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plaisir du partage qui étaient les siens.
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4.2 Fourier-Laplace analysis with variable σ1(x1) . . . . . . . . . . . . . . . . . . . . . . . . . 38

4.2.1 Well posedness by Fourier-Laplace with variable σ1(x1) . . . . . . . . . . . . . . . 38
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1. Introduction

This paper analyses absorbing layer methods for calculating approximations to the solution, U , of first

order systems of hyperbolic partial differential equations,

L(∂t, ∂x)U := ∂tU +

d∑

l=1

Al ∂lU = F , (t, x) ∈ R1+d , U(t, x) ∈ CN . (1.1)

Approximate values are sought on a finite domain. The source term F and/or initial condition is compactly

supported in the domain. The absorbing layer strategy surrounds the domain with a layer of finite

thickness intended to be absorbing and weakly reflective.

The simplest case is dimension d = 1 with computational domain x1 < 0 and absorbing layer in

x1 > 0. For the first example consider inhomogeneous initial data and zero right hand side. The simplest

absorbing layers add a lower order term σ1x1>0 C U where 1 denotes the characteristic function, for

example,

∂tU +

(
1 0

0 −1

)
∂1U + σ 1x1>0

(
1 0

c b

)
U = 0.

To get a feeling for the reflections, consider the solution U(t, x1) so that,

for t < 0 , U =
(
δ(x1 − t) , 0

)
.

Then

U1 = δ(x1 − t) e−σx1 1x1>0 ,
(
∂t − ∂1 + bσ1x1>0

)
U2 = −σ 1x1>0 c U1.
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If c 6= 0, then ∇t,x1U2 is discontinuous across the ray {x1 = −t}. From the perspective of a numerical

method, such a reflected singularity is undesirable.

The reflected singularity from a discontinuous lower order term is weaker than the singularity of the

incident wave. For the equation

∂tU + A1∂1U + σ 1x1>0 CU = 0,

if C is diagonal in a basis diagonalising A1, the reflections are avoided. The ease of eliminating reflections

for this problem with d = 1 is deceptive. No such simple remedy exists in dimensions d > 1. For symmetric

hyperbolic systems A1 = A∗
1, it is wise to choose C = C∗ ≥ 0 so that the absorption term is dissipative

in the L2(Rd) norm.

Consider next the wave equation with friction ∂ttv− ∂11v+2σ 1x1>0 ∂tv = 0 written in characteristic

coordinates (U1, U2) = (∂tv − ∂1v, ∂tv + ∂1v) with absorption B = σC:

∂tU +

(
1 0

0 −1

)
∂1U + σ 1x1>0 C U = 0 , C =

(
1 1

1 1

)
.

The absorption matrix C is symmetric and nonnegative but does not commute with A1. It produces

unacceptably strong reflections. The absorption from Israeli and Orszag [16], ∂ttv−∂11v+σ(∂tv+∂1v) = 0,

absorbs only rightward waves and corresponds to

C =

(
1 0

0 0

)
= π+(A1),

introducing the notation π+(A1) for the spectral projector on the eigenspace corresponding to strictly

positive eigenvalues of A1. The general nonnegative symmetric choice commuting with A1 is a positive

multiple of

C = π+(A1) + ν π−(A1), ν ≥ 0. (1.2)

We call these smart layers. They dissipate the L2 norm. As observed by Israeli and Orszag, the numerical

performance of the smart layers is not as good as one would hope. One reduces reflections by choosing

σ(x) ≥ 0 vanishing to order k ≥ 0 at the origin. That reduces the rate of absorption and thereby increases

the width of the layer required. The leading reflection by such smart layers of incoming wave packets

of amplitude O(1) and wavelength ε is O(εk+1). The leading reflection is linear in σ. In section 6, we

introduce the method of Harmoniously Matched Layers which remove the leading order reflections (at all

angles of incidence) by an extrapolation.

Open problem. Repeated extrapolation further reduces the order of reflection. It is easy to program

and it is possible that an optimization could pay dividends.

Elaborate absorbing layer strategies, like Bérenger’s PML introduce operators related to but often

more complicated than the original operator L. The operators in the absorbing layer and in the domain

of interest may not be the same. For the case of a layer in {x1 > 0}, absorbing layer algorithms solve a

transmission problem for an unknown (V,W ) where V is a CN valued function on x1 < 0 and W is a

function on x1 > 0. The equations in x1 > 0 are chosen to be absorbing and the transmission problem

weakly reflective. The ingenious innovation of Bérenger was to realize that the operator R in the layer

can differ substantially from L. He increased the number of unknown functions in the layer. So W is CM

valued with M > N .

The pair (V,W ) is determined by a well posed transmission problem,

LV = F on R1+d
− := {(t, x) : x1 < 0} RW = 0 on R1+d

+ , (1.3)

with the homogeneous transmission condition

(V,W ) ∈ N on {x1 = 0}. (1.4)
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Here N ⊂ CN × CM is a linear subspace.a The choice of the hyperbolic operator R and transmission

condition N is made with three goals,

• The transmission problem is well posed, and not hard to approximate numerically.

• Waves from the left are at most weakly reflected at x1 = 0.

• Waves moving rightward decay rapidly in x1 > 0 so that the layer can be chosen thin.

The criterion for perfection that we adopt is that of Appelo, Hagström and Kreiss [3] . In the case of

one absorption, it is formulated as follows.

Definition 1.1. A well posed transmission problem is perfectly matched when for all F supported in

x1 < 0 , t ≥ 0, the solution supported in t ≥ 0 satisfies V = U
∣∣
x1<0

.

We prove in §4.1.4 that Bérenger’s method with one discontinuous absorption σ1 is perfect in this sense.

In practice one does not absorb in only one direction and the computational domain is rectangular.

We give in §3.5 a definition with absorptions in more than one direction and a proof of perfection.

The strategy of Bérenger is quite ingenious. For an artificial boundary in two dimensions at {x1 = r}
and domain of interest {x1 < r} it consists of two steps. The first is a doubling of the system and

the second is insertion of an absorption term in {x1 > r}. The doubled system involves the unknown

Ũ := (U1, U2) ∈ CN × CN . When F = 0, the doubled equation without dissipation is

∂tU
j + Aj∂j(U

1 + U2) = 0 , j = 1, 2 .

The system with damping in x1 changes the j = 1 equation to

∂tU
1 + A1∂1(U

1 + U2) + σ(x1)U
1 = 0 , suppσ ⊂ {x1 ≥ r} .

Then U :=
∑

j U
j satisfies L(∂)U = 0 in x1 < r. In practice it is the restriction of U to x1 < r that is

of interest. There are three distinct ways to view this. One can think of the unknowns as U defined in

x1 < r and Ũ in x1 ≥ r with the transmission condition that A1U = A1(U
1 + U2) on x1 = r. One is

given initial values of U and takes initial values of Ũ vanishing. This is the most natural choice and the

one presented by Bérenger.

From the computational point of view it is simpler to have the same unknowns throughout. The

simplification is greater when one passes from the half space case to a computational domain equal to a

rectangular domain in Rd. One introduces Ũ everywhere with transmission condition [A1(U
1 + U2)] = 0

where [∗] denotes the jump at x1 = r. The transmission condition is then equivalent to the validity of

the differential equation satisfied by Ũ in all of Rd. When one uses Ũ everywhere, the initial values of Ũ

are taken equal to zero outside the computational domain. The initial values are constrained to satisfy

U =
∑

j U
j within the computational domain. The choice is otherwise arbitrary. For the case of the

doubling above the choice U j(0, x) = U(0, x)/2 for j = 1, 2 is common.

If the domain of interest is |x1| ≤ r one would choose σ > 0 on |x1| > r and vanishing for |x1| < r.

The transmission condition is [A1(U
1 + U2)] = 0 with the jump at x1 = r and also at x1 = −r.

In a rectangular geometry in Rd introduce Ũ := (U1, . . . , Ud), where U l ∈ CN for 1 ≤ l ≤ d. Then Ũ

with values in CNd is required to satisfy (in the case F = 0),

(L̃(∂t, ∂x) Ũ)l := ∂tU
l + Al∂l(

d∑

j=1

U j) + σl(xl)U
l = 0, 1 ≤ l ≤ d. (1.5)

Each absorption coefficient σl(xl) ≥ 0 depends on only one variable. It is strictly positive between the

inside rectangle and a larger outside rectangle. In the layer between the rectangles the solution is expected

to decay. If Ũ solves (1.5), then U =
∑d

j=1 U
j solves (1.1) on the set {x : σl(xl) = 0 for 1 ≤ l ≤ d}

including the inner rectangle. In the case considered by Bérenger the σ were discontinuous and the

aTransmission conditions which involve derivatives can also be treated. The algorithms of Bérenger and our HML do not
require that generality.
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equations (1.5) are equivalent to transmission problems where on the discontinuity surface of σj one

imposes the transmission condition of continuity of Aj

∑
ℓ U

ℓ.

Our first technique is the energy method. In §3.2 we show that if (ξ1 , . . . , ξd) = 0 does not meet

the characteristic variety of L then the Bérenger method is well posed without loss of derivatives. This

applies in particular to linearized elasticity and suggests that in some ways the Bérenger method is

better adapted to that situation than the Maxwell equations for which it was intended. In §3.3 we give a

nontrivial extension of the method of Métral and Vacus to show that Bérenger’s method for the Maxwell

equations in dimension d = 2 (resp. d = 3) is well posed provided that σj(xj) ∈ W 1,∞(Rxj
) (resp.

σj(xj) ∈ W 2,∞(Rxj
)). The method introduces a norm that is the sum of L2(Rd

t,x) norms of suitable

differential operators Pα(D) applied to U . It has the property that the norm at time t1 is estimated

in terms of the norm at time t2. If one introduces the vector of unknowns Pα(D)U this shows that

the Bérenger problem becomes strongly well posed without loss of derivatives. Such transformations are

typical of weakly well posed problems. (see the Dominics’ proof of Theorem 1.1 in §IV.1 of [30]).

When such an estimate is known, we prove sharp finite speed in §3.4 and perfection in §3.5 and §3.6,
the latter concerned with several variants of the Berenger strategy. The perfection proof passes by a study

of the Laplace transform on {Im τ = 0}. The transformed problem is conjugated to the problem without

absorption by a τ dependent change of independent variable x, an idea inspired by [10].

Our second method is the Fourier-Laplace method. Bérenger introduced his PML for Maxwell’s equa-

tions with σ piecewise constant. Using a computation which resembles plane wave analysis of reflections

for problems without lower order terms, Bérenger argued that the layers were perfectly matched for all

wave numbers and all angles of incidence. Using variants of the same approach other closely related PML

were constructed afterward. Performance is observed to be enhanced using σ which are not discontinuous.

Twice differentiable cubic functions are the most common. The Bérenger method is a very good method

for Maxwell’s equations. The Fourier-Laplace method gives a framework for understanding the compu-

tations of Bérenger. In addition, it is the only method we know for proving well posedness of Bérenger’s

PML with discontinuous σ for Maxwell’s equations.

Plane wave analysis is sufficient to study reflection and transmission for linear constant coefficient

operators without lower order terms. Problems with lower order terms require other tools as it is no

longer true that the plane waves generate all solutions. The first level of generalization is to use the

Fourier-Laplace transform for problems where an absorbing layer occupies x1 ≥ 0 and both L and R have

constant coefficients. Hersh [11] found necessary and sufficient conditions for (weak) well posedness of

transmission problems. We recall those ideas in §4.1.1 including the modifications needed for characteristic

interfaces, and verify in §4.1.3 that the condition is satisfied for the Bérenger splitting of general systems

with one discontinuous absorption coefficient. To our knowledge this is the first proof that the Bérenger

split transmission problem with discontinuous σ(x1) is well posed.

We give necessary and sufficient conditions for perfection at a planar interface. In §4.1.4 we verity

that the condition is satisfied for the Bérenger splitting.

In §4.1.5 we prove that in the case of Maxwell’s equations (and not in general) the perfection criterion

follows by analytic continuation from the plane wave identities established by Bérenger.

In §4.2 we prove using the Fourier-Laplace method that Bérenger’s method with one coefficient

σ1(x1) ∈ Lip(Rx1) is well posed and perfectly matched. In our use of the Fourier-Laplace method,

including this one, a central role is played by the Seidenberg-Tarski Theorem estimating the asymptotic

behavior of functions defined by real polynomial equations and inequalities. The Fourier-Laplace method

is limited to coefficients that depend only on x1.

Our third method of analysis is to study the behavior of short wavelength asymptotic solutions. For

such solutions we examine in §5 the decay in the absorbing layers, and reflections at discontinuities of

σj(xj) or its derivatives when smoother transitions are used. For problems other than Maxwell, Hu [14]

and Bécache, Fauqueux , and Joly [5] have already shown that the supposedly absorbing layers may in
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fact lead to growth. The study of short wavelength solutions in the layer yields precise and clear criteria,

also valid for variable coefficients, explaining the phenomenon.

The analysis of the reflection of short wavelength wave packets at the interface with the layer also

leads us to propose in §6, a new absorbing layer strategy which we call Harmoniously Matched Layers.

The method starts with a smart layer for a symmetric hyperbolic system. Then for wavelength ε asymp-

totic solutions of amplitude O(1) and discontinuous σ, the leading order reflected wave at nonnormal

incidence typically has amplitude proportional to σε. Therefore an extrapolation using computations

with two values of σ eliminates the reflections proportional to σ. This yields a method with leading order

reflection O(ε2) at all angles of incidence. The resulting method inherits the simple L2 estimates of the

symmetric systems. More generally if the first discontinuous derivative of the absorption coefficient is the

kth then the reflection is O([Dkσ]εk+1) and the same extrapolation removes the leading order reflection.

In §6.4 we investigate several implementations of this idea and show that the method with cubic σ is

competitive with that of Bérenger with the same σ. On short wavelengths or random data it performs

better than the Bérenger method. On long wavelengths Bérenger performs better.

Though we provide satisfactory answers to a wide range of questions about absorbing layers, there is

a notable gap.

Open problem. For the original strategy of Bérenger for Maxwell’s equations with discontinuous ab-

sorptions in more than one direction we do not know if the resulting problem is well posed. Discussion.

1. In §3.6 we prove well posedness and perfection for a closely related method. 2. In practice discontinu-

ous σ have been abandoned, but it is striking that this problem remains open. 3. Once well posedness is

proved, perfection follows by the proof in §3.5.

2. Well posed first order Cauchy problems

2.1. Basic definitions

Consider a first order system of partial differential equations for CN valued functions on R1+d,

L(x, ∂t, ∂x)U := ∂tU +
d∑

l=1

Al ∂lU + B(x)U = 0. (2.1)

The principal part of L, denoted L1,

L1(∂t, ∂x) := ∂t +

d∑

l=1

Al ∂l ,

has constant matrix coefficients Al. In the Bérenger strategy, the operators L̃ are the centerpieces and

they differ from L. It is for this reason that we introduce L that can be L or L̃.

Definition 2.1. The characteristic variety Char(L) ⊂ C1+d \ {0} of L is the set of (τ, ξ) such that

detL1(τ, ξ) = 0.

Definition 2.2. The smooth variety hypothesis is satisfied at (τ , ξ) ∈ Char(L) if there is a conic

neighborhood Ω of ξ ∈ Rd \ {0} and a C∞ function ξ 7→ τ(ξ) on Ω so that on a neighbourhood of (τ , ξ),

the characteristic variety has equation τ = τ(ξ). At such a point the associated group velocity is defined

to be v := −∇ξτ(ξ).

Example 2.1. This hypothesis holds if an only if for ξ near ξ the spectrum of L(0, ξ) near −τ consists

of a single point with multiplicity independent of ξ. For the polynomial (τ + ξ1)(τ
2 − |ξ|2) with d > 1 the

hypothesis fails at and only at τ + ξ1 = 0 where two sheets of the variety are tangent. Replacing the first

factor by τ + c ξ1 with c > 1 the hypothesis fails where the two sheets cross transversally. For 0 ≤ c < 1

the hypothesis holds everywhere.
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The Cauchy problem for L is to find a solution U defined on [0,∞[×Rd satisfying (2.1) with prescribed

initial data U(0, ·).

Definition 2.3. The Cauchy problem for L is weakly well posed if there exist q > 0, K > 0, and

α ∈ R so that for any initial values in Hq(Rd), there is a unique solution U ∈ C0([0,+∞[ ; L2(Rd)) with

∀t ≥ 0, ‖U(t, ·)‖L2(Rd) ≤ Keαt‖U(0, ·)‖Hq(Rd). (2.2)

When the conclusion holds with q = 0, the Cauchy problem is called strongly well posed.

Theorem 2.1.

(i) The Cauchy problem for L1 is weakly well posed if and only if for each ξ ∈ Rd, the eigenvalues of

L1(0, ξ) are real.

(ii) The Cauchy problem for L1 is strongly well posed if and only if for each ξ ∈ Rd, the eigenvalues of

L1(0, ξ) are real and L1(0, ξ) is uniformly diagonalisable, there is an invertible S(ξ) satisfying,

S(ξ)−1L1(0, ξ)S(ξ) = diagonal, S , S−1 ∈ L∞(Rd
ξ) .

(iii) If B has constant coefficients, then the Cauchy problem for L is weakly well posed if and only if there

existes M ≥ 0 such that for any ξ ∈ Rd, detL(τ, ξ) = 0 =⇒ |Im τ | ≤M .

Remark 2.1.

1. The algebraic conditions in (i) and (iii) express weak hyperbolicity, in the sense of G̊arding. The

necessity of uniform diagonalisability in (ii) expressing strong hyperbolicity is due to Kreiss [8], [19].

2. An application of Grönwall’s inequality shows that if L1 satisfies the condition of Theorem 2.1, (ii),

then for all B(x) ∈ L∞(Rd ; Hom(CN )), the Cauchy problem for L1 +B is strongly well posed.

3. By property (ii), if L is strongly hyperbolic, then every eigenvalue −τ of L1(0, ξ) is semi-simple. Equiv-

alently, for any (τ, ξ) ∈ Char(L) the eigenvalue 0 of L1(τ, ξ) is semi-simple, i.e. its geometric multiplicity

is equal to its algebraic multiplicity. It is equivalent to saying that KerL1(τ, ξ) = Ker (L1(τ, ξ))
2, or that

CN = KerL1(τ, ξ)⊕ RangeL1(τ, ξ).

2.2. Characteristic variety and projectors for Bérenger’s L̃

To study the Cauchy problem for Bérenger’s split operators L̃ one starts with a study of the characteristic

variety. The coefficients of Bérenger’s operator L̃ are the dN × dN matrices,

Ãl :=




0 . . . . . . . . . 0
...

...

Al . . . . . . . . . Al

...
...

0 . . . . . . . . . 0



, B(x) :=



σ1(x1)IN . . . 0

...
. . .

...

0 . . . σd(xd)IN


 . (2.3)

The principal symbol of L̃ is

L̃1(τ, ξ) =




ξ1A1 + τIN ξ1A1 . . . ξ1A1

ξ2A2 ξ2A2 + τIN . . . ξ2A2

...
...

. . .
...

ξdAd ξdAd . . . ξdAd + τIN


 .

Theorem 2.2.

(i) The characteristic polynomial of L̃ is

det L̃1(τ, ξ) = τN(d−1) detL(τ, ξ) . (2.4)
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The polynomial associated to the full symbol including the absorption is

det L̃(τ, ξ) = detL
( d∏

j=1

(τ + σj) , ξ1
∏

j 6=1

(τ + σj) , ξ2
∏

j 6=2

(τ + σj) , . . . , ξd
∏

j 6=d

(τ + σj)
)
. (2.5)

If (τ, ξ) ∈ CharL with τ 6= 0, the following properties hold.

(ii) The mapping

S : Φ̃ = (Φ1, · · · ,Φd) 7→ −
d∑

j=1

Φj

is a linear bijection from Ker L̃1(τ, ξ) onto KerL1(τ, ξ). Its inverse is given by

Φ 7→
(ξ1
τ
A1Φ , . . . ,

ξd
τ
AdΦ

)
.

(iii) The kernel of the adjoint L̃1(τ, ξ)
∗ is equal to the set of vectors Φ̃ = (Φ, · · · ,Φ) such that

Φ ∈ KerL1(τ, ξ)
∗. The range of L̃1(τ, ξ) is equal to the set of vectors Ψ̃ =

(
Ψ1, · · · ,Ψd

)
such

that (
∑d

j=1 Ψj,Φ) = 0 for all Φ ∈ Ker L1(τ, ξ)
∗.

(iv) If moreover the eigenvalue 0 of L1(τ, ξ) with τ 6= 0 is semi-simple, the eigenvalue 0 of L̃1(τ, ξ) is

semi-simple. Equivalently,

Ker L̃1(τ, ξ) ⊕ Range L̃1(τ, ξ) = CdN .

Proof. (i) Adding the sum of the other rows to the first row in the determinant of L̃1(τ, ξ) yields,

det L̃1(τ, ξ) =

∣∣∣∣∣∣∣∣∣

L(τ, ξ) . . . . . . L(τ, ξ)

ξ2A2 ξ2A2 + τIN . . . ξ2A2

...
. . .

...

ξdAd . . . . . . ξdAd + τIN

∣∣∣∣∣∣∣∣∣

Substracting the first column from the others yields,

det L̃1(τ, ξ) =

∣∣∣∣∣∣∣∣∣

L(τ, ξ) 0 . . . 0

ξ2A2 τ IN . . . 0
...

. . .
...

ξdAd 0 . . . τIN

∣∣∣∣∣∣∣∣∣

The first result follows. For the second write,

det L̃(τ, ξ) =

∣∣∣∣∣∣∣∣∣

ξ1A1 + (τ + σ1)IN ξ1A1 . . . ξ1A1

ξ2A2 ξ2A2 + (τ + σ2)IN . . . ξ2A2

...
. . .

...

ξdAd . . . . . . ξdAd + (τ + σd)IN

∣∣∣∣∣∣∣∣∣

For each i divide the ith row by τ + σi to find,

det L̃(τ, ξ) =

d∏

j=1

(τ + σj)
N det L̃1(1,

ξ1
τ + ξ1

, · · · , ξd
τ + ξd

) .

By formula (2.4) this implies

det L̃(τ, ξ) =

d∏

j=1

(τ + σj)
N detL(1,

ξ1
τ + ξ1

, · · · , ξd
τ + ξd

),

which is equivalent to (2.5).
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(ii) Suppose that 0 6= Φ̃ = (Φ1, · · · ,Φd) ∈ Ker L̃1(τ, ξ). Then, for any l,

τΦl + ξlAl

d∑

j=1

Φj = 0, (2.6)

Add to find

L1(τ, ξ)

d∑

j=1

Φj = 0.

Therefore the map Φ̃ 7→ −∑
j Φj maps Ker L̃1(τ, ξ) to Ker L1(τ, ξ).

If
∑d

j=1 Φj = 0, equation (2.6) implies that all the Φj vanish since τ 6= 0. Therefore the mapping is

injective.

Let Φ ∈ KerL1(0, ξ). Define

Φj =
ξj
τ
AjΦ . (2.7)

This defines an element Φ̃ = (Φ1, · · · ,Φd) in Ker L̃1(0, ξ) with SΦ̃ = Φ, so the mapping is surjective with

inverse given by (2.7).

(iii) Since L̃1(τ, ξ)
∗Φ̃ = (L1(τ, ξ)

∗Φ, . . . , L1(τ, ξ)
∗Φ) it follows that the set of Φ̃ is included in the kernel.

Since the matrices are square, KerL1(τ, ξ) and KerL1(τ, ξ)
∗ have the same dimension. The set of Φ̃ has

dimension equal to this common dimension which by (ii) is equal to the dimension of Ker L̃1(τ, ξ) proving

that they exhaust the kernel. The last property follows directly from the fact that Range L̃1(τ, ξ) is the

orthogonal of KerL1(τ, ξ)
∗.

(iv) It suffices to show that the intersection of these spaces consists of the zero vector. Equivalently, it

suffices to show that there is no Φ 6= 0 in KerL1(τ, ξ) such that

∀Ψ ∈ KerL1(τ, ξ)
∗, (

d∑

j=1

ξj
τ
AjΦ,Ψ) = 0 .

The quantity above is equal to −(Φ,Ψ), and Φ would belong to (KerL1(τ, ξ)
∗)⊥ = RangeL1(τ, ξ). Since

τ 6= 0 and KerL1(τ, ξ) ∩ RangeL1(τ, ξ) = 0, this would imply that Φ = 0, leading to a contradiction.

Denote by ΠL(τ, ξ) (resp. ΠL̃(τ, ξ)) the spectral projector onto the kernel of L1(τ, ξ) (resp. L̃1(τ, ξ))

along its range. For L it is given by

ΠL(τ, ξ) =
1

2πi

∮

|z|=ρ

(
z I − L1(τ, ξ)

)−1
dz

with ρ small. Like the characteristic variety, ΠL depends only on the principal symbol L1. It is charac-

terized by,

Π2
L = ΠL, ΠL L1(τ, ξ) = 0, L1(τ, ξ)ΠL = 0, rankΠL = dimKerL1(τ, ξ), (2.8)

where the τ, ξ dependence of ΠL is suppressed for ease of reading. The first three conditions assert that

ΠL(τ, ξ) is a projector annihilating RangeL1(τ, ξ) and projecting onto a subspace of KerL1(τ, ξ). That

it maps onto the kernel is implied by the last equality.

Proposition 2.1. The matrix ΠL̃(τ, ξ) is given by

ΠL̃(τ, ξ) = −




ξ1A1

τ
ΠL(τ, ξ) . . .

ξ1A1

τ
ΠL(τ, ξ)

...
...

ξdAd

τ
ΠL(τ, ξ) . . .

ξdAd

τ
ΠL(τ, ξ)



.
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Proof. Call the matrix on the right M(τ, ξ). The properties of the projectors associated to L yield

formulas for the (i, j) block of the products

(M(τ, ξ)L̃1(τ, ξ))i,j = −ξiAi

τ
ΠLL1 = 0, (L̃1(τ, ξ)M(τ, ξ))i,j = −ξiAi

τ
L1ΠLL1 = 0, and,

(M(τ, ξ)M(τ, ξ))i,j =
ξiAi

τ2
ΠL(L1 − τI)ΠL = −ξiAi

τ
Π2

L = (M(τ, ξ))i,j .

This proves the first three equalities of (2.8). Since M projects onto a subspace of Ker L̃1, rankM ≤
dimKer L̃1. Apply M to a vector (Ψ, 0, . . . , 0) and compare with part (ii) of Theorem 2.2 to see that the

range of M contains Ker L̃1(τ, ξ) so rankM ≥ dimKer L̃1. This proves the last equality of (2.8).

Remark 2.2.

1. The characteristic varieties of L and L̃ are identical in τ 6= 0.

2. In particular, the smooth variety hypothesis is satisfied at (τ, ξ) with τ 6= 0 for one if and only if it

holds for both, and the varieties have the same equations and the same group velocities.

3. When the smooth variety hypothesis is satisfied, the spectral projection ΠL̃(τ(ξ), ξ) is analytic in ξ,

hence of constant rank. It follows that 0 is a semi-simple eigenvalue of L̃(τ(ξ), ξ) on a conic neighborhood

of ξ.

If the eigenvalue 0 of L1(τ, ξ) is semi-simple, the kernel and the range of L1(τ, ξ) are complemen-

tary subspaces as mentioned in Remark 2.1 3., and the partial inverse QL(τ, ξ) of L1(τ, ξ) is uniquely

determined by

QL(τ, ξ)ΠL(τ, ξ) = 0, QL(τ, ξ)L1(τ, ξ) = I −ΠL(τ, ξ) . (2.9)

The partial inverse QL̃(τ, ξ) is defined in the same way from L̃1(τ, ξ).

2.3. The Cauchy problem for Bérenger’s split operators

Part (i) of Theorem 2.2 proves the following.

Corollary 2.1. If the Cauchy problem for L is weakly well posed, then so is the Cauchy problem for the

principal part L̃1.

An important observation is that though the Cauchy problem for L̃1 is at least weakly well posed, the

root τ = 0 is for all ξ a multiple root. When there are such multiple roots it is possible that order zero

perturbations of L̃1 may lead to ill posed Cauchy problems. The next example shows that this phenomenon

occurs for the Bérenger split operators with constant absorption σj . Theorem 2.4 shows that when τ = 0

is a root of constant multiplicity of detL1(τ, ξ) = 0, the constant coefficient Bérenger operators have well

posed Cauchy problems. Cases where the problem are strongly well posed are identified. In the latter

cases, arbitrary bounded zero order perturbations do not destroy the strong well posedness.

Example 2.2.

1. For L := ∂t + ∂1 + ∂2, detL(τ, ξ) = τ + ξ1 + ξ2. Therefore τ = 0 is a root if and only if ξ1 + ξ2 = 0.

The doubled system with absorption σ = 1 in x1 is

L̃ := ∂t +

(
1 1

0 0

)
∂1 +

(
0 0

1 1

)
∂2 +

(
1 0

0 0

)
, and,

det L̃(τ, ξ,−ξ) = det

(
τ + ξ + 1 ξ

−ξ τ − ξ

)
= (τ + ξ + 1)(τ − ξ) + ξ2 = τ2 + τ − ξ .

The roots of det L̃(τ, ξ,−ξ) = 0 are τ = (−1 ± √
1 + 4ξ)/2. Taking ξ → −∞ shows that the Cauchy

problem for L̃ is not weakly well posed by Theorem 2.1, (iii).
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2. More generally if τ + ξ1+ ξ2 is a factor of detL1(τ, ξ) then for σ 6= 0 the operator L̃ is not even weakly

hyperbolic. In this case (2.5) implies that τ2 + τ − ξ is a factor of det L̃(τ, ξ,−ξ).
3. This generalizes to linear hyperbolic factors in arbitrary dimension.

A key tool is the following special case of Theorem A.2.5 in [13].

Theorem 2.3 (Seidenberg-Tarski Theorem). If Q(ρ, ζ), R(ρ, ζ), and S(ρ, ζ) are polynomials with

real coefficients in the n+ 1 real variables (ρ, ζ1, . . . , ζn) and the set

M(ρ) :=
{
ζ : R(ρ, ζ) = 0, S(ρ, ζ) ≤ 0

}

is nonempty when ρ is sufficiently large, define

µ(ρ) := sup
ζ∈M(ρ)

Q(ρ, ζ).

Then either µ(ρ) = +∞ for ρ large, or there are a ∈ Q and A 6= 0 so that

µ(ρ) = Aρa
(
1 + o(1)

)
, ρ → ∞ .

Theorem 2.4. Suppose that τ = 0 is an isolated root of constant multiplicity m of detL1(τ, ξ) = 0.

(i) If the Cauchy problem for L1 is strongly well posed, then for arbitrary constant absorptions σj ∈ C,

the Cauchy problem for L̃1 +B is weakly well posed.

(ii) If the Cauchy problem for L1 is strongly well posed, and if there is a ξ 6= 0 such that KerL(0, ξ) 6=
∩

ξj 6=0
KerAj, then L̃1(0, ξ) is not diagonalizable. Therefore the Cauchy problem for L̃ is not strongly

well posed.

(iii) If the Cauchy problem for L is strongly well posed and for all ξ, KerL1(0, ξ) = ∩
ξj 6=0

KerAj , then

the Cauchy problem for L̃ is strongly well posed. This condition holds if L1(0, ∂x) is elliptic, that is

detL1(0, ξ) 6= 0 for all real ξ.

Remark 2.3.

1. Part (i) is a generalisation of results in [15] and Theorem 1 in [5]. In the latter paper, Bécache et al.

treated the case N = 2 assuming that the nonzero eigenvalues of L1(0, ξ) are of multiplicity one. They

conjectured that the result was true more generally. Like them we treat the roots near zero differently

from those that are far from zero. The treatment of each of these cases is different from theirs. The

tricky part is the roots near zero. We replace their use of Puiseux series by the related Seidenberg-Tarski

Theorem 2.3.

2.Arbarbanel and Gottlieb [1] proved (ii) in the special case of Maxwell’s equations. The general argument

below is simpler and yields a necessary and sufficient condition for loss of derivatives when the eigenvalue

0 of L(0, ξ) is of constant multiplicity.

3. Part (iii) is new, extending a result in the thesis of S. Petit-Bergez [25].

Proof.

(i) For ξ ∈ Rd \ 0, define for ρ ∈ R+,

E(ρ) := max
{
Im (τ) : det L̃(τ, ξ) = 0 , ξ ∈ Rd, |ξ|2 = ρ2

}
.

Apply the Seidenberg-Tarski Theorem 2.3 with real variables ρ, ζ = (Re τ, Im τ, ξ) and polynomials

R(ρ, ζ) = | det L̃(τ, ξ)|2 + (|ξ|2 − ρ2)2, S = 0 and Q(ρ, ζ) = Im τ . Conclude that there is an α 6= 0 and a

rational r so that

E(ρ) = αρr
(
1 + o(1)

)
, ρ→ ∞ .

To prove the result it suffices to prove that Im τ is bounded, i.e. to show that r ≤ 0. Suppose on the

contrary that r > 0.
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Given τ, ξ define k ∈ Sd−1, ρ ∈ R+, and, θ by

k :=
ξ

|ξ| , ξ = ρ k, θ :=
τ

ρ
.

Choose sequences τ(n), and ξ(n) so that for n→ ∞,

det L̃(τ(n), ξ(n)) = 0, Im τ(n) = α
(
ρ(n)

)r
(1 + o(1)) . (2.10)

Write

L̃(τ, ξ) = L̃1(τ, ξ) +B = ρ
(
L̃1(θ, k) +

1

ρ
B
)

= ρ
(
θI2N×2N + L̃1(0, k) +

1

ρ
B
)
.

The matrix L̃(τ, ξ) is singular if and only if −θ is an eigenvalue of L̃1(0, k) + ρ−1B.

For large ρ this is a small perturbation of L̃1(0, k). Choose µ > 0 so that for |k| = 1, the only eigenvalue

of L̃1(0, k) in the disk |θ| ≤ 2µ is θ = 0.

Because of the strong well posedness of L, there is a uniformly independent basis of unit eigenvectors

for the eigenvalues of L1(0, k) in |θ| ≥ µ. By part (iv) of Theorem 2.2 there is a uniformly independent

basis of unit eigenvectors for the eigenvalues of L̃1(0, k) in |θ| ≥ µ.

It follows that there is a C0 so that for ρ > C0 the eigenvalues of L̃1(0, k) + ρ−1B in |θ| > µ differ

from the corresponding eigenvalues of L̃1(0, k) by no more than C0/ρ. In particular their imaginary parts

are no larger than C0/ρ. Therefore, the corresponding eigenvalues τ = ρ θ have bounded imaginary parts.

Thus for n large, E(ρ(n)) can be reached only for the eigenvalues −θ(n) which are perturbations of the

eigenvalue 0 of L̃1(0, k(n)).

Perturbation by O(1/ρ) of the uniformly bounded family of dN × dN matrices, L̃1(0, k), can move

the eigenvalues by no more than O(ρ−
1

dN ). Since the unperturbed eigenvalue is 0, |θ(n)| ≤ C ρ(n)−1/dN ,

so

|τ(n)| ≤ Cρ(n)1−
1

dN , Im τ(n) = αρ(n)r(1 + o(1)) , α 6= 0 .

Therefore r ≤ 1− 1/dN < 1 and

d∏

j=1

(τ(n) + σj) = τ(n)d(1 + o(1)), ξℓ(n)
∏

j 6=ℓ

(τ(n) + σj) = ξℓ(n) τ(n)
d−1(1 + o(1)) .

Insert in identity (2.5) to find

detL1

(
τ(n)d(1 + o(1)) , ξ(n) τ(n)d−1(1 + o(1))

)
= 0.

Divide the argument by ρ(n) τ(n)d−1 and use homogeneity to find

detL1

(
τ(n)

ρ(n)

(
1 + o(1)

)
, k(n)(1 + o(1))

)
= 0.

The constant multiplicity hypothesis shows that

detL1(τ, ξ) = τm F1(τ, ξ) , and ∀ξ ∈ Rd, F1(0, ξ) 6= 0. (2.11)

Since for n large (τ(n)/ρ(n))(1 + o(1)) 6= 0 we have

F1

(
τ(n)

ρ(n)

(
1 + o(1)

)
, k(n)(1 + o(1))

)
= 0.

Passing to a subsequence we may suppose that the bounded sequence k(n) → k. In addition, τ(n)/ρ(n) →
0 so passing to the limit yields F1

(
0, k) = 0 contradicting (2.11). This contradiction proves (i).
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(ii) Part (i) of Theorem 2.2 shows that 0 is an eigenvalue of L̃1(0, ξ) with algebraic multiplicity equal to

N(d−1)+m. It remains to see that with the assumption, the dimension of Ker L̃1(0, ξ) is strictly smaller

than N(d− 1) +m. By definition

Ker L̃1(0, ξ) =
{
Φ̃ = (Φ1, · · · ,Φd) :

d∑

j=1

Φj ∈ ∩pKer (ξpAp)
}
.

Define

E1 :=
{
Φ̃ =

(
Φ1, · · · ,Φd

)
:

d∑

j=1

Φj = 0
}
.

Then E1 ⊂ Ker L̃1(0, ξ) and dim E1 = N(d− 1).

Define

E2 := KerL1(0, ξ)⊗Od−1, dim E2 = m.

If Φ̃ ∈ Ker L̃1(0, ξ),
∑d

j=1 Φj ∈ KerL1(0, ξ) , write

Φ̃ =
(∑

Φj , 0 , . . . , 0
)

− W,
(∑

Φj , 0 , . . . , 0
)
∈ E2, W ∈ E1.

Thus, Ker L̃1(0, ξ) ⊂ E1 ⊕ E2.
Pick V in KerL1(0, ξ), but not in ∩

ξj 6=0
KerAj . Then

Ṽ = (V, 0, · · · , 0) ∈ E2 and V /∈ Ker L̃1(0, ξ) .

This proves that Ker L̃1(0, ξ) is a proper subset of E1 ⊕ E2, so
dim

(
Ker L̃1(0, ξ)

)
< dim E1 + dim E2 = N(d− 1) +m.

Thus the geometric multiplicity of the eigenvalue 0 is strictly less than its algebraic multiplicity. There-

fore, L̃1(0, ξ) is not diagonalizable. This proves (ii).

(iii) To prove that the split problem is strongly well posed it suffices to consider the principal part.

Suppose L(0, ξ) is uniformly diagonalisable on a conic neighbourhood of ξ ∈ RN \0. For Ũ = (U1, · · · , Ud),

introduce

Ṽ = (V 1, · · · , V d) with V 1 :=

d∑

j=1

U j, and V l := U l for 2 ≤ l ≤ d . (2.12)

Then

L̃1(∂t, ∂x)Ũ = 0 ⇐⇒ ∂tṼ + Q̃(∂x)Ṽ = 0, with, Q̃(ξ) :=




L1(0, ξ) 0 . . . 0

ξ2A2 0 . . . 0
...

...
. . .

...

ξdAd 0 . . . 0


 .

The eigenvalues of Q̃(ξ) are those of L1(0, ξ), therefore real. It suffices to diagonalize uniformly Q̃(ξ)

on the conic neighbourhood of ξ. By homogeneity it suffices to consider ξ with |ξ| = 1. By hypothesis

there exist a real diagonal matrix D(ξ) and an invertible matrix S(ξ) so that

L1(0, ξ) = S(ξ)D(ξ)S−1(ξ) , and, ∃K > 0, ∀ξ ∈ Rd, ‖S(ξ)‖+ ‖S−1(ξ)‖ ≤ K.

Seek a diagonalization of Q̃(ξ) on |ξ| = 1 in the form,

S̃(ξ) =




S(ξ) 0 . . . 0

ξ2A2Q(ξ)S(ξ) Id . . . 0
...

...
. . .

...

ξdAdQ(ξ)S(ξ) 0 . . . Id


 so, (S̃(ξ))−1 =




(S(ξ))−1 0 . . . 0

−ξ2A2Q(ξ) Id . . . 0
...

...
. . .

...

−ξdAdQ(ξ) 0 . . . Id


 (2.13)



May 5, 2011 19:17 WSPC/INSTRUCTION FILE halpernconfluentesfinal
14 Contents

with Q(ξ) to be determined. Then,

S̃−1(ξ)Q̃(ξ)S̃(ξ) =




D(ξ) 0 . . . 0

ξ2A2(I −Q(ξ)L1(0, ξ))S(ξ) 0 . . . 0
...

...
. . .

...

ξdAd(I −Q(ξ)L1(0, ξ))S(ξ) 0 . . . 0




and

S̃−1(ξ)Q̃(ξ)S̃(ξ) is diagonal ⇐⇒ ξjAj(I −Q(ξ)L1(0, ξ)) = 0, 2 ≤ j ≤ d . (2.14)

From the strong well posedness of L1 it follows that uniformly in ξ one has KerL1(0, ξ) ⊕
RangeL1(0, ξ) = CN . Choose Q equal to the left inverse of L1(0, ξ) defined in (2.9). Since KerL1(0, ξ) =

∩Ker ξjAj , the condition on the right in (2.14) holds so S̃(ξ) diagonalizes Q̃(ξ). Since S(ξ) and S(ξ)−1

are bounded on a conic neighborhood, it follows that S̃(ξ) and S̃(ξ)−1 are bounded on a neighborhood

of ξ in |ξ| = 1. A finite cover of the sphere, completes the proof.

Remark 2.4. Denote by S̃(ξ) the function homogeneous of degree zero given by (2.13) for |ξ| = 1 with Q

constructed in the proof. Then ‖S̃(D)Ṽ (t)‖L2(Rd)) with Ṽ from (2.12) is a norm equivalent to ‖Ũ(t)‖L2(Rd)

and is conserved for solutions of L̃1(∂)Ũ = 0. Those solutions yield a unitary group with respect to the

norm ‖S̃(D)Ṽ ‖L2(Rd).

3. Analysis of the Bérenger’s PML by energy methods

This section contains results proving that the initial value problems so defined are well posed. We begin

with the case of Gevrey absorptions, then W 2,∞, and finally the case of the Heaviside function.

In Section 3.1 we prove that when L̃ is only weakly well posed, Gevrey regular σl lead to well posed

initial value problems in Gevrey classes. Commonly used σ are not this smooth.

The strongest result, from Section 3.2, applies when L(0, ∂x) is elliptic. Important cases are the wave

equation and linearized elasticity. In these cases the operator L̃1 is strongly hyperbolic so remains strongly

hyperbolic even with general bounded zeroth order perturbations. Thus for bounded σl(xl) the initial

value problem is strongly well posed.

In Section 3.3 we analyse the case of L̃ associated to Maxwell’s equations with finitely smooth σ. We

follow the lead of [25] and extend the analysis of [22] to several absorptions σl and to higher dimensions.

Related estimates for the linearized Euler equation have been studied by L. Métivier [21].

The results of this section do not treat the case of Bérenger’s method for Maxwell’s equations with

discontinuous σj . The case of one absorption is treated in §4. A closely related method is treated by an

energy method in §3.6.

3.1. General operators and Gevrey absorption

The next result is implied by Bronstein’s Theorem [6] [7] [23] [24]. It shows that when L1(0, ξ) has only

real eigenvalues and the σj belong to the appropriate Gevrey class, then the Cauchy problem for L̃ is

solvable for Gevrey data.

Definition 3.1. For 1 ≤ s <∞, f ∈ S ′(Rd) belongs to the Gevrey class Gs(Rd) when

∃C,M, ∀α ∈ Nd,
∥∥∂αf

∥∥
L2(Rd)

≤ M α!C|α|.

Then Gs ⊂ ∩σH
σ(Rd) ⊂ C∞(Rd). For s > 1 the compactly supported elements of Gs are dense. If

|f̂(ξ)| ≤ C e−|ξ|a with 0 < a < 1, then u ∈ G1/a.

Theorem 3.1. If the principal part L1 is weakly hyperbolic, and σj ∈ GN/N+1(Rd) then for arbitrary

f ∈ GN/(N+1)(Rd) there is one and only one solution u ∈ C∞(R1+d) to

L̃ u = 0, u(0, ·) = f .

The solution depends continuously on f .
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3.2. Strong hyperbolicity when L(0, ∂) is elliptic

Theorem 3.2. If L is strongly well posed and L(0, ∂) is elliptic, then L̃ is strongly well posed for any

absorption (σ1(x1), . . . , σd(xd)) in (L∞(R))d.

Proof. Kreiss’ theorem 2.1 asserts that an operator with constant coefficient principal part is uniformly

well posed if and only if the principal part is uniformly diagonalisable on a conic neighborhood of each

ξ 6= 0. Therefore the Corollary follows from the third part of Theorem 2.4.

Example 3.1. This result implies that the PML model for the elastodynamic system is strongly well

posed. The system is written in the velocity-stress (v,Σ) formulation,

ρ ∂tv − divΣ = 0 , ∂tΣ− Cε(v) = 0 , εij(v) := (∂ivj + ∂jvi) ,

with positive definite elasticity tensor C and Σ := Cε. See [5], where the authors showed that such layers

may be amplifying (see Section 5).

3.3. The method of Métral-Vacus extended to the 3d PML Maxwell system

Métral and Vacus proved in [22] a stability estimate for Bérenger’s two dimensional PML Maxwell system

with one absorption σ1(x1) ∈ W 1,∞(R) and x = (x1, x2) ∈ R2. There are two crucial elements in their

method. First following Bérenger, they do not split all variables in all directions. This section begins

by showing that the partially split model is equivalent to the fully split model restricted to functions Ũ

some of whose components vanish. The L̃ evolution leaves this space invariant and its evolution on that

subspace determines its behavior everywhere.

The second element is that on the partially split subspace there is an a priori estimate bounding

the norm at time t by the same norm at time 0. This looks inconsistent with the fact that the Cauchy

problem is only weakly well posed. However the norm is not homogeneous. Certain linear combinations

of components have more derivatives estimated than others. The observation of [22] is that the system

satisfied by the fields and certain combinations of the fields and their derivatives, yields a large but

symmetrizable first order system. These estimates have been obtained, and extended in Sabrina Petit’s

thesis [25] in the 2d case with two coefficients, and in the 3d case for an absorption in only one direction.

In this section, motivated in part by the clarification of the role of symmetrizers in the work of L.

Métivier [21] for the 2d variable coefficient Euler equations in geophysics, we construct analogous more

elaborate functionals which suffice for the general case of three absorptions in three dimensions. They

require σj ∈ W 2,∞(R).

Maxwell’s equations for ∂tE1 and ∂tB1 contain only partial derivatives with respect to x2, x3 and

not x1. In such a situation Bérenger splits the corresponding equations in directions x2, x3 but not in

direction x1. To see why this is a special case of the general splitting algorithm (1.5) reason as follows. If

the equation for ∂tUj from L does not contain any terms in ∂k, that is the j
th row of Ak vanishes, then

the equation for the jth component of the unknown Uk corresponding to the splitting for the kth space

variable is,

∂tU
k
j + σk(xk)U

k
j = 0 , Uk

j = e−σk(xk)t Uk
j (0, x). (3.1)

Plugging this into the other equations reduces the number of unknowns by one. The simplest strategy

is to take initial data Uk
j (0, x) = 0 which yields the operator L̃ restricted to the invariant subspace of

functions so that Uk
j = 0. Conversely if one knows how to solve that restricted system then the full system

can be reduced to the restricted system with an extra source term from (3.1).

Summary. To study the fully split system it is sufficient to study the system restricted to {Uk
j = 0}.

Performing this reduction for each missing spatial derivative, corresponds to splitting equations only

along directions containing the corresponding spatial derivatives.
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An extreme case of this reduction occurs if an equation contains no spatial derivatives, that unknown is

eliminated entirely. For the Maxwell system which is the subject of this section this does not occur. The

use of unsplit variables

• reduces the size of Ũ reducing computational cost,

• corresponds to Bérenger’s original algorithm,

• is important for the method of Métral-Vacus which takes advantage of the vanishing components

Uk
k .

Consider the 3d Maxwell equations,

∂tE −∇×H = 0, ∂tH +∇× E = 0.

Defining U = E + iH , they take the symmetric hyperbolic form (1.1) with hermitian matrices

A1 =



0 0 0

0 0 −i
0 i 0


 , A2 =




0 0 i

0 0 0

−i 0 0


 and A3 =



0 −i 0
i 0 0

0 0 0


 . (3.2)

Introduce the splitting (1.5) with some components unsplit. Define the subspace H with vanishing

components corresponding to the unsplit components

H :=
{
Ũ = (U1, U2, U3) ∈ H2(R3 ; C3)3

}
: U1

1 = 0, U2
2 = 0, U3

3 = 0
}
.

For Ũ = (U1, U2, U3) in H, define

U := U1 + U2 + U3, V j := ∂jU, V i,j := ∂ijU, W :=
∑

k σk(xk)U
k,

W j := ∂jW, Z :=
∑

k ∂k(Wk + σk(xk)Uk), Zj := ∂jZ,

V :=
(
U , V i, V i,j , W j , U j , W , Zj

)
∈ C54.

(3.3)

The function Z and therefore Zj are C valued. The other slots in V are C3 valued. The second derivatives

V i,j of U are ordered as V 1,1, V 2,1, V 3,1, V 2,2, V 3,2, V 3,3. This convention is important when the equations

for V are written in matrix form. Computing in turn W j , Z, Zj requires two derivatives of σj .

The unknown in (1.5) is Ũ = (U1, U2, U3). The U j appear in the fifth slot of V. Therefore,

‖V(t, ·)‖(L2(R3))54 ≥ ‖Ũ(t, ·)‖(L2(R3))9 .

For the Cauchy problem the initial data is Ũ0 = (U1
0 , U

2
0 , U

3
0 ), from which V0 is deduced by the derivations

above, and

‖V0‖(L2(R3))54 ≤ C‖Ũ0‖(H2(R3))9 .

Theorem 3.3. If σj, for j = 1, 2, 3, belong to W 2,∞(R), then for any Ũ0 = (U1
0 , U

2
0 , U

3
0 ) in H there is

a unique solution Ũ in L2(0, T ;H) of the split Cauchy problem (1.5) with initial value Ũ0. Furthermore

there is a C1 > 0 independent of Ũ0 so that for all positive time t,

‖Ũ(t, ·)‖(L2(R3))9 ≤ C1e
C1 t

∥∥Ũ0

∥∥
(H2(R3))9

. (3.4)

Proof. The main step is to derive a system of equations satisfied by V(t, x) together with a symmetrizer

S(D). These imply an estimate for t ≥ 0,
∥∥V(t)

∥∥
L2(R3)

≤ C2 e
C2t

∥∥V(0)
∥∥
L2(R3)

. (3.5)

From this estimate it easily follows that the Cauchy problem for the V-equations is uniquely solvable. It

is true but not immediate that if the initial values of V are computed from those of Ũ then the solution

V comes from a solution Ũ of the Bérenger system. The strategy has three steps,

• Discretize the Bérenger system in x only.
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• Derive an estimate analogous to (3.5) for the semidiscrete problem. The estimate is uniform as the

discretization parameter tends to zero. The proof is a semidiscrete analogue of (3.4).

• Solve the semidiscrete problem and pass to the limit to prove existence.

This is done for the case d = 2 in [25] to which we refer for details. Uniqueness of the solutions to the

V-system and therefore Ũ is simpler and classical and is also in [25].

Equation (1.5) yields,

∂tU
j +

∑

k

AkV
j + σjU

j = 0. (3.6)

Summing on j yields

∂tU + L(0, ∂)U +W = 0. (3.7)

Differentiate in direction xj to find,

∂tV
j + L(0, ∂)V j +W j = 0. (3.8)

Differentiate once more to get

∂tV
i,j + L(0, ∂)V i,j + ∂iW

j = 0. (3.9)

The quantity ∂iW
j on the left is replaced using the next lemma.

Lemma 3.1.

∂jW = L(0, ∂)AjW + Zej −
∑

k Ejk(σ
′
kU + σkV

k), (3.10)

where ej is the jth vector of the standard basis, and Eij is the 3 × 3 matrix all of whose entries vanish

except the (i, j) element that is equal to 1.

Proof.

First evaluate L(0, ∂)AjW to find

L(0, ∂)AjW =
∑

k

AkAj∂kW.

The matrices in Maxwell’s equations satisfy AjAk = −Ejk for j 6= k, and A2
j =

∑
k 6=j Ekk = I − Ejj .

This yields

L(0, ∂)AjW = −
∑

k 6=j

Ejk∂kW + (I − Ejj)∂jW = ∂jW −
∑

k

Ejk∂kW = ∂jW − div(W ) ej .

Introduce the definition of Z to find

W j := ∂jW = L(0, ∂)AjW + div(W )ej
= L(0, ∂)AjW + Zej − (

∑
k ∂k(σkUk)) ej .

Compute
(∑

k ∂k(σkUk)
)
ej =

∑
k Ejk∂k(σkU)

=
∑

k Ejkσ
′
kU +

∑
k EjkσkV

k,

which proves (3.10). The proof of the lemma is complete.

Differentiate (3.10) in space to obtain

∂iW
j = L(0, ∂)AjW

i + ∂iZej −
∑

k Ejk∂i
(
σkU + σ′

kV
k
)
.

Inserting into (3.9) yields

∂tV
i,j + L(0, ∂)V i,j + L(0, ∂)AjW

i + Zij −
∑

k

Ejk∂i
(
σkU + σ′

kV
k
)
= 0.
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This is equivalent to

∂tV
i,j + L(0, ∂)V i,j + L(0, ∂)AjW

i +

Ziej − σ′
iEjiU − (σi”Eji +

∑
k σkEjk)V

i − ∑
k σ

′
kEjkV

i,k = 0.
(3.11)

To close the system it remains to evaluate the time derivatives of W,W j and ∂jZ.

∂tW =
∑

k

σk∂tU
k = −

∑

k

σk(AkU + σkU
k) = −

∑

k

σkAkV
k −

∑

k

σ2
kU

k.

Using the particular form of the equations yields
∑

k σ
2
kU

k = (
∑

k σk)(
∑

k σkU
k)−∑

k σk

(∑
l 6=k σlU

l
)

= (
∑

k σk)W − diag(σ2σ3, σ1σ3, σ1σ2)U − diag(σ1, σ2, σ3)W .

Therefore

∂tW +
∑

k

σkAkV
k + (

∑

k

σk)W − diag(σ2σ3, σ1σ3, σ1σ2)U − diag(σ1, σ2, σ3)W = 0 . (3.12)

Differentiate in xi to find

∂tW
i +

∑
k(∂i(σk)AkV

k + σkAkV
ki) + ∂i(

∑
k σk)W +

∑
k σkW

i

−∂i
(
diag(σ2σ3, σ1σ3, σ1σ2)

)
U − diag(σ2σ3, σ1σ3, σ1σ2)V

i

−∂i
(
diag(σ1, σ2, σ3)

)
W − diag(σ1, σ2, σ3)W

i = 0

(3.13)

Next compute

∂tZ =
∑

i

∂i∂t(Wi + σiUi) .

Consider the pair of equations

∂tU
2
1 + i∂2U3 + σ2U

2
1 = 0, and ∂tU

3
1 − i∂3U2 + σ3U

3
1 = 0.

Add the two equations. Also add σ2 times the first to σ3 times the second. This yields two equations,

∂tU1 + i(∂2U3 − ∂3U2) +W1 = 0, and ∂tW1 + i(σ2∂2U3 − σ3∂3U2) + σ2
2U

2
1 + σ2

3U
3
1 = 0.

Rewrite the last term as σ2
2U

2
1 + σ2

3U
3
1 = (σ2 + σ3)W1 − σ2σ3U1, to find

∂tU1 + i(∂2U3 − ∂3U2) +W1 = 0, and, ∂tW1 + i(σ2∂2U3 − σ3∂3U2) + (σ2 + σ3)W1 − σ2σ3U1 = 0.

Multiply the first equation by σ1 and add the second to obtain

∂t(W1 + σ1U1) + i ((σ1 + σ2)∂2U3 − (σ1 + σ3)∂3U2) + (
∑

k σk)W1 − σ2σ3U1 = 0 .

The other indices follow by permutation. Differentiate in xk and add to find
∑

k ∂k∂t(Wk + σkUk) + i
∑

k ∂k ((σk + σk+1)∂k+1Uk+2 − (σk + σk+2)∂k+2Uk+1)

+
∑

i ∂i ((
∑

k σk)Wi)−
∑

k ∂k(σk+1σk+2Uk) = 0.

The terms with two spatial derivatives cancel. This leaves

∂tZ + i
∑

k σ
′
k(∂k+1Uk+2 − ∂k+2Uk+1)

+(
∑

k σk)(
∑

kW
k
k ) +

∑
k σ

′
kWk −∑

k σk+1σk+2V
k
k = 0.

Since

Z =
∑

k

∂k(Wk + σk(xk)Uk) =
∑

k

(W k
k + σ′

kUk + σkV
k
k ),

we can replace (
∑

k σk)(
∑

kW
k
k ) in the previous equation by (

∑
k σk)(Z −∑

k(σ
′
kUk + σk V

k
k )) so

∂tZ + (
∑

k σk)Z + i
∑

k σ
′
k(V

k+1
k+2 − V k+2

k+1 )

−(
∑

k σk)(
∑

k(σ
′
kUk + σk V

k
k )) +

∑
k σ

′
kWk −

∑
k σk+1σk+2V

k
k = 0.
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Differentiating in xj yields

∂tZ
j + (

∑
k σk)Z

j + σ′
jZ + iσj”(V

j+1
j+2 − V j+2

j+1 ) + i
∑

k σ
′
k(V

k+1,j
k+2 − V k+2,j

k+1 )

−σ′
j(
∑

k(σ
′
kUk + σk V

k
k ))− (

∑
k σk)(σj”Uj + σ′

j V
j
j )− (

∑
k σk)(

∑
k(σ

′
kV

j
k + σk V

k
j,k))

+σ′
jWj +

∑
k σ

′
kW

j
k −∑

k ∂j(σk+1σk+2)V
k
k −∑

k ∂j(σk+1σk+2)V
j,k
k = 0.

Replace Z by
∑

k(W
k
k + σkV

k
k ) to end up with

∂tZ
j + (

∑
k σk)Z

j + σ′
j

∑
k(W

k
k + σkV

k
k ) + iσj”(V

j+1
j+2 − V j+2

j+1 ) + i
∑

k σ
′
k(V

k+1,j
k+2 − V k+2,j

k+1 )

−σ′
j(
∑

k(σ
′
kUk + σk V

k
k ))− (

∑
k σk)(σj”Uj + σ′

j V
j
j )− (

∑
k σk)(

∑
k(σ

′
kV

j
k + σk V

k
j,k)) + σ′

jWj

+
∑

k σ
′
kW

j
k −∑

k ∂j(σk+1σk+2)V
k
k −∑

k ∂j(σk+1σk+2)V
j,k
k = 0.

(3.14)

Summarizing, V is solution of a first order system, ∂tV+P (∂x)V+B(x)V = 0, whose principal symbol

is given by

P (∂) =




I4 ⊗ L(0, ∂) 04,6 ⊗ 03,3 04,3 ⊗ 03,3 04,3 ⊗ 03,3 04,4 ⊗ 03,3

06,4 ⊗ 03,3 I6 ⊗ L(0, ∂) (I6 ⊗ L(0, ∂))M 06,3 ⊗ 03,3 06,4 ⊗ 03,3

03,4 ⊗ 03,3 03,6 ⊗ 03,3 03,3 ⊗ 03,3 03,3 ⊗ 03,3 03,4 ⊗ 03,3

03,4 ⊗ 03,3 03,6 ⊗ 03,3 03,3 ⊗ 03,3 03,3 ⊗ 03,3 03,4 ⊗ 03,3

04,4 ⊗ 03,3 04,6 ⊗ 03,3 04,3 ⊗ 03,3 04,3 ⊗ 03,3 04,4 ⊗ 03,3




.

Here the V i,j are ordered as indicated before the theorem and,

M :=




A1 0 0

0 A1 0

0 0 A1

0 A2 0

0 0 A2

0 0 A3



.

To symmetrize it suffices to construct a symmetrizer for the upper left hand block

Q(∂) :=




I4 ⊗ L(0, ∂) 04,6 ⊗ 03,3 04,3 ⊗ 03,3

06,4 ⊗ 03,3 I6 ⊗ L(0, ∂) (I6 ⊗ L(0, ∂))M

03,4 ⊗ 03,3 03,6 ⊗ 03,3 03,3 ⊗ 03,3


 .

We verify that

S̃ :=




I4 ⊗ I3 04,6 ⊗ 03,3 04,3 ⊗ 03,3
06,4 ⊗ 03,3 I6 ⊗ I3 (I6 ⊗ I3)M

03,4 ⊗ 03,3 03,6 ⊗ 03,3 I3 ⊗ I3


 with S̃−1 =




I4 ⊗ I3 04,6 ⊗ 03,3 04,3 ⊗ 03,3
06,4 ⊗ 03,3 I6 ⊗ I3 −M(I3 ⊗ I3)

03,4 ⊗ 03,3 03,6 ⊗ 03,3 I3 ⊗ I3




is a symmetrizer for Q(iξ). Compute

S̃QS̃−1 =



I4 ⊗ L(0, ·) 04,6 ⊗ 03,3 04,3 ⊗ 03,3
06,4 ⊗ 03,3 I6 ⊗ L(0, ·) 06,4 ⊗ 03,3
03,4 ⊗ 03,3 03,6 ⊗ 03,3 03,3 ⊗ 03,3




which is symmetric since L(0, ·) is.
Therefore P (ξ) is symmetrizable by a matrix independent of ξ. Hence, the Cauchy problem for (3.7),

(3.8), (3.11), (3.12), (3.13), (3.14) is strongly well posed. The norm of the zero order terms depends on

the coefficients σj and their derivatives up to order 2. The estimate of the Theorem follows.



May 5, 2011 19:17 WSPC/INSTRUCTION FILE halpernconfluentesfinal
20 Contents

Remark 3.1. We recall a computation from [25], showing that when there are only 2 coefficients σ1 and

σ2 only one derivative of σj is needed. This is always the case in dimension d = 2. When σ3 ≡ 0, split W

as

W = E33W +



W1

W2

0


 .

Then


W1

W2

0


 =



σ2U

2
1

σ1U
1
2

0


 = diag(σ2, σ1, 0)U.

Rewrite (3.7) as

∂tU + L(0, ∂)U + E33W + diag(σ2, σ1, 0)U = 0. (3.15)

Differentiate with respect to x1 and x2 to obtain

∂tV
j + L(0, ∂)V j + E33∂jW + ∂j(diag(σ2, σ1, 0))U + diag(σ2, σ1, 0)W = 0. (3.16)

To find an equation on W , proceed as in the 3d proof to get,

∂tW +
∑

k

σkAkV
k + (

∑

k

σk)W − σ1σ2U = 0 (3.17)

Therefore V is solution of a first order system, whose principal symbol is given by

P (∂) =




L(0, ∂) 0 0 0

0 L(0, ∂) 0 E33∂1
0 0 L(0, ∂) E33∂2
0 0 0 0


 .

A symmetrizer is given by

S̃ =




I 0 0 0

0 I 0 iE23

0 0 I iE13

0 0 0 I


 , with S̃−1 =




I 0 0 0

0 I 0 −iE23

0 0 I −iE13

0 0 0 I3


 .

3.4. Sharp Finite Speed for Bérenger’s PML

Recall some notions associated with estimates on the domains of influence and determinacy for a hy-

perbolic operator L (see [17]). The timelike cones are the connected components of (1, 0, . . . , 0) in the

complement of the characteristic variety. The forward propagation cone is dual to the timelike cone. A

lipschitzean curve [a, b] ∋ t 7→ (t, γ(t) is an influence curve when γ′ belongs to the propagation cone for

Lebesgue almost all t ∈ [a, b].

Theorem 3.4. Suppose that L defines a strongly well posed Cauchy problem and that the multiplicity

of τ = 0 as a root of detL1(τ, ξ) = 0 is independent of ξ ∈ Rd \ 0. The support of the solution of the

Bérenger transmission problem is contained in the union of the propagation curves of L starting in the

support of the source terms when either of the following conditions is satisfied.

(i) ∀ξ ∈ Rd \ 0, KerL1(0, ξ) = ∩j Ker ξjAj , and ∀j, σj ∈ L∞.

(ii) L1 is Maxwell’s equation and ∀j, σj ∈W 2,∞.

Proof. The characteristic varieties of L and L̃ satisfy Char L̃ = CharL ∪ {τ = 0}. When {τ = 0} has

multiplicity as a root of detL1(τ, ξ) = 0 independent of ξ ∈ Rd \ 0 the timelike cones of L and L̃ coincide.

Therefore the propagation cones and influence curves coincide too.
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Case (i). Part (ii) of Theorem 2.4 proves that L̃1 defines a strongly well posed Cauchy problem. It

follows that the sharp propagation conclusion of the Theorem is valid for L̃1 + B(t, x) for any bounded

B(t, x). This follows on remarking that the solution of (L̃+ B)Ũ = 0 with initial data Ũ0 is the limit at

ν → ∞ of Picard iterates Ũν . The first, Ũ1, is defined as the solution of the Cauchy problem without B.

For ν > 1 the iterates are defined by,

L̃1Ũ
ν+1 + B(t, x) Ũν = 0, Ũν+1(0, ·) = Ũ0 .

Since L̃1 has constant coefficients, sharp finite speed is classical for that operator. An induction proves

that each iterate is supported in the union of influence curves starting in the support of Ũ0.

Case (ii). Reason as above constructing by Picard iteration approximations Vν converging to the

solution V from (3.3). Since the equation satisfied by V is strongly well posed the iterates converge. An

induction shows that they are supported in the set of influence curves starting in the support of U0.

3.5. Proof of perfection for Bérenger’s PML by a change of variables

This section continues the analysis of Bérenger’s method when the hypotheses of Theorem 3.4 are satisfied.

In those cases well posedness is proved by an energy method. In addition suppose that

∀j, ∃Lj > 0, σj = 0 when |xj | ≤ Lj . (3.18)

Denote by R := Πj ]− Lj , Lj[.

Definition 3.2. In this setting the method is perfectly matched when for arbitrary F̃ ∈ C∞
0

(
]0,∞[×R

)

the unique solutions Ṽ and Ũ of

L̃Ṽ = F̃ , Ṽ
∣∣
t≤0

= 0, L̃1Ũ = F̃ , Ũ
∣∣
t≤0

= 0, (3.19)

with L̃ as in (1.5) satisfies

Ṽ
∣∣
R×R

= Ũ
∣∣
R×R

. (3.20)

Theorem 3.5. With the assumptions of Theorem 3.4 and σj as above, Bérenger’s method is perfectly

matched.

Proof. Taking the Laplace transform of the Ṽ equation in (3.19) yields a transform holomorphic in

Re τ > τ0 with values in L2(Rd) satisfying for 1 ≤ j ≤ d,

V̂ j + (τ + σj(xj))
−1Aj∂j V̂ = F̂ j , with V :=

∑

j

V j , F :=
∑

j

F j . (3.21)

Multiply by τ and sum on j to obtain

τ V̂ +
∑

j

τ

τ + σj(xj)
Aj ∂j V̂ = τ F̂ . (3.22)

When τ is fixed real and positive this equation can be transformed to the corresponding equation

without the σj by a change of variables. The change of variables depends on τ . The resulting equation is

exactly that determining Û :=
∑

j Û
j . In this way we find that V̂ is obtained from Û by this change of

variables. This idea is inspired by Diaz and Joly in [10].

For real τ > 0 define d bilipschitzean homeomorphisms Xj(xj) of R to itself by

dXj(xj)

dxj
=

τ + σj(xj)

τ
, Xj(0) = 0 .

Then,

∂

∂xj
=

∂Xj

∂xj

∂

∂Xj
=

τ + σj(xj)

τ

∂

∂Xj
,

τ

τ + σj(xj)

∂

∂xj
=

∂

∂Xj
.
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Therefore if Û(X) is the solution of

τ Û(X) +
∑

j

Aj
∂

∂Xj
Û = F̂ (X) , (3.23)

then the solution V̂ of (3.22) is given by V̂ (x) := Û(X(x)) since the latter function of x satisfies the

equation determining V̂ .

Since X(x) = x for x ∈ R this proves that the transforms of Ũ and Ṽ satisfy for real τ > τ0
∑

j

V̂ j(τ, x) =
∑

j

Û j(τ, x) , x ∈ R . (3.24)

Since both sides of the identity in (3.24) are holomorphic in Re τ > τ0 it follows that the identity extends

to that domain by analytic continuation.

Equation (3.21) and its analogue for Ũ then imply that for all j, V̂ j
∣∣
R

= Û j
∣∣
R
. Uniqueness of the

Laplace transform implies V j
∣∣
R
= U j

∣∣
R
for all t proving perfection.

Remark 3.2. The proof is very general. It shows that once the initial value problem defined by L̃ is well

posed there is perfect matching. The proof works more generally for at least weakly well posed methods

for which the Laplace transform can be reduced to (3.22) for real τ . Our favorite version of the Bérenger

algorithm is analysed this way in §3.6.

3.6. Perfection for methods related to Bérenger’s PML

Consider (3.22) with F = 0. This equation is the starting point for many authors to construct well posed

PML. It has been viewed as a complex stretching of coordinates (see [29], [9], [26], [12]). This idea, for τ

real, becomes an honest change of variables as in [10], that is at the heart of the proof in §3.5. In the case

of Maxwell system, it can be viewed as a system with modified constitutive equations (a lossy medium

[27],[2]), or recovered as above from the Bérenger’s system. The system (3.22) is not differential because

of the division by τ+σj(xj). In order to recover a hyperbolic system, a change of unknowns is performed.

We adopt the approach in [20] for the Maxwell system.

Lemma 3.2. With matrices given in (3.2), define Sj := (τ + σj(xj))/τ . There exists a pair of invertible

matrices M,N , unique up to a multiplication by the same constant, such that

S−1
j NAj = AjM, j = 1, 2, 3. (3.25)

They are given by

M = γ



S1 0 0

0 S2 0

0 0 S3


 , N = γ



S2S3 0 0

0 S1S3 0

0 0 S1S2


 , γ ∈ C \ 0 . (3.26)

Proof. Since

Ajej = 0, Ajej+1 = −iej+2, Ajej+2 = iej+1,

it is easy to see by applying (3.25) to ej thatM is necessarily diagonal,M = diag(m1,m2,m3). Applying

(3.25) to ej+1 and ej+2 shows that for any j,

Nej+1 = mj+2Sjej+1, Nej+2 = mj+1Sjej+2 .

This implies that N is also diagonal, equal to diag(m2S3,m3S1,m1S2), and

m1S3 = m3S1, m2S1 = m1S2, m3S2 = m2S3

This leaves no choice but to choose (3.26).
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In the rest of the analysis take γ = 1. In (3.22) with F = 0 replace V̂ replace by U . Insert (3.25) to

obtain

τNU +
∑

j

AjM∂jU = 0. (3.27)

The fact that σj depends only on xj and the form of the matrices guarantees Aj∂jM = 0. This yields

Aj M ∂jU ≡ Aj ∂j (M U) .

Define a new unknown V :=MU to find

NM−1τV +
∑

j

Aj∂jV = 0. (3.28)

NM−1 = diag(S−1
1 S2S3, S

−1
2 S3S1, S

−1
3 S1S2). Next compute a rational fraction expansion of τS−1

1 S2S3

as

(τ + σ2)(τ + σ3)

τ + σ1
= τ + (σ2 + σ3 − σ1) +

σ2
1 + σ2σ3 − σ1(σ2 + σ3)

τ + σ1
.

Introduce a new unknown W by

τNM−1V = τV +Σ1V + Σ2W, equivalently Wj =
1

τ + σj(xj)
Vj =

1

τ
Uj ,

with

Σ := diag
(
σ1, σ2, σ3

)
,

Σ(1) := diag
(
σ2 + σ3 − σ1, σ3 + σ1 − σ2, σ1 + σ2 − σ3

)
,

Σ(2) := diag
(
(σ1 − σ2)(σ1 − σ3), (σ2 − σ1)(σ2 − σ3), (σ3 − σ1)(σ3 − σ2)

)
.

This leads to a system in the unknowns V and W

L(∂t, ∂x)V + Σ(1)V + Σ(2)W = 0 , ∂tW + ΣW − V = 0 . (3.29)

Finally, U is recovered from

U = ∂tW = V − ΣW .

The system of equations for V,W is strongly well posed since L is symmetric hyperbolic. In the case of

a single layer in the x1 direction, there is only one coefficient σ and therefore a single complex valued

suplementary variable. The equations for the magnetic and electric fields are

∂tE1 − (∇ ∧H)1 − σE1 + σ2W1 = 0,

∂tE2 − (∇ ∧H)2 + σE2 = 0,

∂tE3 − (∇ ∧H)3 + σE3 = 0,

∂tW1 + σW1 − E1 = 0,

∂tH1 + (∇ ∧E)1 − σH1 + σ2W2 = 0,

∂tH2 + (∇ ∧E)2 + σH2 = 0,

∂tH3 + (∇ ∧E)3 + σH3 = 0,

∂tW2 + σW2 −H1 = 0,

In 2d this is identical to the layers in [27] and equivalent to those in [2].

The principal symbol and lower terms are

R1 =

(
L 0

0 I3∂t

)
and B =

(
Σ(1) Σ(2)

−I3 Σ

)
.

Reversing the computation shows that (V,W ) ∈ KerR(τ, ξ) if and only if V = MU , W = 1/τU , and

L1(τ,
ξ1τ

τ+σ1
, · · · , ξ3τ

τ+σ3
)U = 0. The characteristic polynomial is therefore the same as for Bérenger’s layer.

Thus, by Theorem 2.2

detR(τ, ξ) = τ2 −
∑ ξ2j τ

2

(τ + σj)2
.

Theorem 3.6. If σj(xj) ∈ L∞(R) and vanish for |xj | ≤ Lj then the system (3.29) for V := MU and

Wj := Vj/(τ+σj(xj)) is strongly well posed in L2(Rd) and perfectly matched in the sense that for sources
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supported in R := Πj ]{|xj | ≤ Lj} the function U computed from V,W agrees in Rt ×R with the solution

of Maxwell’s equation with corresponding sources.

Proof. The proof of Theorem 3.4 applies with only minor modifications.

Remark 3.3. Note the ease with which strong well posedness is established and the lack of regularity

required of the functions σj .

4. Analysis of layers with only one absorption by Fourier-Laplace transform

There are cases where the energy method presented above does not prove well posedness. This is the

case for the Bérenger algorithm when the ellipticity assumption is not satisfied and the absorptions are

not regular. Notably for the Maxwell system and discontinuous absorptions. In this section we present a

systematic analysis by Fourier-Laplace transformation of transmission problems with absorption in only

one direction.

4.1. Fourier analysis of piecewise constant coefficient transmission problems

Return to the situation of (1.3) with operators L and R on the left and right half spaces and transmission

condition (1.4). Suppose that both L and R are weakly hyperbolic in the sense of G̊arding. An example is

the classical method of Bérenger with one absorption. Among other things we will prove that the method

is well posed and perfect. Note the open problem at the end of the introduction emphasizing that we

do not know if the classic algorithm with two discontinuous absorptions is well posed. In addition, we

show, by a non trivial analytic continuation argument in §4.1.5, that the perfection of Bérenger’s method

can be verified using the modified plane wave solutions from his original paper. It is our hope that the

analysis may help in the construction of new perfectly matched layers.

4.1.1. Hersh’s condition for transmission problems

This section takes up the analysis of mixed problems following Hersh in [11]. In the present context we

treat transmission problems which are essentially equivalent. The analysis of Hersh supposed the interface

is noncharacteristic which is never the case for Maxwell’s equations. We address the changes that are

needed to treat problems with characteristic interfaces.

First analyse the solution of the constant coefficient pure initial value problem LU = F on R1+d by

Laplace transform in time and Fourier transform in x′ = (x2, · · · , xd). The transform

Û(τ, x1, η) :=

∫ ∫ ∞

0

e−τt (2π)−d/2 e−ix′·η U(t, x′) dt dx′

decays as |x1| → ∞ and satisfies

L(τ, d/dx1, iη) Û = F̂ in R .

When A1 is invertible this is a standard ordinary differential equation in x1. When A1 is singular, the

analysis requires care. The homogeneous equation L(τ, d/dx1, iη) Û = 0 has purely exponential solutions

eρx1 corresponding to the roots ρ of the equation

detL(τ , ρ , iη) = 0 . (4.1)

Hyperbolicity of L guarantees that for Re τ > τ0 and η ∈ Rd−1 this equation has no purely imaginary

roots.

The number of boundary conditions at x1 = 0 for the boundary value problem in the right half space

is chosen equal to the number of roots with negative real part (see also Remark 4.1). That integer must

be independent of τ, η. Since roots cannot cross the imaginary axis, the only way the integer can change

is if roots escape to infinity. That can happen when the coefficient of the highest power of ρ vanishes.

The next hypothesis rules that out.
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Definition 4.1. A hyperbolic operator L(∂t, ∂x) is nondegenerate with respect to x1 when there

is a τ1 > 0 so that the degree in ρ of the polynomial detL(τ, ρ, iη) is independent of (τ, η) for Re τ >

τ1 , η ∈ Rd−1.

Example 4.1.

1. In the noncharacteristic case, detA1 6= 0, the condition is satisfied and the degree with respect to ρ is

equal to N .

2. For Maxwell’s equations written in the real 6 × 6 form, the degree with respect to ρ is equal to 4. If

written in the complex form (3.2), the degree is 2.

3. The formula for the characteristic polynomial in Theorem 2.2 shows that if L is nondegenerate then

so is the Bérenger doubled operator L̃ with one absorption σ1 in x1 > 0. The degree in ρ is the same for

L and L̃.

4. If L = L1+B is nondegenerate with respect to x1 then so is the operator P := L1(∂)+a
−1B = a−1L(a∂)

for any a > 0. If the degree for L is constant in Re τ > τ1, then the degree for P is constant for

Re τ > a−1τ1.

For the lemmas to follow it is useful to transform so that A1 has block form.

Lemma 4.1. If L in (2.1) is nondegenerate with respect to x1 then for Re τ > τ1 , η ∈ Rd−1,

(i) the degree in ρ of the polynomial detL(τ, ρ, iη) is equal to rank A1,

(ii) the number of roots ρ with positive real part is equal to the number of negative eigenvalues of A1.

Proof.

Since L is nondegenerate, it suffices to study the case η = 0.

(i) Choose invertible K so that

K−1A1K =

(A 0

0 0

)
, A an invertible square matrix of size rankA1 .

Then

K−1L(τ, ρ, 0)K =

(
τI +A ρ 0

0 τ I

)
+ matrix independent of τ, ρ .

It follows that the degree in ρ is no larger than rank A1.

The coefficient of ρrankA1 in detL(τ, ρ, 0) is a polynomial in τ of degree ≤ N − rank A1. For large τ

the coefficient is equal to
(
detA

) (
τN−rank A1

)
+ lower order in τ .

Thus the degree in ρ is rank A1 for such τ proving the result.

(ii)

detL(τ, ρ, 0) = det

((
τI + ρA 0

0 τI

)
+B

)
.

For fixed τ , sufficiently large, ρ 6= 0, and ρ/τ is a root of the polynomial p(x, 1/τ) of degree rankA:

p(x, ε) =

∣∣∣∣
I + xA + εB11 εB12

εB21 I + εB22

∣∣∣∣

This polynomial has exactly rankA roots. By Rouché’s theorem,

ρj
τ

∼ − 1

λj
, τ ≫ 1,

where the λj are the rankA eigenvalues of A repeated according to their algebraic multiplicity. Since the

eigenvalues of A and the nonzero eigenvalues of A1 are the same, this completes the proof.
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Remark 4.1. For the transformed one dimensional hyperbolic operator L(∂t, ∂1, iη) the number of in-

coming characteristics at the boundary x1 = 0 in the right half space is equal to the number of strictly

positive eigenvalues of A1. The second part of the Lemma shows that this is equal to the number of roots

with negative real part. The two natural ways to compute the number of necessary boundary conditions

yield the same answer.

The next lemma shows that for nondegenerate operators, the characteristic case can be transformed

to a standard ordinary differential equation.

Lemma 4.2. Suppose that A,M ∈ Hom(CN ) and the equation det(Aρ+M) = 0 has degree in ρ equal

to rank A and no purely imaginary roots. Then,

(i) The matrix M is invertible and all solutions of the homogeneous equation

A
dU

dx1
+ M U = 0 (4.2)

take values in the space G :=M−1(Range A) satisfying dim G = rank A.

(ii) There is a M̃ ∈ HomG so that a function U satisfies (4.2) if and only if U is G valued and satisfies

dU

dx1
+ M̃ U = 0 . (4.3)

(iii) The vector space U of solutions of (4.2) is a linear subspace of C∞(R) with dimension equal to

rank A. The Cauchy problem with data in G is well posed.

Proof.

(i) Since ρ = 0 is not a root, M is invertible. The equation U = M−1AdU/dx1 shows that continuously

differentiable solutions U takes values in G. More generally, if U is a distribution solution and ψ ∈ C∞
0 (R)

takes values in the annihilator, G⊥ of G, then
〈
U , ψ

〉
=

〈
M−1AdU/dx1 , ψ

〉
=

〈
dU/dx1 , (M

−1A)∗ψ
〉

But G = rangeM−1A so G⊥ = ker (M−1A)∗. Therefore (M−1A)∗ψ = 0 so 〈U,ψ〉 = 0 which is the

desired conclusion.

(ii) Multiplying the equation by an invertible P and making the change of variable U = KV transforms

the equation to the equivalent form

P AK
dV

dx1
+ P M K V = 0 .

Choose invertible P,K so that PAK has block form

P AK =

(
I 0

0 0

)
,

where I is the rank A × rank A identity matrix. With V = (V1, V2) one has the block forms

P M K =

(
H11 H12

H21 H22

)
and

(
I 0

0 0

)
dV

dx1
+

(
H11 H12

H21 H22

)
V = 0 .

One has.

det(Aρ+M) = detP−1 det

(
ρI +H11 H12

H21 H22

)
detK−1.

The first part of the preceding lemma implies that the determinant on the left is a polynomical of degree

rank A in ρ. It follows that H22 is invertible.
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The solutions V satisfy H21V1 +H22V2 = 0 so take values in V :=
{
V2 = −H−1

22 H21V1
}
. The function

V is a solution if and only if it takes values in V and

dV1
dx1

+ RV1 = 0, R := H11 −H12H
−1
22 H21 .

If N : V → V is the map,
(
V1, V2

)
7→

(
RV1 , −H−1

22 H21RV1

)
,

then V is a solution if and only if it is V valued and satisfies dV/dx1 = NV . Writing V = K−1U and

M̃ = −KN implies (ii).

(iii) Follows from (ii).

Lemma 4.3. If L is hyperbolic and nondegenerate with respect to x1, then its principal part L1(∂t, ∂x)

is also nondegenerate with respect to x1. The degree in ρ of det L1(τ, ρ, iη) is constant for Re τ > 0 and

η ∈ Rd−1.

Proof. With notation from the preceding proof,

L(∂t, ∂x1 , ∂x′) = P−1

((
I∂x1 0

0 0

)
+

(
H11(∂t, ∂x′) H12(∂t, ∂x′)

H21(∂t, ∂x′) H22(∂t, ∂x′)

))
K−1 . (4.4)

The proof of the last lemma showed that for Re τ > τ1 and η ∈ Rd−1, H22(τ, η) is invertible.

The computation in Lemma 4.1 shows that for η = 0 and R ∋ τ → ∞ the coefficient of ρrank A1

has modulus ≥ cτN−rank A1 with c > 0. This implies that η = 0 is noncharacteristic for H22. Therefore

H22(∂t, ∂x′) is hyperbolic.

Replacing L by its principal part L1 has the effect of replacing each operator Hij(∂) by its principal

part. This yields identity (4.4) with L and the Hij replaced by their principal parts.

Since the principal part of a hyperbolic operator is hyperbolic, it follows that (H22)1(∂t, ∂x′) is a

homogeneous hyperbolic operator. Therefore (H22)1(τ, iη) is invertible for η ∈ Rd−1 and Re τ 6= 0. Thus,

the coefficient of ρrank A1 in detL1(τ, ρ, iη) is nonzero for η ∈ Rd−1 and Re τ 6= 0.

Lemma 4.4. Suppose that the ordinary differential equation (4.2) satisfies the hypotheses of Lemma 4.2.

Denote by E± the linear space of solutions which tend exponentially to zero as x1 → ±∞ and by Ė±

their traces at x1 = 0. Then

(i) Ė± ∩ kerA = {0} ,
(ii) dimAE± = dimE± ,

(iii) The map U 7→ U(0) is an isomorphism from E± to Ė± ,

(iv) AĖ+ ∩ AĖ− = {0},
(v) AĖ+ ⊕AĖ− = Range A.

Proof.

(i) The absence of purely imaginary roots shows that every solution is uniquely the sum of two solutions.

One grows exponentially at +∞ and decays exponentially at x1 = −∞. The second grows at −∞ and

decays at +∞. In particular the only bounded solution is the zero solution.

If e+ ∈ Ė+ ∩ kerA, denote by U(x1) the solution with this Cauchy data. The function that is equal

to U on x1 > 0 and equal to 0 in x1 ≤ 0 is a distribution solution of (4.2) on all of R since A[U ]x1=0 = 0.

This solution is bounded hence identically equal to zero. Therefore e+ = 0. The case for Ė− ∩ kerA is

analogous.

(ii) Follows from (i).
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(iii) It is surjective by definition. If it were not injective for E+, there would be a nontrivial solution

U(x) exponentially decaying as x1 → +∞ with U(0) = 0 violating (i).

(iv) The set AĖ+ consists of the values AU+(0) with U+ satisfying (4.2) and exponentially decreasing in

x1 > 0. If the intersection were nontrivial there would be a solutions U− decaying as x1 → −∞ so that

AU+(0) = AU−(0). The function V equal to U+ in x1 > 0 and U− in x1 < 0 is then a distribution solution

for all x1 exponentially decaying in both directions. Hyperbolicity implies that V = 0 contradicting the

nontriviality.

(v) Using (ii) and (iv), one sees that the direct sum on the left is a subspace of Range A of full dimension.

The next lemma is needed in in §4.1.2.

Lemma 4.5. Assume that the hypotheses and notations of Lemma 4.2 are in force. Then for K ∈ Ė+

there is an F ∈ C∞
0 (]−∞, 0[) so that the unique solution of

A
dU

dx1
+ M U = F , lim

|x1|→∞
‖U(x1)‖ = 0 , (4.5)

satifies U(0) = K.

Proof. Consider first the case of invertible A. A change of dependent variable yields the block form for

the new variable still denoted U

dU

dx1
+

(
M+ 0

0 M−

)
U = F, U = (U1, U2), F = (F1, F2) , specM± ⊂ {±Re z > 0}.

Then Ė+ = {U2 = 0} so K = (K1, 0). Choose F = (F1, 0). Then U(0) = K if and only if,

K1 =

∫ 0

−∞

eM+s F1(s) ds.

This is achieved with,

F1(s) = χ(s) e−M+sK1, χ ∈ C∞
0 (]−∞, 0[),

∫
χ(s) ds = 1 .

When A is not invertible change variable as in Lemma 4.2 to find the block form
(
I 0

0 0

)
dU

dx1
+

(
H11 H12

H21 H22

)
U = F,

with invertible H22.

Part (i) of (4.2) implies that the map G ∋ G = (G1, G2) 7→ G1 is an isomorphism. Write G ∋ K =

(K1,K2). Choose F = (F1, 0). Then choose a G valued solution U defined by

dU1

dx1
+ H11U1 = F1, U2 = −H−1

22 H21U1 .

One has U(0) = K if and only if U1(0) = K1. The construction in the invertible case finishes the proof.

Suppose that

L = ∂t +A1∂1 + · · · and R = ∂t +A1∂1 + · · ·

are nondegenerate with respect to x1. For Re τ > τ0 and η ∈ Rd−1, define E±
L (τ, η) to be the set of

solutions of

L(τ, d/dx1, iη)V = 0
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tending to zero as x1 → ±∞. Denote by Ė±
L (τ, η) ⊂ CN the linear space of traces at x1 = 0 of solutions

in E±
L (τ, η).

Similarly with a possibly larger value still called τ0, there are Ė±
R (τ, η) ⊂ CM so that the solutions

of R(τ, d/dx1, iη)Z = 0 taking values in Ė±
R (τ, η) are exactly those tending to zero exponentially as

x1 → ±∞. The subspaces E±
L (τ, η) and E±

R (τ, η) depend smoothly on τ, η for Re τ > τ0 and η ∈ Rd−1.

Lemma 4.1 implies that

dimE−
L (τ, η) = #positive eigenvalues of A1, dimE+

R (τ, η) = #negative eigenvalues of A1 . (4.6)

Consider the inhomogeneous transmission problem,

LV = 0 when x1 < 0, RW = 0 when x1 > 0 , (4.7)

(V,W )− g ∈ N when x1 = 0 . (4.8)

The problem with inhomogeneous term F can be reduced to this form by subtracting on the left

a solution of the hyperbolic Cauchy problem LU = F on R1+d with U |t<0 = 0. Denote by

V̂ (τ, x1, η), Ŵ (τ, x1, η), ĝ(τ, η) the Fourier-Laplace transforms. The transform Û is defined for x1 ∈ R,

while V̂ (resp. Ŵ ) is defined for x1 < 0 (resp. x1 > 0). The transforms V̂ , Ŵ decay as |x1| → ∞. V̂ , Ŵ

satisfy the ordinary differential transmission problem

L(τ, d/dx1, iη) V̂ = 0 in x1 < 0, R(τ, d/dx1, iη) Ŵ = 0 in x1 > 0, (4.9)

(V̂ (τ, 0, η) , Ŵ (τ, 0, η)) − ĝ(s, η) ∈ N . (4.10)

Hersh’s necessary and sufficient condition for well posedness of the transmission problem is derived

as follows. Uniqueness of solutions of (4.9), (4.10) for Re τ > τ0, η ∈ Rd−1 is equivalent to the fact that

there are no exponentially decaying solutions of the homogeneous transmission problem. That is,

N ∩
(
Ė−

L (τ, η)× Ė+
R (τ, η)

)
= {0}. (4.11)

In order to guarantee existence, one imposes the maximality condition,

N ⊕
(
Ė−

L (τ, η)× Ė+
R (τ, η)

)
= CN × CM . (4.12)

Using (4.6), this determines the dimension of N from the coefficients A1 and A1 of L and R respectively.

Definition 4.2. If the transmission problem (4.7), (4.8) satisfies (4.12) for all Re τ > τ0 and η ∈ Rd−1

it is said to satisfy Hersh’s condition.

Theorem 4.1. Hersh’s condition is satisfied if and only if there is an r and a λ0 so that for all λ > λ0
and g supported in t ≥ 0 with e−λtg ∈ Hs+r(Rd

t,x′) with values in CN × CM there is a unique V,W

supported in t ≥ 0 with

e−λtV ∈ Hs(]−∞,∞[×{x1 < 0}) and e−λtW ∈ Hs(]−∞,∞[×{x1 > 0})

satisfying the transmission problem (4.7), (4.8).

Sketch of Proof. We have shown that the Hersh condition permits one to compute a candidate Fourier-

Laplace transform. We outline how the condition implies the desired estimate. The method is to use the

Seidenberg-Tarski Theorem 2.3 to derive a lower bound on the real parts of the roots ν together with

a contour integral representation. The same elements form the heart of [18], and §12.9 of [13]. In the

present context we treat a transmission problem rather than a boundary value problem. In addition, one

needs to use the earlier lemmas to treat the case when x1 = 0 is characteristic.

Choose Λ > max{τ0(L), τ0(R)}. The equations

detL(τ, ν, iη) = 0, detR(τ, ν, iη) = 0
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with Re τ ≥ Λ, η ∈ Rd−1 have no purely imaginary roots. Define

ζ(R) := min
{
|Re ν| : η ∈ Rd−1, Re τ ≥ Λ, |τ |2 + |η|2 ≤ R2,

{
detL(τ, ν, iη) = 0 or detR(τ, ν, iη) = 0

}}
.

The Seidenberg-Tarski Theorem 2.3 implies that there is a ρ ∈ Q and b 6= 0 so that

ζ(R) = Rρ(b+ o(R)), as R → ∞ .

Thus, there are C,N so that, for any τ , η with Re τ ≥ Λ,

|Re ν| ≥ C

1 + |(τ, η)|N . (4.13)

The solutions in E+
R (τ, η) are written using a contour integral representation of Ŵ in the block form

of Lemma 4.2. Here the matrix Hij depend of (τ, η). Denote by D = D(τ, η) the finite union of squares

with centers at the roots with Re ν < 0. The side of each square is the smaller of 1 and half the distance

of the root to the imaginary axis. Then

ŴI =
1

2πi

∮

∂D

eτx1

(
τ +

(
H11 +H12H

−1
22 H21

))−1

dτ
˙̂
W I , ŴII = H−1

22 H21 ŴI . (4.14)

The Seidenberg-Tarski Theorem 2.3 applied to

max
{
|w|2 : |z|2 = 1, H22w = z, Re τ ≥ Λ, |τ |2 + |η|2 ≤ R2

}

proves that

‖H22(τ, η)
−1‖ = Rβ(a+ o(1)), a 6= 0, β ∈ Q .

This estimate together with (4.13) yields with new C,N ,
∫ ∞

0

|Ŵ (τ, x1, η)|2 dx1 ≤ C (1 + |(τ, η)|2N )|ŴI(0)|2.

With the analogous expression for V the solution of (4.7) satisfies
∫ ∞

−∞

∣∣∣V̂ (τ, x1, η)
∣∣∣
2

dx1 ≤ C (1 + |(τ, η)|2N )|V̂I(0)|2.

The Hersh condition asserts that for each (τ, η), ŴI(0) and V̂I(0) are uniquely determined by ĝ(τ, η).

Seidenberg-Tarski Theorem 2.3 yields an estimate
∥∥ŴI(0) , V̂I(0)

∥∥ ≤ C (1 + |(τ, η)|)a ‖ĝ(τ, η)‖2 .
The last three estimates together with Parseval’s identity proves the desired estimate,

∃C,N, ∀ g, ∀λ > Λ,
∥∥e−λt U

∥∥2
L2(R1+d)

≤ C
∑

|α|≤N

∥∥e−λt ∂αt,xg
∥∥
L2(R1+(d−1))

.

This estimate proves the existence part of the Theorem.

4.1.2. Necessary and sufficient condition for perfection

The Fourier-Laplace method is used to derive a necessary and sufficient condition for perfection of an

absorbing layer. Begin with a closer analysis of the transform, Û(τ, x1, η), of the solution of the basic

equation (1.1).

When A1 is invertible, Û is analysed as follows. Denote by Π±(τ, η) the projectors associated with

the direct sum decomposition Ė+
L (τ, η) ⊕ Ė−

L (τ, η) = CN . Define S±(τ, x1, η) as the Hom(CN ) valued

solutions of

L
(
τ , d/dx1 , iη

)
S± = 0, S±

∣∣
x1=0

= A−1
1 Π± .
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Then S± decays exponentially as x1 → ±∞ and

χ]−∞,0[ S− + χ[0,∞[ S+

is the unique tempered fundamental solution of L(τ, d/dx1, iη). Decompose F̂ = F̂− + F̂+, Û = Û+ + Û−

according to E+
L (τ, η) ⊕ E−

L (τ, η) = CN . Then Û− is the convolution of F̂− with χ]−∞,0[ S− and Û+ is

the convolution of F̂+ with χ[0,∞[ S+. In particular Û−(τ, 0, η) vanishes on a neighborhood of [0,∞[ so

Û(τ, 0, η) = Û+(τ, 0, η) ∈ Ė+
L (τ, η). The value of Û in x1 ≥ 0 satisfy the homogeneous ordinary differential

equation L(τ, d/dx1, iη)Û = 0. with initial value Û(0) ∈ Ė+
L (τ, η).

To reach the same conclusion when A1 is singular, apply the lemmas of the preceding section to the

equation L(τ, d/dx1, iη)Z = 0. Lemma 4.4 applied to A = A1 and M = τI + i
∑d

j=2 Ajηj shows that

both Ė±
L (τ, η) are subspaces of G and that the space of solutions is a direct sum E+

L (τ, η)⊕ E−
L (τ, η). It

follows that

Ė−
L (τ, η)⊕ Ė+

L (τ, η) = G(τ, η) .

Repeating the analysis in the nonsingular case applied to (4.3) shows that Û(τ, 0, η) ∈ Ė+
L (τ, η).

Definition 4.3. For a transmission problem (L,R,N ) satisfying Hersh’s condition (Definition 4.2),

Re τ > τ0 and η ∈ Rd−1, define the reflection operator, H(τ, η) : Ė+
L (τ, η) → Ė−

L (τ, η) as follows.

Hersh’s condition implies that for each K ∈ Ė+
L (τ, η) there is a unique (V̇ , Ẇ ) ∈ Ė−

L (τ, η)× Ė+
R (τ, η) so

that (K, 0) ≡ (V̇ , Ẇ )modN . Define, H(τ, η)K := V̇ .

Theorem 4.2. Suppose that the transmission problem (L,R,N ) satisfies the Hersh condition. The fol-

lowing are equivalent.

(i) The transmission problem is perfectly matched in the sense of Definition 1.1.

(ii) There is a τ0 ∈ R so that for all Re τ > τ0 and η ∈ Rd−1, H(τ, η) = 0.

(iii) There is a τ0 ∈ R so that for all Re τ > τ0 and η ∈ Rd−1,

∀KL ∈ Ė+
L (τ, η), ∃ !KR ∈ Ė+

R (τ, η), such that (KL , KR) ∈ N . (4.15)

Proof. Conditions (ii) and (iii) are clearly equivalent.

For the equivalence with (i), compare the values of Û and V̂ in {x1 < 0}. Since both satisfy LZ = F

and decay as x1 → −∞ it follows that L(V̂ − Û) = 0, so, V̂ − Û := Γ is an Ė−
L valued solution of LΓ = 0.

Since F = 0 in x1 > 0, Ŵ ∈ E+
R . The transmission condition requires that

N ∋ (V̂ (0) , Ŵ (0)) = (Û(0) + Γ(0) , Ŵ (0)) = (Û(0) , 0) + (Γ(0) , Ŵ (0)) . (4.16)

Since (Γ(0), Ŵ (0)) ∈ Ė−
L (τ, η)× Ė+

R (τ, η), (4.16) expresses (Û(0), 0) as a sum of an element in N and an

element of Ė−
L (τ, η)× Ė+

R (τ, η). The Hersh condition (4.12) asserts that such a decomposition is unique.

Therefore (V̂ (0), Ŵ (0)) is uniquely determined from Û(0).

The method is perfectly matched if and only if for all F supported in x1 < 0, t ≥ 0

V = U
∣∣
x1<0

.

This occurs if and only Γ vanishes for x1 < 0 which holds if and only if Γ(0) = 0.

If the method is perfectly matched, then in the decomposition (4.16) one has Γ(0) = 0. Then

(Û(0), Ŵ (0)) ∈ N . Lemma 4.5 asserts that for any K ∈ Ė+
L there is an F so that Û(0) = K. This

proves that (4.15) holds.

Conversely if (4.15) holds, then in the decomposition (4.16), Γ(0) = 0 so Γ = 0. It follows that

U |x1<0 = V .

Remark 4.2. 1. When (4.15) holds, the decomposition of (K, 0) ∈ CN ×CM in the direct sum (4.12) is,

(K , 0) = (K , W (K)) − (0 , W (K)) ∈ N ⊕ (E−
L × E+

R ) .
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2.With K = U(0) as above the solution (V,W ) of the ordinary differential equation transmission problem

is given by V = U |x<0 and W is the solution of RZ = 0 with Z(0) = −W (K).

3. In the important case where N =M , invertible A1 and A1 and transmission condition N = {V =W},
the perfection criterion (iii) asserts that Ė+

L (τ, η) = Ė+
R (τ, η).

We present a typical example showing that the natural absorbing layers are virtually never perfectly

matched in dimension d ≥ 2.

Proposition 4.1. Consider the dissipative symmetric hyperbolic example with d = N =M = 2,

A1 =

(
1 0

0 −1

)
, A2 =

(
0 1

1 0

)
, R = L+ P, P = P ∗ ≥ 0, N = {(V,W ) : V =W} .

(i) The transmission problem is perfectly matched if and only if P = 0.

(ii) The corresponding problem with d = 1 is perfectly matched if and only if P is diagonal.

Proof. Define

ML := A−1
1 [τ + iηA2] , MR := A−1

1 [τ + iηA2] +A−1
1 P ,

so that A−1
1 L(τ, ∂1, iη) = ∂1 +ML(τ, η) and similarly for A−1

1 R(τ, ∂1, iη). For Re τ > 0 and η ∈ R, the

matrices ML and MR have one eigenvalue with positive real part and one with negative real part. The

eigenspace corresponding to positive (resp. negative) real part eigenvectors is equal to Ė+
L (τ, η) (resp.

Ė+
R (τ, η)). Therefore the necessary and sufficient condition for perfection is that for Re τ > τ0 and any η,

Ė+
L (τ, iη) = Ė+

R (τ, iη) .

Since

L(τ, ρ, iη) =

(
τ + ρ iη

iη τ − ρ

)
, and, detL(τ, ρ, iη) = τ2 − ρ2 + η2,

the eigenvalue of ML(τ, η) with positive real part is ρ =
√
τ2 + η2. The eigenspace is the kernel of

L(τ, ρ, iη). Therefore

Ė+
L (τ, η) = C(−iη, τ + ρ) . (4.17)

Since MR = ML + A−1
1 P , a necessary condition is that the family of vectors v(η, τ) := (−iη, τ + ρ)

be eigenvectors of the constant matrix A−1
1 P , which is possible only if A−1

1 P is a constant multiple of

the identity. Therefore P = cA1. Since P ≥ 0 and A1 has eigenvalues of both signs, it follows that c = 0

proving (i).

In the one dimensional case there is just one eigenvector (0, 1) which must be an eigenvector of A−1
1 P .

Since (0, 1) is also an eigenvector of A1 it follows that (0, 1) must be an eigenvector of P . Since P = P ∗,

the orthogonal vector (1, 0) is also an eigenvector and P is diagonal. Conversely, if P is diagonal the

condition is satisfied.

Remark 4.3.

1. Examples verifying perfection for a family of absorbing layers related to but not including those of

Bérenger are presented in [3]. To our knowlege Hersh’s criterion for Bérenger’s layers has not been verified

before.

2. The perfection criterion is related to the plane wave criterion of Bérenger. We examine the relation in

§4.1.6.

4.1.3. Hersh’s condition for Bérenger’s PML with piecewise constant σ1

Of our earlier results, only those of Section 3.2 apply to discontinuous absorptions. So, if the generator is

not elliptic, (for example. the PML Maxwell system of Bérenger), the preceding results do not prove that
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the initial value problem is well posed. In this section we prove that the doubled operators of Bérenger

define a (weakly) well posed initial value problem provided that

σj ≡ 0 for j ≥ 2 and σ1(x1) ≡ σ± in Rd
± , (4.18)

and, the constant coefficient operators L̃ on Rd
± are both (weakly) hyperbolic.

The unknown Ũ satisfies (1.5). Denote by Ũ± = {U±
1 , . . . , U

±
d } the restriction of the unknown Ũ to

Rd
±. They satisfy differential equations in the half spaces Rd

±.

Lemma 4.6. For Ũ locally square integrable on a neighborhood of (t, x) ∈ {x1 = 0} the following are

equivalent.

(i) L̃Ũ ∈ L2 on a neighborhood of (t, x) in R1+d in the sense of distributions.

(ii) There is a neighborhood O of (t, x) so that L̃Ũ± is square integrable on O ∩Rd
± and [Ã1Ũ ] = 0.

Remark 4.4.

1. The first hypothesis is often verified by combining L̃Ũ + B̃(x)Ũ ∈ L2
loc, Ũ ∈ L2

loc and B̃ ∈ L∞
loc.

2. [Ã1Ũ ] makes sense since the differential equation implies

∂1
(
Ã1Ũ

+
)

∈ L2
loc

(
]0, ε[ ; H−1

loc (R
d
t,x′)

)
.

With Ũ ∈ L2(]0, ε[ ; H−1
loc (R

d) this implies that Ã1Ũ
+ ∈ C([0, ε[ ; H

−1/2
loc (Rd)). An analogous result holds

for Ã1Ũ
−. Therefore the traces from both sides and the jump are well defined elements of H

−1/2
loc .

3. is clear on a formal level since if Ã1Ũ were discontinuous there would be a δ(x1) term from the

differential operator L̃ applied to Ũ .

4. The standard proof based on these remarks is omitted.

We have supposed that the nonzero data are initial values f±(x). By the usual subtraction one can

convert the problem to one with homogeneous initial values and right hand side and inhomogeneous

transmission condition. In this way, the determination of Ũ± is reduced to finding W̃± satisfying the

inhomogeneous transmission problem

L̃1(∂t, ∂x)W̃
± + B̃±W̃± = 0 , Ã1[W̃ ] = g̃ , (4.19)

where

B̃± :=




σ±IN 0 . . . 0

0 0 . . . 0
...

...
. . .

...

0 0 . . . 0


 , (4.20)

and g̃(t, x) take values in Range Ã1. The unknowns W̃ and source g̃ are vectors of length dN .

Theorem 4.3. Suppose that L(∂) is a hyperbolic operator nondegenerate with respect to x1 and that the

Bérenger’s doubled operator L̃ is weakly hyperbolic for σ = σ±. Then, the transmission problem (4.19)

with absorption (4.18) satisfies Hersh’s condition.

Proof. Drop the tildes on the Fourier-Laplace transforms of W̃ , g̃ for ease of reading. The transformed

problem is
(
Ã1

d

dx1
+ L̃(τ, 0, iη)

)
Ŵ± = 0 , Ã1 [Ŵ ] = ĝ. (4.21)

The condition of Hersh is that for an arbitrary right hand side ĝ in range Ã1 this transmission problem

has one and only one solution.

Denote by E±

L̃
(τ, η, σ) the spaces associated to the Bérenger operator operator L̃ with absorption σ.

The uniqueness of solutions of (4.21) is equivalent to

Ã1Ė
−

L̃
(τ, η, σ−) ∩ Ã1Ė

+

L̃
(τ, η, σ+) = {0}. (4.22)
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Existence is equivalent to

Ã1Ė
−

L̃
(τ, η, σ−) + Ã1Ė

+

L̃
(τ, η, σ+) = range Ã1. (4.23)

Part (ii) of Lemma 4.4 implies that

dim
(
Ã1Ė

−

L̃
(τ, η, σ−)

)
+ dim

(
Ã1Ė

−

L̃
(τ, η, σ+)

)
= dim

(
range Ã1

)
,

so (4.22) implies (4.23). It remains to prove (4.22).

For σ > 0, the split Bérenger operator L̃ is hyperbolic so for Re τ > τ0(σ) the solutions of

L̃(τ, d/dx1, iη) Û = 0 (4.24)

are generated by exponentially growing and exponentially decaying solutions. The next lemma identifies

these solutions in terms of the corresponding solutions of

L(τ, d/dx1, iη) V̂ = 0 . (4.25)

The result shows that the traces at x1 = 0, Ė±

L̃
, are independent of σ.

Lemma 4.7. For σ > 0, Re τ > τ0(σ), η ∈ Rd−1,

(i) The map

V̂ (x1) 7→
(
η1
τ
A1V̂

(
(τ + σ)x1/τ

)
,
η2
τ
A2V̂

(
(τ + σ)x1/τ

)
, . . . ,

η2
τ
AdV̂

(
(τ + σ)x1/τ

))

is an isomorphism from solutions of (4.25) onto the solutions of (4.24).

(ii) µ is a root of detL(τ, ·, iη) = 0 if and only if ν = (τ + σ)µ/τ is a root of det L̃(τ, ·, η) = 0.

(iii) For the roots in (ii), the real parts of µ and ν have the same sign. In particular, the map in (i) is

an isomorphism E±
L (τ, η) 7→ E±

L̃
(τ, η, σ).

(iv) The map Ŵ = (Ŵ1, . . . , Ŵd) 7→ ∑
j Ŵj is an isomorphism E±

L̃
(τ, η, σ) → E±

L (τ, η).

Remark 4.5. In (i) it important to know that the solutions V̂ (x1) are entire analytic functions of x1
so it makes sense to evaluate V̂ at points off the x1-axis. In the literature this is sometimes called a

complex change of variables. It is only reasonable for analytic solutions. A related idea is used in the

Fourier-Laplace analysis for general σ1(x1) presented in §4.2.

Proof of Lemma 4.7

(i) If Û = (Û1, . . . , Ûd) satisfies (4.24) then with Ŵ :=
∑

j Ûj ,

A1
dŴ

dx1
+ (τ + σ) Û1 = 0, τ Ûj + iηjAj Ŵ = 0, j = 2, . . . , d . (4.26)

Multiply the first by τ and the last d− 1 by (τ + σ). Sum and then divide by τ to find,

A1
dŴ

dx1
+

τ + σ

τ
L(τ, 0, iη) Ŵ± = 0 . (4.27)

Conversely if Ŵ satisfies (4.27) and Ûj for j ≥ 2 is defined from Ŵ using the last equations in (4.26) and

Û1 := Ŵ −∑
j≥2 Ûj then U satisfies (4.24).

The solutions Ŵ to (4.27) are exactly the V̂ ((τ + σ)x1/τ) with V̂ satisfying (4.25). This proves that

the mapping in (i) is surjective.

The set of solutions V̂ of (4.25) has dimension rank A1. The set of solutions of (4.24) has dimension

rank Ã1 = rank A1 (see (2.3)), so surjectivity implies injectivity.

(ii) and (iv) follow from (i).
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(iii) Denote by K the mapping from (i). When τ > 0, (τ + σ)/τ is also positive and real. Therefore K

maps decaying (resp. increasing) solutions to decaying (resp. increasing) solutions. Thus for τ > τ0 and

real,

K(E+
L (τ, η)) = E+

L̃
(τ, η, σ) . (4.28)

For all Re τ > τ0, K(E+
L (τ, η)) is a subspace of solutions of (4.24) with dimension equal to dimE+

L (τ, η).

If (4.28) were violated, K(E+(τ, η)) would contain exponentially growing solutions. If this happened at

τ , η with Re τ > τ0 consider the values τ(r) = Re τ + rIm τ for 0 ≤ r ≤ 1. For r = 0 (4.28) is satisfied

while for r = 1 it is violated. Let

f(r) := max
{
Re

τ(r) + σ

τ(r)
µ : detL(τ(r) , µ , iη) = 0 , Re µ < 0

}
.

Then f(0) < 0, f(1) > 0 and f is continuous, so there is a 0 < r < 1 so that f(r) = 0. Then for

τ = Re τ + r Im τ there is a purely imaginary root. This violates the hyperbolicity of L̃ establishing

(4.28) This proves (iii) completing the proof of the Lemma.

We now finish the proof of Theorem 4.3 by proving (4.22). Lemma 4.7 implies that the spaces of

Cauchy data Ė±

L̃
are independent of σ. Therefore if (4.22) is violated then also

Ã1Ė
−

L̃
(τ, η, σ+) ∩ Ã1Ė

+

L̃
(τ, η, σ+) 6= {0}.

This contradicts part (iv) of Lemma 4.4 for the operator L̃ with absorption σ+. The proof of Hersh’s

condition is complete.

In these problems with only one nonzero absorption coefficient σ1 and σ1 = 0 when x1 < 0 one can

consider a transmission problem which is only split in x1 > 0. The next result shows that this partially

split problem satisfies Hersh’s condition if and only if the fully split problem does.

Introduce the partially split problem (L,R,N ) where

L = L1(∂), R = L̃1 + B̃+, with σ+ > 0, N := {(V,W ) : V −
∑

j

Wj ∈ kerA1} , (4.29)

with B̃+ given by (4.20) and the split variable on the right is W̃ = (W1, . . . ,Wd).

Corollary 4.1. Suppose that σj = 0 for j ≥ 2, and σ+
1 > 0. Then the partially split Bérenger transmission

problem (L1, L̃1+B̃
+,N ) defined by (4.29) satisfies Hersh’s condition if and only if the fully split problem

does.

Proof. Denote by (V, W̃ ) = (V,W1, . . . ,Wd) the variables for the partially split problem and
(
Ũ , W̃

)
=(

(U1, . . . , Ud), (W1, . . . ,Wd)
)
the split variables. If Û(τ, x1, η), Ŵ (τ, x1, η) is an exponentially decaying

solution of the split Laplace-Fourier transformed homogeneous transmission problem, then (V̂ , Ŵ ) =

(
∑

j Ûj , Ŵ ) is an exponentially decaying solution of the partially split homogeneous transmission problem.

Conversely, if V̂ (τ, x1, η), Ŵ (τ, x1, η) is a solution of the homogeneous partially split problem, the

computation leading to (4.26) shows that

Û1 := −τ−1A1∂1V̂ , Ûj := −τ−1 iηjAj V̂ , j ≥ 2,

is an exponentially decaying solution of the fully split homogeneous transmission problem.

Therefore, if either problem has decaying solutions for η real and Re τ arbitrarily large, then so does

the other.
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4.1.4. Perfection for Bérenger’s PML with piecewise constant σ1

Theorem 4.4. With the hypotheses of Theorem 4.3, the Bérenger transmission problem is perfectly

matched. The Bérenger transmission problem that is only split on the right is also perfectly matched.

Proof. Verify condition (ii) of Theorem 4.2. For K ∈ Ė+

L̃
(τ, η, σ+) consider the unique decomposition

guaranteed by the Hersh’s condition,

(K, 0) = (W−,W+) + (F−, F+) , (4.30)

where,
(
W−,W+

)
=

(
(W−

1 , . . . ,W
−
d ), (W+

1 , . . . ,W
+
d )

)
∈ N , (F−, F+) ∈ Ė−

L̃
(τ, η, σ−)× Ė+

L̃
(τ, η, σ+).

Perfection is equivalent to F− = 0.

By inspection, one such decomposition (4.30) is given by

(K, 0) = (K,K) + (0,−K)

where we use the fact from Lemma 4.7 that

Ė+

L̃
(τ, η, σ−) = Ė+

L̃
(τ, η, σ+) .

As this decomposition satisfies F− = 0 the proof of the first assertion is complete.

For the partially split case, K ∈ Ė+
L (τ, η) has a unique decomposition from the Hersh’s condition,

(K, 0) = (W−,W+) + (F−, F+),

with

(W−,W+) =
(
W− , (W+

1 , . . . ,W
+
d )

)
∈ N , (F−, F+) ∈ Ė−

L (τ, η)× Ė+

L̃
(τ, η, σ+).

Define

W+
j :=

ηj
τ
AjK .

Part (i) of Lemma 4.7 implies that W+ ∈ Ė+

L̃
(τ, η, σ+). In addition,

∑
j W

+
j = K so (K,W+) ∈ N .

By inspection
(
K , 0

)
=

(
K , W+

)
+

(
0 , −W+

)

is the unique Hersh decomposition. Since F− vanishes for this one the proof is complete.

4.1.5. Analytic continuation for Maxwell like systems and Bérenger’s plane waves

In this section we investigate Bérenger’s method for operators, including the Maxwell system, whose

characteristic polynomial is τp(τ2 − |ξ|2)q. For ease of exposition we treat the case d = 2 and the explicit

operator,

L = ∂t +

(
1 0

0 −1

)
∂1 +

(
0 1

1 0

)
∂2 . (4.31)

Analogous results are valid for the Maxwell system with only slightly more complicated formulas.

For Re τ > 0 and η ∈ R there is exactly one root of detL1(τ, ρ, iη) = 0 with Re ρ > 0 given by

ρ =
√
τ2 + η2, Re ρ > 0 . (4.32)

The corresponding eigenspace Ė+
L (τ, η) from (4.17) is spanned by Φ(τ, η) = (−iη, τ + ρ). If L̃1 is

the Bérenger operator doubled in the x1 direction one has the same roots and Ė+

L̃1
is spanned by(

ρA1Φ, iηA2Φ
)
.

Proposition 4.2.
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(i) For each η, ρ(τ, η), Ė−
L (τ, η), and Ė+

L (τ, η) are holomorphic in Re τ > 0 with continuous extension

to Re τ ≥ 0.

(ii) If σ1 > 0 then for Re τ > 0 and η ∈ R the equation det L̃(τ, ν, iη) = 0 has exactly one root ν with

positive real part. It is given by ν = (τ + σ1)ρ/τ .

(iii) For σ1 ≥ 0, the relation (4.12) with L̃1 on the left and L̃ on the right is satisfied on
{
Re τ ≥ 0 , ρ 6= 0

}
.

(iv) The mapping H(τ, η) is for each η holomorphic in Re τ > 0 with continuous extension to
{
Re τ ≥

0 , ρ 6= 0
}
.

Proof. (i) For Re τ > 0 there are two roots ±ρ with ρ from (4.32). One has strictly positive real part

and the other strictly negative. Each is holomorphic in Re τ > 0. Holomorphy for Φ(τ, η) follows from its

expression in terms of ρ. As Φ is a basis for Ė+
L (τ, η) holomorphy of the latter follows.

So long as the eigenvalues±ρ remain apart as Re τ → 0 they and their eigenspaces will be holomorphic.

The delicate case is when τ2 + η2 → 0. The limiting points are (±iη, η).
If η = 0, then ρ = τ and the eigenspace is (0, 1). Both are continuous up to the boundary.

When η 6= 0 one has ρ → 0 so ρ is continuous up to the boundary. Then Φ is continuous up to

the boundary and nonvanishing from its expression in terms of ρ. Therefore Ė+
L is continuous up to the

boundary.

(ii) It suffices to remark that this is an eigenvalue and then to show that the real part is positive. For

the latter compute

∂

∂σ

(
τ + σ

τ

√
τ2 + η2

)
=

√
τ2 + η2

τ
=

√
1 + η2/τ2 .

For Re τ > 0 this has positive real part so the real part of the eigenvalue is increasing as a function of σ

so is positive for all σ ≥ 0.

(iii) It suffices to show that (4.11) is valid for such s, η. Suppose (v, w) = (v1, v2, w1, w2) ∈ Ė−

L̃1
× Ė+

L̃
.

Must show that v1 + v2 6= w1 + w2. Since (w1, w2) ∈ Ė+

L̃
it follows that w1 + w2 ∈ Ė+

L . Similarly

v1 + v2 ∈ Ė−
L1
. Thus it suffices to show that Ė−

L1
and Ė+

L are uniformly transverse as Re τ → 0. It suffices

to show that (iη, τ + ρ) and (iη, τ − ρ) are uniformly independent. This follows from ρ 6= 0.

(iv) The holomorphy of H follows from (i). The continuous extension follows from (i) and (iii) .

Since the method is perfectly matched, H = 0 for Re τ > 0. By continuity the map vanishes for purely

imaginary τ 6= 0. This shows that for {Re τ ≥ 0} \ 0, the function equal to

eiτt+ρ(τ,η)x1+iηx2Φ̃ for x1 < 0, and eiτt+ρ(τ,η)x1+iηx2 e−σρx1/τ Φ̃ for x1 > 0,

satisfies the Bérenger transmission problem. For Re τ > 0 these solutions decay (resp. grow) exponentially

as x1 → ∞ (resp. x1 → −∞). Though such solutions serve to verify perfection they don’t look very

physical in isolation.

On the other hand, when τ is purely imaginary and not equal to zero, the solution is a bounded plane

wave in x1 < 0 and is a plane wave modulated by an exponentially decaying factor in x1 > 0. These are

the solutions which Bérenger constructed to show that the method was perfectly matched.

In the language of the analytic objects constructed in the preceding lemma, Bérenger’s plane wave

solutions show that H(is, η) = 0 when s is real valued with s2 > η2. For η fixed the function τ 7→ H(τ, η) is

holomorphic in the right half plane continuous up to the imaginary axis punctured at ±i|η|, and vanishes

on the boundary interval τ = is ∈ iR with s2 > η2. By Schwarz reflection and analytic continuation this

implies that H vanishes in the right half plane.

In summary, the computation of Bérenger is actually sufficient to prove perfection for Maxwell’s system

given the structures provided in this paper.

Remark 4.6. The perfection argument based on plane waves is not valid in full generality where the

objects like Ė and H are analytic in Re τ > τ0 with τ0 > 0. This is the case, for example, whenever the

absorbing layer is amplifying.
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4.2. Fourier-Laplace analysis with variable σ1(x1)

Consider the case of only one nonzero σ1(x1). If L̃ is hyperbolic for one constant value σ1 6= 0 the scaling

(t, x) 7→ (at, ax) shows that L̃ is hyperbolic for σ1/a. Therefore L̃ is hyperbolic for all constant values σ1.

The results of §4.1 will be extended to the case σj = 0 for j ≥ 2 and variable coefficient σ1(x1). The

Fourier-Laplace transform Û(τ, x1, η) of the Bérenger split operator satisfies

L̃(τ, d/dx1, η)Û = F̂ , −∞ < x1 <∞ ,

with variable coefficient σ1(x1).

The first line of the proof of Lemma 4.7 yields (4.26) with σ = σ1(x1). As in the proof of that lemma

one derives (4.27) now with σ = σ1(x1). The important observation is that the x1 dependence of the

coefficient appears only as a scalar prefactor in (4.27). Such equations will be analysed in the same way

as the equations in Lemma 4.2.

4.2.1. Well posedness by Fourier-Laplace with variable σ1(x1)

Theorem 4.5. Suppose σj = 0 for j ≥ 2 and σ1(x1) ∈ L∞(R) is real valued. Suppose in addition

that L is nondegenerate with restect to x1, and for one value σ1 6= 0, L̃ is hyperbolic. Then there is a

τ0 > 0 and m so that for all λ > τ0 and F ∈ eλtL2
(
Rt : Hm(Rd

t,x′)
)
there is a unique solution solution

Ũ ∈ eλtL2(Rd+1) to the Bérenger split problem L̃Ũ = F . In addition, there is a constant C independent

of F, λ so that
∥∥e−λtŨ

∥∥
L2(R1+d)

≤ C
∥∥e−λtF

∥∥
L2
(
Rt :Hm(Rd

t,x′
)
) . (4.33)

Remark 4.7.

1. The condition Ũ ∈ eλtL2 implies that Ũ tends to zero at t→ −∞ as does F .

2. If F is supported in t ≥ t0 it follows from (4.33) on sending λ→ ∞ that Ũ is supported in t ≥ t0.

Proof. The values of the Fourier Laplace Transform of W =
∑
Uj are computed from the ordinary

differential equation

A1
dŴ

dx1
+

τ + σ1(x1)

τ
L1(τ, 0, iη) Ŵ = F̂ . (4.34)

As in Lemmas 4.2 and 4.3, transform to the equivalent form,
(
I 0

0 0

)
dŴ

dx1
+

τ + σ1(x1)

τ

(
H11 H12

H21 H22

)
Ŵ = F̂ , H22 invertible.

Denote the decomposition as W = (WI ,WII) and similarly F . The invertibility of H22 from Lemma 4.3

yields,

ŴII = H−1
22

(
F̂II −H21ŴI

)
. (4.35)

It suffices to find ŴI which is determined from,

dŴI

dx1
+

τ + σ1(x1)

τ
M(τ, η) ŴI = Ĝ , M(τ, η) := H11 −H12H

−1
22 H21, Ĝ := F̂I +H−1

22 F̂II .

The hyperbolicity of L̃ implies that M has no purely imaginary eigenvalues. Correspondingly there is

the decomposition, into the spectral parts with positive and negative imaginary parts,

WI = W+
I +W−

I , G = G+ +G−, M = M+ ⊕ M− .

For σ constant, part (iii) of Lemma 4.7 (using the hyperbolicity of L̃) implies that for Re τ sufficiently

large (depending on σ), one has the spectral decomposition,

τ + σ

τ
M(τ, η) =

τ + σ

τ
M(τ, η)+ ⊕ τ + σ

τ
M(τ, η)−
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corresponding to spectra with positive and negative real parts.

Lemma 4.8. If g(x1) satisfies dg(x1)/dx1 = σ1(x1) . Then

( d

dx1
+M

)(
eg(x1)M/τ ÛI

)
= eg(x1)M/τ

( d

dx1
+
τ + σ1(x1)

τ
M

)
ÛI .

Proof of Lemma. Since
(
d egM/τ ÛI

)
/dx1 = egM/τ

(
g′MÛI/τ + dÛI/dx1

)
one has

( d

dx1
+M

)(
eg(x1)M/τ ÛI

)
= egM/τ

( d

dx1
ÛI +

(dg/dx1M
τ

+
τM

τ

)
ÛI

)
,

proving the desired identity.

Therefore

ŴI = e−g(x1)M/τ
( d

dx1
+M

)−1(
eg(x1)M/τ Ĝ

)
.

The unique L1 fundamental solution of ∂1 +M is equal to,

e−x1M
+

χ[0,∞[(x1) + e−x1M
−

χ]−∞,0](x1) .

Therefore,

egM/τ Ŵ+
I =

(
e−x1M

+

χ[0,∞[(x1)
)
∗ (egM/τ Ĝ

)+
,

egM/τ Ŵ−
I =

(
e−x1M

−

χ]−∞,0](x1)
)
∗
(
egM/τ Ĝ

)−
.

The kernel of the integral operator mapping Ĝ+ to Ŵ+
I is equal to,

exp
(
− (x1 − y1)

[τ + (g(x1)− g(y1)/(x1 − y1)

τ
M(τ, η)+

])
χx1≥y1 . (4.36)

Lemma 4.9.

∃ τ0 = τ0(µ), ∀Re τ ≥ τ0, ∀ η ∈ Rd−1, ∀σ ∈ [−µ, µ], spec
τ + σ

τ
M+(τ, η) ⊂ {Re z > 0} .

Proof of Lemma. Part (iii) of Lemma 4.7 allows one to choose τ1 so that for σ = µ one has the desired

conclusion for Re τ > τ1. Then for λ ∈ specM(τ, η)+ one has

Reλ > 0, Re
(
1 +

µ

τ

)
λ = Re

τ + µ

τ
> 0 .

For 0 ≤ σ ≤ µ write σ = a+bµ with nonnegative a, b summing to 1. It follows that Re (1+µ/τ)λ > 0.

This proves that τ1 suffices to treat the nonnegative values 0 ≤ σ ≤ µ.

Choosing τ2 for σ = −µ, that value suffices for −µ ≤ σ ≤ 0. Set τ0 equal to the maximum of τ1 and

τ2.

The Seidenberg-Tarski Theorem 2.3 shows that the absolute values of the real parts of the eigenvalues

of M(τ, η) are bounded below by C(|τ | + |η|)−N for some N . And also that the spectral decomposition

V 7→ (V +, V −) and its inverse are both bounded polynomially in |τ, η|. More generally for τ, η, µ, σ as

above,

spec
τ + σ

τ
M+(τ, η) ⊂

{∣∣Re z
∣∣ > C(|τ | + |η|)−N

}
.

Taking µ := ‖f‖L∞ one finds that for all x1, y1, the matrix

τ + (g(x1)− g(y1)/(x1 − y1)

τ
M(τ, η)+ (4.37)

has spectrum in
{
Re z > C(|τ |+ |η|)−N

}
, C > 0 .
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The elements of the matrix (4.37) are bounded above polynomially in |τ, η|. Therefore the kernel (4.36)

is bounded above by

|τ, η|N exp
(
− c(x1 − y1)/|τ, η|N

)
χx1≥y1 , c > 0 . (4.38)

This is proved using Schur’s Theorem to reduce M± to upper triangular form by orthogonal transforma-

tions of the spectral subspaces. Then solve the differential equation X ′ +M+X = 0 by back substitution

to prove ‖ exp(ρM+)‖ ≤ C|τ, η|pe−cρ/|τ,η|N .

The operator with kernel (4.38) is convolution by an element of L1(R) whose L1 norm grows poly-

nomially in |τ, η|. By Young’s theorem one concludes that the operator with kernel (4.36) has norm in

Hom(L2(R)) which grows at most polynomially in |τ, η|.
There is an entirely analogous estimate for the expression for the spectrum with negative real part.

Therefore,
∥∥ŴI(τ, x1, η)

∥∥
L2(R)

≤ C1 (1 + |τ | + |η|)N
∥∥Ĝ(τ, x1, η)

∥∥
L2(R)

≤ C2 (1 + |τ |+ |η|)N
∥∥F̂ (τ, x1, η)

∥∥
L2(R)

.

A similar estimate for ŴII follows from (4.35). Estimates for Ûj follow from the second equation in (4.26).

Plancherel’s Theorem then implies (4.33), proving the existence part of well posedness.

Uniqueness is proved by a duality argument of Hölmgren type using existence (backward in time) for

the adjoint differential operator (details omitted).

4.2.2. Perfection for Bérenger’s PML with variable coefficient σ1(x1)

Lemma 4.10. Suppose that A,M satisfy the hypotheses of Lemma 4.2 with G and M̃ ∈ HomG are from

that Lemma. Suppose in addition that f ∈ L∞
loc(R ; C) and g is the unique solution of

dg

dx1
= f, g(0) = 0, so, g(x1) =

∫ x1

0

f(s) ds .

Then for γ ∈ G the unique solution of the equivalent initial value problems for the G valued function U ,

A
dU

dx1
+ f(x1)M U = 0, equivalently,

dU

dx1
+ f(x1) M̃ U = 0, U(0) = γ,

is

U(x1) = e−g(x1) M̃ γ .

Proof. Compute using the differential equation,

d

dx1

[
eg(x1) M̃ U

]
= eg(x1)M̃

[( dg

dx1

)
M̃ +

dU

dx1

]
= eg(x1)M̃

[
f M̃ − fM̃

]
= 0 .

The lemma follows.

The next result shows that when the Bérenger split problem with absorption σ(x1) defines a stable

time evolution, then the problem is perfectly matched. Either the split problem is ill posed, or it is well

posed and perfect.

Theorem 4.6. Suppose that σ1(x) ∈ L∞(R) has support in [0, ρ] for some ρ > 0, that σj = 0 for

j 6= 1, and that the operator L̃ with these absorptions is nondegenerate with respect to x1 and defines

a weakly well posed time evolution. Then, the L̃ evolution is perfectly matched in the sense that for

F ∈ C∞
0 ({t > 0} ∩ {x1 < 0}) the solutions Ũ and Ũ ′ with and without absorptions respectively,

L̃1Ũ = F , Ũ
∣∣
t≤0

= 0, and, L̃Ũ ′ = F , Ũ ′
∣∣
t≤0

= 0

satisfy

Ũ
∣∣
x1<0

= Ũ ′
∣∣
x1<0

.
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Proof. Denote by Û and Û ′ the Fourier-Laplace transforms. The functions are characterized by

L̃1(τ, d/dx1, η) Û = F̂ , and, L̃(τ, d/dx1, η) Û
′ = F̂ ,

both required to decay exponentially as |x1| → ∞. The strategy is to construct a solution of the problem

defining Û ′ from the solution Û .

The equations for Ŵ =
∑

j Ûj and Ŵ ′ =
∑

j Û
′
j in x1 ≥ 0 have the form

A1
d Ŵ

dx1
+ M Ŵ = 0, A1

d Ŵ ′

dx1
+

τ + σ1(x1)

τ
M Ŵ ′ = 0.

Lemma 4.10 applies with f(x) := (τ + σ(x1))/τ .

Define g as in that lemma. Set V̂ = Ŵ in x1 ≤ 0. For x1 ≥ 0 define

V̂ := e−g(x1)M̃Ŵ (τ, 0, η) .

The resulting function satisfies the differential equation required of Ŵ ′. In addition since e−g(x1)M is

independent of x1 for x1 ≥ ρ, V̂ decays as rapidly as Ŵ . Therefore V̂ satisfies the conditions uniquely

determining Ŵ ′. Therefore V̂ = Ŵ ′, and Ŵ ′|x1<0 = Ŵ |x1<0. Use (4.26) to recover Û , Û ′ from Ŵ , Ŵ ′

shows that Û ′|x1<0 = Û |x1<0, proving perfection.

Example 4.2.

1. If L1(0, ∂x) is elliptic then Corollary 3.2 shows that the evolution of L̃ is strongly well posed. This

includes the case of anisotropic wave equations for which the layer is amplifying showing that perfection

is not at all inconsistent with amplification.

2. For the Maxwell equations and σ1(x1) ∈ W 2,∞(R) well posedness is proved in the remark following

Theorem 3.3 and we deduce perfection.

5. Plane waves, geometric optics, and amplifying layers

This section includes a series of ideas all related to plane waves and short wavelength asymptotic solutions

of WKB type. We first recall the derivation of such solutions from exact plane wave solutions by Fourier

synthesis. Then we review the construction of short wavelength asymptotic expansions. These are then

applied to examine the proposed absorption by the σj . In many common cases the supposedly absorbing

layers lead to asymptotic solutions which grow in the layer. Related phenomena are studied by Hu, and

Becache, Fauqueux, Joly [14], [5]. For the Maxwell equations for which the PML were designed, the

layers are not amplifying. At the end of Section 5.3, situations where the amplification does not occur

are identified.

5.1. Geometric optics by Fourier synthesis

When the coefficient σ vanishes identically, both L and L̃ are homogeneous constant coefficient systems.

When (τ , ξ) is a smooth point of the characteristic variety, denote by τ = τ(ξ) the smooth parameteriza-

tion, and ΠL(τ, ξ) and ΠL̃(τ, ξ) the associated spectral projections for ξ ≈ ξ, see (2.8). The function τ(ξ)

is homogeneous of degree 1, while the projectors are homogeneous of degree 0. The next argument works

equally well for L and L̃.

For G(ξ) ∈ C∞
0 (Rd) construct exact solutions for 0 < ε << 1,

Uε(t, x) :=

∫
ei(ξ·x+τ(ξ)t) ΠL(τ, ξ) G(ξ − ξ/ε) dξ .

Make the change of variable

ξ − ξ/ε := ζ , ξ = (ξ + εζ)/ε ,
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and extract the rapidly oscillating term ei(ξ·x+τt)/ε to find,

Uε(t, x) := ei(ξ·x+τt)/ε

∫
ei
(
(τ(ξ+εζ)−τ(ξ))t/ε+ζx

)
ΠL(τ(ξ + εζ), ξ + εζ) G(ζ) dζ

:= ei(ξ·x+τt)/ε a(ε, t, x) . (5.1)

Expanding in ε and keeping just the leading term yields the principal term in the geometric optics

approximation

Uε ≈ ei(ξ·x+τt)/ε

∫
ei(x·ζ−v(ξ)·ζt) ΠL(τ , ξ) G(ζ) dζ , v(ξ) := −∂ξτ(ξ) .

One has

Uε ≈ ei(ξx+τt)/ε a0(x − v(ξ)t) , a0(x) :=

∫
eix·ζ ΠL(τ , ξ)G(ζ) dζ .

A complete Taylor expansion yields the corrected approximations which satisfy the equation with an

error O(εN ) for all N . We write O(ε∞) for short. This yields infinitely accurate solutions,

Uε(t, x) := ei(ξx+τt)/εa(t, x, ε) , a(t, x, ε) ∼ a0(x− vt) + εa1(t, x) + · · · . (5.2)

If 0 is a semi-simple eigenvalue of L(τ, ξ), and Φ0 ∈ Ker L(τ, ξ) \ {0} of dimension 1, then the leading

amplitude a0 in the case of (1.1) (resp. (1.5)) is of the form

α(t, x)Φ0 ,

(
resp. α(t, x)

( ξ1
τ
A1Φ0, . . . ,

ξd
τ
AdΦ0

))

with scalar valued amplitude α satisfying,
(
∂t + v.∂x

)
α = 0 .

This shows that α is constant on the rays which are lines with velocity equal to the group velocity

v(ξ) := −∂ξτ(ξ).
For g ∈ C∞

0 \ 0 the solutions do not have compact spatial support. This weakness is easily overcome.

Choose χ ∈ C∞
0 (Rd) with χ = 1 on a neighborhood of the origin. For g ∈ S(Rd), define exact solutions

by cutting off the integrand outside the domains of definition of τ(ξ) and ΠL(τ(ξ), ξ),

uε(t, x) :=

∫
ei(ξx+τ(ξ)t) ΠL(τ(ξ), ξ) g(ξ − ξ/ε) χ(

√
ε(ξ − ξ/ε)) dξ . (5.3)

The analysis above applies with the only change being the initial values. In the preceding case these

values were equal to the transform of ΠL(τ(ξ), ξ) g(ξ − ξ/ε) and in the present case they are infinitely

close to that quantity,

uε(0, x) =

∫
eix.ξ ΠL(τ(ξ), ξ) g(ξ − ξ/ε) dξ + O(ε∞) .

This yields infinitely accurate approximate solutions (2.5) which have support in the tube of rays with

feet in the support of
∫
eix.ξ ΠL(τ(ξ), ξ) g(ξ) dξ.

5.2. Geometric optics with variable coefficients

The Fourier transform method of the preceding sections is limited to problems with constant coefficients.

In this section the WKB method which works for variable coefficients is introduced. It will also serve for

the analysis of reflected waves.

Let L be the general operator in (2.1). Fix (τ, ξ) ∈ CharL and seek asymptotic solutions

Uε ∼ eiS/ε
+∞∑

j=0

εjaj(t, x), with the phase S(t, x, ξ) = tτ + xξ. (5.4)
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More precisely we construct smooth functions aj(t, x) with supp aj ∩ ([0, T ]× Rd) compact so that if

a(t, x, ε) ∼
∞∑

j=0

εj aj(t, x) ,

in the sense of Taylor series at ε = 0, and suppa ∩ ([0, T ]× Rd×]0, ε]) is compact, then

Uε := eiS/ε a(t, x, ε)

satisfies for all s,N ,
∥∥LUε

∥∥
Hs([0,T ]×Rd)

= O(εN ) .

In this case we say that (5.4) is a infinitely accurate approximate solution. The next result recalls some

facts about such solutions.

Theorem 5.1. Suppose Problem (2.1) is hyperbolic, (τ, ξ) ∈ Char(L) satisfies the smooth variety hy-

pothesis, and 0 is a semi-simple eigenvalue of L(τ, ξ).

(i) If the coefficients aj satisfy the recursion relation

a0(t, x) ∈ Ker L1(τ, ξ), (5.5a)

∀j ≥ 0, iL1(τ, ξ) aj+1(t, x) + L(∂t, ∂x) aj(t, x) = 0, (5.5b)

then (5.4) is an infinitely accurate approximate solution of (2.1).

(ii) If gj = ΠL(τ, ξ)gj ∈ C∞
0 (Rd

x) are supported in a fixed compact K, then there is one and only

one family of aj satisfying (5.5) together with the initial conditions, ΠL(τ, ξ)aj(0, ·) = gj and the

polarization ΠL(τ, ξ)a0 = a0. They have support in the tube of rays with feet in K and speed of

propagation v(ξ) = −∂ξτ(ξ).
(iii) The principal term a0 is a solution of the transport equation

∂ta0 + v(ξ) · ∂xa0 +ΠL(τ, ξ)B(x)ΠL(τ, ξ)a0 = 0. (5.6)

Proof. For simplicity note ΠL := ΠL(τ, ξ) when no ambiguity is to be feared.

The equations (5.5) are obtained by injecting Uε in (2.1), to find an expression∼ eiS/ε
∑

j≥0 ε
jwj(t, x).

In order that the wj vanish it is necessary and sufficient that the equations (5.5) are satisfied.

Next examine the leading order terms to find the relations determining a0. Projecting the case j = 0

of (5.5) onto KerL1 yields,

ΠL (∂t +
d∑

l=1

Al∂l + B(x)) a0 = 0.

This yields a first order system satisfied by a0 = ΠL a0,

∂ta0 +

d∑

l=1

ΠL Al ΠL ∂la0 +ΠL B(x)ΠL a0 = 0. (5.7)

The leading order part of this equation is a scalar transport operator. To see this differentiate

L1(τ(ξ), ξ)ΠL(τ(ξ), ξ) = 0 with respect to ξl to find
(
Al +

∂τ(ξ)

∂ξl
Id

)
ΠL(τ(ξ), ξ) + L1(τ(ξ), ξ)

∂

∂ξl
(ΠL(τ(ξ), ξ)) = 0.

Multiplying on the left by ΠL(τ(ξ), ξ) eliminates the second term yielding,

ΠLAlΠL +
∂τ(ξ)

∂ξl
ΠL = 0.

Injecting this in (5.7) yields (5.6).
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In order to compute the coefficients recursively, multiply (5.5b) on the left by the partial inverse

QL(τ, ξ), using the identity in (2.7), to obtain for j ≥ 1,

(I −ΠL)aj = i QL L(∂t, ∂x) aj−1. (5.8)

Projecting (5.5b) on the kernel yields,

ΠL L(∂t, ∂x) aj = 0 .

Writing aj as

aj = ΠL aj + (I −ΠL) aj , yields ΠL L(∂t, ∂x)ΠL aj = −ΠL L(∂t, ∂x) (I −ΠL) aj .

This is again a transport equation, but with a righthand side,

∂tΠLaj + v · ∂xΠLaj +ΠL BΠL aj = −ΠL L(∂t, ∂x) (I −ΠL) aj . (5.9)

(5.8) and (5.9) permit to calculate the coefficients recursively, knowing the initial values.

Next apply the above algorithm to the PML operator L̃. Fix (τ, ξ) ∈ CharL and seek asymptotic

solutions

Ũε ∼ eiS/ε
+∞∑

j=0

εjãj(t, x), with the phase S(t, x) = tτ + x · ξ. (5.10)

Corollary 5.1. Suppose Problem (1.1) is strongly well posed, (τ, ξ) ∈ CharL satisfies the smooth variety

hypothesis, and 0 is a semi-simple eigenvalue of L(τ, ξ).

(i) If the coefficients ãj satisfy the recursion relation

ã0(t, x) ∈ Ker L̃1(τ, ξ), (5.11a)

∀j ≥ 0, (I −ΠL̃) ãj(t, x) = iQL̃ L̃(∂t, ∂x) ãj−1(t, x), (5.11b)

∂tΠL̃ ãj + v · ∂xΠL̃ ãj + β(x)ΠL̃ ãj = −ΠL̃ L̃(∂t, ∂x)(I −ΠL̃) ãj . (5.11c)

then (5.10) is an infinitely accurate approximate solution of (1.5).

(ii) If g̃j(x) = ΠL̃ g̃j ∈ C∞
0 (Rd) are supported in a fixed compact K, then there is one and only one family

of ãj satisfying (5.11) together with the initial conditions, ΠL(τ, ξ)ãj(0, x) = g̃j and the polarization

ΠL(τ, ξ)ã0 = ã0. They have support in the tube of rays with feet in K and speed of propagation

v = −∂ξτ(ξ).
(iii) The principal term ã0 is a solution of the transport equation

∂tã0 + v · ∂xã0 + β(x)ã0 = 0, with β(x) =

d∑

l=1

σl(xl)ξl
τ(ξ)

∂τ(ξ)

∂ξl
. (5.12)

Proof. We need only identify the constant term in (5.6). Use the form of the projector given in Propo-

sition 2.1, to obtain

ΠL̃B(x)ΠL̃ = β(x)ΠL̃ .

5.3. Amplifying layers

The coefficient σ1(x1) ≥ 0 is introduced with the idea that waves will be damped in the layer. In this

section, we show that sometimes the anticipated decay is not achieved, and waves may be amplified. This

was observed in [5]. The authors analysed the phenomenon for σ constant in the layer. They showed that

in an infinite layer solutions can in certain cases grow infinitely large. We present a related analysis using

WKB solutions which has three advantages,

1. The analysis is valid for variable coefficients σ1(x1) which corresponds to common practice.



May 5, 2011 19:17 WSPC/INSTRUCTION FILE halpernconfluentesfinal
Contents 45

2. The growth is seen immediately and not expressed in terms of large time asymptotics.

3. The analysis in [5] was in part restricted to d = 2 and eigenvectors of multiplicity one. We remove

these restrictions.

It is because of 2 that we choose not to follow the authors of [5] in calling this phenomenon instability.

Theorem 5.2. Suppose (τ, ξ) ∈ Char(L) satisfies the smooth variety hypothesis and β(x) is as in (5.12).

Suppose in addition there is an interval on a ray

Γ := {(0, x) + t(1,−∂ξτ(ξ)), 0 ≤ t ≤ t0}, so that,

∫ t0

0

β(x − t∂ξτ(ξ))) dt < 0.

Then the corresponding WKB solution grows in the layer.

Proof. The solution of the transport equation (5.12) evaluated on Γ is

ã0(t0, x) = exp

(
−
∫ t0

0

β(x − s∂ξτ(ξ))))ds

)
ã0(0, x+ t0∂ξτ(ξ)).

The exponential is strictly greater than 1, so

|ã0(t0, x+ t0∂ξτ(ξ))| > |a0(0, x)|.

Example 5.1 (No amplification for Maxwell/D’Alembert). If the dispersion relation is τ2 = |ξ|2
and σ ≥ 0 then there is no amplification since,

β =

d∑

j=1

σj(xj)
ξ2j
‖ξ‖2 ≥ 0 .

Example 5.2 (Amplification is common). For the dispersion relation τ2 = q(ξ) where q is a positive

definite quadratic form so that the ξ axes are not major and minor axes of the ellipse q = 1, there are

always τ > 0, ξ so that x1 layers with σ1 > 0 are amplifying ([5]). There are two lines on {τ = q(ξ)1/2}
where ∂q/∂ξ1 = 0. The half cone on which ∂q/∂ξ1 < 0 corresponds to rays on which x1 is increasing so

they enter a layer x1 > 0. The half cone {∂q/∂ξ1 < 0} is divided into two sectors by the plane ξ1 = 0.

The sector on which ξ1 > 0 (resp. ξ1 < 0) corresponds to growing (resp. decaying) solutions (see Figure

1 on the left). This example shows that amplification is very common. Consequently for the dispersion

ξ1 = 0

outgoing, ∂q
∂ξ1

< 0

outgoing

Fig. 1. Amplified outgoing wave numbers in bold

relation τ2 = q(ξ) it is wise to align coordinates along the major and minor axes of the ellipse to avoid

amplification. However, if (τ2 − q1)(τ
2 − q2) divides the characteristic polynomial and the axes of q1 and

q2 are distinct from each other then no linear change of coordinates can avoid amplification in the layer.

A second example from [10] is the linearized compressible Euler equation with nonzero background

velocity (c, 0), c > 0 for which amplified wave numbers at a right hand boundary are indicated in bold in

the right hand figure 1.
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Summary. There is no amplification when the characteristic polynomial is a product of factors τ and

τ2−q where q is a positive definite quadratic form with axes of inertia parallel to the coordinate axes. This

includes the cases of Maxwell’s equations in vacuum, for which the method was developed by Bérenger,

the linearized Euler equations about the stationary state, and the linear isotrope elasticity equations. For

these the quadratic forms q are multiples of |ξ|2.

Example 5.3 (Methods related to Bérenger, continued). For the model developed in Section 3.6

for the Maxwell equations, one can compute

β = 2
ξ22 + ξ23
ξ21

3∑

j=1

σj(xj)ξ
2
j > 0 .

Thus, this model has exactly the same good properties as Bérenger’s, and is strongly well posed. For

Maxwell equations, it is therefore an attractive alternative. The advantage is two fold. The system with

the auxiliary variables is very compact. And it is strongly well posed, even for discontinuous σ.

On the surface this result sounds almost too good to be true. However the Bérenger system in the case

of Maxwell’s equations has almost exactly the same structure. The energy method proof when σ′′
j ∈ L∞

shows that there is a large vector V consisting of the components of U together with differential operators

Pα(D) applied to U and a strongly well posed equation for V. This means that if one were to introduce

the additional variables in V one obtains a system with some of the desirable properties of SPML (strong

PML). However, the SPML reduction is much more compact, and, has a good energy estimate even

when σ is discontinuous. The extension of this strategy to other equations is not straightforward. For

elastodynamic models, see [28].

6. Harmoniously matched layers

This section introduces a new absorbing layer method. It is based on the following strategy. Start with

an operator L = L1(∂) on the left and consider a smart layer on the right

R(t, x, ∂) = L1(∂) + C(t, x), C = σ(x1)
(
π+(A1) + νπ−(A1)

)
, suppσ ⊂ [0,∞[, (6.1)

generalizing (1.2). This method is embedded in a family of absorbing layers parameterized by µ ≥ 0,

Rµ := L1 + µC . (6.2)

The method is nonreflective when µ = 0 and is both reflective and dissipative for µ > 0. When σ

is discontinuous the leading order reflection coefficient for wave packets of amplitude 1 oscillating as

ei(τt+xξ)/ε is of the form ε µ r(τ, ξ). The leading order reflections can be removed by an extrapolation

method using two values of µ. This simultaneously removes the leading reflections at all angles of incidence.

We call the resulting method the harmoniously matched layer.

6.1. Reflection is linear in µ by scaling

In this subsection the linearity in µ of leading order reflections by the layer with Rµ from (6.2) is demon-

strated by a scaling argument when σ(x1) = 1x1>0. In the next subsection the reflection is computed

exactly for Maxwell’s equations yielding additional information.

If (L1 + C)U = 0 then

U(t, x) := U(µt, µx), satisfies Rµ U = 0 .

Suppose that U has an incoming wave of wavelength ε and reflected waves Uℓ with amplitudes ρℓε.

Then U has an incoming wave with wavelength ε := ε/µ. The reflected waves have amplitudes

ρℓ ε = ρℓ µ
ε

µ
= ρℓ µ ε .
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Denote by ρ
ℓ
the reflection coefficient of Rµ. The leading amplitude of the reflected ℓ wave is then ρ

ℓ
ε.

The preceding identity shows that ρ
ℓ
= ρℓµ showing that the reflection coefficients are linear in µ. b

6.2. Reflection for Maxwell with smart layers

In this section L may denote one of two distinct operators. One option is the Maxwell operator L1 from

(3.2) for the C3 valued field E + iB. The lower order term is B := µC from the smart layer (6.1).

Alternatively L may denote the Bérenger operator operator L̃ with lower order term B = µC with

C =



σ(x1) IN 0 . . . 0

... 0
. . .

...

0 . . . 0 0


 , suppσ ⊂ [0,∞[ .

In both cases the absorption term is linear in µ. We compute the dependence of the reflection coefficient

on µ.

Lemma 4.6 shows that the Cauchy problem is equivalent to homogeneous problems in each half-space

with a transmission condition on Γ := {x1 = 0},
[
A1 U

]
Γ

= 0 . (6.3)

In order to cover both cases the operator, coefficients, and unknown are indicated with round letters.

We study the reflection of high frequency waves in x1 ≤ 0 which approach the boundary x1 = 0. The

input is an incident wave with phase SI(t, x) := τt + ξ·x, where τ 6= 0 and τ(ξ) = ±|ξ|. The phase is

chosen so that the group velocity v = −ξ/τ satisfies v1 > 0. Denote x′ := (x2, x3), ξ
′ = (ξ2, ξ3). Theorem

5.1 applies to the incident wave with B ≡ 0. In x1 ≤ 0, the incident wave is

Uε := eiS
I(t,x)/ε aI(t, x, ε) , aI(t, x, ε) ∼

∞∑

j=0

εj aI

j(t, x), L1(∂t, ∂x)Uε = O(ε∞) . (6.4)

Suppose that the amplitudes aI

j are supported in a tube, T , of rays with compact temporal crossections

T ∩ {t = 0} ⊂⊂ {x1 < 0}.
We construct a transmitted wave with the same phase, and a reflected wave with phase SR(t, x) :=

τt+ξRx, with ξR := (−ξ1, ξ′). We first show that there are uniquely determined reflected and transmitted

waves. Then we compute exactly the leading terms in their asymptotic expansions.

The reflected wave Vε is also supported in x1 ≤ 0. The group velocity for the reflected wave is equal

to vR := (−v1, v′), and in x1 ≤ 0,

Vε = eiS
R(t,x)/ε aR(t, x, ε), aR(t, x, ε) ∼

∞∑

j=0

εj aR

j (t, x), L1(∂t, ∂x)Vε = O(ε∞) . (6.5)

The transmitted wave is supported in x1 ≥ 0,

Wε := eiS
I (t,x)/ε aT (t, x, ε), aT (t, x, ε) ∼

∞∑

j=0

εj aT

j (t, x), L(∂t, ∂x)Wε = O(ε∞) . (6.6)

Theorem 6.1.

(i) Given the incoming amplitudes aI

j there are uniquely determined amplitudes aT

j and aR

j so that

for any choice of the aI,R,T (t, x, ε) ∼ ∑
εj aI,R,T (t, x), the Uε, Vε and Wε are infinitely accurate

bThis argument can be made rigorous under the following conditions. The incoming wave is a wave packet with oscillatory

part ei(τt+xξ)/ε with (τ, ξ) ∈ CharL. Denote (τ, ξ′) the part determining the oscillations in x1 = 0. Consider the roots ξ1 of
each of the equation, detL1(τ, ξ1, ξ′) = 0. The nonreal roots are called elliptic. They lead to waves which have the structure
of a boundary layer of thickness ∼ ε. The real roots are called hyperbolic. The favorable situation is when all the hyperbolic
roots are at smooth points of the characteristic variety and the group velocities are transverse to the boundary. In that case
one can construct infinitely accurate asymptotic solutions of the transmission problem consisiting of incoming, reflected,
and transmitted wave packets corresponding to the hyperbolic roots, and, a finite number of boundary layers corresponding
to elliptic roots. As this is a long story, we content ourselves with the Maxwell computation of the next subsection.
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solutions of the differential equations and the transmission condition is also satisfied to infinite

order,

∀(t, x′) ∈ R× R2, A1(Uε + Vε)(t, 0
−
, x′) = A1(Wε)(t, 0+, x

′) +O(ε∞) . (6.7)

(ii) In the case of Bérenger’s PML, the coefficients ãRj vanish identically for j ≥ 0.

(iii) For the smart layer (6.1, 6.2) with σ = 1x1>0, the coefficient aR0 vanishes identically. The reflec-

tion coefficient of the layer is equal to

R(τ, ξ) = iµ (1 + ν)
ξ21 − τ2

8τξ21
= i

µ(1 + ν)

8τ

v21 − 1

v21
.

That is, if aI

0(t, 0−
, x′) = α(t, x′)Φ(τ, ξ) ∈ KerL(τ, ξ), then

aR(t, 0
−
, x′) = εR(τ, ξ)α(t, x′)Φ(τ, ξR) + O(ε2) .

Furthermore, the amplitudes aT,R are such that on the interface Γ, we have for all (i, j) ∈ N2,

i = 0 and j ≤ 1, or i ≥ 1 and j ≥ 0,c

∂j1a
T

i − ∂j1a
I

i ∈ µ
(
Ci+j−1[µ]⊗ C3

)
, ∂j1a

R

i ∈ µ
(
Ci+j−1[µ]⊗ C3

)
. (6.8)

(iv) The smart layer with σ(x1) satisfying σ(0) = · · · = σ(k−1)(0) = 0, σ(k)(0) 6= 0 is nonreflecting at

order k for any angle of incidence, i.e. if aI

0(t, 0−
, x′) = α(t, x′)Φ(τ, ξ), there exists Rk(τ, ξ) such

that

aR(t, 0
−
, x′) = εkσ(k)(0)Rk(τ, ξ)α(t, x

′)Φ(τ, ξR) + O(εk+1) .

Furthermore the amplitudes aT,R are linear functions of µ on the interface Γ. That is denoting

cRi (µ) = aR

i |Γ and cTi (µ) = aT

i |Γ − aI

i |Γ, we have for all i ≥ k in N,

cR, T

i (µ) ∈ µ
(
Ci−1[µ]⊗ C3

)
.

Remark 6.1. 1. There exist choices of aI,R,T so that Uε, Vε, and Wε is an exact solution. Since the

transmission problem is well posed, there is a uniquely determined corrector cε smooth and infinitely

small on both sides so that adding cε yields an exact solution. Adding cε to the left corresponds to

adding the infinitely small term cε eiS
I/ε to aI with a similar remark on the right.

2. Part (iv) of the theorem with k = 0 generalizes part (iii) to discontinuous and variable σ(x1).

3. The basis elements, ΦR for aR

1 and ΦI for aI

0 are homogeneous of degree 2 in τ, ξ. Doubling τ, ξ and also

ε leaves the incoming and reflected waves unchanged. Therefore εR(τ, ξ) must be equal to 2εR(2τ, 2ξ).

This explains why R is homogeneous of degree -1.

4. The reflection coefficient vanishes when ξ′ = 0. Since it is an even function of ξ, ∇ξR = 0 too.

Proof. The incoming solution is given.

(i) Seek the leading amplitudes aT

0 and aR

0 . We will show that aR

0 = 0 so it is actually aR

1 that is the

leading amplitude of the reflected wave. A jump discontinuity in a lower order coefficient does not lead

to reflection at leading order. Denote

LT := ∂t +A2∂2 +A3∂3 ; L1 := LT +A1∂1 ; L := L1 + µC .

T := ∂t+v2∂2+v3∂3 is the tangential transport operator. By Theorem 5.1, the amplitudes are polarized,

i.e. aI, R, T

0 = ΠLa
I, R, T

0 , and aT

0 (resp. aR

0 ) satisfies a forward transport equation in x1 ≥ 0 (resp. backward

in x1 ≤ 0) with zero initial values in time,

(v1∂1 + T ) aI

0 = 0, x1 ∈ R,

(−v1∂1 + T ) aR

0 = 0, x1 ∈ R−,

(v1∂1 + T + µΠL C ΠL) a
T

0 = 0, x1 ∈ R+.

(6.9)

cCj [µ] denotes the space of polynomials of degree less than or equal to j with complex coefficients. Cj [µ] ⊗ C3 is the
corresponding space of polynomials with coefficients in C3.
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Therefore, to determine aT

0 and aR

0 everywhere, it suffices to know aT

0 (t, 0+, x
′) and aR

0 (t, 0−
, x′). These

values are determined from the transmission condition (6.3):

A1(a
I

0(t, 0−
, x′) + aR

0 (t, 0−
, x′)) = A1a

T

0 (t, 0+, x
′). (6.10)

The matrix A1 is singular. It is easy to see that (KerL(τ, ξ) ⊕ KerL(τ, ξR)) ∩ KerA1 = 0. Therefore,

A1KerL(τ, ξ) and A1KerL(τ, ξR) are complementary subspaces and generate RangeA1. This proves that

aR

0 (t, 0−
, x′) = 0, aT

0 (t, 0+, x
′) − aI

0(t, 0−
, x′) = 0. (6.11)

By the transport equation, we conclude that

aR

0 ≡ 0, for x1 < 0. (6.12)

The reflected zeroth order term vanishes identically when x ∈ R3
−. We also deduce from the transport

equation (6.9) that

v1(∂1a
T

0 − ∂1a
I

0) + µΠLC ΠLa
T

0 = 0 on Γ. (6.13)

Next determine inductively the correctors. For simplicity, throughout the proof we note ΠL := ΠL(τ, ξ)

and ΠR

L := ΠL(τ, ξ
R). Write the recursion relation (5.5) for j ≥ 1 for the incident, reflected and transmitted

waves. Split the amplitudes as

aI, T

j (t, x) = ΠLa
I, T

j (t, x) + (I −ΠL) a
I, T

j (t, x),

aR

j (t, x) = ΠR

La
R

j (t, x) + (I −ΠR

L) a
R

j (t, x).

(I −ΠL) a
T

j (t, x) and (I −ΠR

L) a
R

j (t, x) are determined directly by (5.8). To determine the projection on

the kernel, split the transmission condition (6.3) and insert (5.8) on the interface to get,

A1(ΠLa
I

j(t, 0, x
′)−ΠLa

T

j (t, 0+, x
′) + ΠR

La
R

j (t, 0−
, x′)) =

− A1((I −ΠL) a
I

j(t, 0, x
′)− (I −ΠL) a

T

j (t, 0+, x
′) + (I −ΠR

L) a
R

j (t, 0−
, x′)).

(6.14)

As for the terms of order 0, this determines ΠLa
T

j (t, 0+, x
′) and ΠR

La
R

j (t, 0−
, x′). By (5.9), the projections

are solution of a transport equation, therefore uniquely determined by initial data and the values on the

boundary . Borel’s theorem allows one to construct

aI(t, x, ε), aT (t, x, ε), and, aR(t, x, ε),

so that the transmission condition is exactly satisfied. With this choice the approximate solution satisfies

the transmission problem with infinitely small residual.

(ii) Theorem 4.4 implies that the exact solution in x1 ≤ 0 is equal to Uε+O(ε∞). The error of the approxi-

mation is O(ε∞) so the exact solution is equal to Uε+Vε+O(ε∞). Therefore Vε = (Uε+Vε)−Uε = O(ε∞)

which is the desired conclusion.

(iii) For the smart layer (6.1, 6.2) with σ = 1x1>0, compute the first order term by (5.11) with j = 1.

First deduce from (5.8) that

(I −ΠL) a
I

1(t, x) = iQLL1(∂t, ∂x) a
I

0(t, x), x1 ∈ R,

(I −ΠR

L) a
R

1 (t, x) = 0, x1 ∈ R−,

(I −ΠL) a
T

1 (t, x) = iQL(L1(∂t, ∂x) + µC) aT

0 (t, x), x1 ∈ R+.

(6.15)

Replace in (6.15) the x1 derivatives using (6.9),

(I −ΠL) a
I

1(t, x) = iQL(LT +A1∂1) a
I

0(t, x) = iQL(LT − 1

v1
A1T ) aI

0(t, x),

(I −ΠL)a
T

1 (t, x) = iQL(LT +A1∂1 + µC) aT

0 (t, x) = iQL

(
LT − 1

v1
A1T + µ (− 1

v1
A1ΠLC ΠL + C )

)
aT

0 (t, x) ,

to obtain, with C1 := C − 1

v1
A1ΠL C ΠL,

(I −ΠL)a
T

1 (t, 0+, x
′) − (I −ΠL)a

I

1(t, 0, x
′) = iµQLC1a

I

0(t, 0, x
′). (6.16)
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Using (I −ΠL)a
R

1 = 0 in the transmission condition yields,

A1

(
ΠR

La
R

1 + ΠLa
I

1 −ΠLa
T

1

)
= iµA1QLC1a

I

0 . (6.17)

The eigenvalues of A1 are 0 and ±1, with associated orthonormal set of eigenvectors Φ0 = e1 and

Φ± =
(
0, 1,±i

)
/
√
2. The projection operators on the positive and negative eigenspaces are π±(A1) =

Φ±Φ
∗
±, and C = Φ+Φ

∗
+ + νΦ−Φ

∗
−. The kernel of L(τ, ξ) is one-dimensional, it is spanned by

Φ(τ, ξ) = ξ − τ2

ξ1
e1 + i

τ

ξ1
ξ ∧ e1 =

(
ξ1 − τ2

ξ1
, i
τ

ξ1
ξ3 + ξ2,−i

τ

ξ1
ξ2 + ξ3

)
, (6.18)

and the projection on KerL(τ, ξ) is ΠL = ΦΦ∗

Φ∗Φ . Compute

ΠLCΠL =
ΦΦ∗

Φ∗Φ
(Φ+Φ

∗
+ + νΦ−Φ

∗
−)

ΦΦ∗

Φ∗Φ

=
1

(Φ∗Φ)2
Φ(Φ∗Φ+)(Φ

∗
+Φ)Φ

∗ + νΦ(Φ∗Φ+)(Φ
∗
+Φ)Φ

∗

=
|Φ∗Φ+|2 + ν|Φ∗Φ−|2

Φ∗Φ
ΠL.

Define

γ :=
|Φ∗Φ+|2 + ν|Φ∗Φ−|2

Φ∗Φ
, so, ΠLCΠL = γΠL . (6.19)

Since aI

0 is polarized,

C1a
I

0 = (C − γ

v1
A1ΠL) a

I

0 = (C − γ

v1
A1) a

I

0 := C̃1 a
I

0.

To compute the righthand side of (6.17), use

C =




0 0 0

0
ν + 1

2
i
ν − 1

2

0 −i ν − 1

2

ν + 1

2



, γ =

(τ − ξ1)
2 + ν(τ + ξ1)

2

4τ2
=

1

4
((1 + v1)

2 + ν(1 − v1)
2) ,

to find

C̃1 =
ν + 1

2




0 0 0

0 1 i
v21 + 1

2v1

0 −i v
2
1 + 1

2v1
1



.

Write aI

0 = αI

0Φ, and compute

C̃1 Φ = (1 + ν)
ξ21 − τ2

4τξ21
Ψ, Ψ =




0

ξ2τ − iξ1ξ3,

ξ3τ + iξ2ξ3,


 ,

to find a new version of (6.17),

A1(Π
R

La
R

1 +ΠLa
I

1 −ΠLa
T

1 ) = iµ(1 + ν)
ξ21 − τ2

4τξ21
αI

0 A1QLΨ . (6.20)

Next compute QLΨ. First compute a basis of eigenvectors for L(τ, ξ). Φ2 is such that L(τ, ξ)Φ2 = τΦ2,

Φ3 is such that L(τ, ξ)Φ3 = 2τΦ3. Choose

Φ2 = ξ, Φ3 = Φ(−τ, ξ).
Note that

Ψ = τξ − ξ1(τe1 + iξ ∧ e1),



May 5, 2011 19:17 WSPC/INSTRUCTION FILE halpernconfluentesfinal
Contents 51

and

Φ = ξ − τ

ξ1
(τe1 − iξ ∧ e1), Φ3 = ξ − τ

ξ1
(τe1 + iξ ∧ e1),

which gives

(τe1 + iξ ∧ e1) =
ξ1
τ
(ξ − Φ3),

and

Ψ = τξ − ξ21
τ
(ξ − Φ2) =

τ2 − ξ21
τ

ξ +
ξ21
τ
Φ3.

Since QL is the left inverse of L, we have QLξ =
1
τ ξ, and QLΦ3 = 1

2τΦ3, which gives

QLΨ =
τ2 − ξ21
τ2

ξ +
ξ21
2τ2

Φ3 .

Write the coefficients on Γ as

ΠLa
I, T

1 = αI, T

1 Φ, ΠR

La
R

1 = αR

1Φ
R ,

and inject into the transmission condition to obtain

αR

1A1Φ+ (αI

1 − αT

1 )A1Φ
R = iµ(1 + ν)

ξ21 − τ2

4τξ21
αI

0 A1(
τ2 − ξ21
τ2

ξ +
ξ21
2τ2

Φ3).

Since the kernel of A1 is e1, A1 in the preceding identity may be replaced by the projection on (e2, e3).

The projection of Φ is ϕ = ξ′ − i τ
ξ1
ξ ∧ e1, and note that Φ3 and Φ(τ, ξR) have the same projection, which

is ϕ3 = ξ′ + i τ
ξ1
ξ ∧ e1. Write

αR

1ϕ3 + (αI

1 − αT

1 )ϕ = iµ(1 + ν)
ξ21 − τ2

4τξ21
αI

0 (
τ2 − ξ21
τ2

ξ′ +
ξ21
2τ2

ϕ3)

= iµ(1 + ν)
ξ21 − τ2

4τξ21
αI

0 (
τ2 − ξ21
2τ2

(ϕ+ ϕ3) +
ξ21
2τ2

ϕ3)

= iµ(1 + ν)
ξ21 − τ2

4τξ21
αI

0 (
τ2 − ξ21
2τ2

ϕ+
1

2
ϕ3).

The solutions are parameterized by αI

0,

αR

1 = iµ(1 + ν)
ξ21 − τ2

8τξ21
αI

0, αI

1 − αT

1 = −iµ(1 + ν)
(ξ21 − τ2)2

8τ3ξ21
αI

0 .

Now use the results in (i) and prove (6.8) by induction on i. Equation (6.12) asserts that aR

0 = 0 for

x1 < 0. Equations (6.9), and (6.10), imply that at x1 = 0, aI, T

0 = ΠLa
I, T

0 , and

v1(∂1a
T

0 − ∂1a
I

0) + T (aT

0 − aI

0) + µγ(aT

0 − aI

0) + µγaI

0 = 0, x1 ≥ 0.

Differentiation in x1 several times yields ∂j1a
T

0 − ∂j1a
I

0 ∈ µCj−1[µ] ⊗ C3, giving the results for i = 0 and

j ≥ 1.

Assuming the inductive hypothesis is true for i we prove it for i+ 1. Write (5.11) in the form

(I −ΠR

L) a
R

i+1(t, x) = iQR

L(LT (∂t, ∂x′) +A1∂1) a
I

i(t, x),

(I −ΠL) a
I

i+1(t, x) = iQL(LT (∂t, ∂x′) +A1∂1) a
I

i(t, x),

(I −ΠL) a
T

i+1(t, x) = iQL(LT (∂t, ∂x′) +A1∂1 + µC) aT

i (t, x).

By induction, ∂j1(I −ΠR

L) a
R

i (t, x) ∈ µCi+j−1[σ]⊗ C3 on the interface. Write for x1 ≥ 0,

(I −ΠL) (a
T

i+1 − aI

i+1)(t, x) = iQL (LT +A1∂1 + µC) (aT

i − aI

i)(t, x) + iµQLC a
I

i(t, x). (6.21)

The inductive hypothesis, shows that on Γ, ∂j1(LT +A1∂1+µC) (a
T

i −aI

i) ∈ µCi+j [µ]⊗C3 and ∂j1(µC a
I

i) ∈
µC0[σ] ⊗ C3. The result follows for (I − ΠL) (a

T

i+1 − aI

i+1), and for (I − ΠR

L) a
R

i+1 in the same way. The

transmission condition extends the assertion to the other parts ΠL (aT

i+1 − aI

i+1) and ΠR

L a
R

i+1.
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(iv) Here σ vanishes to order k at x1 = 0. (6.11) and (6.12) are still valid, and the transport equations

(6.9) implies on the interface Γ that

∂j1ΠLa
T

0 − ∂j1ΠLa
I

0 = 0, j = 0, · · · , k,
∂k+1
1 ΠLa

T

0 − ∂k+1
1 ΠLa

I

0 = −µσ(k)(0)
γ

v1
ΠLa

I

0.
(6.22)

From (6.21) for i = 0, (6.15) and (6.22), derive

aR

1 ≡ ΠLa
R

1 everywhere,

∂j1(I −ΠL) a
T

1 − ∂j1(I −ΠL) a
I

1 = 0, j = 0, · · · , k − 1, on Γ,

∂k1 (I −ΠL) a
T

1 − ∂k1 (I −ΠL) a
I

1 = iµσ(k)(0)QLC1ΠLa
I

0 on Γ.

(6.23)

Using the transmission conditions to obtain on the interface Γ,

ΠR

La
R

1 = 0, ΠLa
I

1 = ΠLa
T

1 .

Insert into the transport equations (5.9) to find aR

1 = 0 in R−, and

∂j1ΠLa
T

1 − ∂j1ΠLa
I

1 = 0, j = 0, · · · , k − 1, on Γ,

∂k1ΠLa
T

1 − ∂k1ΠLa
I

1 = − 1
v1
ΠLA1(∂

k
1 (I −ΠL) a

T

1 − ∂k1 (I −ΠL) a
I

1) = −i µ
v1
σ(k)(0)ΠLA1QLC1ΠLa

I

0 on Γ.

(6.24)

Recover

∂j1a
T

1 − ∂j1a
I

1 = 0, j = 0, · · · , k − 1, on Γ,

∂k1a
T

1 − ∂k1a
I

1 = iµσ(k)(0)(I − 1
v1
ΠLA1)ΠLA1QLC1ΠLa

I

0 on Γ.
(6.25)

Now proceed iteratively, to see that, for i < k + 1,

aR

i ≡ ΠLa
R

i ≡ 0 everywhere,

∂j1a
T

i − ∂j1a
I

1 = 0, j = 0, · · · , k − i, on Γ,

∂k−i+1
1 (I −ΠL) a

T

i − ∂k−i+1
1 (I −ΠL) a

I

i = iQLA1(∂
k−i+2
1 aT

i−1 − ∂k−i+2
1 aI

i−1) on Γ ,

∂k−i+1
1 ΠLa

T

i − ∂k−i+1
1 ΠLa

I

i = − 1

v1
ΠLA1(∂

k−i+1
1 (I −ΠL) a

T

i − ∂k−i+1
1 (I −ΠL) a

I

i) .

(6.26)

Denote by si the value of ∂k−i+1
1 aT

i − ∂k−i+1
1 aI

i on Γ. Equation (6.26) yields the recursion relation

sj = i(I − 1

v1
ΠLA1)QLA1sj−1 , s1 = iµσ(k)(0)(I − 1

v1
ΠLA1)QLC1ΠLa

I

0 ,

which can be solved as

sk+1 = iµ σ(k)(0)MΠLa
I

0, with M := (i(I − 1

v1
ΠLA1)QLA1)

kQLC1.

The first nonzero reflected term is therefore aR

k+1 = ΠR

La
R

k+1, and using the transmission condition yields

A1(ΠLa
R

k+1 +ΠLa
I

k+1 −ΠLa
T

k+1 + sk+1) = 0 .

The incoming amplitude on Γ is aI

0 = α(t, x′)Φ, the leading reflection is aR

k+1 = αR

k+1Φ
R and the leading

transmission is aT

k+1 = αR

k+1Φ
T . Using again the notation Φ′ to denote the projection of a vector Φ on

V ec(e2, e3), this linear system is solved as

αR

k+1 = − Φ′ ∧ s′k+1

Φ′ ∧ (ΦR)′
, αT

k+1 − αI

k+1 =
(ΦR)′ ∧ s′k+1

Φ′ ∧ (ΦR)′
.

αR

k+1 = −iµσ(k)(0)α
Φ′ ∧ (MΦ)′

Φ′ ∧ (ΦR)′
, αT

k+1 − αI

k+1 = iµσ(k)(0)α
(ΦR)′ ∧ (MΦ)′

Φ′ ∧ (ΦR)′
.

The proof of the linearity follows the same path as in (iii).
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6.3. Harmoniously matched layers

Based on Theorem 6.1 we construct an extrapolation method for symmetric hyperbolic operators with

smart layers which eliminates the leading order reflection. The resulting method has desirable stability

properties and is nearly as good as Bérenger’s algorithm for the Maxwell equations where his method is

at its best. We think that the new method provides a good alternative in situations where Bérenger’s

method is not so effective.

Consider the computational domain x1 ≤ b1. The domain of interest is the interval x1 ≤ a1 < b1.

The absorbing layer is located in a1 ≤ x1 ≤ b1. The differential operator in the computational domain is

symmetric hyperbolic L with smart layer

LU + σ1(x1)
(
π+(A1) + ν π−(A1)

)
U = 0 , σ1 ≥ 0 , suppσ1 ⊂ {x1 ≥ a1} .

At the outer boundary x1 = b1 of the absorbing layer impose the simplest weakly reflecting boundary

condition

π−(A1)U = 0 when x1 = b1 .

This is a well posed problem provided that A1 has constant rank on x1 = b1. When L = L1(∂) has

constant coefficients it generates a contraction group in L2({x1 ≤ b1}).
The hamoniously matched layer algorithms compute a smart layer with coefficient σ1 and also

with coefficient 2σ1. In view of Theorem 6.1, subtracting the second from twice the first, 2U(σ1) −
U(2σ1), yields a field with one more vanishing term in the reflected wave at the interface x1 = a1. This

extrapolation removes the leading reflection.

The harmonious matched layer algorithms in a rectangular domain R perform the same extrapolation

with absorptions in all directions. With

LU +

d∑

j=1

σj(xj)(π+(Aj) + ν π−(Aj))U = 0, σj ≥ 0, suppσj ⊂ {|xj | ≥ aj} .

with

π∓(Aj)U = 0 when xj = ±bj .

This initial boundary value problem on a rectangle has weak solutions. d When L = L1(∂), the L
2(R)

norm is nonincreasing in time. The extrapolation is 2U(σ1, · · · , σd)− U(2σ1, · · · , 2σd).
Open Problem. For discontinuous σj , the uniqueness of solutions to the initial boundary value problem

on the rectangular computational domain is not known because of the discontinuity of the boundary space

kerAj at the corner. Solutions are typically discontinuous. Uniqueness of strong solutions and existence of

weak solutions is proved by the energy method. We do not know how to prove uniqueness of solutions with

regularity not exceeding that of solutions known to exist. Similar problems plague virtually all methods

on rectangular domains with absorbing boundary conditions imposed on the computational domain with

corners. The present problem is one of the simplest of its kind. The fact that algorithms designed to

compute solutions encounter no difficulties is reason for optimism.

6.4. Numerical experiments

Simulations are performed for the 2-D transverse electric Maxwell system in the (x, y) coordinates,

∂tEx − ∂yHz = 0 ,

∂tEy + ∂xHz = 0 ,

∂tHz + ∂xEy − ∂yEx = 0 ,

(6.27)

dThis can be proved by penalisation. Denote by Ω the rectangular computational domain. Add Λ1
Rd\Ω to L and solve on

R
1+d
t,x . The limit as Λ → ∞ provides a solution in L∞

(

[0, T ] : L2(R)
)

[4].
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in a rectangle, with boundary conditions n ∧ E = 0 on the west, north and south boundaries. The layer

will be imposed on the east boundary. Maxwell Bérenger is given by

∂tEx − ∂yHz = 0 ,

∂tEy + ∂xHz + σ(x)Ey = 0 ,

∂tHzx + ∂xEy + σ(x)Hzx = 0 ,

∂tHzy − ∂yEx = 0 ,

Hz = Hzx +Hzy .

(6.28)

For the computation, these equations are used in the whole rectangle (see the discussion in the introduc-

tion), with σ = 0 outside the layer. The boundary conditions are

Ey = Hz and Ex = 0 on the east , n ∧ E = 0 on the other boundaries. (6.29)

Since Π+(A1) =
Ey+Hz

2 (0, 1, 1) and Π−(A1) =
Ey−Hz

2 (0, 1, −1), the smart layers are:

∂tEx − ∂yHz = 0 ,

∂tEy + ∂xHz +
σ(x)
2 (Ey +Hz + ν(Ey −Hz)) = 0 ,

∂tHz − ∂yEx + ∂xEy +
σ(x)
2 (Ey +Hz − ν(Ey −Hz)) = 0 .

(6.30)

The boundary conditions (6.29) are imposed.

The Yee scheme for Maxwell is

(Ex)
n
i+ 1

2 ,j
− (Ex)

n−1
i+ 1

2 ,j

∆t
−

(Hz)
n− 1

2

i+ 1
2 ,j+

1
2

− (Hz)
n− 1

2

i+ 1
2 ,j−

1
2

∆y
= 0

(Ey)
n
i,j+ 1

2

− (Ey)
n−1
i,j+ 1

2

∆t
+

(Hz)
n− 1

2

i+ 1
2 ,j+

1
2

− (Hz)
n− 1

2

i− 1
2 ,j+

1
2

∆x
= 0

(Hz)
n+ 1

2

i+ 1
2 ,j+

1
2

− (Hz)
n− 1

2

i+ 1
2 ,j+

1
2

∆t
+

(Ey)
n
i+1,j+ 1

2

− (Ey)
n
i,j+ 1

2

∆x
−

(Ex)
n
i+ 1

2 ,j+1
− (Ex)

n
i+ 1

2 ,j

∆y
= 0.

The Yee scheme for Maxwell Bérenger using the notations σi = σ(xi) and σi+ 1
2
= σ(xi+ 1

2
) is,

(Ex)
n
i+ 1

2 ,j
− (Ex)

n−1
i+ 1

2 ,j

∆t
−

(Hz)
n− 1

2

i+ 1
2 ,j+

1
2

− (Hz)
n− 1

2

i+ 1
2 ,j−

1
2

∆y
= 0 ,

(Ey)
n
i,j+ 1

2

− (Ey)
n−1
i,j+ 1

2

∆t
+

(Hz)
n− 1

2

i+ 1
2 ,j+

1
2

− (Hz)
n− 1

2

i− 1
2 ,j+

1
2

∆x
+ σi

(Ey)
n
i,j+ 1

2

+ (Ey)
n−1
i,j+ 1

2

2
= 0 ,

(Hzx)
n+ 1

2

i+ 1
2 ,j+

1
2

− (Hzx)
n− 1

2

i+ 1
2 ,j+

1
2

∆t
+

(Ey)
n
i+1,j+ 1

2

− (Ey)
n
i,j+ 1

2

∆x
+ σi+ 1

2

(Hzx)
n+ 1

2

i+ 1
2 ,j+

1
2

+ (Hzx)
n− 1

2

i+ 1
2 ,j+

1
2

2
= 0 ,

(Hzy)
n+ 1

2

i+ 1
2 ,j+

1
2

− (Hzy)
n− 1

2

i+ 1
2 ,j+

1
2

∆t
−

(Ex)
n
i+ 1

2 ,j+1
− (Ex)

n
i+ 1

2 ,j

∆y
= 0 ,

(Hz)
n+ 1

2

i+ 1
2 ,j+

1
2

= (Hzx)
n+ 1

2

i+ 1
2 ,j+

1
2

+ (Hzy)
n+ 1

2

i+ 1
2 ,j+

1
2

.
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The Yee scheme for the smart layers is

(Ex)
n
i+ 1

2 ,j
− (Ex)

n−1
i+ 1

2 ,j

∆t
−

(Hz)
n− 1

2

i+ 1
2 ,j+

1
2

− (Hz)
n− 1

2

i+ 1
2 ,j−

1
2

∆y
= 0 , (6.33a)

(Ey)
n
i,j+ 1

2

− (Ey)
n−1
i,j+ 1

2

∆t
+

(Hz)
n− 1

2

i+ 1
2 ,j+

1
2

− (Hz)
n− 1

2

i− 1
2 ,j+

1
2

∆x

+
(1 + ν)σi

2

(Ey)
n
i,j+ 1

2

+ (Ey)
n−1
i,j+ 1

2

2
+

(1− ν)

2

σi+ 1
2
(Hz)

n− 1
2

i+ 1
2 ,j+

1
2

+ σi− 1
2
(Hz)

n− 1
2

i− 1
2 ,j+

1
2

2
= 0 , (6.33b)

(Hz)
n+ 1

2

i+ 1
2 ,j+

1
2

− (Hz)
n− 1

2

i+ 1
2 ,j+

1
2

∆t
+

(Ey)
n
i+1,j+ 1

2

− (Ey)
n
i,j+ 1

2

∆x
−

(Ex)
n
i+ 1

2 ,j+1
− (Ex)

n
i+ 1

2 ,j

∆y

+
(1− ν)

2

σi+1(Ey)
n
i+1,j+ 1

2

+ σi(Ey)
n
i,j+ 1

2

2
+

(1 + ν)σi+ 1
2

2

(Hz)
n+ 1

2

i+ 1
2 ,j+

1
2

+ (Hz)
n− 1

2

i+ 1
2 ,j+

1
2

2
= 0 .

(6.33c)

The schemes are implemented using time windows to save memory.

The harmoniously matched layers can be implemented in several ways that we compare. The function

σ(x) is as above.

HML Version 1. Global extrapolation. Compute the solution of (6.33) with an absorption of σ,

(E1, H1) and 2σ, (E2, H2) over the whole time window. Then Ex,y = 2 ∗ E1
x,y − E2

x,y and

Hz = 2 ∗H1
z −H2

z .

HML Version 2. Local extrapolation. Compute at each time step the solution of (6.33) with an

absorption of σ, (E1, H1) and 2σ, (E2, H2) over the whole time interval. Then Ex,y = 2 ∗
E1

x,y − E2
x,y and Hz = 2 ∗H1

z −H2
z . Save computation by taking advantage of the fact that the

computation of Ex does not involve the absorption parameter. At each time step,

(1) Ex is computed by (6.33a),

(2) two values of Ey are computed by (6.33b): E1
y with an absorption parameter equal to σ, E2

y

with an absorption parameter equal to 2σ.

(3) two values of Hz are computed by (6.33c): H1
z with an absorption parameter equal to σ,

H2
z with an absorption parameter equal to 2σ.

Then Ey = 2 ∗ E1
y − E2

y and Hz = 2 ∗H1
z −H2

z .

HML Version 3. Split field local extrapolation. At each time step,

(1) Ex is computed by (6.33a),

(2) two values of Ey are computed by (6.33b): E1
y with an absorption parameter equal to σ, E2

y

with an absorption parameter equal to 2σ. Then Ey = 2 ∗ E1
y − E2

y .

(3) two values of Hz are computed by (6.33c): H1
z with an absorption parameter equal to σ,

H2
z with an absorption parameter equal to 2σ. Then Hz = 2 ∗H1

z −H2
z .

We perform a series of experiments to illustrate the transmission properties of the layers. The coef-

ficient ν is meant to achieve backward absorption and is taken equal to zero. The domain of interest is

(0, 6)× (0, 10), the coefficient σ(x) is supported in 6 ≤ x ≤ 10. The time of computation is 4, the initial

electric field is zero. The initial transverse magnetic field,

H0
z = cos2(π

|x− xc|
r

) cos(kπ v·
x− xc

r
) χ|x−xc|≤r

is compactly supported in the ball B(xc, r), with xc = (5, 5) and r = 0.8.

The time of computation is fixed such that there is no reflection on the exterior walls. The initial

mesh is taken to be ∆x = ∆y = 0.1, ∆t = 0.0702, and then divided by 2 twice.
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In the first set of experiments, the absorption coefficient is constant in the layer, equal to 2. The initial

magnetic field hits the layer at incidence 0◦( v = (1, 0)) or 45◦ ( v = (1, 1)).

In Table 1 we compare the performances on a high frequency wave (k = 10), while in Table 2 we

consider a low frequency wave (k = 1).

In Table 1 we compare the performances on a high frequency wave (k = 10), while in Table 2 we

consider a low frequency wave (k = 1).

Table 1. Comparison of the L∞ errors for high frequency, discontinuous
absorption.

normal incidence 45◦ incidence

refinement 0 1 2 0 1 2

Bérenger 9.4e-02 3.9e-02 7.9e-03 1.3e-01 2.9e-02 5.6e-03

Smart 5.2e-02 1.3e-02 5.1e-04 6.2e-02 1.1e-02 5.3e-03
HMLV1 3.4e-02 3.1e-03 2.1e-05 4.5e-02 1.2e-03 5.5e-04
HMLV2 2.5e-02 6.0e-03 1.2e-03 7.4e-02 1.1e-02 1.7e-03
HMLV3 2.1e-02 4.2e-03 5.1e-04 4.5e-02 5.3e-03 5.7e-04

Table 2. Comparison of the L∞ errors for low frequency, discontinuous
absorption.

normal incidence 45◦ incidence

refinement 0 1 2 0 1 2

Bérenger 1.5e-02 7.1e-03 3.5e-03 1.3e-02 6.1e-03 3.0e-03

Smart 2.0e-02 2.0e-02 2.01e-02 4.3e-02 4.2e-02 4.2e-02

HMLV1 1.7e-02 1.60e-02 1.6e-02 3.4e-02 3.3e-02 3.2e-02
HMLV2 1.8e-02 1.1e-02 6.7e-03 3.1e-02 1.9e-02 1.1e-02
HMLV3 4.3e-03 2.6e-03 1.4e-03 8.2e-03 4.8e-03 2.6e-03

In Tables 3 and 4, we perform the same set of experiments, but the absorption coefficient is now a

third degree polynomial in the layer, equal to (x − 6)3/8.

Table 3. Comparison of the L∞ errors for high frequency, continuous absorption.

normal incidence 45◦ incidence

refinement 0 1 2 0 1 2

Bérenger 3.8e-05 1.9e-07 2.1e-09 2.0e-04 9.1e-07 1.6e-09

Smart 2.7e-05 2.2e-07 1.7e-07 1.7e-04 9.0e-07 3.1e-08
HMLV1 5.5e-07 6.0e-08 5.6e-08 5.6e-06 1.2e-08 4.7e-09
HMLV2 6.8e-07 6.5e-08 3.1e-08 2.6e-06 8.1e-09 2.8e-09
HMLV3 5.8e-08 2.4e-09 1.1e-09 1.5e-06 9.5e-10 9.0e-11

Table 4. Comparison of the L∞ errors for low frequency, continuous ab-
sorption.

normal incidence 45◦ incidence

refinement 0 1 2 0 1 2

Bérenger 6.2e-07 3.2e-08 7.8e-010 5.2e-07 2.9e-08 6.5e-010

Smart 5.3e-04 5.3e-04 5.2e-04 3.9e-04 3.8e-04 3.7e-04
HMLV1 1.6e-04 1.6e-04 1.5e-04 8.6e-05 8.3e-05 8.2e-05
HMLV2 4.1e-04 2.0e-04 9.6e-05 2.0e-04 9.8e-05 4.8e-05
HMLV3 1.1e-05 5.4e-06 2.7e-06 5.9e-06 2.9e-06 1.4e-06
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The Bérenger layer performs well on every frequency and every angle of incidence. Among the 3

versions for the HML, the third version is the best, which should be analyzed thoroughly.

Next compare the method on a gaussian initial value, supported in (0, 6) × (0, 10). Table 5 uses a

constant absorption in the layer, while Table 6 uses the same smooth absorption as before.

Table 5. Comparison of the L∞ errors for a gaussian
initial magnetic field, constant absorption.

refinement 0 1 2

Bérenger 1.5e-02 6.7e-03 3.3 e-03

Smart 3.4 e-02 3.4e-02 3.3e-02

HML V1 3.0e-02 2.9e-02 2.8e-02

HML V2 3.6e-02 2.5e-02 1.6e-02

HML V3 1.0e-02 6.6e-03 3.9e-03

Table 6. Comparison of the L∞ errors for a gaus-
sian initial magnetic field, continuous absorption.

refinement 0 1 2

Bérenger 7.5e-07 2.0e-08 8.3e-10

Smart 4.3e-04 4.2e-04 4.1e-04

HMLV1 1.3e-04 1.2e-04 1.2e-04

HMLV2 3.0e-04 1.5e-04 7.3e-05

HMLV3 8.8e-06 4.3e-06 2.1e-06

Finally, take unstructured random initial value, supported in the ball centered at (5, 5) and of radius

1. In Table 7, the absorption coefficient is constant in the layer, equal to 3.

Table 7. Comparison of the L∞ errors for a random
initial magnetic field, constant absorption.

refinement 0 1 2

Bérenger 5.7e-02 4.9e-02 4.4e-02

Smart 6.7 e-02 6.3e-02 5.4e-02

HML V1 5.1 e-02 4.5e-02 4.0e-02

HML V2 6.4e-02 3.0e-02 1.9e-02

HML V3 3.2e-02 1.5e-02 6.7e-03

In Table 8, the absorption coefficient is a function of x in the layer, equal to (x − 6)3/8.

Table 8. Comparison of the L∞ errors for a random

initial magnetic field, continuous absorption.

refinement 0 1 2

Bérenger 1.1e-04 5.0e-05 4.4e-06

Smart 7.2e-04 6.9e-04 6.4e-04

HMLV1 2.1e-04 2.2e-04 2.0e-04

HMLV2 5.0e-04 2.7e-04 1.2e-04

HMLV3 1.5e-05 7.9e-06 3.7e-06

Summary. When comparing the reflection properties, the harmoniously matched layer, version 3, is

competitive with the Bérenger layer. For very regular data, the Bérenger layers outperform everything.
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The performance of the HMLV3 gives hope the method with its stronger well posedness, more robust

absorption, and small reflection at all angles will be a good method where Bérenger has proven less good.

For example, for non constant coefficients and nonlinear problems. We have taken pains to make the

comparison where Bérenger is at its best. In 2D with a layer in a single direction the HML has an extra

cost. Since there are 5 quantities to compute at each time step instead of 4 for Bérenger. This is no longer

the case in three dimensions, since both strategies have to split 6 unknowns.

Open problems. 1. Our analysis does not explain the much better behavior with continuous absorption,

nor the advantages of HMLV3. 2. A comparison with other methods where only supplementary ordinary

differential equations are added should be made.
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