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Abstract

Discrete Duality Finite Volume (DDFV) methods are very well suited to discretize
anisotropic diffusion problems, even on meshes with low mesh quality. Their performance
stems from an accurate reconstruction of the gradients between mesh cell boundaries, which
comes however at the cost of using both a primal (cell centered) and a dual (vertex cen-
tered) mesh, and thus leads to larger system sizes. To solve these systems, we propose to use
non-overlapping optimized Schwarz methods with Robin transmission conditions, which
can also well take into account anisotropic diffusion across subdomain interfaces. We study
these methods here directly at the discrete level, and prove convergence using energy esti-
mates for general decompositions including cross points and fully anisotropic diffusion. Our
analysis reveals that primal and dual meshes might be coupled using different optimized
Robin parameters in the optimized Schwarz methods. We present both the separate and cou-
pled optimization of Robin transmission conditions and derive parameters which lead to the
fastest possible convergence in each case. We illustrate our results with numerical experi-
ments for the model problem, and also in situations that go beyond our analysis, with an
application to anisotropic image reconstruction.

Keywords Non overlapping optimized Schwarz method with cross points - Robin
transmission condition - DDFV finite volume scheme - Anisotropic diffusion

Mathematics Subject Classification (2010) 65N55 - 65N08 - 65F10

1 Introduction

Anisotropic diffusion problems arise in many applications, from geology [31] to medicine
[11], but more recently they play a major role in image reconstruction [32], pioneered by
the Perona-Malik non-linear partial differential equation [30], see also the fundamental
contributions of the Slovak school [10, 25, 29]. With the ever increasing demand for high
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accuracy and rapid solution, and the availability of more and more highly parallel comput-
ing systems, parallel algorithms to simulate such problems are in high demand, in particular
domain decomposition methods which are naturally parallel. Non-overlapping optimized
Schwarz methods form a class of such domain decomposition methods; for an introduction,
see [12, 13] and references therein. They were introduced for anisotropic diffusion problems
at the continuous level in [17], where their convergence was proved for a two subdomain
decomposition using energy estimates, and optimized transmission conditions between the
subdomains were derived, also at the continuous level. For a reduction of the anisotropic
optimization of the transmission conditions to an isotropic one, see [15, Section 5]. To use
such algorithms on a computer, they have to be discretized, and for anisotropic diffusion
problems, discrete duality finite volume (DDFV) methods are well suited because of their
accurate gradient reconstruction. This has been beneficial in many situations: see [3, 23]
for diffusion problems with discontinuous coefficients, [6] for div-curl, [5] for advection-
diffusion, [7] for Stokes, and [24] for Maxwell problems, and [21] for image reconstruction.
A first variant of a DDFV optimized Schwarz algorithm for fluid mechanics can be found
in [4, 26]; its convergence did however not reach the full potential of optimized Schwarz
methods, due to the discretization technique used at the interfaces. An improved treatment
of the transmission conditions can be found in [16, 18], see also [2] for a space-time vari-
ant, and a first application to anisotropic diffusion was tested in [17]. There has however
so far never been a convergence analysis of DDFV optimized Schwarz methods at the dis-
crete level for general decompositions, including cross points, and also the optimization of
the transmission conditions at the discrete level is lacking. In [17], it was discovered that
the best working parameters in the transmission conditions can differ substantially from the
ones predicted by the continuous analysis for anisotropic diffusion, and a similar discov-
ery was made in [33, 34] for various discretizations of evolution problems, see also [22].
We therefore study here for the first time non-overlapping optimized Schwarz methods with
Robin transmission conditions at the discrete level for DDFV discretizations of anisotropic
diffusion problems. We give a convergence proof using energy estimates for general decom-
positions into many subdomains including cross points, and then optimize the transmission
conditions at the discrete level. Our analysis reveals an interesting, new interplay between
the primal and dual mesh components of the DDFV discretization and the optimized trans-
mission conditions used in optimized Schwarz methods, a feature which remained hidden
in the continuous analysis in [17]. We derive optimized transmission conditions, both when
using separate parameters on the primal and dual mesh, or the same for both. We then com-
pare our discrete optimized transmission conditions to the ones obtained at the continuous
level in [17], and illustrate our findings using numerical experiments, both for model prob-
lems and discretizations covered and not covered by our analysis, and an example in image
reconstruction that goes quite beyond, mixing different mesh types and containing cross
points, with an application in image reconstruction.

2 Optimized Schwarz for Anisotropic Diffusion

We are interested in the solution of anisotropic diffusion problems of the form

Lw) = —div(AVu) +nu = f  in £2,

u=20 on 052, 2.1
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where A is a symmetric positive definite matrix with L> coefficients,

Ax(x,y) Axy(x,y))
Axy(xsy) Ayy(xsy) ’

and (x,y) € 2 — n(x,y) > 0is a given non-negative function in L*. A DDFV dis-
cretization on arbitrary domains and meshes of the anisotropic diffusion problem (2.1),
and the associated non-overlapping optimized Schwarz solver were introduced in [17], and
convergence of the Schwarz method was proved at the discrete level for a two subdomain
decomposition using energy estimates. We are interested here in a complete discrete con-
vergence analysis of the optimized Schwarz method with Robin transmission conditions for
general decompositions including cross points, and also an optimization of the discrete con-
vergence factor, since differences between the continuous analysis and discrete performance
were pointed out in [17].

(x,y) €2 = A(x,y)Z(

2.1 Classical Notation for DDFV Schemes

DDFV discretizations need a certain amount of notation for which we follow [1]. A DDFV
mesh 7T consists of a primal mesh 90, the black triangles in the example in Fig. 1 on the
left, leading to a cell centered (CC) scheme, and a dual mesh 9t U 990t*, for which we
show only two light red cells in Fig. 1 on the left, leading to a vertex centered (VC) scheme.
The primal mesh 91 is a set of disjoint open polygonal control volumes K C £2 such that
UK = £2. We denote by 9901 the set of edges of the control volumes in 9 included in 92,
which we consider as degenerate control volumes. For all neighboring control volumes K
and L, we assume that K N dL is an edge of the primal mesh denoted by ¢ = K|L. To each
control volume and degenerate control volume K € 9t U 9901, we associate a point xg € K,
see the black dots in Fig. 1. This family of points is denoted by X = {xx, K € 2MUIM}. Let
X* denote the set of vertices xx+ of the primal control volumes in 907, see the red squares in
Fig. 1. We split this set into X* = X U X}  where X! N 352 = @ (filled red squares)
and X}, C 382 (not filled red squares).

For each xg+ we also introduce a control volume, see the light red polygons in Fig. 1 on
the left for an interior and boundary control volume example, whose corners are the xx. All
these control volumes define the set 9t* U 99t* of dual control volumes that forms also a
partition of £2 into disjoint polygonal control volumes.

Given the sets X and X*, we define the diamond cells D, -+ being the quadrangles whose
diagonals are a primal edge 0 = K|L = (xg+, x; ) and a dual edge o* = K|L = (xg, xL),

Moy

De Dy

D €Dy

feom*
MK e

Fig. 1 DDFYV notation. Left: primal mesh and example of an interior and a boundary dual cell. Middle top:
example of a boundary diamond cell. Middle bottom: example of an interior diamond cell. Right: example
of diamond cells associated with xkx and xg+ in the interior and on the boundary
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see Fig. 1 in the middle for two examples. The set of diamond cells is denoted by ©, and it
has two disjoint subsets: the interior diamond cells D € ®;,; (e.g. Fig. 1 middle bottom),
and the boundary diamond cells D € ®y,4 (e.g. Fig. 1 middle top) for which [xg*, x;+] C
082, where x; € (xg*,x.+). The complete domain is also formed by all the diamonds,
2 = UpeoD. To each diamond D € ®, we associate a point xp € [xg+, x +]. Let Dk be
the set of diamonds with xx as vertex and Dg+ be the set of diamonds with xg+ as vertex,
see Fig. 1 on the right for examples.

For any primal control volume K € 9t U 9901, we denote by my its Lebesgue measure,
and similarly use my+ for the dual control volumes. For a diamond cell D with vertices
(xk, xg*, XL, X.*), we denote by xp the center of the diamond cell D, that is the intersection
of the primal edge o and the dual edge o*, mp its measure, m, the length of the primal
edge o, my+ the length of the dual edge o*, and m,, , the measure of 9K* N 942.

In DDFV, a variable uy is associated with all primal control volumes K € 9t U 9901, and
a variable uy~ is associated with all dual control volumes K* € 9t* U 991t*. We denote the
approximate solution on the mesh 7 by u+ € R7, where

ur = ((UdkeEruamm) » () e@ruames)) - 22

Following [9, 23], we define a consistent approximation of the gradient operator denoted by
V2 tur € RT > (VPur)y o € RH® by

1
VDMT = % [y — ug)Ngp + (up+ — ugs)Ngs1+], VD €D, (2.3)

with Ngp 1= (xp+ —xg+)t and N 1= (x. —xK)l, where for any vector (x, y), (x, y)l =
(—y, x). We also define a consistent approximation of the divergence operator denoted by
div” : &p = (Ep)pen € (R?)® > div7 £p € R7 by

1
divien == — Y (¢p.Nx), VKeM, and diviep =0, VK € a0, (2.4)
K De®g

\ 1
divk gp = — > (€p.Nisis),  VK* € I* U9, (2.5)
K* D€©K*

Foru; € R” and fr € R7, we denote by L7 (ur, f7) = 0 the linear system

— div® (A@ V%T) ok = fo,  VEKeM, (2.3a)
—divK (A@ V%T) Foeue = fe,  VKS e, (2.3b)
U =0, VK€M,  ug =0, VK€M, (2.3¢)

where for smooth functions A, f and n we use pointwise evaluations

Ao = (Ap)pem, Ap := A(xp),
fr = ((fOxemuamy . Fexreomuamn),  fx == fxx),  fer = f(xge),
nr = (ke@ruamy . (ks )xre@ruame) » Mk = N(xk), k= = N(xgs).

@ Springer



Discrete Optimization of Robin Transmission Conditions... 1353

For non-smooth functions, mean values of the functions can be used. We also recall the
fundamental discrete duality property satisfied by these operators,

1 X
div7ép, ur)r == 5 (Z mydiviEpuy + Z mydiv® SQMK*)

KeM K*eMt*

— D ._ D

= =Y mpCp. VPur) := o,V ur)so.
De®

2.2 DDFV on Composite Meshes

In the case of a general domain decomposition into many subdomains £2 = Uy, j§;
including cross points, we consider for each subdomain §2; a DDFV mesh 7; = (91; U
a9 j, M U 9MN7), and the associated diamond mesh D ;. We assume that §2; is covered
by the pr1mal mesh M, so that M = UIM; can be taken as the primal mesh of a DDFV
mesh 7 associated to §2. This induces that the interface I'j; between the two sub-domains
£2; and £2; is covered by primal boundary edges of d901; or 39)1;, and that corner points are
located at the centers of their dual cells.

For §2;, we denote the set of neighboring indices by I; := {i such that I';; # ¢} where
I'j; is the interface between §2; and §2;. We denote by

D, :={De®;, DN I} # @} the diamond cells intersecting Ij;,

0M; = {K € 99M;, KN I'j; # 1} the boundary primal cells intersecting I'};,
M 1 e = (K" € 3N, K* N T A0} the interior boundary dual cells intersecting I'ji,

0M; p = {K € 99M;, KN 2 # )} the boundary primal cells intersecting 952,

M} p = {K* € MT, K* N 32 # ¥} the boundary dual cells intersecting 9£2.

We call the set of all interface diamond cells
Djr=Vie;D; ;.
The set of all boundary primal cells not located on a Dirichlet boundary is called
oM r = u,-e,jasmj,p,..
The set of all boundary dual cells not located on a Dirichlet boundary is called

. *
8931] Lint "= U,‘e[jaf)ﬁj’n

,int*
Finally, at cross points Cjy, i.e. for i, k € I; such that I'j; N I'jx = {Cix}, see Fig. 2,
let
azmj Cix " ={K" ¢ aim’/’f,x](* = Cir}

denote the dual cross point cells, and we define the cross point and interface sets

0N 1= Uy er, 00005 o OIS o = 99 1, U BT o

We assume that the meshes 7; are compatible in the following sense:

1. Ifi € I}, then the two meshes 7; and 7; have the same vertices on I'j;. This implies in
particular that the two meshes have the same degenerate control volumes on [j;, that is
af)ﬁj,” = 39:“1'71“/.

2. The edges o, whose center is denoted by x; , can be assimilated to a primal degenerated
boundary control volume for both meshes, i.e. L C a90t; N dN;.
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1354 M.J. Gander et al.

Fig.2 Left: example of a mesh for §2, with dual cells crossing >3 and I'4;. Right: example of a composite
mesh associated to the domain decomposition 2 = U?:l £2; on the left, with the notation for the interface
I'y; with boundary primal and dual cells

We next define the DDFV discretization for the transmission conditions of Robin type.
We associate

- one unknown per interior and boundary primal and dual cell ur, € R7,
*

— o : : : *
— one flux unknown g+ = ¥ ' xx per interface interior dual cell K* € 99 i Iine

*

—  two flux unknowns w;. « and 1/;}‘ «+ Per cross point dual cell K* € 390t i
’ ’ g

We denote by 1,[ij e R the collection of all flux unknowns Y+ for inner dual interface

X * * . * .
UG OM hr, € ROV 1 and p, p* two positive constants,

we denote by L7 (u7—j, w7—j, ij, h7—j) = 0 the linear system for ur; € R75, WTJ- € ]Raim?f
given by

cells. Given ij elR

—divK (AQV%TJ_) + kg = fr. VK € M, (2.4a)
—div®’ (AQV%TJ.) e = fe, VKT €, (2.4b)
1
- e Z(ADVDMT/- , NK*L’> + Moy Vx| +nxrugr = fir, VK*GBW;’FJ",, (2.4c¢)
DEDK*
1 D 1 k
o | X (A0VPur N ) gy W+ mg W
DE@K*
+ngrugs = fyr, VK*Gam;CW (2.44d)
1
— (ApVPur, N ) + pus = hju, VL€ 99 p, (2.4¢)
mey ’ ’
1//'](* + p*MK* = ]’lj,](*, VK* (S 8fmjffyim, (24f)
YK o Pue = hE oand Y+ pruge = R VKT € 00 (2.49)
ug =0, VK € 990, p, ug- =0, VK* e am;D, (2.4h)
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where we added the subscript j in the interface data / ; to denote this is data for subdomain
£2;. Equations (2.4a)—(2.4d) correspond to an approximation of the equation after integra-
tion on 901, S)JT’]‘ and 39)“(}1 Equations (2.4e)—(2.4g) are related to the Robin transmission
conditions on 9901 - and 893?7, - Finally, (2.4h) corresponds to the homogeneous Dirichlet
boundary condition on 0£2.

Theorem 2.1 (Well-posedness of the DDFV subdomain problems) For any f7—j €

RYGUITGUONG g th c Ramf'ruamﬂ, there exists a unique solution (u7—j, WT]) €
. *
R7 x ROP.rU09 of the linear system

L7 (uTj,wTj,ij,th) —0.

Proof By linearity, since the number of unknowns and the number of equations coincide,
it is sufficient to prove that if L7 (uTj, 1//T,., 0,0) = 0, then ur;, = 0 and WT/ = 0. We
multiply (2.4a) by mgux and equations (2.4b-2.4d) by mg+ug+ and sum these identities
over all the control volumes in 9)1; and Dﬁj U 8917{3‘ - Reordering the different contributions
over all diamond cells, we obtain

2 Z mp (ADVDMij VD”7’]~> + p(ur;, ur)oom; 1

DE@j
* 2 2
P ur o Y mnug + Y meneue =0, (2.5)
KeM; K*eMTUIM o
where
(uTj, UTj)aimj_p = Z MoUpVy = Z Z MmeUL VL, (2.6)
Leam/_[‘ iEIj LEBEUZJ'.[‘[.
(r vrdoms =) Y Motk v+ ) (maé JFmok ,)ux*vx*-(2~7)
g Js J,K J,K
iel; K*eazmjﬂ K*:kaeam’;‘c

Since all the terms are positive, we obtain if n > 0 from the last two terms in (2.5) that
ur;, = 0.If n = 0, we get first from (2.5) that ur; vanishes on the boundary asmj,puasmj e

since p > 0 and p* > 0. Furthermore, since A is coercive, (2.5) also shows that VDuTj
vanishes, and thus u7, = 0 because a DDFV Discrete Poincaré inequality proved in [1]

gives
Z mKui + Z mK*ui* <C Z mD|VDuTj|2
KeM; K*eMTU0M; - De®
as soon as u7; vanishes on part of 090t; and part of asm;. We finally obtain 7, = 0 using
the transmission conditions (2.4f) and (2.4g), which are homogeneous. O

2.3 DDFV Schwarz Algorithm for Anisotropic Diffusion

We can now present the optimized Schwarz algorithm discretized by DDFV: for fr. €
RGPV 1 and an arbitrary initial guess hOT] e Razmjvpuaimj-,r, jef{l, ..., J}, the

algorithm performs for iteration index £ =0, 1,2, ... and i € I; the two steps:
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1356 M.J. Gander et al.

1. Compute the subdomain solutions (u“l, ZH) e RT x R™r by solving for j =
1,2,...,J

L7 ( S frnt ) —0. 2.8)

2. Compute the new values h[{_l to be transmitted to neighboring subdomains,

1
n = (ADVDuZle, NKL> +pultl, Yieamp, Viel, (2.92)
o
W = —ufE A prulTl VKT € 00 o VLF € 0Ny sitoxie = xus Vi€
(2.9b)
S = —y S prul L VKT € 99 (VLY € 0 st e = xie, Vi€ 1 (290)

We can now prove convergence of the non-overlapping DDFV optimized Schwarz algo-
rithm with Robin transmission conditions. We denote by 7 = (9%, 9901, I*, 9MT*) the
DDFV mesh constructed from the primal discretization of the sub-domains £2;: 9t = U;.

Theorem 2.2 (Convergence of the DDFV Schwarz algorithm) The iterates of the opti-
mized Schwarz algorithm discretized by DDFV defined by (2.8)—(2.9) converge as ¢ tends
to infinity to the solution u+ of the DDFV scheme (2.3) on 2.

Proof The crucial step of the proof consists in rewriting the classical DDFV scheme (2.3)
on §2 as the limit of the Schwarz algorithm. To this end, we introduce new unknowns near
the interface I';, see Fig. 3:

— forallK € M; and K* € imj., we set uy’ 1= ug and u$s 1= ug+,
— forallk € 9901 p and K* € 89)?;‘. p> wesetul® :=0and ugs :=0,

Q)

Fig.3 Left: new unknowns needed to describe the DDFV scheme on §2 as the limit of the Schwarz algorithm.
Right: splitting of the diamond cells at the interfaces
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— forallL = Kj|K,' S 89711',1"[. = 8‘))?,»_13., define
mD,'qu + ijuKi

= ],[OO = R —
mp

so that (Ap, V27 us®, N1 ) = — (Ap, VP, Ny ), with D; € ;. and b € D, -

with AD‘ = ADi = AD anDj = Xp; = XL.

- forall K* € M such that x+ € I3, ie. K* = K UK] with K} € 99, ;,, and
PN Al
¥ * © _ 00 ._
Ki € ami,rj,int’ set uj’](;k_ - ul‘.K;k = Ug* and
1 D my
o0 00 . .
Vi =% = o 2 (A0VPHE Ny ) + e = fie)
J i maK* DE@K*_ ; mUK*
J
! D, 00 myx
= — Z (ADV Mﬁ,NKTL;‘)_ (Ni=ttxex — fier). (2.10)
mUK* DE@K?k Og*
1

Equation (2.10) comes from (2.3b), in which we have split the terms from K} and Kj,
noting that my» = Mg + mys.

— Atacross point ¢, we denote by I, the set of indices of the subdomains that intersect in
that cross point. The cross point is the center of a dual cell K* that is split in the domain

decomposition. We define for each subcell K;‘. C £2j, j € I. an unknown “;.'OK*. = Ugr.
)

We also have to introduce for all j € I additional unknowns w;iﬁi and Wflff in such a
R R
way that
i,00 k,00
O.jl'.K*. w-/’K_’; + 0]/'{.1(*. 1//-/’1(_9;
J J
D
= Z (ADV Urj, NK*L*) - mK’/‘.nK*uj,K* + mK’/‘.fK* = bj-
De® . .
J

According to the DDFV scheme (2.3), Y jer, bj = 0. We denote by n, the cardinal
of I.. Now imposing 1//;10(% = —1//1:{ chf, these fluxes must satisfy a linear system of the

form By = b with B an n, X n. matrix, b = (bj) ey, and ¥ the vector of w;ii
R

after selection of n. out of the 2n, possible ones, see [20] where this technique to treat
cross points was introduced. For example, in the case n, =4, I. = {1, 2, 3, 4} with £2;
arranged clockwise, we can take

lﬁz’of mnlz KF 0 0 —mdzl] K¥
1,K] K Kyq
Yoo —m,> M3 0 0
y=] 2% B= b e . @I
1//4’03 ’ 0 —mg3 m 4 0
3,K3 2,K% 3,K%
wl’oo 0 0 —-m ’ m
45KX G;,q U4,KZ

The rank of B is equal to n. — 1 and b € Im B since ZJE,C bj = 0. Therefore, ¥
exists but is not unique. The i at the cross point will thus in general not converge in the
optimized Schwarz algorithm, which does however not affect the convergence of the u,
see [20].
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1358 M.J. Gander et al.

—  Therefore, we can define

K, = —m% (ADVDM?;,NKL) +pulS, VLEMp, Viel;, (212
S = Wi+ Puds, (2.12b)
VK® € 00 1, iy VLT € MG [y 8.6 Xix = X0, Vi € U,

W5 = =)+ prugs.. (2.12¢)

VK* € 89)?7qC,VL* € M ¢ st xr = xpx, Vi € [,

We have constructed (u‘;—‘;, W%? ) from the solution u+ of the DDFV scheme (2.3) on §2 such
that

L7 (452 V. fry ) = 0.

Observe that the errors e%l = u%l —u$, 11/751;“1 = %Jfl — ¥ satisfy
T (1 g+l Y _
LT (5 w0, 1) =0, 2.13)
with
¢ ! D¢ ¢ .
Hf, = —— (ADVPel Nu) + pef,. VL€ dmy Vi€ I, (2.14a)
e
Hf o = =¥+ pref ., (2.14b)
VK" € 00 1 g YL € OMF y SLxgs = s, Vi€ T,

Hive = =Wl + pel v, VK" € 000 0. VLY € 00 ¢ stoxgs = xpo, Vi € I (2.140)
For j =1, ..., J, we multiply equation (2.4a) associated to the scheme (2.13) by mgex

and equations (2.4b-2.4d) by mg=ej and sum these identities over all the control volumes
in 91; and DJI;‘ U aﬁﬁ’]f - Reordering the different contributions over all diamond cells, we
obtain

2
23" mp (ADVDe%Fl,VDe%’l) + 3 man (ef.j;l) (2.14d)
DED_,‘ K€Dnj
2
+ Y mene (4;) (2.14e)
K*€MEUIM 1
= > (AP NG ) et = Y g w el 214D
LedIM; K*€dMs 1o,
kl+1 . i1\ el _
-y (mgﬁK* Vi Fmg Wi )e ik =0. (2.14g)

*__p¥ ~ A *
K _KikedDﬁij

Now, applying the identity —ab = le ((a —b)? —(a+ b)z), used for such estimates in [8,
27], to the four terms
(ADVDeg:;-l’ NKL) s Mo, R S P ARy

JL? K*  TjK*? Of e LEE TR oL xx KT UK

the transmission conditions appear, for example

m_i
_ ie+1 e+1 _ %jxx ie+1 * 04112 it+1 * 112
Mot o Pile G = g (Pl FP7€Gpe)” = (S + pTeje)”)
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and thus using (2.14c¢), we get

m
il+1 04+1 _ R4 1Z+1 * 04142
Mar ik e = (( Wit el = U+ P

Summing now over all iteration indices £ = 0, ..., £, — 1 and subdomain indices j =
I,...,J we getforall K* =K}, € 89ﬁj7C using mU}K* = mai,K*,
pax—1 J
) i,0+1 Z+l
- Zma}_,(* l’[/J k* €jx*
=0 j=1
1 Zmax71 e
_ ) Js t€+1 * £+l
" ap 2o, (=0 pefie? + G 4 prelh )
=0 j=1

J
1 ¢ ¢
= E m_i ( (- l,l//K*—l—peK*)z—i—( l1/’ “‘“"—l—pej“‘;i)).

4 * i K*
p =
Similarly,
lmaxfl J
k41 041
- ma}" lIlj,K* j,K*
=0 j=I
1

] kemax Zmax
j=1

For all K* € 89)?1 Flints W€ have

Lax—1 J

-3 iy

=0 j=1

( ( lij*'i‘P e K*) +( lpzmax_f_p*e[max))

and for all L € d90t; i, we have

Lpax—1 J
= >0 > (ApVPe Ny ) e !
=0 j=I ’
1
= 4p* Z <_(_(ADVD6%, NKL) + pe(])',L)z + (—(ADVDE max NKL)"‘peemax) )
Jj=1
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1360 M.J. Gander et al.

Gathering theses contributions, we obtain

J

2 Z mp (ADVDeZ-H vD, £+1> +
]

=0 j=1 De@_i L=

J
+ Z Z mK*i’]K*(eﬁi—l)z

(=0 j=1K*eMEUIM* .

Zmu}c -1 7

2
> mn ()

1 KeM;

J

(=}

2

J

1 ¢ ¢

. — A V@I Fe ”la‘( ) + e max

4 X;H ( Dhr ) T Pl 9
j:

J

1
>

Jj=1

J
1 D 0 0 2
il r )
4 X_: ” (A@].VFV ' ety nj) + Peom; oM r

2

_ Limax *_Umax
lI/Tj +p eﬁimf-p

oo .

0
v +p am*

r o .

where || - lgom; - and || - ||3gn* are the norms associated to the scalar products defined in
(2.6) and (2.7). This shows that the total discrete energy stays bounded as the iteration index

£ goes to infinity, and hence the discrete H'! norm of eT+1 converges to zero as £ tends to

infinity for all j. In other words, the iterates uT of the optimized Schwarz algorithm dis-
cretized by DDFV defined by (2.8)—(2.9) converge as £ tends of to infinity to u‘;—o Coming
back to the construction of uT , we obtain the convergence to u+ the solution of the DDFV
scheme (2.3) on £2. Note that the estimate only gives a bound on the discrete fluxes lI/Z and

in practice the discrete fluxes do not converge at cross points, because the flux system there
is not full rank, see (2.11). O

3 Optimization of the Robin Transmission Conditions

We now present for the first time a discrete optimization of the Robin parameter in the
transmission conditions of the DDFV Schwarz algorithm (2.8), (2.12a)—(2.12c¢) in order to
understand why the optimized parameters from the continuous analysis in [17] sometimes
give suboptimal performance for high anisotropies. As in the continuous case, we focus on a
two subdomain decomposition, and will use the same parameters also at cross points. There
are also cross point formulations where this is not advised, see [19].

3.1 Discrete Subdomain Solutions
To obtain a discrete convergence factor, we use the typical approach in optimized Schwarz
methods to consider a domain £2 := (—a, a) x (0, b) decomposed into two non-overlapping

subdomains §2; := (—a, 0) x (0,b) and 2, := (0,a) x (0, b), with the interface I" :=
0821 N 0822. We use a rectangular grid, so that the DDFV discretization away from the
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interface I" leads to two interlaced five point finite difference schemes. The mesh size is
denoted by (hy, hy). To simplify the notation compared to the general DDFV scheme, we

use for the dual (vertex centered) unknowns aligned with the interface star indices, u’/nf e

These are associated with the dual cells shown in dashed in Fig. 4, whose centers are squares
(M or [J), and the superscripts j and £ stand for the domain and the iteration. For the primal
(cell centered) unknowns, we use indices without stars, u;; ,. These are associated with the
primal cells, Whose centers are bullets (e or o for 1nterface cells), see Fig. 4. Additional
it

n*

primal unknowns u’, , , located at o in Fig. 4, and also additional flux unknowns
3o

needed on the interface I'. We study directly the error u,, , — u{n » which satisfies the same

are

algorithm as u}; but with zero source term and boundary conditions, and for simplicity we

still call it ume,, At each iteration £ = 1,2, ..., in the domain £2; the values in the primal
cells and the values in the dual cells, denoted with a star *, are related by two recurrence
relations. We assume here that Ay, = 0, so that the two recurrence relations are decoupled,
the study of the fully anisotropic case is substantially harder and will be tackled in future
work. For m > 1 and m* > 1, we have

Jt Jjit it _
/1~ (um-H n 2”’” nt um 1, n) m, n+1 2“”’ nt um,n—l) — NUinn = 0,
A J A Jj.L
” (Mm *+1,n* 2"lm* n* + Uy 71 n*) + 55 (um* n*+1 2"{ n* + um n*—l) TNy g = 0.
3.1

In order to obtain the primal equatlon in (3.1) for m = 1, we introduce u Wthh is linked

to the interface primal unknowns u”’ by
3.0

. 1, . .
Jit Jit Jj:t
wit = (uly +ufy)- (3.2)
n 2 ’ ’
m=4 m=3 m=2 m=1 11]1:0 m=20 n11:1 m=2 m=3 m=4
1 1 1 In/l:7 miil 1 1 1
' ' ‘ ‘ ‘ ‘ ‘ ‘
— . . . BT R | 42
--------- O GRS b TF DR /S b ot [ELTEE SEESTES
— - nt 41
' ' Umn ' ] ] Umn ]
--------- SR RL 5 o8 IT S It thh ot tht SEF (U SET EEEEE
L] L] L] L] 1/ 7[ L] L] L] L]
——————— v | p———— n*
--------- i- 131414 W SN N
L I L ' L I L I L} I L ' L I L I L n*—1
1 1 1 1 1 1 1 1
' ' ‘ ‘ ' ' ' '
m =4 m* =3 m*=2 m* =1 m* =0 m =0 m*=1 m"=2 m"=3 m"=4
Q.] Q2

Fig.4 Notation for the rectangular DDFV configuration
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On boundary dual cells, the additional fluxes I/Ir{:f are used, given by

j, L hyAxx j, e 12
hywrf* + yT (u'{*’n* u(’)* *)

X

Ayyhy (e
+ Zhy (MO*,n*+l 2“ n*+u0* n*— 1)_

We can now express the transmission condition on I” for (j, i) = (1, 2) or (2, 1). The Robin

hy
gt =0, (3.3)

transmission conditions on I for dual cells are expressed with the fluxes ”f, see (2.4f)
and (2.12b),
j ¢ ¢ i o— -
w}i* + >kl't(])* n* = _%f 1 + p*I’tZ)"e,n’17 3.4
and on primal cells the discrete Robin conditions are, see (2.4e) and (2.12a),
2 ¢ 2 1 -1 1
EA”< ]n—uln>+pu ﬂ:EA (u’l” u’%n —|—pulln . (3.5)

The equations (3.1)—(3.5) completely describe the original Robin DDFV optimized Schwarz
algorithm from Section 2 for the specific two subdomain decomposition. We see that in the
case of Cartesian meshes with A,, = 0, the optimized Schwarz algorithm for the primal

and the dual meshes are decoupled. For the primal unknowns, the interface is at m = %,

A (6 Aw (16 B
% (uerl,n 2”’” nt um 1,n + h% um,nJrl 2”’” nt um n—1 num n — 0

h

2 Jt J-t 2 Jje=1 Jit= J =1

EAxx (”1,,_”‘111) +pccu n EAxx <l/t1,n —uy + Peclt o
2 2

3
This corresponds to a discrete optlmized Schwarz algorithm with Robin transmission con-
ditions for a cell centered (CC) 5-point finite difference discretization of the anisotropic
diffusion problem Equation (2.1), with the interface through the middle of the cells, and
we therefore use now p.. = p for the optimization parameter. For the dual unknowns, the
interface is at m = 0,

A 1,¢ 1,¢ Ay 1,£ 1,¢

h,r%x(u *41,n* _21/{ * +Mm*_1 n*)+ﬁ<um* n*_,’_] 21/[ n* +I/lm Il*—l) ﬂum* = 0,
A J.t R4 Ayyhy [ j.E J.L
s (uo* ST 207 \H0% et 2u n* + “0* 1) T nl 3 “0* ax T pucuo* o+

A jie—1 Jol=1\ | Ayyhy ] jie—1 1,5—1 je—1 je—1
== (“0*,n* — W ) g (o et — 2 e g ey — UG+ puctti e

hy

This is also a discrete optimized Schwarz algorithm with Robin transmission conditions,
but for a vertex centered (VC) 5-point finite difference discretization of the anisotropic
diffusion equation (2.1), with the interface on the boundary of the cells, and we therefore
use now p,. = p for the optimization parameter. The energy estimate convergence proof
in Section 2 implies that each of these algorithms separately is convergent. In contrast to
the common continuous approach (a few exceptions are [28, 33, 34] and [22]), we optimize
parameters in the transmission conditions at the discrete level here, and we start with a
separate analysis for the primal (CC) and the dual (VC) components of the DDFV optimized
Schwarz algorithm, before tackling the coupled problem with p,. = p.c, which will need a
new theoretical result on best approximation problems.

3.2 Discrete Convergence Factor
Since the domain is bounded in the y direction, y € (0, b) with homogeneous Dirichlet

boundary conditions, that is in the index n and n*, we use a discrete sine series expansion in
the y variable to compute the convergence factor for each sine mode, and study the existence
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and uniqueness of a set of best transmission parameters p,,. and p.. that are minimizing the
convergence factor over a given set of frequencies.

We expand forn € {1,...,N}and m € {1,..., M} with Nh, = b the grid function
um n in a discrete Fourier sine series,

kmav
mn = mk k e
u Zu()mn(nnb)

k=1

with a slightly different k,,,, depending on the scheme being primal or dual, since the
number of gridpoints differs by one,

b _ 1 for the dual scheme,
kmax =1 ' (3.6)
’Tv for the primal scheme.

j.l

The Fourier coefficients are functions of the variable k: up, , < al K(k) and u’ o o

m*
ﬁ% (k), which is discrete in this case, but we will optimize over a continuous set for k to
simplify the analysis, since this makes a negligible difference for the resulting parameters
[28, Subsection 4.2]. Introducing the Fourier sine expansion into the difference equation
satisfied by u,, ,, we obtain by a direct calculation

Ayy

Té (um n+l1 — 2um.n + um,nfl) — NUm,n
y

_ Z (4 g <k7;£ly) + 77) il (k) sin (knn%) .

To simplify the notation, we define the quantities

4A kmh h2
k)= —2gin?2 [ —2), k) = — (a(k .
a (k) 2 sin” | — (k) ™ (e (k) + 1)

Then the discrete grid function u,, , is a solution of either of the two equations (3.1) if
and only if the corresponding Fourier coefficients i, (k) satisfy for each k the recurrence
relation in the m variable

U1 (k) = 20 (k) + ilm—1 (k) — pity (k) = 0.
The characteristic equation of the recurrence relation,
—224+1—-pr=0, 3.7

has two positive distinct roots, which are inverses of each other. For fixed &, denoting by
M (k) the root that is smaller than 1,

wu(k) (k)2
)\(k)—l‘l‘T— uk) + —— 2 <1,

the grid function u,, , is a solution of either of the two equations in (3.1) if and only if #,, (k)
is a linear combination of A(k)™ and A(k) ™. We rewrite now the transmission conditions
on the Fourier coefficients. On the primal cells we obtain

Axx (njt Aj[ Dec (A A/e Axx (nit—1  nib=1\ | Pec (~if=1 | ~if—1
p (a0 =) e (@ e al) = S (- g ) e ().
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and on the dual cells we obtain

Axx ( Aj b Aj

A
h, Ugs — U7« ) 7(0‘(]() + 77)”0* + pvcul

A o i — i i
el 1)—i(ozac>+n>u65 + puciie”
hy 2

Introducing the notation p := p :L , in
Fourier
NN Y Pec (7Jl | A0\ _ il=1 _ ~il— u =1 | Ail—1
(”0 —u )"‘ 7 (o Tuy ) =\u  —ug "‘”o ;
~j, L AL ~Aj L ~ Aj L Al l— 1 A Z 1 A Z 1 Al l—1
u(])* - u{* + ué* + Pvcu(])* = ( p l ) l Pvc 2)*
(3.8)

3.3 Unbounded Domain in the x Direction

We start by considering an unbounded do_rnain in the x direction, 2 = (—a, a) x (0, b)
with a = oo. By Parseval’s ;elation, for _u,fn’,zn to be in L2(R4 x [0, b]) in (x, y) for any j,
£, there exist coefficients C/+¢ (k) and D/+¢(k) such that

~j,L i ~j, L
al’ = Crt o™, ikt = DI IrE™ .

Inserting this into the transmission conditions (3.8) we obtainfor j = 1,2,i # jandl > 1,
( — A+ &(1 +A)) crt = ( (-1 + &(1 +A)) chet,

(1 — A+ E + ﬁvc) Dj’[ = (_(1 - )“) - 5 + ﬁvc) Di’z_l'
We now introduce the notation
v(k) ;== —InA(k) > 0, 3.9

which lets us write the transmission conditions in Fourier in compact form: solving (3.7)
for  and introducing it into the following expression, we find
1—22 1—2

1+%—A: o =sinhv and m:tanhi,

which gives for the transmission conditions
LA j £ LA if-1
(2tanh 3 + Pcc) Cc/t = (—Ztanh 3 + pcc) chtt,

(sinhv + pye) DY = (=sinhv + p,.) DL

Writing this iteration in matrix form over two iteration steps, we obtain

ci-t CcJit-2 Dce.00(Pecs V) 0
<Dj,l> Ra.co(pecs Poes V)<Dj -2 Rd,oo(pcz:v DPuc, V)= ce.00 (f)“ pvc,oo(pvm A

(3.10)

with the convergence factors of the vertex centered and cell centered schemes given by

P ([7 V) = w P (p U) — w
e Pt Sl O P+ fucoo)
See,00(v) =2 h);x tanh %, Ffoe.co(V) 1= Tix sinh v.
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3.4 Bounded Domain in the x Direction

Outer boundary conditions can have an influence on the convergence of Schwarz methods,
see for example [14], and we therefore now also study the case of a bounded domain, 2 =
(—a,a) x (0,b) witha = Mhy = M*h, < oo, which leads to slightly more complicated
formulas. The Fourier coefficients of the sine transformed grid function are then of the form

i = CPUUOAKY" + CPEUOAK ™, s = DI or)™ + DI oni ™

With the notations in Fig. 4, the Dirichlet boundary conditions are enforced in both
subdomains as

1
upsn =0, 5( M,n+uM+l,n) =0.
This gives the relations between the coefficients C, D and their tilde counterpart,
CIHt (k) = —2*MT1Cit(k), DItk = -2*M DI k),
which leads to the Fourier coefficients
il = CH) (R = a@PMH=m) k= DI (0™ = P
Inserting these expressions into the transmission conditions (3.8) we get after simplification
using again (3.9)
v - j. ¢ v ~ ie—1
(2 tanh <§) coth(Mv) + pcc) Cc/t = (—Ztanh (5) coth(Mv) + pcc) ch
(sinh(v) coth(Mv) + pye) D/ = (= sinh(v) coth(Mv) + pye) DL

We thus also get a matrix iteration similar to the unbounded case in (3.10), namely

clt cit-2
pit) = Ra m(pee,Ms Poe,ms> V) pit-2 ) (3.11)
Pee. M (Pee,M»> V) 0
R . M>s ,V) = ’ ’ , 3.12
d.M(Pee,M» Pve,M s V) ( 0 poet (Poests V) (3.12)

with the convergence factors of the vertex centered and cell centered schemes for the
bounded case given by

D — Jfee.m(V) P — foem(V)
P+fcc,M(V), p"'fvc,M(V)7 (3.13)
feem(v) = 292 tanh § coth(Mv),  fuem(v) = 52 sinhv coth(Mv).

X

pcc,M(p, V) = )Ovc,M(pv V) =

We now recall the convergence factors for the continuous algorithm from [17],

peapory = L IeaD oy pory = P Se D)
e P fealr) O P+ feoo(r) (3.14)
fe,a(r) = Axyr coth(ar), Jeoo(r) = Axxr,

0= na + (=X 2th
r(k) ;= et A.
A NAxx b

It is because we introduced the quantity v(k) in (3.9) that the discrete convergence factors
have a very similar form to the continuous ones from [17], only the functions f which are
summarized in Table 1 change.

For small &, and hy, v is equivalent to rhy, and for a = Mhy, ar is equivalent to Mv.
The functions for the continuous and discrete problems are equivalent at first order. We

where
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need to find parameters p in the transmission conditions which minimize the convergence
factors p (k) in modulus over all frequencies k, and we investigate two options: the first is
to use two parameters p.. and p,. and optimize separately the convergence factors p.. for
the primal and p,. for the dual equation. The second, which is a first step toward the fully
anisotropic problem, is to use pyc = pcc, and to minimize the spectral radius of the iteration
matrix R (k) for all k.

3.5 The Best Approximation Problem: Separate Optimization

Since with our change of variables (3.9) all convergence factors are of the same form, we
define a general minmax problem for a continuous function f of s on K = [Smin, Smax]>

for F(p, s) := L2480 and G(p) = sup,ex |F (p, 9)],

3.15
find p°?' € R such that G(p°") = inf,cr G(p) := 8P". (3.15)

Following ideas in [12], we now solve this minmax problem for rather general functions f
with the help of several lemmas.

Lemma 3.1 If f is the identity function, then problem (3.15) has a unique solution, given
by
POPt = +/SminSmax; s = F(p()pt, Smin) = _F(P(]pt» Smax)- (3.16)

Proof 1f p is outside K, then moving p toward K decreases F uniformly, so the best p
must be in K. But then G(p) = max(|F(p, Smin)!|, |F (P, Smax)|), and the minimum of G is
thus attained when F (p, smin) = —F (P, Smax), Which gives (3.16). O

Lemma 3.2 If f is a positive monotonic function, then Problem (3.15) has a unique
solution, given by

popt =/ f (Smin) f Smax)» 8P = F(Pomg Smin) = —F(P0pt7 Smax)-

Proof This proof is obtained from Lemma 3.1 by the bijective change of variables f. [

Lemma 3.3 Both for the unbounded and bounded domain case, the functions f(r) asso-
ciated with the continuous convergence factors, and f(v) associated with the discrete cell
centered and vertex centered convergence factors, are positive monotonic functions.

Proof For the unbounded case, we see from the first line in Table 1 that the functions are
increasing. For the bounded case, for f; ,, we only need to check that the function s coth s

is increasing, which we see directly by writing its derivative in the form % > 0. For
smn- s
Sfve.m» we differentiate in v to find

Axx % cosh v sinh(2Mv) — M sinh v
hy sinh?>(Mv) '

Differentiating the numerator again we find

fzﬁc,M(v) =

1
M coshv(cosh@Mv) — 1) + 3 sinh v sinh(2Mv) > 0,
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which shows that the numerator of fljc (V) is increasing, and since it is zero for v = 0, it
must be positive. Hence, the function f,. s is increasing. For f.. u, its derivative is

Ayy sinh(2Mv) — 2M sinh v
hy  2sinh*(Mv)cosh®v

fc/c,M(V) =

A series expansion of the numerator shows that this quantity is positive for M > 1,
2n+1

sinh(2Mv) — 2M sinhv = Y 2M(2M)>" — Dons ™
n !

n>1

’

which concludes the proof of the lemma. O

It remains to apply the lemmas to the functions f for the different cases to obtain

Theorem 3.1 The best performance of the Robin Schwarz algorithm both in the unbounded
and bounded domains, in the continuous case with s := r and in the discrete cases with
s 1= v is attained for p°P' = /(s (kmin)) f (s (kmax)), where f is given in Table 1, and the

VTG Coma)) =/ T Gomin)) o
VTGl oty |- Here, kmin =1

associated convergence factor is then bounded by ‘
and kyqx is defined in (3.6).

3.6 Coupled Optimization

We suppose now that the optimization parameters p.. and p,. for the primal and dual
problems are equal to p, p.. = pyc = p. The convergence speed is then governed both
in the bounded and unbounded case by the spectral radius of the corresponding iteration
matrix R, thatis

pd(p,v) :=max(|pcc(p, V)|, |pve(p, V)I).

We thus obtain for two functions fi(= f..) and f>(= fy.) the general best approximation
problem

p— fi(w)

p+fiw)’
find popt €R, G(Pom) = infpe]R G(p) = 8°P', K := [Vmin, Vmax].

for Fj(p,v) = F(p,v) =max;(|F;(p,v)]), G(p) =sup,cg |F(p,v)l,

(3.17)

Lemma 3.4 If fi and f, are positive increasing functions of v, and f>» > f1, then there
exists a unique solution p°P' of (3.17) given by

\/fZ(Vmax) - «/fl (Vmin)
ot = AY min max /s 501” = .
g J1min) f2Cimas) NV Wmax) + +/ f1 Wmin)

Proof Since §°P' < G(p = 1) < 1, p°P" must be positive, since G(p < 0) > 1. We next
evaluate the maximum in the function F': for positive p, we obtain

(p - flcv))z _ (p - fz(V)>2 _ (L) = AP ~ i) L)
P+ fi(v) P+ f2(v) (P + fiP(p + (1)

3
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which shows that

fz(\))—p’ if p <) 2(v),

F )10 +p

p=| [0 (3.18)
11" if p > VAW L0).
Siv)+p

Now for all v, we have by assumption that f>(v) > fj(v), and therefore p < i/ f1(v) f2(v)
implies p < f>(v), and p > /f1(v) f2(v) implies p > f(v). The function f defined by
f () =/ f1i(v) f2(v) is increasing therefore bijective, and we can thus write F from (3.18)
without the modulus,

POZP ity < fo,
F(p,v) = LW +p
' r— fiv) it p> f(v).
Siv)+p h

We next show that if p°P! exists, it must lie in f(K): if p < f(Vmn) then for all v € K,
p < f(v), and therefore

L) —p
F(p,v) = ——,
)+ p
which is an increasing function of v over K, and therefore reaches its maximum at vy,y:
SoWmax) — p

G = F(p, max) = .
) (P Vo) F2(Wmax) + p

Now G is a continuous decreasing function of p on (—oo, f(Vmin)) and reaches its mini-
mum at f (Vpin). A similar argument holds for p > f(vmax) and (f (Vmax), +00). Therefore,
the minimum of G over R is reached over f(K). Then by compactness and continuity, there
exists p°P' € f(K), 8°P" € (0, 1) solution of the minmax problem.

To determine p°?' € f(K), we consider F now as a function of v,

p— i) ifvff_](p),
F(p,v) = Siv)+p
’ S(v)—p ifo > f_](P)-
v +p B

Hence, F (p, v) is decreasing in v on [Vpy;n, f_1 (p)], and increasing in v on [f_1 (P), Vmaxl,
and therefore
. P — f1(Wmin) F2(Wmax) — p
G(p) = max (g1(p), g2(p)) with gi(p) i Comm) + 7 and g>(p) 2 Com) T 7
As g increases, go decreases, and looking at their values at O and oo, it is easy to see that
there exists p°?! such that G(p) = g2(p) for p < p°P' and G(p) = g1(p) for p > p°P'.
Hence, the minimum is reached at p°P!, that is at equilibrium, g (p°P") = g2(p°P"), and

pP" = \/ f1 (Wmin) f2(Vimax)> Which leads to

\/fZ(Vmax) - «/fl (Vmin)
\/fZ(Vmax) + \/fl (Vmin)'

G(p') =

O

Theorem 3.2 The best performance for the DDFV Robin Schwarz algorithm for a single
parameter pec = pyc = p is obtained for

PZZ}U’Q = \/fcc,a(vmin)fvc,a(vmax)y
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where o € {M, oo} for either the bounded or unbounded case from Table 1, and the
«/fvc,ot(Vmax)_«/fcc,ot(‘}min)
N foc.a Omax) +/ fec.a Vmin)
Vmax = V(kmax) With kyyin = 1 and kypax = % - L

convergence factor is then bounded by , where vimin = v(Kknin),

Proof 1t suffices to notice that for all v > 0, feca (V) < fue.a(v), as we can see from
Table 1, since

sinh 5 Y] v
< 2sinh — cosh 3

fcca(v) < fvca(V) < 2tanh3 < sinhy < 2 >
' ’ 2 cosh % 2

— COShzg > 1,

which clearly holds. Then we apply Lemma 3.4 with fi = fcc o and fo = foc,a- O

4 Numerical Experiments

We now test our optimized DDFV Schwarz algorithms numerically, both for cases cov-
ered by our analysis on rectangular meshes with two subdomain decompositions, and more
general meshes and decompositions including cross points.

4.1 Experiments Covered by our Analysis

We study as our first model problem
-V .- (AVu)4+u =0, in2=(-1,1) x (0, 1),

with the two subdomains §2; = (—1,0) x (0, 1) and §£2, = (0, 1) x (0, 1), and use rectangu-
lar meshes, for which our fully discrete analysis holds. We determine numerically optimized
parameters p"*™ by running our implementation to find the parameter which gives the best
performance. We simulate directly the error equations, and start with a random initial guess
to make sure all error components are present. We use the three meshes shown in Fig. 5,
which we refine by dividing the mesh sizes by 2 several times. We show in Table 2 the cor-
responding results, including our theoretically optimized parameters at the continuous and
discrete level from Theorems 3.1 and 3.2. For the cell centered and vertex centered schemes,
we use for the optimized parameters the same notation as in Table 1 for the corresponding
functions: pZf's, and pif's, for the unbounded domain optimized choice, and P?f,t/w and

piffM for the bounded domain optimized choice. For the DDFV results, we use p%}v’ .

and pZZ;U‘  for the theoretical optimized parameters from Theorem 3.2. For the optimized

0.8 0.8 0.8
S I B o. ¢ A UL
0.4 0.4 0.4
0.2 0.2 R
I R B 3 - 1o o5 0.0 o5 -0 Tos oo Tois

Fig. 5 Isotropic rectangular mesh called m22 on the left, and anisotropically refined rectangular mesh in
the x-direction called anisox4y1 in the middle, and in the y-direction called anisox1y4 on the right, for the
results in Table 2
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parameters from the continuous analysis, there is also a small influence on the value depend-
ing on the use of a cell centered scheme or a vertex centered scheme, since the cell centered
scheme uses one more grid point in the interior, which increases the estimate km,x, see
(3.6), and we use pire. oo, Pobe.oos Pebe.as and pihe. , for the corresponding values. Finally,
we denote by pgf rn wnms pﬁffnum and pZ‘Z;U, aum the value of the parameter which worked best
in the numerical experiments by minimizing the numerical convergence factor p;, of the
method. The numerical convergence factors p,,, were computed by dividing the error after
100 iterations by the initial error and taking the 1/99-th root, and we denote the optimized
value by ,o,fﬁ,tn. There are several interesting observations: first, we see that our new discrete
bounded domain analysis very well predicts the numerical behavior, both for the cell cen-
tered and vertex centered discretizations and the combined DDFV scheme. Second, we see
that for the Laplace case on an isotropic mesh, the bounded and unbounded analyses give
similar results, and the vertex centered scheme performs like predicted also by the contin-
uous analysis, while the cell centered scheme works best for a slightly smaller value of the
parameter, which is very well captured by the discrete analysis. In the anisotropic case with
isotropic mesh, there is a substantial difference between the continuous and discrete analy-
sis, and the continuous parameters work less well with strong diffusion along the interface
direction, Ay, = 16. There is also a big difference between the cell centered and vertex
centered discretizations then, the former needs a much smaller, and the latter a much larger
optimized parameter than predicted by the continuous analysis. This is very well captured
by our new discrete analysis. With strong diffusion across the interface, A,y = 16, the dif-
ference between the bounded and unbounded domain analysis becomes important, but the
difference between cell centered and vertex centered discretization is negligible. Finally, if
one adapts the discretization to the anisotropy with a corresponding anisotropic mesh, then
the continuous analysis becomes more appropriate again, the marked discretization differ-
ences above diminish, though the bounded versus unbounded domain analyses importance
remains. To conclude, for anisotropic diffusion, it is important to have optimized parame-
ters for the discretization employed, and taking into account the subdomain sizes, especially
when the anisotropy is large.

4.2 Experiments not Covered by our Analysis

We next study a two subdomain decomposition for DDFV discretizations where our analy-
sis does not hold any more. We show the meshes used in Fig. 6, namely a triangular mesh,
a non-matching rectangular mesh, and a general polygonal mesh. We show in Table 3 the
results we obtained as a function of the mesh size at the interface 4, and we now also show
the numerically optimized convergence factors psz; v.num» and for the non-matching rectan-

gular mesh a heuristic formula p;thv M(%y) for a theoretical value with the corresponding

numerical Oga v, num-

0.8 | AN INLT 0.8 0.8
0.6 : : : 0.6 0.6
0.4 § § § 0.4 0.4
0.2 NN N LN N 0.2 0.2/
1o o5 o0 Tois -1.0 Z0.5 0.0 0.5 1o o5 o0 o

Fig. 6 Meshes not covered by our discrete analysis used with refinements for Table 3
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Table 3 Heuristically and numerically optimized parameters p for different non-conforming and non-
rectangular meshes, and corresponding numerical contraction factors

Triangular mesh non-matching rectangular mesh General polygonal mesh

h opt opt opt hy opt opt opt opt
y pddfv,num pddfv,num pddfv‘M(T) Pddfv,num pddfv,num pddfv,num pddfu,num 'Oddfv,num

Ay =1LAy=1,n=1

273 7.14 0.36862 14.96 0.65728  15.48 0.65150 7.86 0.47536
274 10.03 0.50431 21.18 0.74192  21.76 0.73881 11.52 0.58273
275 14.02 0.61881 29.96 0.80624  29.77 0.80620 16.01 0.67410
276 19.55 0.70966 42.37 0.85492  39.07 0.84919 22.74 0.74700

Awx =16, Ay, =1,n=1

273 2897 036842 6207 055472 4624 053020 2874 040197
274 4101 050141 8778 0.63339 7494 058622 4478  0.53487
275 5799 062145 12415 072350 10778 0.6909 6177  0.63437
276 7878 071177 17557 079615 15021 076996  83.59  0.71457
A =14, =16,p=1

273 3389 046124 9821 082432 11073 081007 3830  0.61290
274 4783 058546 140.66 0.85607 153.64  0.85031  57.51  0.68985
275 6716 0.68884  199.58 0.88194 18827  0.87939 8114  0.75575
276 9352 076320  282.47 091427 220.13  0.89859 11262  0.81342

For the triangular mesh, we see that the discrete bounded domain analysis from Table 2
still gives quite a good prediction pZZ}v u of the numerically better performing parameter

indicated by psld’tfv aum 1D Table 3, it is just a bit too large. For the non-matching mesh

however, it seems that the artificially cut mesh size %‘ visible in the middle in Fig. 6 needs
to be used in the discrete formulas to get a good prediction, both 4, and /1, must be divided
by 3, which leads to parameters close to the best performing ones numerically. Finally, for
the general polygonal last mesh, our discrete rectangular mesh analysis give rather good
predictions. To conclude, the new discrete optimized parameters work also outside their
scope of validity, and for non-matching grids, the smallest artificially created mesh size at
the interface should be used in the theoretical formulas.

4.3 Image Reconstruction Application

We finally show an application of anisotropic diffusion for image reconstruction. Our
domain embedded in the rectangle (—2,2) x (—1, 1) is shown in Fig. 7. It represents a 2D
section of a model underground, where in the refined mesh region at the bottom there is a
salt dome of interest for oil recovery. On the top we have the surface of the earth, with a flat
part and a downward sloped part. We decompose the domain into four subdomains, three
rectangular ones and the top right one is triangular, and mesh them using different mesh-
ing techniques. In the center the decomposition has a cross point. We generate an artificial
image ig(x, y) in this domain with several layers, shown in Fig. 8 at the top on the left. We
then add random noise to this image to obtain ug(x, y), which leads to the image on the top
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Y-Axis

-2.0 -1.0 0.0 1.0
x-Axis

Fig. 7 Domain for the image reconstruction example for a salt dome. The computations are done with a 3
times more refined mesh

right in Fig. 8. To remove the noise, one can use a time dependent diffusion equation of the
form
Qu(x,y, 1) =V - (Alx, y)Vux,y, 1), ulx,y 0)=uolx,y),

and take one or a few time steps of a Backward Euler method to smooth the high frequency
noise. If one does one step with the time step Ar = 0.1 on the mesh in Fig. 7, and uses
isotropic diffusion, A = 1, we obtain the result shown at the bottom left of Fig. 8. We see
that all sharp boundaries have also been diffused, together with the noise. To avoid this, we
choose now anisotropic diffusion, with

Fig.8 Top left: original image without noise. Top right: image with random noise. Bottom left: reconstructed
image using isotropic diffusion. Bottom right: reconstructed image using anisotropic diffusion
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1376 M.J. Gander et al.

except in the region —1 < y < —0.75 and —0.3 < x < 0.3 where we chose

le—50
)

This choice is well adapted to our image, since in the special zone, the boundaries are
vertical, where in the rest they are horizontal, and we do not want to diffuse across the sharp
interfaces, only along them. The reconstruction computed with our algorithm is shown at
the bottom right in Fig. 8. We clearly see that anisotropic diffusion is very well capable of
preserving sharp edges in the noise removal process. In a more realistic situation one would
need to use in the anisotropic diffusion tensor the gradient of u to determine the diffusion
directions to avoid. Using the Robin parameter p = 0.05, our algorithm needed 14 iterations
to converge to a tolerance of le — 3, whereas with p = 0.01 it took 45 iterations, and with
p = 1.5 it took 213 iterations. This illustrates well the importance of a good choice of the
parameter p.

5 Conclusion

Discrete Duality Finite Volume methods (DDFV) are a recent class of powerful discretiza-
tions for anisotropic diffusion problems. They reach high accuracy also on distorted meshes
and for high anisotropies due to excellent gradient reconstructions. DDFV methods require
however more unknowns than classical finite volume methods, and therefore good solvers
are needed. Optimized Schwarz methods (OSM) are excellent candidates for this task, since
they are naturally parallel, and their performance can also be tuned for highly anisotropic
diffusion. We proved convergence of a non-overlapping Schwarz method with Robin trans-
mission conditions for a very general decomposition of a DDFV discretized anisotropic
diffusion problem into many subdomains including cross points, and also discovered that
the Robin parameter can be optimized separately for primal and dual grid components in
DDFV. We derived such asymptotically optimized parameters that are easy to use in prac-
tice, and showed in numerical experiments that very good convergence speeds are achieved,
also for the concrete application of image reconstruction. This application shows however
also a further research direction, namely how the optimized parameters should be adapted
to highly variable coefficients, a case not covered by the present analysis. Also higher order
transmission conditions of Ventcell type should be investigated which can further acceler-
ate OSMs. Finally, one should also study the preconditioning capabilities of our OSMs for
Krylov methods, but these topics will be addressed elsewhere.
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