the left subdomain. We multiply Eq. (5.2) in �1 by W k
1 ðj;nþ 1

2Þ, take the imaginary

part, and sum for j � �1. The third term vanishes due to the fact that V is real-

valued. The ¯rst term becomes

1

2�t

X
j��1

ðjW k
1 ðj;nþ 1Þj2 � jW k

1 ðj;nÞj2Þ:
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As for the second term, we perform a discrete integration by parts:X
j��1

W k
1 j;nþ 1

2

� �
Dþ

x D
�
xW

k
1 j;nþ 1

2

� �

¼ �
X
j� 0

D�
xW

k
1 j;nþ 1

2

� ����� ����2 þ 1

�x
W k

1 0;nþ 1

2

� �
D�

xW
k
1 0;nþ 1

2

� �
:

Thus we can write

1

2�t

X
j�� 1

ðjW k
1 ðj;nþ 1Þj2 � jW k

1 ðj;nÞj2Þ

þ 1

�x
ImW k

1 0;nþ 1

2

� �
D�

xW
k
1 0;nþ 1

2

� �
¼ 0;

which we rewrite as

1

2�t

X 0

j�0

ðjW k
1 ðj;nþ 1Þj2 � jW k

1 ðj;nÞj2Þ

þ 1

�x
Im W k

1 0;nþ 1

2

� �
D�

xW
k
1 0;nþ 1

2

� �
� i

�x

2
Dþ

t W
k
1 ð0;nÞ

� �" #
¼ 0:

We now introduce the operators Bj de¯ned in (5.6). We obtain:

1

2�t

X 0

j�0

ðjW k
1 ðj;nþ 1Þj2 � jW k

1 ðj;nÞj2Þ þ
1

4p�x
j ~B2W

k
1 ð0;nÞj2

¼ 1

4p�x
jB1W

k
1 ð0;nÞj2: ð6:12Þ

We obtain in the same way the estimates on the right:

1

2�t

X 0

j�0

ðjW k
2 ðj;nþ 1Þj2 � jW k

2 ðj;nÞj2Þ þ
1

4p�x
j ~B1W

k
2 ð0;nÞj2

¼ 1

4p�x
jB2W

k
2 ð0;nÞj2: ð6:13Þ

We now add (6.12) to (6.13), use the transmission conditions (6.10) for k � 2:

1

2�t

X 0

j�0

ðjW k
1 ðj;nþ 1Þj2 � jW k

1 ðj;nÞj2Þ

þ 1

2�t

X 0

j�0

ðjW k
2 ðj;nþ 1Þj2 � jW k

2 ðj;nÞj2Þ

þ 1

4p�x
ðj ~B1W

k
2 ð0;nÞj2 þ j ~B2W

k
1 ð0;nÞj2Þ

¼ 1

4p�x
ðj ~B1W

k�1
1 ð0;nÞj2 þ j ~B2W

k�1
2 ð0;nÞj2Þ: ð6:14Þ
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We now sum in time, for 0 � n � q � 1:

1

2�t

X 0

j�0

jW k
1 ðj; qÞj2 þ

X 0

j�0

jW k
2 ðj; qÞj2

 !

þ 1

4p�x

Xq
n¼1

ðj ~B2W
k
1 ð0;nÞj2 þ j ~B1W

k
2 ð0;nÞj2Þ

¼ 1

4p�x

Xq
n¼1

ðj ~B2W
k�1
1 ð0;nÞj2 þ j ~B1W

k�1
2 ð0;nÞj2Þ: ð6:15Þ

We ¯nally sum (6.15) in k, for 1 � k � K, multiply by 2�t�x, and use the boundary

values for the initial guess:

�x
XK
k¼2

X 0

j�0

jW k
1 ðj; qÞj2 þ

X 0

j�0

jW k
2 ðj; qÞj2

 !

þ �t

2p

Xq
n¼1

ðj ~B2W
K
1 ð0;nÞj2 þ j ~B1W

K
2 ð0;nÞj2Þ

¼ �t

2p

Xq
n¼1

�x

2
~G1ðnÞ þ 2ipW 1

1 ð0;nÞ
���� ����2�

þ �x

2
~G2ðnÞ � 2ipW 1

2 ð0;nÞ
���� ����2�: ð6:16Þ

The sum of the discrete L2 norm over all iterates remains bounded. Thus:

lim
k!þ1

�x
X 0

j�0

jW k
1 ðj; qÞj2 þ

X 0

j�0

jW k
2 ðj; qÞj2

 !
¼ 0: ð6:17Þ

7. Numerical Results

We study the actual e±ciency of the algorithms: rate of convergence, robustness with

respect to the length of the time interval, and to the mesh size.

In Sec. 7.1, we treat the free Schr€odinger equation. We ¯rst show brie°y the

behavior of the classical Schwarz algorithm on the computation of a Gaussian tra-

veling wave. Thereafter, and for the rest of the numerical analysis, we consider zero

initial value, which is su±cient since the equation is linear. A random initial guess is

used, in order to make sure that all frequencies are present in the analysis. We

compare the classical and the complex Robin algorithms in case of two subdomains.

We also study the e±ciency of the complex Robin, as a function of the parameter p, in

the overlapping and non-overlapping cases.

Then we turn to non-constant potential, like the potential barrier and perform a

similar analysis.
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In Sec. 7.3, we introduce the quasi-optimal algorithm.

Finally we explore in Sec. 7.4 the extension to several subdomains.

The physical domain is ða; bÞ ¼ ð�5;þ5Þ. It is divided into two subdomains of

equal size. Since no parallelism is involved yet, our algorithms are implemented the

alternate way, i.e. we compute U1 with g1, then deduce g2 and transmit it to the right

domain for the computation of U2. Thus iteration #k in this section corresponds to

the computation of U 2k�1
1 ;U 2k

2 in the previous setting.

7.1. The free Schr €odinger equation

We ¯rst study the properties of the classical Schwarz algorithm with Dirichlet trans-

mission conditions, then those of the complex Robin algorithm, and compare their

e±ciency.We also present the e±ciency of the latter without overlap. In the case of the

free Schr€odinger equation, the quasi-optimal algorithm coincides with the optimal one

and converges in two iterations as expected by the theory (see Theorem 3.1).

7.1.1. The classical Schwarz algorithm

The mesh �x and �t are ¯xed, equal to �x ¼ 0:1 and �t ¼ 0:01. The overlap is

equal to eight gridpoints, i.e. to 0:8. We compute a Gaussian traveling wave

uðx; tÞ ¼ e�i�=4ffiffiffiffiffiffiffiffiffiffiffiffi
4t� i

p exp
ix2 � kx� k2t

4t� i

� �
ð7:1Þ

with k ¼ 6, using the Crank�Nicolson scheme on ða; bÞ with the exact values as

Dirichlet and initial data (transparent boundary conditions could be considered as

well, but would give the exact discrete solution for constant potential only). We

study in Fig. 1 the variation of the discrete L2 error on the internal boundary of �2,P
n jW k

2 ð0;nÞj2 as a function of the iteration number, for various ¯nal times T.

We notice two parts in the convergence curve: in the ¯rst iteration, the error decays

very slowly. This is due to the Dirichlet boundary conditions which create ¯ctitious

walls. High amplitude waves are created by erroneous boundary data, and the

maximum of the amplitude is reached at the end of the time interval. At each iteration,

the error is small on a longer time interval. At some iteration (which increases withT),

the error is small on the whole time interval, which makes the total error small.

In Table 1, we choose T ¼ 1, and give the number of iterations needed to reach a

precision equal to 10�6 for various sizes of the overlap from two to 16 gridpoints. As

expected, the larger the overlap, the faster the algorithm. Furthermore, the

numerical convergence factor is a linear function of the overlap.

7.1.2. The optimized complex Robin algorithm with overlap

From now on, we consider the convergence to zero, with a random initial datum on the

interface. The ¯nal time is T ¼ 1, the mesh sizes are equal to�x ¼ 0:1;�t ¼ 0:01, and

thereafter divided by two, the overlap is equal to 4�x. The optimal p given by the
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theory is pT ¼ ð � 2

T�tÞ1=4 � 5:6. We draw on Fig. 2 the L2 error in �1 at step 10 as a

function of p. The star corresponds to pT . This drawing shows that the e±ciency of

the complex Robin algorithm depends drastically on the parameter p, that the theor-

etical estimate is perfectly relevant, and that it is better to overestimate p than to

underestimate. Figure 3 shows the equivalues of the log of the discrete L2 error in time

and space, for a range of values of Re p and Imp. It shows that adding an imaginary

part to p does not improve the e±ciency of the algorithm.

7.1.3. Comparison

We now compare the e±ciency of the classical and optimized complex Robin

algorithm for T ¼ 1, �x ¼ 0:1 and �t ¼ 0:01. The error is the L2 norm of the error

on the boundary of �2. The overlap is 4% or 8%, with the same data as in Fig. 3. The

convergence of the optimized complex Robin algorithm is linear, and the improve-

ment over the classical Schwarz algorithm is striking.
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Fig. 1. Convergence history of the classical Schwarz algorithm for various values of the ¯nal time.

Table 1. Number of iterations to achieve a 10�6

accuracy as a function of size of the overlap for the

classical Schwarz algorithm with T ¼ 1.

Overlap 2�x 4�x 8�x 10�x

Number of iterations 54 27 14 7
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7.1.4. The optimized complex Robin algorithm without overlap

We now analyze the e±ciency of the non-overlapping complex Robin algorithm. For

the same data as before (T ¼ 1, �x ¼ 0:1 and �t ¼ 0:01), Fig. 5 shows on the left

the discrete L2 error in time and space in �1 after ten iterations as a function of p.
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Fig. 2. Variation of the discrete L2 error in time and space in �1 as a function of p, logarithmic scale. The

overlap is 1%. The star corresponds to the theoretical optimal value pT .
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Fig. 3. Variation of the discrete L2 error in time and space as a function of p, logarithmic scale. The

overlap is 4%. The star corresponds to the theoretical optimal value pT .
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The error is much larger than in the overlapping case, and much less sensitive to p.

However, the optimal theoretical parameter p	 is included in the \best" region. We

show on the right the variation of the error at the interface as a function of the iteration

for p ¼ p	. The Jacobi algorithm damps rapidly the propagating modes ¯rst, and then
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Fig. 4. Convergence history: Comparison of the Dirichlet (solid) and optimized complex Robin algorithm

(dashed). The overlap is L ¼ 8�x on the left, L ¼ 4�x on the right.
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Fig. 5. (a) Error at iteration 10 as a function of p, (b) error history in logarithmic scale for the optimal

theoretical parameter p	.

20

Fig. 6. Description of the data: Interval of computation, overlap, and potential.
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slows down. The convergence is therefore slower than in the overlapping case. This is

due to the fact that there is no overlap to dampen the evanescent modes. As in the

overlapping case, the convergence is linear, adding an imaginary part to p does

not improve the convergence. If possible, a small overlap is preferable for improved

convergence.

7.2. The potential barrier

We consider again the interval ð�5; 5Þ, with a ¯nal time T ¼ 1, discretized with

�x ¼ 0:1 and�t ¼ 0:01. The size of the overlap is 4�x. The potential is 20 times the

characteristic function of the interval ð�1; 1Þ.
We use the optimization process of Sec. 4.4, for a constant potential V equal to 20.

The theoretical formula in Halpern�Szeftel12 gives a theoretical parameter p	 equal
to 4.64.

In the experiment, again the initial data is zero, and the initial guess on the

boundary is random.We draw in Fig. 7 on the left the error at iteration 5 as a function

of p. The star corresponds to the theoretical optimal value p	. The numerical best

value is pd ¼ 4:93. We see that the numerical result ¯ts very well with the theoretical

analysis. Figure 7 on the right compares the convergence history for Dirichlet and

complex Robin transmission with parameter p	. In this case, the improvement pro-

duced by the optimized complex Robin condition is even larger than in the case of the

free Schr€odinger equation in Fig. 4 on the right.

We tried various types of potential, like parabolic pro¯les and the results are the

same: The complex Robin algorithm behaves much better than the classical Schwarz,

and the optimal complex Robin is obtained for a value of the parameter of the same

order of magnitude as the theoretical one.

7.3. The quasi-optimal algorithm

The quasi-optimal algorithm is by far the most e±cient. In all cases, even when the

potential is not constant, the precision 10�12 is reached in at most ¯ve iterations with

or without overlap. As an example, we show in Fig. 8 the convergence history with an

overlap of four gridpoints, for a parabolic potential, for various mesh sizes. When

re¯ning the mesh, the ¯rst two iterations reduce the error less, but after four iter-

ations the error is about 10�12. In that sense we can say that the convergence is

almost independent of the mesh size. In Fig. 9, we show the ¯rst few iterations, at the

end of the time interval, of the quasi-optimal algorithm with a parabolic potential, in

the case where �x ¼ 0:05 and �x ¼ 0:005.

7.4. The case of many subdomains

Although the mathematical analysis was carried out in the simpli¯ed case of two

semi-in¯nite intervals, the proofs of convergence remain unchanged for an arbitrary

number of subdomains in the non-overlapping case.
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In Figs. 10 and 11 are two sets of experiments, carried on the time interval (0, 1),

for four to 20 subdomains of same size equal to ten gridpoints. The numerical data are

�x ¼ 0:1, �t ¼ 0:01. The error is the sum of the errors on the interfaces. In Fig. 10

the potential is zero. The convergence does not depend on the number of subdomains.

In Fig. 11, the potential is 10x2. The convergence curves are parallel in each case,

there is a factor ten in the error between the extreme curves. For 20 subdomains, we

need eight iterations to reach 10�10 with the complex Robin algorithm, and only ¯ve

iterations with the quasi-optimal. The quasi-optimal algorithm is therefore the most

e®ective in all cases. However, we must keep in mind that it is global in time on

the boundary, and therefore each iteration involves the computation of N coe±cients.
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Fig. 7. (a) Error at iteration 5 for the complex Robin algorithm as a function of p. (b) Convergence
history for Dirichlet (solid) and complex optimized Robin (dashed) algorithms. Potential barrier.
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Fig. 8. Convergence history for the quasi-optimal algorithm in the presence of a parabolic potential.

2196 L. Halpern & J. Szeftel



−5 −4 −3 −2 −1 0 1 2 3 4 5
−1

−0.5

0

0.5

1

x

−5 −4 −3 −2 −1 0 1 2 3 4 5
−1

−0.5

0

0.5

1

x

−5 −4 −3 −2 −1 0 1 2 3 4 5
−1

−0.5

0

0.5

1

x

−5 −4 −3 −2 −1 0 1 2 3 4 5
−1

−0.5

0

0.5

1

x

−5 −4 −3 −2 −1 0 1 2 3 4 5
−1

−0.5

0

0.5

1

x

−5 −4 −3 −2 −1 0 1 2 3 4 5
−1

−0.5

0

0.5

1

x

Fig. 9. From left to right, the iterates uk
1ðx;T Þ and ukþ1

2 ðx;T Þ (dashed) at the end of the time interval

t ¼ T for k ¼ 1; 3; 5, together with the exact solution (solid), for the quasi-optimal algorithm. Top: real
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Fig. 10. Convergence history for the free Schr€odinger equation, for various number of subdomains.

(a) Complex Robin, (b) quasi-optimal.
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Fig. 11. Convergence history for the Schr€odinger equation with a parabolic potential, for various number

of subdomains. (a) Complex Robin, (b) quasi-optimal.
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As an example, in MATLAB, without any optimization of the code, in the case of two

subdomains and T ¼ 1, we found that for �x ¼ 0:1;�t ¼ 0:01, the Robin algorithm

and the quasi-optimal algorithm have about the same cost, whereas for �x ¼ 0:025,

the quasi-optimal algorithm is three times more costly than the Robin algorithm.

However, optimal implementations of the Transparent Boundary Conditions can be

used, like the one of Lubich and Schädle.17

8. Conclusion

We presented a general approach to design optimized Robin and quasi-optimal

domain decomposition algorithms for the linear Schr€odinger equation, with a potential

in one dimension. We established a complete analysis of those, and showed numerical

examples with various types of potential, which enhance the e±ciency of the methods.

These algorithms can be used with or without overlap. This work is a ¯rst step towards

the extension to the two-dimensional case, and to the nonlinear Schr€odinger equation.
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