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Abstract
Discrete Duality Finite Volume (DDFV) methods are very well suited to discretize
anisotropic diffusion problems, even on meshes with low mesh quality. Their performance
stems from an accurate reconstruction of the gradients between mesh cell boundaries, which
comes however at the cost of using both a primal (cell centered) and a dual (vertex cen-
tered) mesh, and thus leads to larger system sizes. To solve these systems, we propose to use
non-overlapping optimized Schwarz methods with Robin transmission conditions, which
can also well take into account anisotropic diffusion across subdomain interfaces. We study
these methods here directly at the discrete level, and prove convergence using energy esti-
mates for general decompositions including cross points and fully anisotropic diffusion. Our
analysis reveals that primal and dual meshes might be coupled using different optimized
Robin parameters in the optimized Schwarz methods. We present both the separate and cou-
pled optimization of Robin transmission conditions and derive parameters which lead to the
fastest possible convergence in each case. We illustrate our results with numerical experi-
ments for the model problem, and also in situations that go beyond our analysis, with an
application to anisotropic image reconstruction.

Keywords Non overlapping optimized Schwarz method with cross points · Robin
transmission condition · DDFV finite volume scheme · Anisotropic diffusion

Mathematics Subject Classification (2010) 65N55 · 65N08 · 65F10

1 Introduction

Anisotropic diffusion problems arise in many applications, from geology [31] to medicine
[11], but more recently they play a major role in image reconstruction [32], pioneered by
the Perona-Malik non-linear partial differential equation [30], see also the fundamental
contributions of the Slovak school [10, 25, 29]. With the ever increasing demand for high
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accuracy and rapid solution, and the availability of more and more highly parallel comput-
ing systems, parallel algorithms to simulate such problems are in high demand, in particular
domain decomposition methods which are naturally parallel. Non-overlapping optimized
Schwarz methods form a class of such domain decomposition methods; for an introduction,
see [12, 13] and references therein. They were introduced for anisotropic diffusion problems
at the continuous level in [17], where their convergence was proved for a two subdomain
decomposition using energy estimates, and optimized transmission conditions between the
subdomains were derived, also at the continuous level. For a reduction of the anisotropic
optimization of the transmission conditions to an isotropic one, see [15, Section 5]. To use
such algorithms on a computer, they have to be discretized, and for anisotropic diffusion
problems, discrete duality finite volume (DDFV) methods are well suited because of their
accurate gradient reconstruction. This has been beneficial in many situations: see [3, 23]
for diffusion problems with discontinuous coefficients, [6] for div-curl, [5] for advection-
diffusion, [7] for Stokes, and [24] for Maxwell problems, and [21] for image reconstruction.
A first variant of a DDFV optimized Schwarz algorithm for fluid mechanics can be found
in [4, 26]; its convergence did however not reach the full potential of optimized Schwarz
methods, due to the discretization technique used at the interfaces. An improved treatment
of the transmission conditions can be found in [16, 18], see also [2] for a space-time vari-
ant, and a first application to anisotropic diffusion was tested in [17]. There has however
so far never been a convergence analysis of DDFV optimized Schwarz methods at the dis-
crete level for general decompositions, including cross points, and also the optimization of
the transmission conditions at the discrete level is lacking. In [17], it was discovered that
the best working parameters in the transmission conditions can differ substantially from the
ones predicted by the continuous analysis for anisotropic diffusion, and a similar discov-
ery was made in [33, 34] for various discretizations of evolution problems, see also [22].
We therefore study here for the first time non-overlapping optimized Schwarz methods with
Robin transmission conditions at the discrete level for DDFV discretizations of anisotropic
diffusion problems. We give a convergence proof using energy estimates for general decom-
positions into many subdomains including cross points, and then optimize the transmission
conditions at the discrete level. Our analysis reveals an interesting, new interplay between
the primal and dual mesh components of the DDFV discretization and the optimized trans-
mission conditions used in optimized Schwarz methods, a feature which remained hidden
in the continuous analysis in [17]. We derive optimized transmission conditions, both when
using separate parameters on the primal and dual mesh, or the same for both. We then com-
pare our discrete optimized transmission conditions to the ones obtained at the continuous
level in [17], and illustrate our findings using numerical experiments, both for model prob-
lems and discretizations covered and not covered by our analysis, and an example in image
reconstruction that goes quite beyond, mixing different mesh types and containing cross
points, with an application in image reconstruction.

2 Optimized Schwarz for Anisotropic Diffusion

We are interested in the solution of anisotropic diffusion problems of the form

L(u) := −div(A∇u) + ηu = f in Ω,

u = 0 on ∂Ω,
(2.1)
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where A is a symmetric positive definite matrix with L∞ coefficients,

(x, y) ∈ Ω �→ A(x, y) =
(

Axx(x, y) Axy(x, y)

Axy(x, y) Ayy(x, y)

)
,

and (x, y) ∈ Ω �→ η(x, y) ≥ 0 is a given non-negative function in L∞. A DDFV dis-
cretization on arbitrary domains and meshes of the anisotropic diffusion problem (2.1),
and the associated non-overlapping optimized Schwarz solver were introduced in [17], and
convergence of the Schwarz method was proved at the discrete level for a two subdomain
decomposition using energy estimates. We are interested here in a complete discrete con-
vergence analysis of the optimized Schwarz method with Robin transmission conditions for
general decompositions including cross points, and also an optimization of the discrete con-
vergence factor, since differences between the continuous analysis and discrete performance
were pointed out in [17].

2.1 Classical Notation for DDFV Schemes

DDFV discretizations need a certain amount of notation for which we follow [1]. A DDFV
mesh T consists of a primal mesh M, the black triangles in the example in Fig. 1 on the
left, leading to a cell centered (CC) scheme, and a dual mesh M∗ ∪ ∂M∗, for which we
show only two light red cells in Fig. 1 on the left, leading to a vertex centered (VC) scheme.
The primal mesh M is a set of disjoint open polygonal control volumes K ⊂ Ω such that
∪K = Ω . We denote by ∂M the set of edges of the control volumes in M included in ∂Ω ,
which we consider as degenerate control volumes. For all neighboring control volumes K

and L, we assume that ∂K ∩ ∂L is an edge of the primal mesh denoted by σ = K|L. To each
control volume and degenerate control volume K ∈ M ∪ ∂M, we associate a point xK ∈ K,
see the black dots in Fig. 1. This family of points is denoted by X = {xK, K ∈ M∪∂M}. Let
X∗ denote the set of vertices xK∗ of the primal control volumes in M, see the red squares in
Fig. 1. We split this set into X∗ = X∗

int ∪ X∗
bnd where X∗

int ∩ ∂Ω = ∅ (filled red squares)
and X∗

bnd ⊂ ∂Ω (not filled red squares).
For each xK∗ we also introduce a control volume, see the light red polygons in Fig. 1 on

the left for an interior and boundary control volume example, whose corners are the xK. All
these control volumes define the set M∗ ∪ ∂M∗ of dual control volumes that forms also a
partition of Ω into disjoint polygonal control volumes.

Given the sets X and X∗, we define the diamond cells Dσ,σ ∗ being the quadrangles whose
diagonals are a primal edge σ = K|L = (xK∗ , xL∗) and a dual edge σ ∗ = K|L = (xK, xL),

Fig. 1 DDFV notation. Left: primal mesh and example of an interior and a boundary dual cell. Middle top:
example of a boundary diamond cell. Middle bottom: example of an interior diamond cell. Right: example
of diamond cells associated with xK and xK∗ in the interior and on the boundary
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see Fig. 1 in the middle for two examples. The set of diamond cells is denoted by D, and it
has two disjoint subsets: the interior diamond cells D ∈ Dint (e.g. Fig. 1 middle bottom),
and the boundary diamond cells D ∈ Dbnd (e.g. Fig. 1 middle top) for which [xK∗ , xL∗ ] ⊂
∂Ω , where xL ∈ (xK∗ , xL∗). The complete domain is also formed by all the diamonds,
Ω = ∪D∈DD. To each diamond D ∈ D, we associate a point xD ∈ [xK∗ , xL∗ ]. Let DK be
the set of diamonds with xK as vertex and DK∗ be the set of diamonds with xK∗ as vertex,
see Fig. 1 on the right for examples.

For any primal control volume K ∈ M ∪ ∂M, we denote by mK its Lebesgue measure,
and similarly use mK∗ for the dual control volumes. For a diamond cell D with vertices
(xK, xK∗ , xL, xL∗), we denote by xD the center of the diamond cell D, that is the intersection
of the primal edge σ and the dual edge σ ∗, mD its measure, mσ the length of the primal
edge σ , mσ ∗ the length of the dual edge σ ∗, and mσK∗ the measure of ∂K∗ ∩ ∂Ω .

In DDFV, a variable uK is associated with all primal control volumes K ∈ M ∪ ∂M, and
a variable uK∗ is associated with all dual control volumes K∗ ∈ M∗ ∪ ∂M∗. We denote the
approximate solution on the mesh T by uT ∈ R

T , where

uT := (
(uK)K∈(M∪∂M) , (uK∗)K∗∈(M∗∪∂M∗)

)
. (2.2)

Following [9, 23], we define a consistent approximation of the gradient operator denoted by
∇D : uT ∈ R

T �→ (∇DuT
)

D∈D ∈ (R2)D by

∇DuT := 1

2mD
[(uL − uK)NKL + (uL∗ − uK∗)NK∗L∗ ] , ∀D ∈ D, (2.3)

with NKL := (xL∗ −xK∗)⊥ and NK∗L∗ := (xL −xK)⊥, where for any vector (x, y), (x, y)⊥ :=
(−y, x). We also define a consistent approximation of the divergence operator denoted by
divT : ξD = (ξD)D∈D ∈ (R2)D �→ divT ξD ∈ R

T by

divKξD := 1

mK

∑
D∈DK

(ξD,NKL), ∀K ∈ M, and divKξD = 0, ∀K ∈ ∂M, (2.4)

divK∗
ξD := 1

mK∗

∑
D∈DK∗

(ξD,NK∗L∗), ∀K∗ ∈ M∗ ∪ ∂M∗. (2.5)

For uT ∈ R
T and fT ∈ R

T , we denote by LT (uT , fT ) = 0 the linear system

− divK
(
AD∇DuT

)
+ ηKuK = fK, ∀ K ∈ M, (2.3a)

−divK∗ (
AD∇DuT

)
+ ηK∗uK∗ = fK∗ , ∀ K∗ ∈ M∗, (2.3b)

uK = 0, ∀ K ∈ ∂M, uK∗ = 0, ∀ K∗ ∈ ∂M∗, (2.3c)

where for smooth functions A, f and η we use pointwise evaluations

AD := (AD)D∈D, AD := A(xD),

fT := (
(fK)K∈(M∪∂M), (fK∗)K∗∈(M∗∪∂M∗)

)
, fK := f (xK), fK∗ := f (xK∗),

ηT := (
(ηK)K∈(M∪∂M), (ηK∗)K∗∈(M∗∪∂M∗)

)
, ηK := η(xK), ηK∗ := η(xK∗).
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For non-smooth functions, mean values of the functions can be used. We also recall the
fundamental discrete duality property satisfied by these operators,

(divT ξD, uT )T := 1

2

( ∑
K∈M

mKdivKξDuK +
∑

K∗∈M∗
mK∗divK∗

ξDuK∗

)

= −
∑
D∈D

mD(ξD,∇DuT ) := (ξD,∇DuT )D.

2.2 DDFV on Composite Meshes

In the case of a general domain decomposition into many subdomains Ω = ∪j=1,...,J Ωj

including cross points, we consider for each subdomain Ωj a DDFV mesh Tj = (Mj ∪
∂Mj ,M

∗
j ∪ ∂M∗

j ), and the associated diamond mesh Dj . We assume that Ωj is covered
by the primal mesh Mj , so that M = ∪Mj can be taken as the primal mesh of a DDFV
mesh T associated to Ω . This induces that the interface Γji between the two sub-domains
Ωj and Ωi is covered by primal boundary edges of ∂Mj or ∂Mi , and that corner points are
located at the centers of their dual cells.

For Ωj , we denote the set of neighboring indices by Ij := {i such that Γji �= ∅} where
Γji is the interface between Ωj and Ωi . We denote by

Dj,Γi
:= {D ∈ Dj , D ∩ Γji �= ∅} the diamond cells intersecting Γji,

∂Mj,Γi
:= {K ∈ ∂Mj , K ∩ Γji �= ∅} the boundary primal cells intersecting Γji,

∂M∗
j,Γi ,int := {K∗ ∈ ∂M∗

j , K∗ ∩ Γji � =∅} the interior boundary dual cells intersecting Γji,

∂Mj,D := {K ∈ ∂Mj , K ∩ ∂Ω �= ∅} the boundary primal cells intersecting ∂Ω,

∂M∗
j,D := {K∗ ∈ ∂M∗

j , K∗ ∩ ∂Ω �= ∅} the boundary dual cells intersecting ∂Ω .

We call the set of all interface diamond cells

Dj,Γ := ∪i∈Ij
Dj,Γi

.

The set of all boundary primal cells not located on a Dirichlet boundary is called

∂Mj,Γ := ∪i∈Ij
∂Mj,Γi

.

The set of all boundary dual cells not located on a Dirichlet boundary is called

∂M∗
j,Γ,int := ∪i∈Ij

∂M∗
j,Γi ,int .

Finally, at cross points Cik , i.e. for i, k ∈ Ij such that Γji ∩ Γjk = {Cik}, see Fig. 2,
let

∂M∗
j,Cik

:= {K∗ ∈ ∂M∗
j , xK∗ = Cik}

denote the dual cross point cells, and we define the cross point and interface sets

∂M∗
j,C := ∪i,k∈Ij

∂M∗
j,Cik

, ∂M∗
j,Γ = ∂M∗

j,Γ,int ∪ ∂M∗
j,C .

We assume that the meshes Tj are compatible in the following sense:

1. If i ∈ Ij , then the two meshes Tj and Ti have the same vertices on Γji . This implies in
particular that the two meshes have the same degenerate control volumes on Γji , that is
∂Mj,Γi

= ∂Mi,Γj
.

2. The edges σ , whose center is denoted by xL, can be assimilated to a primal degenerated
boundary control volume for both meshes, i.e. L ⊂ ∂Mj ∩ ∂Mi .
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Fig. 2 Left: example of a mesh for Ω , with dual cells crossing Γ23 and Γ41. Right: example of a composite
mesh associated to the domain decomposition Ω = ∪4

i=1Ωi on the left, with the notation for the interface
Γ41 with boundary primal and dual cells

We next define the DDFV discretization for the transmission conditions of Robin type.
We associate

– one unknown per interior and boundary primal and dual cell uTj
∈ R

Tj ,

– one flux unknown ψK∗ = ψi
j,K∗ per interface interior dual cell K∗ ∈ ∂M∗

j,Γi ,int ,

– two flux unknowns ψi
j,K∗ and ψk

j,K∗ per cross point dual cell K∗ ∈ ∂M∗
j,Cik

.

We denote by ψTj
∈ R

∂M∗
j,Γ the collection of all flux unknowns ψK∗ for inner dual interface

cells. Given fTj
∈ R

Mj ∪M∗
j ∪∂M∗

j,Γ , hTj
∈ R

∂Mj,Γ ∪∂M∗
j,Γ and p, p∗ two positive constants,

we denote by LTj (uTj
, ψTj

, fTj
, hTj

) = 0 the linear system for uTj
∈ R

Tj , ψTj
∈ R

∂M∗
j,Γ

given by

−divK
(
AD∇DuTj

)
+ ηKuK = fK, ∀K ∈ Mj , (2.4a)

−divK∗ (
AD∇DuTj

)
+ ηK∗uK∗ = fK∗ , ∀K∗ ∈ M∗

j , (2.4b)

− 1

mK∗

⎛
⎝ ∑

D∈DK∗

(
AD∇DuTj

,NK∗L∗
)

+ mσK∗ ψK∗

⎞
⎠+ηK∗uK∗ =fK∗ , ∀K∗∈∂M∗

j,Γ,int , (2.4c)

− 1

mK∗

⎛
⎝ ∑

D∈DK∗

(
AD∇DuTj

,NK∗L∗
)

+mσi
j,K∗ ψi

j,K∗ + mσk
j,K∗ ψk

j,K∗

⎞
⎠

+ηK∗uK∗ = fK∗ , ∀K∗∈∂M∗
j,Cik

, (2.4d)

1

mσ

(
AD∇DuTj

,NKL

)
+ puL = hj,L, ∀L ∈ ∂Mj,Γ , (2.4e)

ψK∗ + p∗uK∗ = hj,K∗ , ∀K∗ ∈ ∂M∗
j,Γ,int , (2.4f)

ψk
j,K∗ + p∗uK∗ = hk

j,K∗ and ψi
j,K∗ + p∗uK∗ = hi

j,K∗ , ∀K∗ ∈ ∂M∗
j,Cik

, (2.4g)

uK = 0, ∀K ∈ ∂Mj,D, uK∗ = 0, ∀K∗ ∈ ∂M∗
j,D, (2.4h)
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where we added the subscript j in the interface data hj to denote this is data for subdomain
Ωj . Equations (2.4a)–(2.4d) correspond to an approximation of the equation after integra-
tion on Mj , M∗

j and ∂M∗
j . Equations (2.4e)–(2.4g) are related to the Robin transmission

conditions on ∂Mj,Γ and ∂M∗
j,Γ . Finally, (2.4h) corresponds to the homogeneous Dirichlet

boundary condition on ∂Ω .

Theorem 2.1 (Well-posedness of the DDFV subdomain problems) For any fTj
∈

R
Mj ∪M∗

j ∪∂M∗
j,Γ and hTj

∈ R
∂Mj,Γ ∪∂M∗

j,Γ , there exists a unique solution (uTj
, ψTj

) ∈
R

Tj × R
∂Mj,Γ ∪∂M∗

j,Γ of the linear system

LTj

(
uTj

, ψTj
, fTj

, hTj

)
= 0.

Proof By linearity, since the number of unknowns and the number of equations coincide,
it is sufficient to prove that if LTj (uTj

, ψTj
, 0, 0) = 0, then uTj

= 0 and ψTj
= 0. We

multiply (2.4a) by mKuK and equations (2.4b–2.4d) by mK∗uK∗ and sum these identities
over all the control volumes in Mj and M∗

j ∪∂M∗
j,Γ . Reordering the different contributions

over all diamond cells, we obtain

2
∑

D∈Dj

mD

(
AD∇DuTj

,∇DuTj

)
+ p(uTj

, uTj
)∂Mj,Γ

+p∗(uTj
, uTj

)∂M∗
j,Γ

+
∑

K∈Mj

mKηKu2
K +

∑
K∗∈M∗

j ∪∂M∗
j,Γ

mK∗ηK∗u2
K∗ = 0, (2.5)

where

(uTj
, vTj

)∂Mj,Γ
:=

∑
L∈∂Mj,Γ

mσ uLvL =
∑
i∈Ij

∑
L∈∂Mj,Γi

mσ uLvL, (2.6)

(uTj
, vTj

)∂M∗
j,Γ

:=
∑
i∈Ij

∑
K∗∈∂M∗

j,Γi

mσK∗ uK∗vK∗ +
∑

K∗=K∗
ik∈∂M∗

j,C

(
mσi

j,K∗+mσk
j,K∗

)
uK∗vK∗ .(2.7)

Since all the terms are positive, we obtain if η > 0 from the last two terms in (2.5) that
uTj

= 0. If η = 0, we get first from (2.5) that uTj
vanishes on the boundary ∂Mj,Γ ∪∂M∗

j,Γ ,

since p > 0 and p∗ > 0. Furthermore, since A is coercive, (2.5) also shows that ∇DuTj

vanishes, and thus uTj
= 0 because a DDFV Discrete Poincaré inequality proved in [1]

gives ∑
K∈Mj

mKu2
K +

∑
K∗∈M∗

j ∪∂M∗
j,Γ

mK∗u2
K∗ ≤ C

∑
D∈D

mD|∇DuTj
|2

as soon as uTj
vanishes on part of ∂Mj and part of ∂M∗

j . We finally obtain ψTj
= 0 using

the transmission conditions (2.4f) and (2.4g), which are homogeneous.

2.3 DDFV Schwarz Algorithm for Anisotropic Diffusion

We can now present the optimized Schwarz algorithm discretized by DDFV: for fTj
∈

R
Mj ∪M∗

j ∪∂M∗
j,Γ and an arbitrary initial guess h0

Tj
∈ R

∂Mj,Γ ∪∂M∗
j,Γ , j ∈ {1, . . . , J }, the

algorithm performs for iteration index 	 = 0, 1, 2, . . . and i ∈ Ij the two steps:
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1. Compute the subdomain solutions (u	+1
Tj

, ψ	+1
Tj

) ∈ R
Tj × R

∂M∗
j,Γ by solving for j =

1, 2, . . . , J

LTj

(
u	+1
Tj

, ψ	+1
Tj

, fTj
, h	

Tj

)
= 0. (2.8)

2. Compute the new values h	+1
Tj

to be transmitted to neighboring subdomains,

h	+1
j,L = − 1

mσ

(
AD∇Du	+1

Ti
,NKL

)
+ pu	+1

i,L , ∀l ∈ ∂Mj,Γi
, ∀i ∈ Ij , (2.9a)

h	+1
j,K∗ = −ψ	+1

i,L∗ + p∗u	+1
i,L∗ , ∀K∗ ∈ ∂M∗

j,Γi ,int ,∀L∗ ∈ ∂M∗
i,Γj ,int s.t. xK∗ = xL∗ , ∀i ∈ Ij ,

(2.9b)

h
i,	+1
j,K∗ = −ψ

j,	+1
i,L∗ + p∗u	+1

i,L∗ , ∀K∗ ∈ ∂M∗
j,C, ∀L∗ ∈ ∂M∗

i,C s.t. xK∗ = xL∗ , ∀i ∈ Ij . (2.9c)

We can now prove convergence of the non-overlapping DDFV optimized Schwarz algo-
rithm with Robin transmission conditions. We denote by T = (M, ∂M,M∗, ∂M∗) the
DDFV mesh constructed from the primal discretization of the sub-domains Ωj : M = ∪Mj .

Theorem 2.2 (Convergence of the DDFV Schwarz algorithm) The iterates of the opti-
mized Schwarz algorithm discretized by DDFV defined by (2.8)–(2.9) converge as 	 tends
to infinity to the solution uT of the DDFV scheme (2.3) on Ω .

Proof The crucial step of the proof consists in rewriting the classical DDFV scheme (2.3)
on Ω as the limit of the Schwarz algorithm. To this end, we introduce new unknowns near
the interface Γji , see Fig. 3:

– for all K ∈ Mj and K∗ ∈ M∗
j , we set u∞

K := uK and u∞
K∗ := uK∗ ,

– for all K ∈ ∂Mj,D and K∗ ∈ ∂M∗
j,D , we set u∞

K := 0 and u∞
K∗ := 0,

Fig. 3 Left: new unknowns needed to describe the DDFV scheme on Ω as the limit of the Schwarz algorithm.
Right: splitting of the diamond cells at the interfaces

1356 M.J. Gander et al.



– for all L = Kj |Ki ∈ ∂Mj,Γi
= ∂Mi,Γj

, define

u∞
j,L = u∞

i,L := mDi
uKj

+ mDj
uKi

mD

,

so that
(
ADj

∇Dj u∞
Tj

,NKj L

)
= −

(
ADi

∇Di u∞
Ti

,NKi L

)
, with Dj ∈ Dj,Γ and Di ∈ Di,Γ ,

with ADj
= ADi

= AD as xDj
= xDi

= xL.
– for all K∗ ∈ M∗ such that xK∗ ∈ Γij , i.e. K∗ = K∗

i ∪ K∗
j with K∗

j ∈ ∂M∗
j,Γi ,int and

K∗
i ∈ ∂M∗

i,Γj ,int , set u∞
j,K∗

j
= u∞

i,K∗
i

:= uK∗ and

ψ∞
j,K∗

j
= −ψ∞

i,K∗
i

:= − 1

mσK∗

∑
D∈DK∗

j

(
AD∇Du∞

Tj
,NK∗

j L∗
j

)
+

mK∗
j

mσK∗
(ηK∗uK∗ − fK∗)

= 1

mσK∗

∑
D∈DK∗

i

(
AD∇Du∞

Ti
,NK∗

i L∗
i

)
− mK∗

i

mσK∗
(ηK∗uK∗ −fK∗). (2.10)

Equation (2.10) comes from (2.3b), in which we have split the terms from K∗
i and K∗

j ,
noting that mK∗ = mK∗

j
+ mK∗

i
.

– At a cross point c, we denote by Ic the set of indices of the subdomains that intersect in
that cross point. The cross point is the center of a dual cell K∗ that is split in the domain
decomposition. We define for each subcell K∗

j ⊂ Ωj , j ∈ Ic an unknown u∞
j,K∗

j
:= uK∗ .

We also have to introduce for all j ∈ Ic additional unknowns ψ
i,∞
j,K∗

j
and ψ

k,∞
j,K∗

j
in such a

way that

mσi
j,K∗

j

ψ
i,∞
j,K∗

j
+ mσk

j,K∗
j

ψ
k,∞
j,K∗

j

=
∑

D∈DK∗
j

(
AD∇DuTj

,NK∗L∗
)

− mK∗
j
ηK∗uj,K∗ + mK∗

j
fK∗ =: bj .

According to the DDFV scheme (2.3),
∑

j∈Ic
bj = 0. We denote by nc the cardinal

of Ic. Now imposing ψ
i,∞
j,K∗

j
= −ψ

j,∞
i,K∗

i
, these fluxes must satisfy a linear system of the

form Bψ = b with B an nc × nc matrix, b = (bj )j∈Ic and ψ the vector of ψ
i,∞
j,K∗

j

after selection of nc out of the 2nc possible ones, see [20] where this technique to treat
cross points was introduced. For example, in the case nc = 4, Ic = {1, 2, 3, 4} with Ωj

arranged clockwise, we can take

ψ =

⎛
⎜⎜⎜⎜⎜⎝

ψ
2,∞
1,K∗

1

ψ
3,∞
2,K∗

2

ψ
4,∞
3,K∗

3

ψ
1,∞
4,K∗

4

⎞
⎟⎟⎟⎟⎟⎠

, B =

⎛
⎜⎜⎜⎜⎜⎜⎝

mσ 2
1,K∗

1

0 0 −mσ 1
4,K∗

4−mσ 2
1,K∗

1

mσ 3
2,K∗

2

0 0

0 −mσ 3
2,K∗

2

mσ 4
3,K∗

3

0

0 0 −mσ 4
3,K∗

3

mσ 1
4,K∗

4

⎞
⎟⎟⎟⎟⎟⎟⎠

. (2.11)

The rank of B is equal to nc − 1 and b ∈ Im B since
∑

j∈Ic
bj = 0. Therefore, ψ

exists but is not unique. The ψ at the cross point will thus in general not converge in the
optimized Schwarz algorithm, which does however not affect the convergence of the u,
see [20].
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– Therefore, we can define

h∞
j,L = − 1

mσ

(
AD∇Du∞

Ti
,NKL

)
+ pu∞

i,L, ∀L ∈ ∂Mj,Γi
, ∀i ∈ Ij , (2.12a)

h∞
j,K∗ = −ψ∞

i,L∗ + p∗u∞
i,L∗ , (2.12b)

∀K∗ ∈ ∂M∗
j,Γi ,int , ∀L∗ ∈ ∂M∗

i,Γj ,int s.t. xK∗ = xL∗ , ∀i ∈ Ij ,

h
i,∞
j,K∗ = −ψ

j,∞
i,L∗ + p∗u∞

i,L∗ , (2.12c)

∀K∗ ∈ ∂M∗
j,C, ∀L∗ ∈ ∂M∗

i,C s.t. xK∗ = xL∗ , ∀i ∈ Ij .

We have constructed (u∞
Tj

, ψ∞
Tj

) from the solution uT of the DDFV scheme (2.3) on Ω such
that

LTj

(
u∞
Tj

, ψ∞
Tj

, fTj
, h∞

Tj

)
= 0.

Observe that the errors e	+1
Tj

:= u	+1
Tj

− u∞
Tj

, Ψ 	+1
Tj

:= ψ	+1
Tj

− ψ∞
Tj

satisfy

LTj

(
e	+1
Tj

, Ψ 	+1
Tj

, 0, H	
Tj

)
= 0, (2.13)

with

H	
j,L = − 1

mσ

(
AD∇De	

Ti
,NKL

)
+ pe	

i,L, ∀ L ∈ ∂Mj,Γi
, ∀i ∈ Ij , (2.14a)

H	
j,K∗ = −Ψ 	

i,L∗ + p∗e	
i,L∗ , (2.14b)

∀K∗ ∈ ∂M∗
j,Γi ,int , ∀L∗ ∈ ∂M∗

i,Γj ,int s.t. xK∗ = xL∗ , ∀i ∈ Ij ,

H
i,	
j,K∗ = −Ψ

j,	
i,L∗ + p∗e	

i,L∗ , ∀K∗ ∈ ∂M∗
j,C, ∀L∗ ∈ ∂M∗

i,C s.t. xK∗ = xL∗ , ∀i ∈ Ij . (2.14c)

For j = 1, . . . , J , we multiply equation (2.4a) associated to the scheme (2.13) by mKeK

and equations (2.4b–2.4d) by mK∗e∗
K and sum these identities over all the control volumes

in Mj and M∗
j ∪ ∂M∗

j,Γ . Reordering the different contributions over all diamond cells, we
obtain

2
∑

D∈Dj

mD

(
AD∇De	+1

Tj
, ∇De	+1

Tj

)
+

∑
K∈Mj

mKηK

(
e	+1
j,K

)2
(2.14d)

+
∑

K∗∈M∗
j ∪∂M∗

j,Γ

mK∗ηK∗
(
e	+1
j,K∗

)2
(2.14e)

−
∑

L∈∂Mj,Γ

(
AD∇De	+1

Tj
,NKL

)
e	+1
j,L −

∑
K∗∈∂M∗

j,Γ,int

mσK∗ Ψ 	+1
K∗ e	+1

j,K∗ (2.14f)

−
∑

K∗=K∗
ik∈∂M∗

j,C

(
mσk

j,K∗ Ψ
k,	+1
j,K∗ + mσi

j,K∗ Ψ
i,	+1
j,K∗

)
e	+1
j,K∗ = 0. (2.14g)

Now, applying the identity −ab = 1
4

(
(a − b)2 − (a + b)2

)
, used for such estimates in [8,

27], to the four terms(
AD∇De	+1

Tj
,NKL

)
e	+1
j,L , mσK∗ Ψ 	+1

K∗ e	+1
j,K∗ , mσk

j,K∗ Ψ
k,	+1
j,K∗ e	+1

j,K∗ , mσi
j,K∗ Ψ

i,	+1
j,K∗ e	+1

j,K∗ ,

the transmission conditions appear, for example

mσi
j,K∗ Ψ

i,	+1
j,K∗ e	+1

j,K∗ =
mσi

j,K∗

4p∗
(
(Ψ

i,	+1
j,K∗ + p∗e	+1

j,K∗)2 − (−Ψ
i,	+1
j,K∗ + p∗e	+1

j,K∗)2
)

,
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and thus using (2.14c), we get

mσi
j,K∗ Ψ

i,	+1
j,K∗ e	+1

j,K∗ =
mσi

j,K∗

4p∗
(
(−Ψ

j,	
i,K∗ + p∗e	

i,K∗)2 − (−Ψ
i,	+1
j,K∗ + p∗e	+1

j,K∗)2
)

.

Summing now over all iteration indices 	 = 0, . . . , 	max − 1 and subdomain indices j =
1, . . . , J we get for all K∗ = K∗

ik ∈ ∂M∗
j,C using mσi

j,K∗ = m
σ

j

i,K∗
,

−
	max−1∑

	=0

J∑
j=1

mσi
j,K∗ Ψ

i,	+1
j,K∗ e	+1

j,K∗

= 1

4p∗
	max−1∑

	=0

J∑
j=1

mσi
j,K∗

(
−(−Ψ

j,	
i,K∗ + p∗e	

i,K∗)2 + (−Ψ
i,	+1
j,K∗ + p∗e	+1

j,K∗)2
)

= 1

4p∗
J∑

j=1

mσi
j,K∗

(
−(−Ψ

j,0
j,K∗ + p∗e0

j,K∗)2 + (−Ψ
i,	max
j,K∗ + p∗e	max

j,K∗)2
)

.

Similarly,

−
	max−1∑

	=0

J∑
j=1

mσk
j,K∗ Ψ

k,	+1
j,K∗ e	+1

j,K∗

= 1

4p∗
J∑

j=1

mσk
j,K∗

(
−(−Ψ

j,0
j,K∗ + p∗e0

j,K∗)2 + (−Ψ
k,	max
j,K∗ + p∗e	max

j,K∗)2
)

.

For all K∗ ∈ ∂M∗
j,Γ,int , we have

−
	max−1∑

	=0

J∑
j=1

mσ ∗
K
Ψ 	+1

K∗ e	+1
j,K∗

= 1

4p∗
J∑

j=1

mσK∗
(
−(−Ψ

j,0
j,K∗ + p∗e0

j,K∗)2 + (−Ψ
	max
j,K∗ + p∗e	max

j,K∗)2
)

,

and for all L ∈ ∂Mj,Γ , we have

−
	max−1∑

	=0

J∑
j=1

(
AD∇De	+1

Tj
,NKL

)
e	+1
j,L

= 1

4p∗
J∑

j=1

(
−(−(AD∇De0

Tj
,NKL) + pe0

j,L)
2 + (−(AD∇De

	max
Tj

,NKL)+pe
	max
j,L )2

)
.
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Gathering theses contributions, we obtain

2
	max−1∑

	=0

J∑
j=1

∑
D∈Dj

mD

(
AD∇De	+1

Tj
,∇De	+1

Tj

)
+

	max−1∑
	=0

J∑
j=1

∑
K∈Mj

mKηK

(
e	+1

K

)2

+
	max−1∑

	=0

J∑
j=1

∑
K∗∈M∗

j ∪∂M∗
j,Γ

mK∗ηK∗(e	+1
K∗ )2

+ 1

4p

J∑
j=1

∥∥∥−
(
ADj,Γ

∇Dj,Γ e
	max
Tj

,nj

)
+ pe

	max

∂Mj,Γ

∥∥∥2

∂Mj,Γ

+ 1

4p∗
J∑

j=1

∥∥∥∥−Ψ
	max
Tj

+ p∗e	max

∂M∗
j,Γ

∥∥∥∥
2

∂M∗
j,Γ

≤ 1

4p

J∑
j=1

∥∥∥−
(
ADj,Γ

∇Dj,Γ e0
Tj

,nj

)
+ pe0

∂Mj,Γ

∥∥∥2

∂Mj,Γ

+ 1

4p∗
J∑

j=1

∥∥∥−Ψ 0
Tj

+ p∗e0
∂M∗

j,Γ

∥∥∥2

∂M∗
j,Γ

,

where ‖ · ‖∂Mj,Γ
and ‖ · ‖∂M∗

j,Γ
are the norms associated to the scalar products defined in

(2.6) and (2.7). This shows that the total discrete energy stays bounded as the iteration index
	 goes to infinity, and hence the discrete H 1 norm of e	+1

Tj
converges to zero as 	 tends to

infinity for all j . In other words, the iterates u	
Tj

of the optimized Schwarz algorithm dis-
cretized by DDFV defined by (2.8)–(2.9) converge as 	 tends of to infinity to u∞

Tj
. Coming

back to the construction of u∞
Tj

, we obtain the convergence to uT the solution of the DDFV

scheme (2.3) on Ω . Note that the estimate only gives a bound on the discrete fluxes Ψ 	
Tj

and
in practice the discrete fluxes do not converge at cross points, because the flux system there
is not full rank, see (2.11).

3 Optimization of the Robin Transmission Conditions

We now present for the first time a discrete optimization of the Robin parameter in the
transmission conditions of the DDFV Schwarz algorithm (2.8), (2.12a)–(2.12c) in order to
understand why the optimized parameters from the continuous analysis in [17] sometimes
give suboptimal performance for high anisotropies. As in the continuous case, we focus on a
two subdomain decomposition, and will use the same parameters also at cross points. There
are also cross point formulations where this is not advised, see [19].

3.1 Discrete Subdomain Solutions

To obtain a discrete convergence factor, we use the typical approach in optimized Schwarz
methods to consider a domain Ω := (−a, a)×(0, b) decomposed into two non-overlapping
subdomains Ω1 := (−a, 0) × (0, b) and Ω2 := (0, a) × (0, b), with the interface Γ :=
∂Ω1 ∩ ∂Ω2. We use a rectangular grid, so that the DDFV discretization away from the
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interface Γ leads to two interlaced five point finite difference schemes. The mesh size is
denoted by (hx, hy). To simplify the notation compared to the general DDFV scheme, we

use for the dual (vertex centered) unknowns aligned with the interface star indices, u
j,	
m∗,n∗ .

These are associated with the dual cells shown in dashed in Fig. 4, whose centers are squares
(� or �), and the superscripts j and 	 stand for the domain and the iteration. For the primal
(cell centered) unknowns, we use indices without stars, u

j,	
m,n. These are associated with the

primal cells, whose centers are bullets (• or ◦ for interface cells), see Fig. 4. Additional
primal unknowns u

j,	
1
2 ,n

, located at ◦ in Fig. 4, and also additional flux unknowns ψ
j,	
n∗ are

needed on the interface Γ . We study directly the error um,n − u
j,	
m,n which satisfies the same

algorithm as u
j,	
m,n but with zero source term and boundary conditions, and for simplicity we

still call it u
j,	
m,n. At each iteration 	 = 1, 2, . . ., in the domain Ωj the values in the primal

cells and the values in the dual cells, denoted with a star ∗, are related by two recurrence
relations. We assume here that Axy = 0, so that the two recurrence relations are decoupled,
the study of the fully anisotropic case is substantially harder and will be tackled in future
work. For m ≥ 1 and m∗ ≥ 1, we have

Axx

h2
x

(u
j,	

m+1,n − 2u
j,	
m,n + u

j,	

m−1,n) + Ayy

h2
y

(u
j,	

m,n+1 − 2u
j,	
m,n + u

j,	

m,n−1) − ηu
j,	
m,n = 0,

Axx

h2
x

(u
j,	

m∗+1,n∗ − 2u
j,	
m∗,n∗ + u

j,	

m∗−1,n∗ ) + Ayy

h2
y

(u
j,	

m∗,n∗+1 − 2u
j,	
m∗,n∗ + u

j,	

m∗,n∗−1) − ηu
j,	
m∗,n∗ = 0.

(3.1)

In order to obtain the primal equation in (3.1) for m = 1, we introduce u
j,	

0,n which is linked

to the interface primal unknowns u
j,	
1
2 ,n

by

u
j,	
1
2 ,n

= 1

2

(
u

j,	

1,n + u
j,	

0,n

)
. (3.2)

Fig. 4 Notation for the rectangular DDFV configuration
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On boundary dual cells, the additional fluxes ψ
j,	
n∗ are used, given by

hyψ
j,	
n∗ + hyAxx

hx

(
u

j,	

1∗,n∗ − u
j,	

0∗,n∗
)

+Ayyhx

2hy

(
u

j,	

0∗,n∗+1 − 2u
j,	

0∗,n∗ + u
j,	

0∗,n∗−1

)
− η

hxhy

2
u

j,	

0∗,n∗ = 0. (3.3)

We can now express the transmission condition on Γ for (j, i) = (1, 2) or (2, 1). The Robin
transmission conditions on Γ for dual cells are expressed with the fluxes ψ

j,	
n∗ , see (2.4f)

and (2.12b),
ψ

j,	
n∗ + p∗uj,	

0∗,n∗ = −ψ
i,	−1
n∗ + p∗ui,	−1

0∗,n∗ , (3.4)

and on primal cells the discrete Robin conditions are, see (2.4e) and (2.12a),

2

hx

Axx

(
u

j,	
1
2 ,n

− u
j,	

1,n

)
+ pu

j,	
1
2 ,n

= 2

hx

Axx

(
u

i,	−1
1,n − u

i,	−1
1
2 ,n

)
+ pu

i,	−1
1
2 ,n

. (3.5)

The equations (3.1)–(3.5) completely describe the original Robin DDFV optimized Schwarz
algorithm from Section 2 for the specific two subdomain decomposition. We see that in the
case of Cartesian meshes with Axy = 0, the optimized Schwarz algorithm for the primal
and the dual meshes are decoupled. For the primal unknowns, the interface is at m = 1

2 ,

Axx

h2
x

(
u

1,	
m+1,n − 2u

1,	
m,n + u

1,	
m−1,n

)
+ Ayy

h2
y

(
u

1,	
m,n+1 − 2u

1,	
m,n + u

1,	
m,n−1

)
− ηu

1,	
m,n = 0,

2
hx

Axx

(
u

j,	
1
2 ,n

− u
j,	

1,n

)
+ pccu

j,	
1
2 ,n

= 2
hx

Axx

(
u

j,	−1
1,n − u

j,	−1
1
2 ,n

)
+ pccu

j,	−1
1
2 ,n

.

This corresponds to a discrete optimized Schwarz algorithm with Robin transmission con-
ditions for a cell centered (CC) 5-point finite difference discretization of the anisotropic
diffusion problem Equation (2.1), with the interface through the middle of the cells, and
we therefore use now pcc ≡ p for the optimization parameter. For the dual unknowns, the
interface is at m = 0,

Axx

h2
x

(
u

1,	
m∗+1,n∗ −2u

1,	
m∗,n∗ +u

1,	
m∗−1,n∗

)
+ Ayy

h2
y

(
u

1,	
m∗,n∗+1−2u

1,	
m∗,n∗ +u

1,	
m∗,n∗−1

)
−ηu

1,	
m∗,n∗ = 0,

Axx

hx

(
u

j,	

0∗,n∗ − u
j,	

1∗,n∗
)

− Ayyhx

2h2
y

(
u

j,	

0∗,n∗+1 − 2u
j,	

0∗,n∗ + u
j,	

0∗,n∗−1

)
+ η hx

2 u
j,	

0∗,n∗ + pvcu
j,	

0∗,n∗

=−Axx

hx

(
u

j,	−1
0∗,n∗ − u

j,	−1
1∗,n∗

)
+ Ayyhx

2h2
y

(
u

j,	−1
0∗,n∗+1−2u

j,	−1
0∗,n∗ +u

j,	−1
0∗,n∗−1

)
−η hx

2 u
j,	−1
0∗,n∗ +pvcu

j,	−1
0∗,n∗ .

This is also a discrete optimized Schwarz algorithm with Robin transmission conditions,
but for a vertex centered (VC) 5-point finite difference discretization of the anisotropic
diffusion equation (2.1), with the interface on the boundary of the cells, and we therefore
use now pvc ≡ p for the optimization parameter. The energy estimate convergence proof
in Section 2 implies that each of these algorithms separately is convergent. In contrast to
the common continuous approach (a few exceptions are [28, 33, 34] and [22]), we optimize
parameters in the transmission conditions at the discrete level here, and we start with a
separate analysis for the primal (CC) and the dual (VC) components of the DDFV optimized
Schwarz algorithm, before tackling the coupled problem with pvc = pcc, which will need a
new theoretical result on best approximation problems.

3.2 Discrete Convergence Factor

Since the domain is bounded in the y direction, y ∈ (0, b) with homogeneous Dirichlet
boundary conditions, that is in the index n and n∗, we use a discrete sine series expansion in
the y variable to compute the convergence factor for each sine mode, and study the existence
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and uniqueness of a set of best transmission parameters pvc and pcc that are minimizing the
convergence factor over a given set of frequencies.

We expand for n ∈ {1, . . . , N} and m ∈ {1, . . . , M} with Nhy = b the grid function
um,n in a discrete Fourier sine series,

um,n =
kmax∑
k=1

ûm(k) sin

(
knπ

hy

b

)
,

with a slightly different kmax depending on the scheme being primal or dual, since the
number of gridpoints differs by one,

kmax :=
{

b
hy

− 1 for the dual scheme,
b
hy

for the primal scheme.
(3.6)

The Fourier coefficients are functions of the variable k: u
j,	
m,n ↔ û

j,	
m (k) and u

j,	
m∗,n∗ ↔

û
j,	
m∗ (k), which is discrete in this case, but we will optimize over a continuous set for k to

simplify the analysis, since this makes a negligible difference for the resulting parameters
[28, Subsection 4.2]. Introducing the Fourier sine expansion into the difference equation
satisfied by um,n, we obtain by a direct calculation

Ayy

h2
y

(
um,n+1 − 2um,n + um,n−1

) − ηum,n

= −
∑

k

(
4
Ayy

h2
y

sin2
(

kπhy

2b

)
+ η

)
ûm(k) sin

(
knπ

hy

b

)
.

To simplify the notation, we define the quantities

α(k) := 4Ayy

h2
y

sin2
(

kπhy

2b

)
, μ(k) := h2

x

Axx

(α(k) + η).

Then the discrete grid function um,n is a solution of either of the two equations (3.1) if
and only if the corresponding Fourier coefficients ûm(k) satisfy for each k the recurrence
relation in the m variable

ûm+1(k) − 2ûm(k) + ûm−1(k) − μûm(k) = 0.

The characteristic equation of the recurrence relation,

λ2 − 2λ + 1 − μλ = 0, (3.7)

has two positive distinct roots, which are inverses of each other. For fixed k, denoting by
λ(k) the root that is smaller than 1,

λ(k) := 1 + μ(k)

2
−

√
μ(k) + μ(k)2

4
< 1,

the grid function um,n is a solution of either of the two equations in (3.1) if and only if ûm(k)

is a linear combination of λ(k)m and λ(k)−m. We rewrite now the transmission conditions
on the Fourier coefficients. On the primal cells we obtain

Axx

hx

(
û

j,	

0 − û
j,	

1

)
+pcc

2

(
û

j,	

0 + û
j,	

1

)
= Axx

hx

(
û

i,	−1
1 − û

i,	−1
0

)
+pcc

2

(
û

i,	−1
1 + û

i,	−1
0

)
,
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and on the dual cells we obtain
Axx

hx

(
û

j,	

0∗ − û
j,	

1∗
)

+ hx

2
(α(k) + η)û

j,	

0∗ + pvcû
j,	

0∗

= −Axx

hx

(
û

i,	−1
0∗ − û

i,	−1
1∗

)
− hx

2
(α(k) + η)û

i,	−1
0∗ + pvcû

i,	−1
0∗ .

Introducing the notation p̃ := p hx

Axx
, we obtain for the system of transmission conditions in

Fourier(
û

j,	

0 − û
j,	

1

)
+ p̃cc

2

(
û

j,	

0 + û
j,	

1

)
=

(
û

i,	−1
1 − û

i,	−1
0

)
+ p̃cc

2

(
û

i,	−1
1 + û

i,	−1
0

)
,

û
j,	

0∗ − û
j,	

1∗ + μ
2 û

j,	

0∗ + p̃vcû
j,	

0∗ = −
(
û

i,	−1
0∗ − û

i,	−1
1∗

)
− μ

2 û
i,	−1
0∗ + p̃vcû

i,	−1
0∗ .

(3.8)

3.3 Unbounded Domain in the x Direction

We start by considering an unbounded domain in the x direction, Ω = (−a, a) × (0, b)

with a = ∞. By Parseval’s relation, for u
j,	
m,n to be in L2(R± × [0, b]) in (x, y) for any j ,

	, there exist coefficients Cj,	(k) and Dj,	(k) such that

û
j,	
m,k = Cj,	(k)λ(k)m, û

j,	
m∗,k = Dj,	(k)λ(k)m

∗
.

Inserting this into the transmission conditions (3.8) we obtain for j = 1, 2, i �= j and l ≥ 1,(
1 − λ + p̃cc

2
(1 + λ)

)
Cj,	 =

(
−(1 − λ) + p̃cc

2
(1 + λ)

)
Ci,	−1,

(
1 − λ + μ

2
+ p̃vc

)
Dj,	 =

(
−(1 − λ) − μ

2
+ p̃vc

)
Di,	−1.

We now introduce the notation

ν(k) := − ln λ(k) > 0, (3.9)

which lets us write the transmission conditions in Fourier in compact form: solving (3.7)
for μ and introducing it into the following expression, we find

1 + μ

2
− λ = 1 − λ2

2λ
= sinh ν and

1 − λ

1 + λ
= tanh

ν

2
,

which gives for the transmission conditions(
2 tanh

ν

2
+ p̃cc

)
Cj,	 =

(
−2 tanh

ν

2
+ p̃cc

)
Ci,	−1,

(sinh ν + p̃vc) Dj,	 = (− sinh ν + p̃vc)Di,	−1.

Writing this iteration in matrix form over two iteration steps, we obtain

(
Cj,	

Dj,	

)
=Rd,∞(pcc, pvc, ν)

(
Cj,	−2

Dj,	−2

)
, Rd,∞(pcc, pvc, ν) :=

(
ρcc,∞(pcc, ν) 0

0 ρvc,∞(pvc, ν)

)
,

(3.10)

with the convergence factors of the vertex centered and cell centered schemes given by

ρcc,∞(p, ν) := p − fcc,∞(ν)

p + fcc,∞(ν)
, ρvc,∞(p, ν) := p − fvc,∞(ν)

p + fvc,∞(ν)
,

fcc,∞(ν) := 2 Axx

hx
tanh ν

2 , fvc,∞(ν) := Axx

hx
sinh ν.
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3.4 Bounded Domain in the x Direction

Outer boundary conditions can have an influence on the convergence of Schwarz methods,
see for example [14], and we therefore now also study the case of a bounded domain, Ω =
(−a, a) × (0, b) with a = Mhx = M∗hx < ∞, which leads to slightly more complicated
formulas. The Fourier coefficients of the sine transformed grid function are then of the form

û
j,	
m,k = Cj,	(k)λ(k)m + C̃j,	(k)λ(k)−m, û

j,	
m∗,k = Dj,	(k)λ(k)m

∗ + D̃j,	(k)λ(k)−m∗
.

With the notations in Fig. 4, the Dirichlet boundary conditions are enforced in both
subdomains as

uM∗,n = 0,
1

2

(
uM,n + uM+1,n

) = 0.

This gives the relations between the coefficients C, D and their tilde counterpart,

C̃j,	(k) = −λ2M+1Cj,	(k), D̃j,	(k) = −λ2MDj,	(k),

which leads to the Fourier coefficients

û
j,	
m,k = Cj,	(k)

(
λ(k)m − λ(k)2M+1−m

)
, û

j,	
m∗,k = Dj,	(k)

(
λ(k)m

∗ − λ(k)2M−m∗)
.

Inserting these expressions into the transmission conditions (3.8) we get after simplification
using again (3.9)(

2 tanh
(ν

2

)
coth(Mν) + p̃cc

)
Cj,	 =

(
−2 tanh

(ν

2

)
coth(Mν) + p̃cc

)
Ci,	−1,

(sinh(ν) coth(Mν) + p̃vc) Dj,	 = (− sinh(ν) coth(Mν) + p̃vc)Di,	−1.

We thus also get a matrix iteration similar to the unbounded case in (3.10), namely(
Cj,	

Dj,	

)
= Rd,M(pcc,M, pvc,M, ν)

(
Cj,	−2

Dj,	−2

)
, (3.11)

Rd,M(pcc,M, pvc,M, ν) :=
(

ρcc,M(pcc,M, ν) 0
0 ρvc,M(pvc,M, ν)

)
, (3.12)

with the convergence factors of the vertex centered and cell centered schemes for the
bounded case given by

ρcc,M(p, ν) = p − fcc,M(ν)

p + fcc,M(ν)
, ρvc,M(p, ν) = p − fvc,M(ν)

p + fvc,M(ν)
,

fcc,M(ν) = 2 Axx

hx
tanh ν

2 coth(Mν), fvc,M(ν) = Axx

hx
sinh ν coth(Mν).

(3.13)

We now recall the convergence factors for the continuous algorithm from [17],

ρc,a(p, r) = p − fc,a(r)

p + fc,a(r)
, ρc,∞(p, r) = p − fc,∞(r)

p + fc,∞(r)
fc,a(r) = Axxr coth(ar), fc,∞(r) = Axxr,

(3.14)

where

r(k) := 1

Axx

√
ηAxx +

(
πk

b

)2

det A.

It is because we introduced the quantity ν(k) in (3.9) that the discrete convergence factors
have a very similar form to the continuous ones from [17], only the functions f which are
summarized in Table 1 change.

For small hx and hy , ν is equivalent to rhx , and for a = Mhx , ar is equivalent to Mν.
The functions for the continuous and discrete problems are equivalent at first order. We
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need to find parameters p in the transmission conditions which minimize the convergence
factors ρ(k) in modulus over all frequencies k, and we investigate two options: the first is
to use two parameters pcc and pvc and optimize separately the convergence factors ρcc for
the primal and ρvc for the dual equation. The second, which is a first step toward the fully
anisotropic problem, is to use pvc = pcc, and to minimize the spectral radius of the iteration
matrix R(k) for all k.

3.5 The Best Approximation Problem: Separate Optimization

Since with our change of variables (3.9) all convergence factors are of the same form, we
define a general minmax problem for a continuous function f of s on K = [smin, smax],

for F(p, s) := p−f (s)
p+f (s)

and G(p) := sups∈K |F(p, s)|,
find popt ∈ R such that G(popt ) = infp∈R G(p) := δopt .

(3.15)

Following ideas in [12], we now solve this minmax problem for rather general functions f

with the help of several lemmas.

Lemma 3.1 If f is the identity function, then problem (3.15) has a unique solution, given
by

popt = √
sminsmax, δopt = F(popt , smin) = −F(popt , smax). (3.16)

Proof If p is outside K , then moving p toward K decreases F uniformly, so the best p

must be in K . But then G(p) = max(|F(p, smin)|, |F(p, smax)|), and the minimum of G is
thus attained when F(p, smin) = −F(p, smax), which gives (3.16).

Lemma 3.2 If f is a positive monotonic function, then Problem (3.15) has a unique
solution, given by

popt = √
f (smin)f (smax), δopt = F(popt , smin) = −F(popt , smax).

Proof This proof is obtained from Lemma 3.1 by the bijective change of variables f .

Lemma 3.3 Both for the unbounded and bounded domain case, the functions f (r) asso-
ciated with the continuous convergence factors, and f (ν) associated with the discrete cell
centered and vertex centered convergence factors, are positive monotonic functions.

Proof For the unbounded case, we see from the first line in Table 1 that the functions are
increasing. For the bounded case, for fc,a , we only need to check that the function s coth s

is increasing, which we see directly by writing its derivative in the form sinh 2s−2s

2 sinh2 s
> 0. For

fvc,M , we differentiate in ν to find

f ′
vc,M(ν) = Axx

hx

1
2 cosh ν sinh(2Mν) − M sinh ν

sinh2(Mν)
.

Differentiating the numerator again we find

M cosh ν(cosh(2Mν) − 1) + 1

2
sinh ν sinh(2Mν) > 0,
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which shows that the numerator of f ′
vc,M(ν) is increasing, and since it is zero for ν = 0, it

must be positive. Hence, the function fvc,M is increasing. For fcc,M , its derivative is

f ′
cc,M(ν) = Axx

hx

sinh(2Mν) − 2M sinh ν

2 sinh2(Mν) cosh2 ν
.

A series expansion of the numerator shows that this quantity is positive for M ≥ 1,

sinh(2Mν) − 2M sinh ν =
∑
n≥1

2M((2M)2n − 1)
ν2n+1

(2n + 1)! > 0,

which concludes the proof of the lemma.

It remains to apply the lemmas to the functions f for the different cases to obtain

Theorem 3.1 The best performance of the Robin Schwarz algorithm both in the unbounded
and bounded domains, in the continuous case with s := r and in the discrete cases with
s := ν is attained for popt = √

f (s(kmin))f (s(kmax)), where f is given in Table 1, and the

associated convergence factor is then bounded by
∣∣∣√

f (s(kmax))−√
f (s(kmin))√

f (s(kmax))+√
f (s(kmin))

∣∣∣. Here, kmin = 1

and kmax is defined in (3.6).

3.6 Coupled Optimization

We suppose now that the optimization parameters pcc and pvc for the primal and dual
problems are equal to p, pcc = pvc = p. The convergence speed is then governed both
in the bounded and unbounded case by the spectral radius of the corresponding iteration
matrix R, that is

ρd(p, ν) := max(|ρcc(p, ν)|, |ρvc(p, ν)|).
We thus obtain for two functions f1(= fcc) and f2(= fvc) the general best approximation
problem

for Fj (p, ν) = p − fj (ν)

p + fj (ν)
, F (p, ν) = maxj (|Fj (p, ν)|), G(p) = supν∈K |F(p, ν)|,

find popt ∈ R, G(popt ) = infp∈R G(p) =: δopt , K := [νmin, νmax].
(3.17)

Lemma 3.4 If f1 and f2 are positive increasing functions of ν, and f2 ≥ f1, then there
exists a unique solution popt of (3.17) given by

popt = √
f1(νmin)f2(νmax), δopt =

√
f2(νmax) − √

f1(νmin)√
f2(νmax) + √

f1(νmin)
.

Proof Since δopt ≤ G(p = 1) < 1, popt must be positive, since G(p < 0) > 1. We next
evaluate the maximum in the function F : for positive p, we obtain

(
p − f1(ν)

p + f1(ν)

)2

−
(

p − f2(ν)

p + f2(ν)

)2

= 4p(f2(ν) − f1(ν))(p2 − f1(ν)f2(ν))

(p + f1(ν))2(p + f2(ν))2
,
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which shows that

F(p, ν) =

⎧⎪⎪⎨
⎪⎪⎩

∣∣∣∣f2(ν) − p

f2(ν) + p

∣∣∣∣ if p ≤ √
f1(ν)f2(ν),

∣∣∣∣f1(ν) − p

f1(ν) + p

∣∣∣∣ if p ≥ √
f1(ν)f2(ν).

(3.18)

Now for all ν, we have by assumption that f2(ν) ≥ f1(ν), and therefore p ≤ √
f1(ν)f2(ν)

implies p ≤ f2(ν), and p ≥ √
f1(ν)f2(ν) implies p ≥ f1(ν). The function f defined by

f (ν) = √
f1(ν)f2(ν) is increasing therefore bijective, and we can thus write F from (3.18)

without the modulus,

F(p, ν) =

⎧⎪⎨
⎪⎩

f2(ν) − p

f2(ν) + p
if p ≤ f (ν),

p − f1(ν)

f1(ν) + p
if p ≥ f (ν).

We next show that if popt exists, it must lie in f (K): if p ≤ f (νmin) then for all ν ∈ K ,
p ≤ f (ν), and therefore

F(p, ν) = f2(ν) − p

f2(ν) + p
,

which is an increasing function of ν over K , and therefore reaches its maximum at νmax:

G(p) = F(p, νmax) = f2(νmax) − p

f2(νmax) + p
.

Now G is a continuous decreasing function of p on (−∞, f (νmin)) and reaches its mini-
mum at f (νmin). A similar argument holds for p ≥ f (νmax) and (f (νmax), +∞). Therefore,
the minimum of G over R is reached over f (K). Then by compactness and continuity, there
exists popt ∈ f (K), δopt ∈ (0, 1) solution of the minmax problem.

To determine popt ∈ f (K), we consider F now as a function of ν,

F(p, ν) =

⎧⎪⎨
⎪⎩

p − f1(ν)

f1(ν) + p
if ν ≤ f −1(p),

f2(ν) − p

f2(ν) + p
if ν ≥ f −1(p).

Hence, F(p, ν) is decreasing in ν on [νmin, f
−1(p)], and increasing in ν on [f −1(p), νmax],

and therefore

G(p) = max (g1(p), g2(p)) with g1(p) = p − f1(νmin)

f1(νmin) + p
and g2(p) = f2(νmax) − p

f2(νmax) + p
.

As g1 increases, g2 decreases, and looking at their values at 0 and ∞, it is easy to see that
there exists popt such that G(p) = g2(p) for p ≤ popt and G(p) = g1(p) for p ≥ popt .
Hence, the minimum is reached at popt , that is at equilibrium, g1(p

opt ) = g2(p
opt ), and

popt = √
f1(νmin)f2(νmax), which leads to

G(popt ) =
√

f2(νmax) − √
f1(νmin)√

f2(νmax) + √
f1(νmin)

.

Theorem 3.2 The best performance for the DDFV Robin Schwarz algorithm for a single
parameter pcc = pvc = p is obtained for

p
opt
ddf v,α = √

fcc,α(νmin)fvc,α(νmax),
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where α ∈ {M,∞} for either the bounded or unbounded case from Table 1, and the

convergence factor is then bounded by
√

fvc,α(νmax)−
√

fcc,α(νmin)√
fvc,α(νmax)+

√
fcc,α(νmin)

, where νmin = ν(kmin),

νmax = ν(kmax) with kmin = 1 and kmax = b
hy

− 1.

Proof It suffices to notice that for all ν > 0, fcc,α(ν) < fvc,α(ν), as we can see from
Table 1, since

fcc,α(ν) < fvc,α(ν) ⇐⇒ 2 tanh
ν

2
< sinh ν ⇐⇒ 2

sinh ν
2

cosh ν
2

< 2 sinh
ν

2
cosh

ν

2

⇐⇒ cosh2 ν

2
> 1,

which clearly holds. Then we apply Lemma 3.4 with f1 = fcc,α and f2 = fvc,α .

4 Numerical Experiments

We now test our optimized DDFV Schwarz algorithms numerically, both for cases cov-
ered by our analysis on rectangular meshes with two subdomain decompositions, and more
general meshes and decompositions including cross points.

4.1 Experiments Covered by our Analysis

We study as our first model problem

−∇ · (A∇u) + u = 0, in Ω = (−1, 1) × (0, 1),

with the two subdomains Ω1 = (−1, 0)×(0, 1) and Ω2 = (0, 1)×(0, 1), and use rectangu-
lar meshes, for which our fully discrete analysis holds. We determine numerically optimized
parameters pnum by running our implementation to find the parameter which gives the best
performance. We simulate directly the error equations, and start with a random initial guess
to make sure all error components are present. We use the three meshes shown in Fig. 5,
which we refine by dividing the mesh sizes by 2 several times. We show in Table 2 the cor-
responding results, including our theoretically optimized parameters at the continuous and
discrete level from Theorems 3.1 and 3.2. For the cell centered and vertex centered schemes,
we use for the optimized parameters the same notation as in Table 1 for the corresponding
functions: p

opt
cc,∞ and p

opt
vc,∞ for the unbounded domain optimized choice, and p

opt
cc,M and

p
opt
vc,M for the bounded domain optimized choice. For the DDFV results, we use p

opt
ddf v,∞

and p
opt
ddf v,M for the theoretical optimized parameters from Theorem 3.2. For the optimized

Fig. 5 Isotropic rectangular mesh called m22 on the left, and anisotropically refined rectangular mesh in
the x-direction called anisox4y1 in the middle, and in the y-direction called anisox1y4 on the right, for the
results in Table 2
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parameters from the continuous analysis, there is also a small influence on the value depend-
ing on the use of a cell centered scheme or a vertex centered scheme, since the cell centered
scheme uses one more grid point in the interior, which increases the estimate kmax, see
(3.6), and we use p

opt
ccc,∞, p

opt
cvc,∞, p

opt
ccc,a , and p

opt
cvc,a for the corresponding values. Finally,

we denote by p
opt
cc,num, popt

vc,num and p
opt
ddf v,num the value of the parameter which worked best

in the numerical experiments by minimizing the numerical convergence factor ρnum of the
method. The numerical convergence factors ρnum were computed by dividing the error after
100 iterations by the initial error and taking the 1/99-th root, and we denote the optimized
value by ρ

opt
num. There are several interesting observations: first, we see that our new discrete

bounded domain analysis very well predicts the numerical behavior, both for the cell cen-
tered and vertex centered discretizations and the combined DDFV scheme. Second, we see
that for the Laplace case on an isotropic mesh, the bounded and unbounded analyses give
similar results, and the vertex centered scheme performs like predicted also by the contin-
uous analysis, while the cell centered scheme works best for a slightly smaller value of the
parameter, which is very well captured by the discrete analysis. In the anisotropic case with
isotropic mesh, there is a substantial difference between the continuous and discrete analy-
sis, and the continuous parameters work less well with strong diffusion along the interface
direction, Ayy = 16. There is also a big difference between the cell centered and vertex
centered discretizations then, the former needs a much smaller, and the latter a much larger
optimized parameter than predicted by the continuous analysis. This is very well captured
by our new discrete analysis. With strong diffusion across the interface, Axx = 16, the dif-
ference between the bounded and unbounded domain analysis becomes important, but the
difference between cell centered and vertex centered discretization is negligible. Finally, if
one adapts the discretization to the anisotropy with a corresponding anisotropic mesh, then
the continuous analysis becomes more appropriate again, the marked discretization differ-
ences above diminish, though the bounded versus unbounded domain analyses importance
remains. To conclude, for anisotropic diffusion, it is important to have optimized parame-
ters for the discretization employed, and taking into account the subdomain sizes, especially
when the anisotropy is large.

4.2 Experiments not Covered by our Analysis

We next study a two subdomain decomposition for DDFV discretizations where our analy-
sis does not hold any more. We show the meshes used in Fig. 6, namely a triangular mesh,
a non-matching rectangular mesh, and a general polygonal mesh. We show in Table 3 the
results we obtained as a function of the mesh size at the interface hy , and we now also show
the numerically optimized convergence factors ρ

opt
ddf v,num, and for the non-matching rectan-

gular mesh a heuristic formula p
opt
ddf v,M(

hy

3 ) for a theoretical value with the corresponding
numerical ρddf v,num.

Fig. 6 Meshes not covered by our discrete analysis used with refinements for Table 3
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Table 3 Heuristically and numerically optimized parameters p for different non-conforming and non-
rectangular meshes, and corresponding numerical contraction factors

Triangular mesh non-matching rectangular mesh General polygonal mesh

hy p
opt
ddf v,num ρ

opt
ddf v,num p

opt
ddf v,M(

hy

3 ) ρddf v,num p
opt
ddf v,num ρ

opt
ddf v,num p

opt
ddf v,num ρ

opt
ddf v,num

Axx = 1, Ayy = 1, η = 1

2−3 7.14 0.36862 14.96 0.65728 15.48 0.65150 7.86 0.47536

2−4 10.03 0.50431 21.18 0.74192 21.76 0.73881 11.52 0.58273

2−5 14.02 0.61881 29.96 0.80624 29.77 0.80620 16.01 0.67410

2−6 19.55 0.70966 42.37 0.85492 39.07 0.84919 22.74 0.74700

Axx = 16, Ayy = 1, η = 1

2−3 28.97 0.36842 62.07 0.55472 46.24 0.53020 28.74 0.40197

2−4 41.01 0.50141 87.78 0.63339 74.94 0.58622 44.78 0.53487

2−5 57.99 0.62145 124.15 0.72350 107.78 0.6909 61.77 0.63437

2−6 78.78 0.71177 175.57 0.79615 150.21 0.76996 83.59 0.71457

Axx = 1, Ayy = 16, η = 1

2−3 33.89 0.46124 98.21 0.82432 110.73 0.81007 38.30 0.61290

2−4 47.83 0.58546 140.66 0.85607 153.64 0.85031 57.51 0.68985

2−5 67.16 0.68884 199.58 0.88194 188.27 0.87939 81.14 0.75575

2−6 93.52 0.76320 282.47 0.91427 220.13 0.89859 112.62 0.81342

For the triangular mesh, we see that the discrete bounded domain analysis from Table 2
still gives quite a good prediction p

opt
ddf v,M of the numerically better performing parameter

indicated by p
opt
ddf v,num in Table 3, it is just a bit too large. For the non-matching mesh

however, it seems that the artificially cut mesh size hy

3 visible in the middle in Fig. 6 needs
to be used in the discrete formulas to get a good prediction, both hx and hy must be divided
by 3, which leads to parameters close to the best performing ones numerically. Finally, for
the general polygonal last mesh, our discrete rectangular mesh analysis give rather good
predictions. To conclude, the new discrete optimized parameters work also outside their
scope of validity, and for non-matching grids, the smallest artificially created mesh size at
the interface should be used in the theoretical formulas.

4.3 Image Reconstruction Application

We finally show an application of anisotropic diffusion for image reconstruction. Our
domain embedded in the rectangle (−2, 2) × (−1, 1) is shown in Fig. 7. It represents a 2D
section of a model underground, where in the refined mesh region at the bottom there is a
salt dome of interest for oil recovery. On the top we have the surface of the earth, with a flat
part and a downward sloped part. We decompose the domain into four subdomains, three
rectangular ones and the top right one is triangular, and mesh them using different mesh-
ing techniques. In the center the decomposition has a cross point. We generate an artificial
image ũ0(x, y) in this domain with several layers, shown in Fig. 8 at the top on the left. We
then add random noise to this image to obtain u0(x, y), which leads to the image on the top
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Fig. 7 Domain for the image reconstruction example for a salt dome. The computations are done with a 3
times more refined mesh

right in Fig. 8. To remove the noise, one can use a time dependent diffusion equation of the
form

∂tu(x, y, t) = ∇ · (A(x, y)∇u(x, y, t)), u(x, y, 0) = u0(x, y),

and take one or a few time steps of a Backward Euler method to smooth the high frequency
noise. If one does one step with the time step �t = 0.1 on the mesh in Fig. 7, and uses
isotropic diffusion, A = 1, we obtain the result shown at the bottom left of Fig. 8. We see
that all sharp boundaries have also been diffused, together with the noise. To avoid this, we
choose now anisotropic diffusion, with

A =
(

1 0
0 1e − 5

)

Fig. 8 Top left: original image without noise. Top right: image with random noise. Bottom left: reconstructed
image using isotropic diffusion. Bottom right: reconstructed image using anisotropic diffusion
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except in the region −1 < y < −0.75 and −0.3 < x < 0.3 where we chose

A =
(

1e − 5 0
0 1

)
.

This choice is well adapted to our image, since in the special zone, the boundaries are
vertical, where in the rest they are horizontal, and we do not want to diffuse across the sharp
interfaces, only along them. The reconstruction computed with our algorithm is shown at
the bottom right in Fig. 8. We clearly see that anisotropic diffusion is very well capable of
preserving sharp edges in the noise removal process. In a more realistic situation one would
need to use in the anisotropic diffusion tensor the gradient of u to determine the diffusion
directions to avoid. Using the Robin parameter p = 0.05, our algorithm needed 14 iterations
to converge to a tolerance of 1e − 3, whereas with p = 0.01 it took 45 iterations, and with
p = 1.5 it took 213 iterations. This illustrates well the importance of a good choice of the
parameter p.

5 Conclusion

Discrete Duality Finite Volume methods (DDFV) are a recent class of powerful discretiza-
tions for anisotropic diffusion problems. They reach high accuracy also on distorted meshes
and for high anisotropies due to excellent gradient reconstructions. DDFV methods require
however more unknowns than classical finite volume methods, and therefore good solvers
are needed. Optimized Schwarz methods (OSM) are excellent candidates for this task, since
they are naturally parallel, and their performance can also be tuned for highly anisotropic
diffusion. We proved convergence of a non-overlapping Schwarz method with Robin trans-
mission conditions for a very general decomposition of a DDFV discretized anisotropic
diffusion problem into many subdomains including cross points, and also discovered that
the Robin parameter can be optimized separately for primal and dual grid components in
DDFV. We derived such asymptotically optimized parameters that are easy to use in prac-
tice, and showed in numerical experiments that very good convergence speeds are achieved,
also for the concrete application of image reconstruction. This application shows however
also a further research direction, namely how the optimized parameters should be adapted
to highly variable coefficients, a case not covered by the present analysis. Also higher order
transmission conditions of Ventcell type should be investigated which can further acceler-
ate OSMs. Finally, one should also study the preconditioning capabilities of our OSMs for
Krylov methods, but these topics will be addressed elsewhere.
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