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Abstract

This article proves the well posedness of the boundary value prob-
lem that arises when PML algorithms are applied to Pauli’s equations
with a three dimensional rectangle as computational domain. The ab-
sorptions are positive near the boundary and zero far from the bound-
ary so are always x-dependent. At the flat parts of the boundary of
the rectangle, the natural absorbing boundary conditions are imposed.
The difficulty addressed is the analysis of the resulting variable coeffi-
cient problem on the rectanglar solid with its edges and corners. The
Laplace transform is analysed. It turns on the analysis of a boundary
value problem formally obtained by complex stretching. Existence is
proved by deriving a boundary value problems for a complex stretched
Helmholtz equation on smoothed domains. This is the first stabil-
ity proof with x-dependent absorptions on a bounded domain whose
boundary is not smooth.
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1 Introduction

This paper analyses initial boundary value problems that arise when one
uses perfectly matched absorbing layers in the time domain. The most
common configuration is a three dimensional rectangular solid surrounded
by a larger rectangular solid computational domain. The inner solid contains
the sources and is the region where the computed values are required. In
the region between the rectangles, perfectly matched layers are interposed.
Boundary conditions at the exterior boundary are imposed that are designed
to be weakly reflecting. In addition to perfect matching, an advantage of the
PML strategy is its ease of implementation including at the corners. To our
knowledge, the present work is the first to prove well posedness for such a
PML with non constant absorptions σj in the presence of trihedral corners.
That problem poses two fundamental challenges.

Even for a system with a very simple energy estimate like Pauli’s equa-
tions, the split equations of Berenger and also the stretched system that is
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at the heart of its analysis do not have simple estimates. Such estimates
are crucial for constructing solutions and express stability. In practice the
split system needs to be discretised and the stability of the discretisation
analysed. This article does not study that problem. A recent survey for the
constant coefficient half space case is [12].

The Pauli system shares the Lorentz invariance, symmetry, and three di-
mensionality of Maxwell’s equations. It has two advantages. It is a 2 × 2
system as opposed to a 6 × 6 system. More importantly, the generator is
elliptic. The analysis extends with almost no modifications to the Dirac
system. The Pauli operator is

L := ∂t +

(
1 0
0 −1

)
∂1 +

(
0 1
1 0

)
∂2 +

(
0 i
−i 0

)
∂3 := ∂t +

3∑
j=1

Aj∂j . (1.1)

Introduce the notations with ξ ∈ C3,

L(∂t, ∂x) := ∂t + A(∂x), A(ξ) := A1ξ1 + A2ξ2 + A3ξ3 . (1.2)

Definition 1.1 For A ∈ Hom(Ck), with spectrum disjoint from iR, E+(A)
(resp. E−(A)) denotes the spectral subpace corresponding to eigenvalues with
strictly positive (resp. strictly negative) real part. Denote by π±(A) the
corresponding spectral projections onto those spaces. As our interest is the
Pauli system, E±(ξ) and π±(ξ) are shorthands for E±(A(ξ)) and π±(A(ξ))
for ξ ∈ C3 so that A(ξ) has no purely imaginary eigenvalues.

Definition 1.2 Denote by Q = Q(L1, L2, L3) the rectangle

Q :=
{
x ∈ R3 : |xj | < Lj/2, j = 1, 2, 3

}
.

Q has six open faces Gk with 1 ≤ k ≤ 6. For j = 1, 2, 3,

Gj :=
{
xj = −Lj/2, and, |xi| < Li/2 for j 6= i

}
,

Gj+3 :=
{
xj = Lj/2, and, |xi| < Li/2 for j 6= i

}
.

For a point x ∈ Gk, ν(x) denotes the outward unit normal to Q. The split
equations involve non negative absorption coefficients σj ∈ C∞0 (R) for
j = 1, 2, 3.

Example 1.1 For the usual implementations of the PML method,
there is an ` < 1 so that the absorptions vanish in `Q, the sources are
supported in `Q and the values of the solution on `Q are those of interest.
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The Pauli system is(
∂t + A1∂1 + A2∂2 + A3∂3

)
u = f on Q. (1.3)

Definition 1.3 Bérenger’s method has unknown that is a triple (U1, U2, U3)
with U j taking values in C2. On R×Q, (U1, U2, U3) satisfy the split equa-
tions, (

∂t + σ1(x1)
)
U1 + A1∂1

(
U1 + U2 + U3

)
= f1 ,(

∂t + σ2(x2)
)
U2 + A2∂2

(
U1 + U2 + U3

)
= f2 ,(

∂t + σ3(x3)
)
U3 + A3∂3

(
U1 + U2 + U3

)
= f3 .

(1.4)

The jth equation has the ∂j derivative. The fj are constrained to satisfy
f =

∑
j fj and to vanish on a neighborhood of ∂Q. A choice respecting the

symmetry of the problem is fj = f/3 for j = 1, 2, 3.

The boundary of Q is not perfectly transparent. In favorable cases like
the Pauli system, waves are expected to decay in the layers so little signal
reaches ∂Q and the reflections cause small errors. In practice rather thin
layers suffice. With x-dependent absorptions and computations in the time
domain, proving exponential decay in the layers is an outstanding open
problem. See Remark 3.3 for the easier time harmonic case.

The split equations are not symmetric and they have a lower order term that
depends on x through the absorption coefficients σj . They do not have sim-
ple a priori estimates showing that they yield a well posed pure initial value
problem. Petit-Bergez [22, 15] proved that since the Pauli system generates
a C0-semigroup on L2(R3) and has elliptic generator, it follows that the split
equations on R3 also generate a C0-semigroup. This contrasts to the loss
of one derivative for the split Maxwell equations proved by Arbarbanel and
Gottlieb [1].

The Pauli system is symmetric hyperbolic. The most strongly dissipative
boundary condition for the Pauli system is u ∈ E+(ν). Thanks to the
symmetry and ellipticity there is an M0 so that for M > M0 and f ∈
eMtL2(R×Q) the boundary value problem Lu = f with boundary condition
u ∈ E+(ν) on the R × Gk has a unique solution u ∈ eMtL2(R × Q) with
u ∈ eMtL2(R × ∂Q) (see Part I of [16]). The substantial difficulty here is
the presence of the edges and corner of Q.

For the Pauli system, if one imposed a conservative rather than dissipative
boundary condition, then waves that arrive at the external boundary are
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totally reflected back to the interior. This behavior would be approximately
inherited by the stretched system and is to be avoided. Less obvious is
that our proof breaks down for non dissipative conditions. Even for the
unstretched problem uniqueness of solutions for a conservative condition on
domains with trihedral corners is not known. This underscores the difficul-
ties of domains with trihedral corners.

The Laplace transform of solutions of (1.4) are(
τ + σ1(x1)

)
Û1 + A1∂1

(
Û1 + Û2 + Û3

)
= f̂1 ,(

τ + σ2(x2)
)
Û2 + A2∂2

(
Û1 + Û2 + Û3

)
= f̂2 ,(

τ + σ3(x3)
)
Û3 + A3∂3

(
Û1 + Û2 + Û3

)
= f̂3 .

(1.5)

Define for j = 1, 2, 3,

∂̃j :=
τ

τ + σj(xj)

∂

∂xj
, and u := Û1 + Û2 + Û3 . (1.6)

These yield the stretched equation(
τ + A1∂̃1 + A2∂̃2 + A3∂̃3

)
u = F :=

3∑
j=1

τ

τ + σj(xj)
f̂j . (1.7)

Definition 1.4 The operator

L(τ, ∂̃x) := τ +
3∑
j=1

Aj ∂̃j = τ +
3∑
j=1

Aj
τ

τ + σj(xj)

∂

∂xj

is called the stretched Pauli operator.

Definition 1.5 i. If Ω ⊂ R3 is open and K ⊂ Ω is compact,

C∞K (Ω) :=
{
f ∈ C∞(Ω) ; supp f ⊂ K

}
.

ii. Similarly,

L2
K(Ω) :=

{
f ∈ L2(Ω) ; supp f ⊂ K

}
.

The next result solving the stretched equation is the main result of the
paper. It allows one to prove the stability of Bérenger’s split method. In
our experience other versions of PML lead also to this same stretched system.
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Theorem 1.6 For each ` ∈]0, 1[ there exist C,M1 so that for all M ≥M1,
and, holomorphic F : {Re τ > M} → L2

`Q(Q), there is a unique holomorphic

function u : {Re τ > M} → H1(Q) satisfying the stretched boundary value
problem on Q,

L(τ, ∂̃x)u = F on Q, u ∈ E+
(
ν
)

on Gk, 1 ≤ k ≤ 6.

It satisfies for all Re τ > M ,

(Re τ)
∥∥u∥∥

L2(Q)
+ (Re τ)1/2

∥∥u∥∥
L2(∂Q)

+
Re τ

|τ |
‖∇xu‖ ≤ C

∥∥F∥∥
L2(Q)

.

Remark 1.1 The gradient estimate degenerates as Im τ → ∞ with Re τ
fixed. A second hyperbolic aspect is that the boundary values are estimated
in L2 and not in H1/2.

Theorem 1.6 allows us to analyse the split equations with the absorbing
boundary condition U1 + U2 + U3 ∈ E+(ν) on the Gk. It is the first exis-
tence theorem for the split equations with non constant σj in domains whose
boundary is not smooth. Since standard practice uses cubes with non con-
stant σj is it is the first justification, beyond extensive practical experience,
that the Bérenger algorithm is stable.

Theorem 1.7 There are strictly positive constants C,M so that if λ > M ,
f ∈ eλtL2(R × Q) with support in [0,∞[×`Q, then there is one and only
one

(
U1, U2, U3) ∈ eλtL2(R×Q) supported in t ≥ 0 that satisfies (1.4), and

the boundary condition U1 + U2 + U3 ∈ E+(ν) on each Gk. The function
U1 + U2 + U3 satisfies,

λ
∥∥e−λt(U1 + U2 + U3)

∥∥
L2(R×Q)

+

λ1/2
∥∥e−λt(U1 + U2 + U3)

∥∥
L2(R×∂Q)

≤ C
∥∥e−λt f∥∥

L2(R×Q)
.

(1.8)

The split unknowns satisfy the weaker estimate∥∥e−λt{λU j , ∂tU j}∥∥L2(R:H−1(Q))
≤ C

∥∥e−λt f∥∥
L2(R×Q)

. (1.9)

Remark 1.2 i. It is wise to think of Bérenger’s algorithm as a method that
inputs f and outputs U1 + U2 + U3. Estimate 1.8 shows that the output
satisfies bounds as strong as strictly dissipative boundary value problems for
symmetric hyperbolic systems. This behavior is known for the pure initial
value problem (see Theorem 1.3 of Bécache and Joly [7] for the split Maxwell
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equations with constant σj, and for Bérenger transmission problem even with
variable σj in [15]).

ii. The estimates of Theorem 1.7 permit exponential growth in time. Even
for sources compactly supported in time. Practical experience with Bérenger’s
method for equations closely tied to the wave equation (e.g. Maxwell and
Pauli) show no growth in time even with variable σj. Interesting bounds uni-
form in time are proved for the case of constant σj for sufficiently regular so-
lutions by Bécache-Joly, Diaz-Joly, and Baffet-Grote-Imperiale-Kachanovska
[7, 13, 5]. It is not known whether the uniform bounds of these authors im-
ply that the L2(Q) norm U1 +U2 +U3 or any of its derivatives is uniformly
bounded. Uniform bounds in time is an important and wide open problem.
The present paper proves estimates resembling those at the expense of expo-
nential growth and very substantial difficulty. Appelo-Hagstrom-Kreiss [4]
analyse the problem of exponential growth with constant parameters by ex-
plicit formulas in Fourier. They propose stabilization methods. Variable
coefficients and corner domains are beyond that strategy.

The paper is organized as follows. Section 2 presents the Pauli system and
most importantly the stretched Pauli system that is satisfied by the Laplace
transform of Û1 + Û2 + Û3. Theorems 1.6 and 2.5 assert existence and
uniqueness for the boundary value problems for the stretched system on Q
as well as smoothed versions Qδ converging to Q as δ → 0. With important
δ-independent estimates. An important step is showing that the solutions
on Qδ satisfy an additional boundary condition stated in Corollary 2.12. It
is routine to show that solutions of the stretched system are solutions of a
Helmholtz type equation. The stability theorem for the stretched boundary
value problem implies stability for other implementations of perfect match-
ing. Respecting the history, we present the details for Bérenger’s splitting.

The second boundary condition yields a coercive elliptic boundary value
problem That problem is solved in Theorem 2.5. The estimates are derived
by the energy method tied to a family of complex quadratic forms. The real
and imaginary parts play key roles. The family is singular in the limit δ → 0.
In spite of this apparent failure of uniform coercivity, estimates uniform in
δ and τ are proved. On solutions, the form is much smaller than its upper
bound.

The backward implication, that the solution of the Helmholtz system solves
the stretched system from which it is derived is subtle. It is proved only
in the smoothed domain Qδ and where the smoothness of solutions is im-
portant for the argument. We have considered the option of skipping the
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smoothing and using layer potential methods developed for the study of Lip-
shitz domains. Since the hard harmonic analysis would need to be adapted
to the new problems, the smoothing is both more elementary and shorter.

Section 4 derives the main theorems from the Helmholtz existence results.
Section 4.1 proves unique solvability of the stretched Pauli system on Qδ
stated in Theorem 2.5. Holomorphy in τ is crucial for uniqueness. Section
4.2 proves Theorem 1.6 by passing to the limit δ → 0 to solve the stretched
system on Q. Section 4.3 derives Theorem 1.7.

The proof is long and technical. The hypothesis σj ∈ C∞ avoids some
inessential difficulties. The proof uses H2 regularity for the Helmholtz prob-
lem onQδ. Absorptions σj ∈ L∞ suffice for H1 regularity and σj lipschitzian
is sufficient for H2(Qδ). Standard practice involves such lipschitzian absorp-
tions. This strengthening of the results is left to the interested reader.

2 The Pauli system and smoothed domains Qδ

2.1 Pauli system and its symbol

The coefficients of the Pauli system (1.1) satisfy,

A2
j = I, AiAj +AjAi = 0 for i 6= j . (2.1)

These identities imply the connections to the Laplacian,(∑
j

Aj∂j

)2
= ∆ ,

(∑
Aj∂j − τ

)(∑
Aj∂j + τ

)
= ∆− τ2 . (2.2)

Proposition 2.1 i. For all (τ, ξ) ∈ C1+3,

detL(τ, ξ) = τ2 −
3∑
j=1

ξ2
j . (2.3)

ii. For ξ ∈ R3\0, the 2×2 hermitian symmetric matrix A(ξ) has eigenvalues
±|ξ| with one dimensional eigenspaces

E−(A(ξ)) = C
(
ξ1−|ξ| , ξ2−iξ3

)
, and, E+(A(ξ)) = C

(
ξ1 + |ξ| , ξ2−iξ3

)
.

iii. For all ξ, η ∈ C3,

A(ξ)A(η) +A(η)A(ξ) = 2
(∑

i

ξiηi

)
I . (2.4)
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Proof. Write from (1.2),

L(τ, ξ) = τ +A(ξ) =

(
τ + ξ1 ξ2 + iξ3

ξ2 − iξ3 τ − ξ1

)
This implies directly. i.

ii. For ξ ∈ R3 \ 0, (2.3) shows that the eigenvalues of A(ξ) are ±|ξ|. The
The first column yields the formula for E−(ξ) in ii. The other choice of sign
yields E+(ξ).

iii. Expand

A(ξ)A(η) =
(∑

i

Aiξi

)(∑
j

Ajηj

)
=
∑
i,j

AiAjξiηj .

Symmetrizing yields,

A(ξ)A(η) +A(η)A(ξ) =
∑
i,j

AiAjξiηj +
∑
i,j

AiAjηiξj .

In the last sum interchange the roll of i, j to find

A(ξ)A(η) +A(η)A(ξ) =
∑
i,j

AiAjξiηj +
∑
i,j

AjAiηjξi .

Separate out the terms with i = j to find

A(ξ)A(η) +A(η)A(ξ) = 2
∑
i

A2
i ξiηi +

∑
i 6=j

(
AiAj + AjAi

)
ηiξj .

Equation (2.1) yields (2.4). �

Example 2.1 Define Z :=
{
ξ ∈ C3 :

∑
j ξ

2
j = 0

}
. For ξ ∈ C3 \ Z, the

spectrum of A(ξ) consists of two simple eigenvalues differing by a factor
−1.

The eigenvalues ±|ξ| for ξ ∈ R3 \ 0 extend to holomorphic eigenvalues
λ±(ξ) = ±(

∑
ξ2
j )1/2 the domain{

ξ ∈ C3 \ 0 : |Im ξ| < |Re ξ|
}
. (2.5)

In this case
∑
ξ2
j ∈ C\]−∞, 0].
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Proposition 2.2 i. The eigenprojections π±(ξ) for ξ ∈ R3 \ 0 extend to
holomorphic functions on the domain (2.5), satisfying with notation from
Example 2.1,

π±(ξ)A(ξ) = A(ξ)π±(ξ) = λ±(ξ) π±(ξ) . (2.6)

They are given by

π±(ξ) =
1

2

(∑
ξ2
j

)−1/2(
A(ξ)±

(∑
ξ2
j

)1/2
I
)
.

ii. For ξ, η belonging to (2.5),

π±(η)A(ξ)π±(η) =
(∑

η2
j

)−1/2 (∑
ξiηi
)
π±(η) . (2.7)

Proof. i. The formulas

A(ξ) = λ+
(
π+(A(ξ))− π−(A(ξ))

)
, and, I = π+(A(ξ)) + π−(A(ξ)),

together with (π±(η))2 = π±(η), imply the formulas for π±(A(ξ)) in i.

ii. Multiply (2.4) on the left and right by π±(η) to find

2π±(η)
(∑

ξiηi

)
π±(η) = π±(η)A(ξ)A(η)π±(η) + π±(η)A(η)A(ξ)π±(η) .

Use (2.6) twice and (π±(η))2 = π±(η) to find,

2
(∑

ξiηi

)
π±(η) = π±(η)A(ξ)λ±(η)π±(η) + λ±(η)π±(η)A(ξ)π±(η)

= 2λ±(η)π±(η)A(ξ)π±(η) .

This completes the proof. �

2.2 The stretched system on Qδ, Theorem 2.5 statement

The stretched equation (1.7) resembles the Laplace transform of the original
system. For τ real and positive it comes from the original transformed
system by a change of variable, called coordinate stretching (see Section 2.3.2,
and Chew-Weedon [10]). The stretched equations are sometimes expressed
using auxiliary variables ψj defined as the solutions of

(∂t + σj(xj))ψj = ∂tu, ψj = 0 for t < 0.

Then ∂̃j û = ∂jψ̂j .

Theorem 1.6 is proved by solving the stretched equation on smoothed trun-
cated domains and passing to the limit.
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Definition 2.3 The singular set of the boundary of Q is

S :=
{
x ∈ ∂Q : ∃i 6= j, x ∈ Gi ∩Gj

}
.

Introduce for 0 < δ < 1 bounded smooth approximations Qδ of Q. Smooth
the edges and corners of Q on a δ/2-neighborhood of S to yield bounded
smooth convex sets Qδ. Do this so that for δ1 < δ2, Qδ1 ⊃ Qδ2.

The symbol Ω is often used to denote elements of the family of sets {Qδ :
δ ∈]0, 1[}.

Definition 2.4 For τ with Re τ > 0 and ν ∈ R3 define

ν̃(τ, x) :=
( ν1 τ

τ + σ1(x)
,

ν2 τ

τ + σ2(x)
,

ν3 τ

τ + σ3(x)

)
.

In the next discussion this is used with ν equal to the outward unit normal
to ∂Qδ. Next choose a boundary condition for the stretched equations on
Qδ. On the flat parts of ∂Qδ one has u ∈ E+(ν). On the curved parts of
the boundary and for τ > 0 and real, the stretched problem is symmetric
hyperbolic and the normal matrix is A(ν̃(τ, x)). The maximally dissipative
condition is u ∈ E+(ν̃). If u(τ) is holomorphic and satisfies this condition
for τ > 0 then by analytic continuation it holds for general τ . Therefore,
u ∈ E+(ν̃) is a natural maximally dissipative condition for τ complex.

The main result for the stretched system on Qδ is the following.

Theorem 2.5 For 0 < ` < 1 there exist C,M1 so that for all δ ∈ (0, 1),
M ≥ M1, and holomorphic F : {Re τ > M} → C∞

`Q(Qδ), there is a unique

holomorphic uδ : {Re τ > M} → H2(Qδ) satisfying

L(τ, ∂̃x)uδ = F, on Qδ, uδ|∂Qδ ∈ E
+
(
A(ν̃(τ, x))

)
. (2.8)

In addition,

(Re τ)
∥∥uδ∥∥

L2(Qδ)
+ (Re τ)1/2

∥∥uδ∥∥
L2(∂Qδ)

+
Re τ

|τ |
‖∇xuδ‖L2(Qδ) ≤ C

∥∥F (τ)
∥∥
L2
`Q

(Qδ)
.

(2.9)

Strategy of proof. Theorem 2.5 is proved by solving carefully constructed
Helmholtz equations and boundary conditions on Qδ. The boundary con-
ditions, automatically satisfied by solutions of the stretched problems, are
identified in the next section. On Qδ the solutions are smooth. The smooth-
ness is used to prove that the solution of the Helmholtz problem on Qδ solves
the stretched equations when proving Theorem 2.5. Taking the limit δ → 0
yields Theorem 1.6.
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2.3 Second boundary condition for the Helmholtz BVP

This section concerns solutions of the stretched Pauli boundary value prob-
lem. Theorem 2.5 is proved by solving a Helmholtz boundary value problem.
The hypotheses of Theorem 2.5 yield the boundary condition u ∈ E+(ν̃).
Corollary 2.12 of this section yields a crucial second boundary condition.
Example 3.1 shows that it is a natural boundary condition for a weak for-
mulation. Section 4.1 includes a proof of the converse implication that the
Helmholtz equation plus the two boundary conditions imply the stretched
Pauli equations.

2.3.1 Neumann identity for the unstretched Pauli system

Definition 2.6 For x ∈ ∂Ω the Weingarten map (see for example [17])
is the real self adjoint map of the tangent space Tx(∂Ω) to itself that is the
differential of the unit exterior normal ν. It maps Tx(∂Ω) 3 v→ v · ∇ν.
Its eigenvalues are the principal curvatures of ∂Ω at x. The mean cur-
vature, denoted HΩ(x), is the average of the two principal curvatures.

Extend ν to a smooth unit vector field defined on a neighborhood of ∂Ω so
as to be constant on normal lines to the boundary. Then π±(ν(x)) is well
defined and smooth for x in a neighborhood of ∂Ω.

The term HQδ(x) is equal to zero except for a δ neighborhood of S where it
attains values ∼ 1/δ. The identity of the next proposition is simple in the
case of flat boundaries.

Proposition 2.7 If u ∈ H2(Ω) satisfies the boundary condition π−
(
ν
)
u =

0 on ∂Ω, then,

π+
(
ν
) 3∑
j=1

Aj∂ju = π+(ν)
(
ν · ∂x + 2HΩ

)
u, on ∂Ω. (2.10)

Proof of Proposition 2.7. An invariance argument shows that it is suf-
ficient to treat the case where x = 0, ν(x) = (−1, 0, 0) and the xj-axes for
j ≥ 2 are principal curvature directions of ∂Ω.

Denote by ej , j = 1, 2, 3 the standard basis for R3. The principal curvatures
corresponding to the tangent directions e2 and e3 are denoted κ2 and κ3.
The mean curvature is H := (κ2 + κ3)/2. At x the outward unit normal
is −e1. At x the principal curvature formulas are ∂2ν = −κ2e1 and ∂3ν =
−κ3e1.
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First simplifications of the left hand side of (2.10). The operator on
the left is π+(ν)(A1∂1 + A2∂2 + A3∂3). On the x1 axis, ν = (−1, 0, 0), so
π+(ν(x))A1 = −π+(ν(x)). On that axis the operator is

−π+(ν)∂1 +π+(ν)
(
A2∂2 +A3∂3

)
= π+(ν(x))ν(x) ·∂x+π+(ν)

(
A2∂2 +A3∂3

)
.

(2.11)

Second simplifications. Consider the two summands π+(ν)Aj∂ju with
j ≥ 2. On the x1-axis, part ii of Proposition 2.2 implies that

π+(ν)A2 π
+(ν) = π+(ν)A3 π

+(ν) = 0 . (2.12)

Using the boundary condition yields

∂ju = ∂j

(
π+(ν)u+ π−(ν)u

)
= ∂j

(
π+(ν)u

)
at x. (2.13)

For j ∈ {2, 3} if Z is a vector field on a neighborhood of x that is tangent
to the boundary and satisfies Z(x) = ∂j then

∂ju(x) = Z
(
u|∂Ω

)
(x) .

Since π+(ν)u = u on the boundary it follows that

∂ju(x) = Z
(
π+(ν)u|∂Ω

)
(x) =

(
∂j
(
π+(ν)u

))
(x) .

Using (2.12) in the last of the following equalities yields

π+(ν)Aj∂ju(x) = π+(ν)Aj

(
∂j
[
π+(ν)u

])(
x
)

= π+(ν)Aj

(
∂jπ

+(ν)u(x) + π+(ν) ∂ju(x)
)

= π+(ν)Aj
(
∂jπ

+(ν)
)
u(x) .

(2.14)

The perturbation theory step. Use perturbation theory to compute the
term ∂jπ

+ in the last expression. Denote by Q(ξ) the partial inverse of
A(ξ)− |ξ|I associated to the eigenvalue +|ξ|. It is defined by

Q(ξ)
(
A(ξ)− |ξ|I

)
= I − π+(ξ), Q(ξ)π+(ξ) = 0 .

Writing

A(ξ)− |ξ| I =
(
|ξ|π+ − |ξ|π−) −

(
|ξ|π+ + |ξ|π−) = −2|ξ|π−
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shows that Q = (−2|ξ|)−1π−(ξ).

First order perturbation theory ( Theorem 3.I.2 in [23], or formulas (II.2.13),
(II.2.33) in [19]) implies that

∂

∂xj

(
π+
(
A(ν)

))
= −π+(ν)

(∂A(ν)

∂xj

)
Q(ν)−Q(ν)

(∂A(ν)

∂xj

)
π+(ν). (2.15)

Endgame. When (2.15) is injected in (2.14) the contribution of the first
term vanishes thanks to (2.12). Turn next to

∂

∂xj
A(ν(x)) = A

( ∂ν
∂xj

)
.

The principal curvature formulas imply that at x,

∂ν

∂xj
= κj(x) ej , for j = 2, 3 , so, A

( ∂ν
∂xj

)
= κj(x)Aj .

Therefore (2.14) yields

π+(ν)Aj∂ju(x) = κj(x)π+(ν)Aj π
−(ν)Aj π

+(ν) .

Compute using (2.12) and omitting the argument ν(x) for ease of reading
yields

π+Ajπ
−Ajπ

+ = π+Aj
(
π− + π+

)
Ajπ

+ = π+Aj Ajπ
+ = π+π+ = π+ .

Therefore

π+(ν(x))Aj∂ju(x) = κj(x)π+(ν(x))u, for j = 2, 3. (2.16)

The sum of the terms (2.16) is equal to (κ2 + κ3)π+u = 2HΩ π
+u. This

yields

π+(ν(x))
(
ν · ∇x + 2HΩ(x)

)
u .

This completes the proof of (2.10). �

2.3.2 Transverse identity for stretched Pauli for τ ∈]m,∞[

Definition 2.8 i. For τ ∈ C \ {0} the coordinate stretchings Xj(τ, xj) are
defined as the solutions of the ordinary differential equation in xj,

∂Xj

∂xj
=

τ + σj(xj)

τ
, Xj(0) = 0 . (2.17)

ii. For real τ > 0, ∂jXj > 0 and x 7→ X(τ, x) is a diffeomorphism from R3

onto itself. Denote by Ω ⊂ RdX the image of Ω ⊂ Rdx.
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Example 2.2 In the standard implementation of Example 1.1, the σj van-
ish on `Q. Therefore X is equal to the identity on that set.

Compute for real τ > 0,

∂

∂xj
=
∑
k

∂Xk

∂xj

∂

∂Xk
=
τ + σj(xj)

τ

∂

∂Xj
,

τ

τ + σj(xj)

∂

∂xj
=

∂

∂Xj
. (2.18)

Equation (2.18) gives a geometric interpretation of the stretched operator
L(τ, ∂̃) for τ ∈ R+. It shows that ∂̃j in the x coordinates is equal to ∂/∂Xj in
the X coordinates. Therefore if u(x) and v(X) are related by v(X(τ, x)) =
u(x) then L(τ, ∂̃)u(x) =

(
L(τ, ∂X)v

)
(X(τ, x)).

To find the conormals to Ω, compute∑
j

νjdxj =
∑
j

νj
∑
k

∂xj
∂Xk

dXk =
∑
j

νj
∂xj
∂Xj

dXj =
∑
j

νj τ

τ + σj
dXj .

∑
j νjdxj annihilates the tangent space to ∂Ω at x. The map x→ X takes

the tangent space to Ω to the tangent space to Ω, Therefore,
∑

j νjτ/(τ +
σj) dXj annihilates the tangent space to Ω at X(x). It is therefore a conor-
mal to Ω. The unit conormal νΩ(X) is

νΩ(X) =

(∑
j

ν2
j (x(X)) τ2

(τ + σj(x(X)))2

)−1/2( 3∑
j=1

νj(x(X)) τ

τ + σj(x(X))
dXj

)
.

Definition 2.9 For Re τ > 0 and x on a neighborhood of ∂Ω, define the
first order differential operator V by

V (τ, x, ∂) :=
(∑

j

ν2
j τ

2

(τ + σj)2

)−1/2 ∑
j

νj τ
2

(τ + σj)2

∂

∂xj
. (2.19)

Remark 2.1 i. For τ ∈]0,∞[, V is a unit vector field transverse to ∂Ω
since its scalar product with the unit outward normal ν ·∂ is strictly positive.

ii. For τ not real, the coefficients of V are not real, so V is not a vector
field.

iii. There is an R > 0 independent of δ so that for |τ | > R, ∂Ω is non
characteristic for V . Indeed, V − ν · ∂ has coefficients O(1/τ) and the
boundary is noncharacteristic for ν · ∂.
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Corollary 2.10 There is an m > 0 so that if τ ∈]m,∞[ and u ∈ H2(Ω)
satisfies the boundary condition

u ∈ E+
(
ν̃(τ, x)

)
on ∂Ω, (2.20)

then with V (τ, x, ∂) from (2.19),

π+(ν̃)

3∑
j=1

Aj ∂̃ju = π+(ν̃)
(
V (τ, x, ∂) + 2HΩ(X(τ, x))

)
u on ∂Ω . (2.21)

Remark 2.2 The normal matrix of the stretched system is equal to A(ν̃).
For positive τ , the boundary condition in (2.20) is the natural maximally
absorbing one.

Proof of Corollary 2.10. Define v : Ω→ C2 by v(X) := u(x(X)). Since u
satisfies the stretched Pauli system on a neighborhood of ∂Ω, (2.18) implies
that v satisfies the unstretched Pauli system on a neighborhood of ∂Ω.

The unstretched differential equation satisfied by v has principle symbol∑
j Aj ∂/∂Xj . The symbol at any outward conormal vector to Ω is equal to

a positive multiple of
∑

j Ajνjτ/(τ + σj). This sum is equal to the symbol
of the stretched operator on Ω at the conormal ν to Ω. Thus the posi-
tive eigenspace of the unstretched symbol at νΩ(X) is equal to the positive
eigenspace of the stretched operator at νΩ(x).

The boundary condition satisfied by u asserts that

u ∈ E+
(
A(ν̃)

)
= E+

(
A
(
νΩ)
)
.

Therefore v satisfies the boundary condition v|∂Ω ∈ E+
(
A(νΩ)

)
. The func-

tion v on Ω therefore satisfies the hypotheses of Proposition 2.7 on Ω. That
Proposition implies that for X ∈ ∂Ω,

π+
(
ν̃(x(X))

) 3∑
j=1

Aj ∂̃ju = π+
(
ν̃(x(X))

)(
νΩ · ∂X + 2HΩ(X)

)
v .

Equation (2.18) shows that

νΩ · ∂X =
(∑

j

ν2
j

(τ + σj)2

)−1/2∑
j

νj
τ + σj

τ

τ + σj

∂

∂xj
= V .

Inserting in the preceding equation yields (2.21). �
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2.3.3 Transverse identity for stretched Pauli for τ /∈ R

Part iv of the next proposition is the key identity for complex τ .

Proposition 2.11 i. There is an R1 > 1 so that for |τ | > R1 the spectrum
of A(ν̃(τ, x)) consists of one simple eigenvalue in |z − 1| < 1 and a second
in |z− (−1)| < 1. Then the map τ 7→ π±

(
A
(
ν̃(τ, x)

)
is analytic in |τ | > R1.

ii. There is an R2 ≥ R1 so that the function τ 7→ νΩ(X(τ, x)) from ]m,∞[
to C∞(∂Ω) has a holomorphic extension to {|τ | > R2}.

iii. There is an R3 ≥ R2 so that the function τ 7→ HΩ(X(τ, x)) from ]m,∞[
to C∞(∂Ω) has a holomorphic extension to {|τ | > R3}.

iv. If |τ | > R3 and τ 7→ u(τ) ∈ H2(Ω) satisfies u ∈ E+(ν̃) on ∂Ω and is
holomorphic on a connected open subset of |τ | > R3 that meets the real axis
in an open set, then (2.21) holds on that open set.

Proof. i. For |τ | large one has uniformly for x ∈ ∂Ω,

ν̃ =

(
ν1 τ

τ + σ1
,
ν2 τ

τ + σ2
,
ν3 τ

τ + σ3

)
= ν + O(|τ |−1) ,

The assertions in i follows from Part ii of Proposition 2.1.

ii. It suffices to construct the analytic continuation for points in a neigh-
borhood of each X ∈ ∂Ω. Suppose that X = X(τ, x) with τ > 0 and
x ∈ ∂Ω and X the stretching transformation defined by (2.17). The map
τ 7→ X(τ, ·) is holomorphic on τ 6= 0 with values in C∞(∂Ω;C). In addition,
∂X/∂x = I +O(1/τ), so ∂X/∂x is invertible for |τ | > R.

Suppose that x(α1, α2) is a parametrization of a neighborhood of x in ∂Ω.
Then for τ > 0, X(τ, x(α1, α2)) is a parametrization of a neighborhood of X
in ∂Ω. For those τ the tangent space to ∂Ω is spanned by the independent
vectors ∂X(τ, x(α))/∂αi, 1 = 1, 2. Thanks to the invertibility of ∂X/∂x,
the formula

Span
{∂X(τ, x(α))

∂α1
,
∂X(τ, x(α))

∂α2

}
= Span

{∂X
∂x

∂x

∂α1
,
∂X

∂x

∂x

∂α2

}
(2.22)

shows that the tangent space has a holomorphic continuation to |τ | > R.

For real τ a normal vector to Ω at X(τ, x(α)) is given by

∂X

∂x

∂x

∂α1
∧ ∂X

∂x

∂x

∂α2
.
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It is nonvanishing because ∂X/∂x is invertible and the vectors ∂x/∂αj are
independent. The unit normal vector is given by

ν(X(τ, x(α)) =
∂X
∂x

∂x
∂α1
∧ ∂X

∂x
∂x
∂α2[∑

i

((
∂X
∂x

∂x
∂α1
∧ ∂X

∂x
∂x
∂α2

)
i

)2]1/2
Since ∂X/∂x = I +O(1/τ) it follows that one can choose R > 0 so that∑

i

((∂X
∂x

∂x

∂α1
∧ ∂X

∂x

∂x

∂α2

)
i

)2

has strictly positive real part for |τ | > R. With that choice the expression
for ν(X(τ, x(α)) yields an analytic continuation of the unit normal vector
to |τ | > R. For nonreal values of τ , ν(X(τ, x(α)) need not be real and need
not be of unit length.

iii. For τ real the Weingarten map is the map from TX(∂Ω) to itself that
maps the two basis vectors as follows,

∂X(τ, x(α))

∂αj
→

∂νΩ(X(τ, x(α))

∂αj
, j = 1, 2. (2.23)

The holomorphic extension of ν implies that the Weingarten map extends
holomorphically to a family of linear map of the holomorphic family of two
dimensional spaces (2.22) to itself.

For τ real the mean curvature HΩ is equal to one half of the trace of the
Weingarten map. The preceding paragraph shows that this trace has a
holomorphic continuation proving iii.

iv. The difference of the two sides of (2.21) is holomorphic on a connected
set. Corollary 2.10 implies that it vanishes for τ on the open intersection
with the real axis. By analytic continuation it vanishes identically. �

Corollary 2.12 If u ∈ H2(Ω) satisfies L(τ, ∂̃)u = 0 on ∂Ω and u ∈ E+(ν̃)
on ∂Ω, then

π+(ν̃)
(
V (τ, x, ∂) + τ + 2HΩ(X(τ, x))

)
u = 0 on ∂Ω . (2.24)

Proof. Equation (2.21) implies that

π+(ν̃)L(τ, ∂̃)u = π+(ν̃)
(
V (τ, x, ∂) + τ + 2HΩ(X(τ, x))

)
u on ∂Ω .

Since L(τ, ∂̃)u = 0 on ∂Ω, u satisfies (2.24). �
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3 The Pauli-Helmoltz system

3.1 The Helmholtz operator

Derive a Helmholtz equation that is satisfied by all solutions of the stretched
equations. For i 6= j the anticommutation formulas (2.1) imply that

Ai∂̃iAj ∂̃j + Aj ∂̃j Ai∂̃i = 0, for i 6= j .

Indeed, when the derivatives fall on variable coefficients they yield zero.
Define

∂̃2
j :=

( τ

τ + σj(xj)
∂j

)( τ

τ + σj(xj)
∂j

)
where the order of the operators inside the parentheses is important. The
following stretched versions of (2.2) hold,(∑

j

Aj ∂̃j

)2
= −

∑
j

∂̃2
j ,(∑

Aj ∂̃j − τ
)(∑

Aj ∂̃j + τ
)

=
∑
j

∂̃2
j − τ2 .

(3.1)

The second equation in (3.1) shows that where a function u satisfies L(τ, ∂̃)u =
0, it satisfies the elliptic equation

(∑
j ∂̃

2
j −τ2

)
u = 0. The next lemma gives

a divergence form equation.

Definition 3.1 Define

p
(
τ, x, ∂

)
u :=

3∑
j=1

∂j
(τ + σj+1(xj+1))(τ + σj+2(xj+2))

τ(τ + σj(xj))
∂ju , (3.2)

and

Π(τ, x) :=
3∏
i=1

τ + σi(xi)

τ
. (3.3)

Lemma 3.2 As operators on H2
loc(Q),

Π(τ, x)
(∑

j

Aj ∂̃j − τ
)(∑

j

Aj ∂̃j + τ
)

= p(τ, x, ∂) − τ2 Π(τ, x). (3.4)
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Proof. Expanding the product on the left using the anticommutation rela-
tions (2.1) yields∑
j

( 3∏
i=1

τ + σi(xi)

τ

) ( τ

τ + σj(xj)
∂j

)( τ

τ + σj(xj)
∂j

)
− τ2

3∏
i=1

τ + σi(xi)

τ
.

The factor before the first derivative on the left is equal to( 3∏
i=1

τ + σi(xi)

τ

)
τ

τ + σj(xj)
=

(
τ + σj+1(xj+1)

)(
τ + σj+2(xj+2)

)
τ2

.

This function does not depend on xj so commutes with ∂j .( 3∏
i=1

τ + σi(xi)

τ

) ( τ

τ + σj(xj)
∂j

)( τ

τ + σj(xj)
∂j

)
= ∂j

((τ + σj+1(xj+1)
)(
τ + σj+2(xj+2)

)
τ2

τ

τ + σj(xj)

)
∂j

= ∂j

((τ + σj+1(xj+1)
)(
τ + σj+2(xj+2)

)
τ
(
τ + σj(xj)

) )
∂j .

This completes the proof. �

Remark 3.1 i. The factors in the product on the left of (3.4) are∑
j

Aj ∂̃j + τ = L
(
τ, ∂̃
)
, and,

∑
j

Aj ∂̃j − τ = L
(
− τ, ∂̃

)
. (3.5)

ii. Since ∣∣∣Π(τ, x)− 1
∣∣∣ =

∣∣∣ 3∏
i=1

τ + σi(xi)

τ
− 1
∣∣∣ . 1

|τ |
(3.6)

the coefficients of the operator on the right of (3.4) differ from those of the
classical Helmholtz operator ∆− τ2 by O(|τ |−1).

Definition 3.3 • For vectors α, β in Ck define α · β :=
∑

j αj βj.

• Define the continuous bilinear form a : H1(Q;C2) × H1(Q;C2) → C
associated to − p by

a(u, v) =

∫
Q

3∑
j=1

(τ + σj+1(xj+1))(τ + σj+2(xj+2))

τ(τ + σj(xj))
∂ju · ∂jv dx . (3.7)

• If Ω ⊂ Q is open the formula with integration over Ω defines a continuous
form from H1

loc(Ω)×H1
compact(Ω)→ C.
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Remark 3.2 i. If u ∈ H1
loc(Ω) and f ∈ H−1

loc (Ω) then u satisfies pu = f on
Ω if and only if

∀φ ∈ C∞0 (Ω), a(u, φ) = −
∫

Ω
f · φ dx .

ii. Multiplying numerator and denominator of the coefficient of ∂j in (3.7)
by τ + σj shows that

a(u, v) =

∫
Ω

Π(τ, x)
3∑
j=1

τ2

(τ + σj)2
∂ju · ∂jv dx . (3.8)

iii. If u ∈ H2(Ω), an integration by parts yields

a(u, v) = −
∫

Ω
p u · v dx+

∫
∂Ω

Π(τ, x)

3∑
j=1

νj τ
2

(τ + σj)2
∂ju · v dΣ. (3.9)

To solve the stretched equation, start by using (3.4) to show that any solu-
tion must satisfy the Helmholtz equation(

p(τ, x, ∂)− τ2 Π(τ, x)
)
u = Π(τ, x)

(∑
Aj ∂̃j − τ

)
F. (3.10)

Remark 3.3 There is an extensive literature on using the PML technology
for the solution of time harmonic scattering problems for the wave equation
beginning with Collino-Monk and Lassas-Somersalo [11, 20, 21, 8, 9]. All
depend on choosing σj constant outside a compact set and then relying on an
explicit Green’s function for the Helmholtz operator τ2−p with τ = iω and x
outside that compact set. Rellich’s Uniqueness Theorem and the exponential
decay of the Green’s function drives the analysis. The operator p and the
form a(·, ·) appear in those articles. Variable σj, corners, and absorbing
boundary conditions at trihedral corners have no analogue in their work.
This time harmonic work is related to the method of complex scaling in
Scattering Theory introduced by Balslev-Coombes [6] and raised to high art
by Sjöstrand and a brilliant school (see [14]).

3.2 The Helmholtz boundary value problem, Theorem 3.7

Equation (3.10) is supplemented by boundary conditions. The goal is to
prove Theorem 2.5 so have u ∈ E+(ν̃), equivalently π−(ν̃)u = 0. Corollary
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2.12 provides the second boundary condition. The present section is devoted
to studying the resulting Helmholtz boundary value problem,(

τ2 Π(τ, x) − p(τ, x, ∂)
)
u = f on Qδ ,

π−(ν̃(τ, x))u = g1 on ∂Qδ ,

π+(ν̃(τ, x))
(
V (τ, x, ∂) + τ + 2HΩ(X(τ, x))

)
u = g2 on ∂Qδ .

(3.11)

Here g1 and g2 are functions on ∂Ω that take values in E−(A(ν̃(τ, x)) and
E+(A(ν̃(τ, x)) respectively.

Definition 3.4 For S ∈ HomCk denote by S† the transposed matrix so that
Su · v = u · S†v for all vectors u, v ∈ Ck.

For |Im ξ| < |Re ξ|, A(ξ) has two eigenvalues λ±(ξ) and spectral representa-
tion

A(ξ) = λ+π+(ξ) + λ−π−(ξ), so, A(ξ)† = λ+π+(ξ)† + λ−π−(ξ)†.

Therefore λ± are eigenvalues of A(ξ)† and π±(ξ)† are the corresponding
spectral projections.

Definition 3.5 Define the transposed boundary value problem as,(
τ2 Π(τ, x) − p(τ, x, ∂)

)
u = f on Qδ ,

π−(ν̃(τ, x))†u = g1 on ∂Qδ ,

π+(ν̃(τ, x))†
(
V (τ, x, ∂) + τ + 2HΩ(X(τ, x))

)
u = g2 on ∂Qδ .

(3.12)

The g1 and g2 are functions on ∂Ω taking values in E−(A(ν̃)†) and E+(A(ν̃)†)
respectively.

The annihilator of the range of the direct problem is equal to the nullspace
of the transposed problem (see Section 3.3.3).

Lemma 3.6 There is an R > 0 independent of δ to that for |τ | > R the
boundary value problems (3.11) and (3.12) satisfy Lopatinski’s condition for
all x ∈ ∂Qδ.
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Proof. Treat only (3.11). The proof for the other is nearly identical.

The Lopatinski condition concerns only the leading order parts of the op-
erators. In addition as |τ | → ∞, p(τ, x, ∂) → ∆ and V (τ, x, ∂) → νQδ · ∂.
Thus it suffices to prove Lopatinski’s condition for the constant coefficient
half space problems,

∆u = f on ν · x < 0 ,

π−(ν)u = g1 on ν · x = 0 ,

π+(ν)
(
ν · ∂xu

)
= g2 on ν · x = 0 .

(3.13)

Though (3.11) is not rotation invariant, (3.13) is rotation invariant. It there-
fore suffices to consider (3.13) with ν = (−1, 0, 0). That yields the boundary
value problem

∆u = f on x1 > 0 ,

u1 = g1 on x1 = 0 ,

∂x1u2 = g2 on x1 = 0 .

(3.14)

This is the Dirichlet problem for u1 and the Neumann problem for u2.
Lopatinski’s condition is known for each of them. �

Theorem 3.7 There is an M > 0 so that if Re τ > M and 0 < δ < 1, then
the continuous linear map

H2(Qδ) 3 u 7→ (f, g1, g2) ∈ L2(Qδ)×H3/2(∂Qδ; E−(ν̃))×H1/2(∂Qδ; E+(ν̃))

defined by (3.11) is one to one and onto.

Strategy of the proof of Theorem 3.7. The theory of elliptic boundary
value problems satisfying Lopatinski’s condition implies the following facts,
see [2, 3].

• The kernel of the map is a finite dimensional subset of C∞(Qδ).
• The range is closed with finite codimension.

• The annihilator of the range is a subspace of C∞(Qδ) × C∞(∂Qδ) ×
C∞(∂Qδ).
To prove the theorem it suffices to prove that the kernel and the annihilator
of the range are both trivial.

3.3 Main a priori estimate, Theorem 3.8

Theorem 3.8 There are constants C,M independent of δ ∈]0, 1[ and τ ∈
{Re τ > M} so that if u ∈ H2(Qδ) satisfies the direct problem (3.11) (resp.
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the transposed problem (3.12)) with g1 = 0 and g2 = 0 then

|τ | (Re τ) ‖u‖2L2(Qδ) +

Re τ

|τ |

(
‖|β|1/2u‖2L2(∂Qδ) + ‖∇xu‖2L2(Qδ)

)
≤ C

∣∣∣ ∫
Qδ
f u dx

∣∣∣ . (3.15)

Definition 3.9 • Using the analytic continuation HΩ(X(τ, x)) from Part
iii of Proposition 2.11, define Φ, β ∈ C∞({Re τ > M}×]0, 1[×∂Ω) by

Φ(τ, x) := Π(τ, x)
(∑

j

ν2
j τ

2

(τ + σj)2

)1/2
,

β(τ, δ, x) := τ + 2HΩ

(
X(τ, x)

)
.

(3.16)

• With Re τ > M and a(u, v) from (3.7), define continuous bilinear forms
A(τ, ·, ·) : H1(Ω)×H1(Ω)→ C by

A(τ, u, v) := a(u , v) +

∫
Ω
τ2 Π(τ, x)u · v dx +

∫
∂Ω

Φβ u · v dΣ. (3.17)

The proof of Theorem 3.8 relies on two estimates for A. The first is a lower
bound for A(u, u) that holds for all u ∈ H1(Ω). The second is an upper
bound that relies on the boundary conditions. The dependence of A on Ω
and therefore δ is suppressed. Similarly, the dependence of A on τ is usually
not indicated.

Lemma 3.10 If u ∈ H2(Ω) and v ∈ H1(Ω), define f := (τ2Π− p)u. Then,

A(τ, u , v) −
∫

Ω
f · v dx =

∫
∂Ω

Φ(τ, x)
(
V + β(τ, δ, x)

)
u · v dΣ . (3.18)

Proof. The differential operator appearing in the boundary term of Green’s
formula (3.9) is related to the operator V (τ, x, ∂) associated to the natural
boundary condition for the stretched Pauli system by

Π(τ, x)

3∑
j=1

νj τ
2

(τ + σj)2
∂j = Π(τ, x)

( 3∑
j=1

( νj τ
2

(τ + σj)2

)2)1/2
V (τ, x, ∂)

= Φ(τ, x)V (τ, x, ∂).
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Equation (3.9) shows that

a(u , v) +

∫
Ω
τ2 Π(τ, x) u · v dx −

∫
Ω
f · v dx =∫

∂Ω
Π(τ, x)

3∑
j=1

νj τ
2 ∂ju

(τ + σj)2
· v dΣ =

∫
∂Ω

Φ(τ, x) V u · v dΣ .

(3.19)

Adding
∫
∂Ω Φβ u · v dΣ to both sides proves (3.18). �

Example 3.1 If on ∂Ω, u satisfies

π−(ν̃)u = 0, and
(
V + τ + 2HΩ(X(τ, x))

)
u = 0,

and v satisfies π+(ν̃)†v = 0, then the boundary term in Lemma 3.10 van-
ishes. This yields a weak formulation, and a mixed finite element approach
to the boundary value problem for u.

3.3.1 Lower bound for |A(u, u)|

Proposition 3.11 There are constants C,M > 0 independent of δ ∈]0, 1[
so that for any τ ∈

{
Re τ ≥M

}
, and u ∈ H1(Qδ),

|τ |(Re τ)‖u‖2L2(Qδ) +

Re τ

|τ |

(∥∥|β|1/2 u∥∥2

L2(∂Qδ)
+
∥∥∇xu∥∥2

L2(Qδ)

)
.
∣∣A(u, u)

∣∣. (3.20)

Remark 3.4 In (3.35), we show that HΩ = HΩ + O(1/τ). Since β =
τ + 2HΩ(τ, x) it follows that there is an M independent of δ to that for
Re τ > M

|τ |+HΩ(x) ≤ |β(τ, δ, x)| ≤ |τ |+ 3HΩ(x) .

Proof. Step 1. A0 and its real and imaginary parts. Denote by A0

the form that one would have if σj = 0 for all j,

A0(τ, u, v) :=

∫
Qδ
τ2 u · v dx +

∫
∂Qδ

β u · v dΣ +

∫
Qδ
∇xu · ∇xv dx ,

A0(τ, u, u) :=

∫
Qδ
τ2 |u|2 dx +

∫
∂Qδ

β |u|2 dΣ +

∫
Qδ

∣∣∇xu∣∣2 dx .
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The real part of A0 is

ReA0(u, u) =
(

(Re τ)2 − (Im τ)2
)∥∥u∥∥2

L2(Qδ)

+
∥∥(Reβ)1/2u‖2L2(∂Qδ) +

∥∥∇xu∥∥2

L2(Qδ)
.

(3.21)

Use Im τ2 = 2 (Im τ)(Re τ) to find,

Im

∫
Qδ
τ2 |u|2 dx = (Im τ)

∫
Qδ

2 Re τ |u|2 dx ,

Im

∫
∂Qδ

β |u|2 dΣ = (Im τ)

∫
∂Qδ

|u|2 dσ .

Combining shows that for 0 6= Im τ ,

ImA0(u, u)

Im τ
= 2 (Re τ)

∥∥u∥∥2

L2(Qδ)
+
∥∥u∥∥2

L2(∂Qδ)
. (3.22)

Step 2. Proof for A0. • The bound (3.20) is proved by combining (3.21)
and (3.22). Care is needed where the terms on the right of (3.21) do not
have the same sign. Where | Im τ | < Re τ/2, (3.21) implies (3.20).

• It suffices to consider the complementary set {| Im τ | ≥ Re τ/2}. In that
parameter range (3.22) implies

(Re τ) ‖u‖2L2(Qδ) + ‖u‖2L2(∂Qδ) .
| ImA0(u, u)|

|τ |
. (3.23)

Multiplying by |τ |2/Re τ yields

|τ |2 ‖u‖2L2(Qδ) +
|τ |2

Re τ
‖u‖2L2(∂Qδ) .

|τ |
Re τ

| ImA0(u, u)| . (3.24)

Therefore,∣∣∣(Re τ)2 − (Im τ)2
∣∣∣ ∥∥u∥∥2

L2(Qδ)
≤ |τ |2 ‖u‖2L2(Qδ) .

|τ |
Re τ

∣∣A0(u, u)
∣∣ .

Using this in (3.21) yields for |τ | > M1,∥∥∇xu∥∥2

L2(Qδ)
+
∥∥(Reβ|)1/2 u

∥∥2

L2(∂Qδ)
.
|τ |

Re τ

∣∣A0(u, u)
∣∣ . (3.25)

Adding (3.24) and (3.25) yields

|τ |2 ‖u‖2L2(Qδ) +
∥∥∇xu∥∥2

L2(Qδ)
+
∥∥(Reβ)1/2 u

∥∥2

L2(∂Qδ)
+

+
|τ |2

Re τ
‖u‖2L2(∂Qδ) .

|τ |
Re τ

∣∣A0(u, u)
∣∣ .
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Multiply by (Re τ)/|τ | and use |β| ≤ (Reβ) + |τ | to find

|τ |(Re τ)‖u‖2L2(Qδ) +
Re τ

|τ |

(∥∥|β|1/2 u∥∥2

L2(∂Qδ)
+
∥∥∇xu∥∥2

L2(Qδ)

)
.
∣∣A0(u, u)

∣∣.
(3.26)

Step 3. Perturbation argument. For τ 6= 0, τ + σj(xj) = τ(1 + σj/τ)).
Write

a(u, u)− a0(u, u) =

∫
Ω

((τ + σj+1)(τ + σj+2)

τ(τ + σj)
− 1
)
|∂ju|2 dx

+ τ2

∫
Ω

(
Π(τ, x)− 1

)
|u|2 dx+

∫
∂Ω

(
Φ(τ, x)− 1

)
|β| |u|2 dΣ .

Since |Π− I|+ |Φ− I| = O(1/τ), this yields∣∣A(u, u)−A0(u, u)
∣∣ . |τ |‖u‖2L2(Qδ)+

+
1

|τ |
‖|β|1/2u‖2L2(∂Qδ) +

1

|τ |
‖∇xu‖2L2(Qδ) .

1

Re τ

∣∣A0(u , u)
∣∣, (3.27)

where inequality (3.26) for A0 is used in the last inequality. The triangle
inequality and estimate (3.27) imply∣∣A(u , u)

∣∣ ≥ A0(u , u) −
∣∣A(u , u)−A0(u , u)

∣∣ ≥ (1− c

Re τ

) ∣∣A0(u , u)
∣∣.

For Re τ > 2c this yields (3.20) completing the proof of Proposition 3.11. �

3.3.2 Upper bound for |A(u, u)|, proof of Theorem 3.8

Proposition 3.12 If u ∈ H2(Ω) is a solution of the Helmholtz boundary
value problem (3.11) (resp. the transposed problem (3.12)) with g1 = 0 and
g2 = 0, then with constant independent of δ ∈]0, 1[ and |τ | > 1,∣∣A(u, u)

∣∣ . ∣∣∣ ∫
Ω
f u dx

∣∣∣ +
1

|τ |

(∥∥|β|1/2 u∥∥2

L2(∂Ω)
+ ‖u‖2H1(Ω)

)
.

Proof of Proposition 3.12. For (3.11) write(
V + β

)
u = (π+(ν̃) + π−(ν̃))

(
V + β

)
u = π−(ν̃)

(
V + β

)
u.

For the transposed boundary value problem (3.12) write(
V + β

)
u = (π+(ν̃)† + π−(ν̃)†)

(
V + β

)
u = π−(ν̃)†

(
V + β

)
u.
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Continuing the computation for (3.11), Lemma 3.10 yields for u, v ∈ H1(Ω),

A(u, v) =

∫
Ω
f · v dx −

∫
∂Ω

Φπ−(ν̃)
(
V (τ, x, ∂) + β

)
u · v dΣ.

With v = u this is

A(u, u) =

∫
Ω
f · u dx −

∫
∂Ω

Φπ−(ν̃)
(
V (τ, x, ∂) + β

)
u · u dΣ. (3.28)

The difficult step is to derive an upper bound for∫
∂Ω

Φπ−(ν̃)
(
V (τ, x, ∂) + β

)
u · u dΣ.

The boundary condition π−(ν̃)u = 0 implies π+(ν̃)u = u so,∫
∂Ω

Φπ−(ν̃)
(
V (τ, x, ∂)+β

)
u ·u dΣ =

∫
∂Ω

Φπ−(ν̃)
(
V (τ, x, ∂)+β

)
u ·π+(ν̃)u dΣ.

Write

π+(ν̃)u = π+(ν̃)u = π+(ν̃)† u +
(
π+(ν̃)− π+(ν̃)†

)
u .

When this is inserted the (π+(ν̃))†u term yields zero. Therefore∫
∂Ω

Φπ−(ν̃)
(
V (τ, x, ∂) + β

)
u · u dΣ

=

∫
∂Ω

Φπ−(ν̃)
(
V (τ, x, ∂) + β

)
u ·

(
π+(ν̃)− π+(ν̃)†

)
u dΣ

=

∫
∂Ω

Φ
(
V (τ, x, ∂) + β

)
u · π−(ν̃)†

(
π+(ν̃)− π+(ν̃)†

)
u dΣ

=

∫
∂Ω

Φ
(
V (τ, x, ∂) + β

)
u · w dΣ

(3.29)

with
w := π−(ν̃)†

(
π+(ν̃)− π+(ν̃)†

)
u.

For the transposed problem the difficult boundary term is∫
∂Ω

Φπ−(ν̃)†
(
V (τ, x, ∂) + β

)
u · u dΣ =

∫
∂Ω

Φ
(
V (τ, x, ∂) + β

)
u · w dΣ

with
w := π−(ν̃)

(
π+(ν̃)† − π+(ν̃)

)
u.
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The estimates in the two cases are virtually identical. The details are pre-
sented only for the direct problem. For the direct problem define m ∈
C∞({Re τ > M} × ∂Ω by

m(τ, x) := τ π−(ν̃)†
(
π+(ν̃)− π+(ν̃)†

)
, so, w =

1

τ
mu . (3.30)

Need an upper bound for (3.29). Equation (3.30) shows that this is equal to

1

τ

(∫
∂Ω

ΦV u ·mu dx + Φ β u ·mu dΣ
)
. (3.31)

The next lemma gathers estimates for V and m.

Lemma 3.13 There are constants C,M so that for all Re τ > M , and,
0 < δ < 1, the following hold.

i. suppm ⊂
{
x ∈ ∂Ω : dist(x,S) < δ

}
.

ii. ‖m(τ, x)‖L∞(∂Ω) ≤ C.

iii.
∥∥∇xm(τ, x)

∥∥
L∞(∂Ω)

≤ C |β| .

iv. For all u ∈ H1/2(∂Ω),

‖mu‖H1/2(∂Ω) . ‖ |β(τ, x)|1/2 u‖L2(∂Ω) + ‖u‖H1/2(∂Ω).

v. For all u ∈ H1(Ω), ‖V u‖H−1/2(∂Ω) ≤ C ‖u‖H1(Ω).

Proof of Lemma. i. For most points x ∈ ∂Ω, one has x ∈ Gj for some j,
ν = ±ej , and A(ν) = ±Aj The spectral representation is

A(ν) = π+(ν)− π−(ν), π±(ν) = π±(ν)∗ = π±(ν)2, π±(ν)π∓(ν) = 0.

These imply the spectral representations

A(ν)† = π+(ν)† − π−(ν)†, and, A(ν) = π+(ν) − π−(ν) .

For j ∈ {1, 2, 4, 5}, A(ν) is real and hermitian symmetric, A(ν) = A(ν)† =
A(ν). Comparing the spectral representations yields π±(ν) = π±(ν)† =
π±(ν). Since ν̃ is a scalar multiple of ν this yields

π±(ν) = π±(ν)† = π±(ν) = π±(ν̃) = π±(ν̃)† = π±(ν̃) . (3.32)

It follows that m = 0 at such points.
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For j ∈ {3, 6} and x ∈ Gj , A(ν)† = A(ν) = −A(ν). Comparing the spectral
reprentations as above implies that

π±(ν) = π∓(ν)† = π∓(ν) = π±(ν̃) = π∓(ν̃)† = π∓(ν̃). (3.33)

Therefore m = 0 at these flat parts of the boundary too.

These results for all Gj show that m is supported on the rounded edges of
∂Ω proving i.

ii. Compute

τ

τ + σj
=

1

1 + σj/τ
= 1− σj

τ
+
(σj
τ

)2
− · · · .

It follows that as |τ | → ∞,

ν̃ − ν = O(1/|τ |), so, π+(ν̃)− π+(ν) = O(1/|τ |).

To estimate the size of m write

π+(ν̃)− π+(ν̃)† =
(
π+(ν̃)− π+(ν)

)
+
(
π+(ν)− π+(ν̃)†

)
.

The first summand is O(1/τ). Equations (3.32) and (3.33) imply that the
second is also O(1/|τ |). If follows that m is bounded uniformly in τ, δ,
proving ii.

iii. Use the notations from Proposition 2.11. Then τ 7→ ν(τ, ·) is analytic in
|τ | > R with values in C∞(∂Ω).

Expand the stretchings in z = 1/τ about z = 0. The transformation satisfies

∂Xj(τ, xj)

∂xj
=

τ + σj(xj)

τ
= 1 + z σj(xj) , Xj(τ, 0) = 0 . (3.34)

Thus X is analytic on a neighborhood of z = 0 with X(0, x) = x. The
derivative with respect to x satisfies DxX = I +O(z). It follows that

ν(τ, x) = ν(∞, x) +O(1/τ), and, ∇xν(τ, x) = ∇xν(∞, x) +O(z).

At τ = ∞ the ∇xν restricted to the tangent space is the Weingarten map
of ∂Ω from Definition 2.6. At τ = ∞, the eigenvalues are nonnegative.
Therefore

HΩ(τ, x) = HΩ(x) +O(1/τ),

|∇xν(∞, x)| . max {κ1, κ2} ≤ 2HΩ(x),

|∇xν(τ, x)| . |HΩ(τ, x)|+ |τ |−1 . |β(τ, δ, x)| .
(3.35)
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Since |∇xm| . |∇xν| this proves iii.

iv. Estimates ii, iii imply that with constants independent of τ, δ and all u,

‖mu‖L2(∂Ω) . ‖u‖L2(∂Ω),

‖mu‖H1(∂Ω) . ‖ |β|u‖L2(∂Ω) + ‖u‖H1(∂Ω) .
(3.36)

To prove the second, apply the product rule with vector fields ∂ that are
tangent to the boundary to find ∂(mu) = m∂u+ (∂m)u. Therefore

‖∂(mu)‖L2(∂Ω) ≤ ‖m‖L∞(∂Ω)‖∂u‖L2(∂Ω) + ‖(∂m)u‖L2(∂Ω) .

Using iii in the second summand proves (3.36)

Denote by ∆∂Ω the Laplace-Betrami operator of ∂Ω. The estimates (3.36)
are the cases θ = 0, 1 of

‖mu‖Hθ(∂Ω) . ‖(|β(τ, x)|+ |∆Ω|1/2)θu‖L2(∂Ω).

Interpolation implies the estimate for 0 ≤ θ ≤ 1. Use the case θ = 1/2. For
self adjoint Bj ≥ 0 with B1 bounded and u ∈ D(B2),∥∥√B1 +B2 u

∥∥2
=
(√

B1 +B2 u,
√
B1 +B2 u

)
= ((B1 +B2)u, u)

= (B1u, u) + (B2u, u) =
∥∥√B1 u

∥∥2
+
∥∥√B2 u

∥∥2
.

With B1 = |β(τ, x)| and B2 = |∆Ω|1/2 this yields

‖(|β(τ, x)|+|∆Ω|1/2)1/2u‖2L2(∂Ω) = ‖|β(τ, x)|1/2u‖2L2(∂Ω) + ‖|∆Ω|1/4u‖2L2(∂Ω).

Using this in the θ = 1/2 estimate proves iv.

v. With constants independent of δ, τ with |τ | > R, one has for all u ∈
H1(Ω), ∫

Ω

∣∣∇xu∣∣2 dx ≤ C
(
− Re

∫
Ω
p(τ, x, ∂)u · u dx

)
.

It follows that for |τ | > R and 0 < δ < 1, the operator 1 − p(τ, x, ∂) is an
isomorphism of H1(Ω) to H−1

0 (Ω), and with constants independent of τ, δ,

‖u‖H1(Ω) . ‖(1− p)u‖H−1
0 (Ω) . ‖u‖H1(Ω) .

Therefore,

‖pu‖H−1
0 (Ω) ≤ ‖(1− p)u‖H−1

0 (Ω) + ‖u‖H−1
0 (Ω)

. ‖u‖H1(Ω) + ‖u‖H−1
0 (Ω) . ‖u‖H1(Ω) .

(3.37)
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Using (2.19), (3.9), and (3.16) shows that for all u, v ∈ H1(Ω)

a(u, v) −
∫

Ω

(
p(τ, x, ∂

)
u) · v dx =

∫
∂Ω

Φ(τ, x) V u · v dΣ .

For φ ∈ H1/2(∂Ω) choose v ∈ H1(Ω) with ‖v‖H1(Ω) . ‖φ‖H1/2(∂Ω) to find,∣∣∣ ∫
∂Ω

Φ(τ, x) V u · φ dΣ
∣∣∣ =

∣∣∣a(u, v) −
∫

Ω
(pu) · v dx

∣∣∣
. ‖∇u‖L2(Ω) ‖∇v‖L2(Ω) + ‖pu‖H−1

0 (Ω)‖v‖H1(Ω)

.
(
‖∇u‖L2(Ω) + ‖pu‖H−1

0 (Ω)

)
‖φ‖H1/2(∂Ω) .

Using this in the upper bound for |
∫

ΦV u · φdΣ|, shows that∣∣∣ ∫
∂Ω

Φ(τ, x) V u · φ dΣ
∣∣∣ . ‖u‖H1(Ω) ‖φ‖H1/2(∂Ω).

Since Φ and 1/Φ as well as their derivatives are uniformly bounded, this
proves v. �

End of proof of Proposition 3.12. The second term on the right in
(3.31) is estimated as∣∣∣ ∫

∂Ω
Φ β u ·mu dΣ

∣∣∣ . ∫
∂Ω
|β| |u|2 dΣ = ‖|β|1/2u‖2L2(∂Ω) . (3.38)

The first summand is estimated as∣∣∣ ∫
∂Ω

ΦV u ·mu dΣ
∣∣∣ . ‖V u‖H−1/2(∂Ω) ‖mu‖H1/2(∂Ω) . (3.39)

For ‖mu‖H1/2(∂Ω) use Part iv of the lemma in (3.39) to find,∣∣∣ ∫
∂Ω

ΦV u ·mu dΣ
∣∣∣ .(

‖p u‖H−1
0 (Ω) + ‖∇u‖L2(Ω)

)(
‖ |β|1/2u‖L2(∂Ω) + ‖u‖H1/2(∂Ω)

)
.

(3.40)

Use this, (3.37), and, ‖u‖H1/2(∂Ω) . ‖u‖H1(Ω) in (3.40) to find,∣∣∣ ∫
∂Ω

ΦV u ·mu dΣ
∣∣∣ . ‖ |β|1/2u‖2L2(∂Ω) + ‖u‖2H1(Ω) . (3.41)
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Adding the estimates (3.38), and (3.41) for the terms on the right of (3.28)
proves Proposition 3.12. �

Proof of Theorem 3.8. Combine the lower and upper bounds for |A(u, u)|
from Propositions 3.11 and 3.12 to find,

|τ | (Re τ) ‖u‖2L2(Qδ) +
Re τ

|τ |

(
‖|β|1/2u‖2L2(∂Qδ) + ‖∇xu‖2L2(Qδ)

)
≤ C

∣∣∣ ∫
Qδ
f u dx

∣∣∣+
C

|τ |

(
‖|β|1/2u‖2L2(∂Qδ) + ‖u‖2L2(Qδ)

)
.

Choose M = 2C. Then for Re τ > M , the second summand on the right
can be absorbed in the left hand side yielding (3.15). This completes the
proof of Theorem 3.8. �

3.3.3 Proof of Theorem 3.7

Follow the strategy described after the statement of Theorem 3.7.

Proof that the map u 7→ (f, g1, g2) has trivial kernel. If u ∈ C∞(Qδ)
is in the kernel, it follows that u ∈ H2(Qδ) and satisfies the homogeneous
boundary value problem with sources f, g1, g2 equal to zero. Theorem 3.8
implies that u = 0.

Proof that the annihilator of the range, is {0}. • Need the following
Green’s identity for u, v ∈ H2(Ω),∫

Ω

(
τ2Π(τ, x)− p(τ, x, ∂)

)
u · v dx− u ·

(
τ2Π(τ, x)− p(τ, x, ∂)

)
v dx

= −
∫
∂Ω

Φ(τ, x)
(

(V + β(τ, x))u · v − u · (V + β(τ, x))v
)
dΣ. (3.42)

To prove (3.42), subtract (3.18) from the same identity with u and v inter-
changed.

• Equations for the annihilators. The function

(u, g
1
, g

2
) ∈ C∞(Ω)× C∞(∂Ω; E−)× C∞(∂Ω; E+)

annihilates the range if and only if ∀u ∈ H2(Ω),∫
Ω

(
τ2Π(τ, x)− p(τ, x, ∂)

)
u · u dx +

∫
∂Ω
π−(ν̃)u · g

1
dΣ

+

∫
∂Ω
π+(ν̃)

(
V + τ + 2HΩ

)
u · g

2
dΣ = 0.

(3.43)
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The operator τ2Π(τ, x)− p is equal to its own transpose. Therefore, taking
u that vanish on a neighborhood of ∂Ω implies that(

τ2Π(τ, x)− p(τ, x, ∂)
)
u = 0 on Ω . (3.44)

This together with (3.42) shows that (3.43) holds if and only if

0 =

∫
∂Ω
π+(ν̃)

(
V + τ + 2HΩ

)
u · g

2
+ π−(ν̃)u · g

1

− Φ(τ, x)
(
(V + τ + 2HΩ)u · u− u · (V + τ + 2HΩ)u

)
dΣ.

(3.45)

Equation (3.45) is used first on test functions u that satisfy (V +τ+2HΩ)u =
0 on ∂Ω. That constraint leaves u|∂Ω arbitrary. Of those test functions first
consider those that satisfy π−(ν̃)u|∂Ω = 0. For those one finds∫

∂Ω
Φ(τ, x)u · (V + τ + 2HΩ)u dΣ = 0 .

Since the Φ factor is scalar and nowhere vanishing it follows that for arbitrary
φ ∈ C∞(∂Ω), ∫

∂Ω
π+(ν̃)φ · (V + τ + 2HΩ)u dΣ = 0 .

This shows that u satisfies the transposed boundary condition

π+(ν̃)†
(
V + τ + 2HΩ

)
u = 0, on ∂Ω. (3.46)

Next take u satisfying π+(ν̃)u|∂Ω = 0. Then u|∂Ω = π−(ν̃)u. This yields∫
∂Ω

Φ(τ, x)
(
π−(ν̃)u · (V + τ + 2HΩ)u

)
+ π−(ν̃)u · g

1
dΣ .

The set of functions π−(ν̃)u|∂Ω includes the set of π−(ν̃)ψ for an arbitrary
ψ ∈ C∞(∂Ω;C2). It follows that on ∂Ω,

π−(ν̃)†
(

Φ(τ, x)
(
V + τ + 2HΩ

)
u + g

1

)
= 0 on ∂Ω. (3.47)

Next extract the information from test functions that satisfy u|∂Ω = 0. For
such test functions,

[
V + τ + 2H]∂Ω can be chosen as an arbitrary element

ψ ∈ C∞(∂Ω;C2). This yields

−
∫
∂Ω

Φ(τ, x)ψ · u dΣ +

∫
∂Ω
π+(ν̃)ψ · g

2
dΣ = 0.
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First take those ψ that satisfy π+(ν̃)ψ = 0. That is equivalent to ψ =
π−(ν̃)φ for arbitrary φ. That yields∫

∂Ω
Φ(τ, x)π−(ν̃)φ · u dΣ = 0 .

This is equivalent to the Dirichlet boundary condition for u,

π−(ν̃)†u = 0, on ∂Ω. (3.48)

Finally, consider ψ with π−(ν̃)ψ = 0. Equivalently ψ = π+(ν̃)φ for arbitrary
φ. This yields ∫

∂Ω
π+(ν̃)φ ·

(
− Φ(τ, x)u + g

2

)
dΣ = 0.

Since φ is arbitrary this is equivalent to

π+(ν̃)†
(
− Φ(τ, x)u + g

2

)
= 0 on ∂Ω. (3.49)

• Proof that u = 0, g
1

= 0, and g
2

= 0. The three equations (3.44), (3.46),
and (3.48) assert that u is a smooth solution of the transposed boundary
value problem with zero sources. Theorem 3.8 implies that u = 0.

From the fact that u = 0, (3.47) implies that (π−(ν̃))†g
1

= 0. In addition

g
1

takes values in E−(ν̃). There is an R2 so that for |τ | > R1, π−(ν̃)† is

injective on E−(ν̃(τ, x)) for all x ∈ ∂Ω. For those τ , conclude that g
1

= 0.

An entirely analogous argument using (3.49) shows that g
2

= 0. This com-
pletes the proof that the annihilator of the range is equal to {0}. �

3.4 Analyticity in τ of the Helmholtz solution

Use the shorthand E±(τ, x) for E±(ν̃(τ, x)). The vector spaces E±(τ, x)
depends analytically on τ . The next example shows that defining what it
means to depend analytically on τ has pitfalls.

Example 3.2 i. The subspace U(τ) ⊂ C2 spanned by (1, τ2) depends ana-
lytically on τ for any reasonable definition including the one below.

ii. The unit vectors spanning U(τ) are

eiθ(τ) (1, τ2)

(1 + |τ |4)1/2
, θ ∈ R.
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No choice of θ makes this holomorphic.

iii. Orthogonal projection onto U(τ) has matrix equal to

1

1 + |τ |4

(
1 τ2

τ2 |τ |4
)
.

It is not a holomorphic function of τ .

The analytic dependence of E±(τ, x) is expressed as follows. For each (τ, x),
C2 = E+(τ, x) ⊕ E−(τ, x). For τ near a fixed τ and all x ∈ ∂Ω, π+(ν̃) is
an isomorphism from E+(τ, x)→ E+(τ , x). Define the linear transformation
R+(τ, x) ∈ Hom(C2) to be the inverse of this isomorphism for v ∈ E+(τ , x)
and equal to zero on E−(τ , x). An analogous definition yields R−(τ, x).
Then R±(τ, x) ∈ Hom(E±(τ , x) : C2) depend analytically on τ . For τ near
τ and all x ∈ ∂Ω,

E+(τ, x) = R+(τ, x) E+(τ , x) .

This is a local trivialization of E+(τ, x) that depends analytically on τ .
Considering different τ the change of trivialization formulas are analytic in
τ . This is the definition of analytic dependence.

The boundary value problem (3.11) has source terms gj that takes values in
E±(τ, x). The local representation allows one to suppress the τ dependence
as follows. For τ near τ , a section g of E+(τ, x) is uniquely represented as
R+(τ, x)g where g is takes values in the τ dependent space E+(τ , x). The
boundary value problem takes the form(

τ2 Π(τ, x) − p(τ, x, ∂)
)
u = f on Ω,

π+(ν̃(τ, x))u = R−(τ, x)g
1

on ∂Ω,

π+(ν̃(τ, x))
(
V + τ + 2HΩ(X(τ, x))

)
u = R+(τ, x)g

2
on ∂Ω.

(3.50)

Here g
1

takes values in E−(τ , x) and g
2

takes values in E+(τ , x). In this form,
the source terms g

j
belong to a τ -independent space and the coefficients of

the operators depend differentiably on τ, x and analytically on τ .

Definition 3.14 A τ -dependent section g1(τ) ∈ H3/2(E−(τ, x)) depends an-
alytically on τ when the corresponding functions g

1
(τ) ∈ H3/2(E−(τ , x)) de-

pend analytically on τ . A similar definition applies for g2(τ) ∈ H1/2(E−(τ, x)).

Theorem 3.15 If the source terms

(f, g1, g2) ∈ L2(Ω)×H3/2(E−(τ, x))×H1/2(E+(τ, x))
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depend analytically on τ on Re τ > M , then the correponding solution u(τ, ·)
of (3.11) is an analytic function of τ with values in H2(Ω).

Proof. Standard elliptic theory shows that writing τ = a + ib the map
a, b 7→ u is infinitely differentiable with values in H2(Ω). The derivatives
satisfy the system obtained by differentiating, with respect to a, b, the system
and boundary conditions satisfied by u.

To prove analyticity it suffices to show that w := ∂u/∂τ = 0. Since all the
coefficients and the f, g1, g2 are analytic, differentiating the boundary value
problem with respect to τ shows that w satisfies(

τ2 Π(τ, x) − p(τ, x, ∂)
)
w = 0 on Qδ,

π−(ν̃(τ, x))w = 0 on ∂Qδ,

π+(ν̃(τ, x))
(
V (τ, x, ∂) + τ + 2HΩ(X(τ, x))

)
w = 0 on ∂Qδ.

Theorem 3.8, implies that w = 0. �

4 Proofs of the Main Theorems

4.1 The stretched equation on Qδ, Theorem 2.5

Proof of Theorem 2.5. Uniqueness. Multiply the differential equation
L(τ, ∂̃)uδ = F from (2.8) by Π(τ, x)

(
τ −

∑
Aj ∂̃j) and use (3.4) to find the

first line in the Helmholtz boundary value problem(
τ2Π(τ, x) − p(τ, x, ∂)

)
uδ = Π(τ, x)

(
τ −

∑
Aj ∂̃j)F ,

π−(ν̃)uδ = 0, on ∂Qδ,
π+(ν̃)

(
V (τ, x, ∂) + τ + 2HQ

δ

)
uδ = 0, on ∂Qδ.

(4.1)

The second line is part of (3.4). The last line follows from part iv of Propo-
sition 2.11 since F = 0 on a neighborhood of ∂Qδ and uδ ∈ H2(Qδ).
The hypotheses of Theorem 3.8 are satisfied. Apply the estimate of that
Theorem with f = 0 to conclude that u = 0.

Existence. For Re τ > M , Theorem 3.7 implies that the boundary value
problem (4.1) has a unique solution uδ ∈ H2(Qδ). Theorem 3.15 implies
that u is holomorphic with values in H2(Qδ).
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Since F ∈ L2
`Q(R3) it follows that the source term f := Π(τ, x)

(
τ−
∑
Aj ∂̃j)F

belongs to L2(R3) with suppF ⊂ `Q. Estimate∣∣∣ ∫
Qδ
f u dx

∣∣∣ =
∣∣∣ ∫
Qδ
F
(
τ −

∑
Aj ∂̃j)

∗(Πu) dx
∣∣∣

. ‖F‖L2
`Q

(Qδ)

(
‖τu‖L2(Qδ) + ‖∇xu‖L2(Qδ)

)
.

Estimate the two terms on the right as folllows. Write

C‖µ−1F‖L2
`Q

(Qδ) ‖µτu‖L2(Qδ) ≤
C2µ−2

2
‖F‖2L2

`Q
(Qδ) +

µ2|τ |2

2
‖u‖L2(Qδ)

)
.

C‖ε−1F‖L2
`Q

(Qδ) ‖ε∇xu‖L2(Qδ) ≤
C2ε−2

2
‖F‖2L2

`Q
(Qδ) +

ε2

2
|‖∇xu‖2L2(Qδ).

Choose µ, ε so that µ2|τ |2 = |τ |(Re τ) and ε2 = (Re τ)/|τ |. Then,

C‖F‖L2
`Q

(Qδ) ‖τu‖L2(Qδ) ≤
C2|τ |
2 Re τ

‖F‖2L2
`Q

(Qδ) +
|τ |(Re τ)

2
‖u‖2L2(Qδ).

C‖F‖L2
`Q

(Qδ) ‖∇xu‖L2(Qδ) ≤
C2|τ |
2 Re τ

‖F‖2L2
`Q

(Qδ) +
Re τ

2|τ |
‖∇xu‖2L2(Qδ).

Absorbing the two right hand terms, Theorem 3.8 shows that with constant
independent of δ,

|τ | (Re τ)
∥∥uδ∥∥2

L2(Qδ)
+ |τ |

∥∥uδ∥∥2

L2(∂Qδ)

+
Re τ

|τ |
∥∥∇uδ∥∥2

L2(Qδ)
.
|τ |

Re τ

∥∥F∥∥2

L2
`Q

(Qδ)
.

(4.2)

Multiplying by (Re τ)/|τ | yields (2.9).

To complete the proof it suffices to show that uδ satisfies the stretched
boundary value problem (1.7) on Qδ. Need to reverse the steps that lead
from the stretched equations to the Helmholtz boundary value problem. The
proof uses the H2(Qδ) regularity that requires the smoothness of Qδ. Define

w :=
(
A(∂̃) + τ

)
u ∈ H1(Qδ).

Need to show that the stretched equation, w = F , is satisfied.

The Helmholtz equation implies that w − F ∈ H1(Qδ) satisfies(
A(∂̃) − τ

)(
w − F

)
= 0 , on Qδ . (4.3)
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Part iv of Proposition 2.11 shows that the derivative boundary condition
satisfied by uδ is equivalent to

π+
(
A(ν̃)

)
A(ν̃)−1

(
w − F

)
= 0 on ∂Qδ .

Since π+(A(ν̃)) and A(ν̃) commute, this is equivalent to

π+
(
A(ν̃)

) (
w − F

)
= 0 on ∂Qδ . (4.4)

When τ is real and large, the pair of equations (4.3), (4.4) is a strictly
dissipative boundary value problem with vanishing sources on the smooth
domain Qδ with noncharacteristic boundary. The solution is in H1(Qδ).
That the solution vanishes follows by a direct integration by parts showing
that

‖w − F‖2L2(Qδ) . Re

∫
Qδ

((
τ −A(∂)

)
(w − F ), (w − F )

)
C6
dx = 0 .

The map τ 7→ (w − F )(τ) is holomorphic for Re τ large. It has just been
proved that it vanishes on ]m,∞[ for m large. By analytic continuation, it
follows that w − F = 0 for all Re τ > M .

Thus the stretched equation is satisfied on Qδ for Re τ > M . This completes
the proof of existence. �

4.2 The stretched equation on Q, Theorem 1.6

Proof of Theorem 1.6. Uniqueness.

The solution with vanishing data is holomorphic in Re τ large. To prove
that it vanishes it is sufficient to prove that it vanishes for τ ∈]m,∞[ for m
large.

For τ real and large, the stretched equation, L
(
τ, ∂̃

)
u(τ) = 0 is symmetric

positive in the sense of Friedrichs, that is

L
(
τ, ∂̃

)
+ L

(
τ, ∂̃

)∗ ≥ C1(τ − C2)I, C1 > 0 .

In addition, u(τ) ∈ H1(Qδ) satisfies strictly dissipative boundary conditions
on each smooth faces Gj Therefore a straightforward integration by parts
shows that

‖u(τ)‖2L2(Q) ≤ C1

(
τ − C2

) ∫
Q

(
L(τ, ∂̃)u , u

)
dx = 0.
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Existence. Use Theorem 2.5. Solve on Qδ and pass to the limit δ → 0.
At the same time one must smooth the source term f in order to apply
Theorem 2.5.

Choose 0 < ε < dist (`Q, ∂Q)/2. Define K ′ to be the set of points at distance
ε from `Q. Then K ′ ⊂ Q is compact. For ε < ε, define Fε := jε ∗F where jε
is a smooth mollification kernel on R3 with support in the ball of radius ε at
the origin. The source term Fε ∈ C∞K′(Q). For δ sufficiently small K ′ ⊂ Qδ
and Theorem 2.5 applies.

Define δ(n) = 2−n, and uδ(n) ∈ H2(Qδ(n)) to be the solution from Theorem
2.5 with source term equal to Fδ(n). Then with C independent of n,

(Re τ)2
∥∥uδ(n)

∥∥2

L2(Qδ(n))
+ (Re τ)

∥∥uδ(n)
∥∥2

L2(∂Qδ(n))

+
(Re τ)2

|τ |2
∥∥∇xuδ(n)

∥∥2

L2(Qδ(n))
≤ C

∥∥Fδ(n)

∥∥2

L2
`Q

(Qδ(n))
.

(4.5)

Extract a subsequence that converges weakly in H1(Qδ(1)) to a limit v1.
Extract a further subsequence that converges weakly in H1(Qδ(2)) to a limit
v2. And so forth. For each n > 1, one has vn = vn−1 on Qδ(n−1). Define
v ∈ H1(Q) by v = vn on Qδ(n). Using that Qδ(n) ↗ Q and ∂Qδ(n)∩Gj ↗ Gj
conclude that for each n, uk converges weakly to v in H1(Qδ(n)) with

(Re τ)2
∥∥v∥∥2

L2(Q)
+ (Re τ)

∥∥v∥∥2

L2(∂Q)

+
(Re τ)2

|τ |2
∥∥∇xv∥∥2

L2(Q)
≤ C

∥∥F‖2L2
`Q

(Q) .
(4.6)

The differential equation L(τ, ∂̃)v = F on Q follows from the equations
L(τ, ∂̃)uk = Fk on Qδ(n(k)) on passing to the limit k → ∞. Similarly, the
boundary condition

π+(ν)v = 0, on Gk

follows on passing to the limit in

π+(ν)uδ(n)

∣∣
Gk∩∂Qδ(n)

= 0.

For any δ > 0 the holomorphy of τ 7→ v(τ) from Re τ > M to L2(Qδ) follows
from the fact that it is the weak limit of bounded family of holomorphic
functions. Therefore, for any δ, v : {Re τ > M} → L2(Qδ) is holomorphic.

To show that v is holomorphic with values in L2(Q) it is sufficient to show
that τ 7→ `(v(τ)) is holomorphic for each ` in the dual of of L2(Q).
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Since v ∈ L∞
(
{Re τ > M} ; L2(Q)

)
, it suffices to show that `(v(τ)) is

holomorphic for ` in a dense subset. Indeed if ` is the limit of `j for which
the result is true, estimate∣∣`(v(τ)) − `j(v(τ))

∣∣ ≤ ‖`− `j‖ sup
Re τ>M

‖v(τ)‖H1(Q), on Re τ > M.

This proves that `(v(τ)) is the uniform limit of the holomorphic functions
`j(v(τ)).

Take the dense set to be the linear functionals v 7→
∫
v·φdx with φ ∈ C∞0 (Q).

For each such φ, φ ∈ C∞0 (Qδ) for δ small. That `(v(τ)) is holomorphic then
folllows from the fact that v is holomorphic with values in L2(Qδ). This
completes the proof of the Theorem. �

4.3 Bérenger’s equation on Rt ×Q, Theorem 1.7

Need the Paley-Wiener Theorem for functions with values in a Hilbert space
H (see [18]).

Theorem 4.1 The Laplace transforms of functions F ∈ eMt L2(R ; H) with
suppF ⊂ {t ≥ 0} are exactly the functions G(τ) holomorphic in Re τ > M
with values in H and so that

sup
λ>M

∫
Re τ=λ

∥∥F̂ (τ)
∥∥2

H
|dτ | < ∞ .

In this case the function F̂ (τ) has trace at Re τ = M that satisfies∫
e−2Mt ‖F (t)‖2H dt = sup

λ>M

∫
Re τ=λ

∥∥F̂ (τ)
∥∥2

H
|dτ | =

∫
Re τ=M

∥∥F̂ (τ)
∥∥2

H
|dτ | .

Proof of Theorem 1.7. Uniqueness. Need to show that if U1, U2, U3

is a solution with source f = 0, then U j = 0. Denote by Û j the Laplace
transform that is holomorphic in {Re τ > M} with values in L2(Q).

The function v(τ) :=
∑
Û j is holomorphic with values in L2(Q) and satisfies

the stretched equation

τ v +
∑

Aj ∂̃jv = 0 .

In addition, v|Gk is holomorphic with values in L2(Gk). The boundary
condition satisfied by

∑
U j implies that v satisfies the boundary condition

v|Gk ∈ E
+(ν) , 1 ≤ k ≤ 6.
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The stretched operator is elliptic. When τ ∈]m,∞[ the stretched operator is
symmetric and positive in the sense of Friedrichs. The uniqueness theorem
for such strictly dissipative symmetric and elliptic problems with trihedral
corners from Part I of [16] implies that û(τ) = 0 for τ ∈]m,∞[. By analytic
continuation, v(τ) = 0 on {Re τ > M}.
The Laplace transform of the split equation yields(

τ + σ1(x1)
)
Û j = −A1∂1v = 0 .

This implies that Û j vanishes and therefore that U j = 0. This completes
the proof of uniqueness.

Existence. The solution u(t, x) is constructed by finding its Laplace trans-
form. Denote by U1(t, x), U2(t, x), and, U3(t, x) the unknowns to be found.
Denote by v(τ, x) the function of τ that will be the Laplace transform of
U1(t, x)+U2(t, x)+U3(t, x). Define v(τ, x) to be the solution of the stretched
equation

τ v +

3∑
j=1

Aj ∂̃jv = F (τ) :=

3∑
j=1

τ f̂j(τ)

τ + σj(x)
. (4.7)

constructed in Theorem 1.6. Then v holomorphic in Re τ > M with values
in H1(Q) and v|Gk is holomorphic with values in L2(Gk). In addition,

(Re τ)
∥∥v(τ)

∥∥
L2(Q)

+ (Re τ)1/2
∥∥ v(τ)

∥∥
L2(∂Q)

+
Re τ

|τ |
∥∥∇xv(τ)

∥∥
L2(Q)

≤ C
∥∥F (τ)

∥∥
L2
K(Q)

≤ C
∥∥f̂(τ)

∥∥
L2
K(Q)

.
(4.8)

Define V j destined to be the Laplace transforms of the U j by the analogue
of (1.5), (

τ + σj(xj)
)
V j + Aj∂jv = f̂j , j = 1, 2, 3 . (4.9)

Multiplying by τ/(τ + σj(xj)) yields

τ V j +Aj ∂̃jv =
τ f̂j

τ + σj
, j = 1, 2, 3 .

Summing yields

τ
(
V 1 + V 2 + V 3

)
+
∑

Aj ∂̃jv =
3∑
j=1

τ f̂j
τ + σj(xj)

= F .
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Subtracting from (4.7) yields

τ
(
V 1 + V 2 + V 3 − v

)
= 0 so, v = V 1 + V 2 + V 3.

The Paley-Wiener theorem implies that

sup
λ>M

∫
‖f̂(τ)‖2 |dτ | ≤

∫
e2Mt‖f(t)‖2L2

`Q
(Q) dt.

Equation (4.8) together with the Paley-Wiener Theorem implies that v is the
Laplace transform of a function u ∈ eMtL2(R;L2(Q)) supported in t ≥ 0.
Moreover,∫ ∞

0
e2Mt

(
M
∥∥u(t)

∥∥2

L2(Q)
+M1/2

∥∥u(t)|∂O
∥∥2

L2(∂Q)

)
dt

.
∫ ∞

0
e2Mt‖f(t)‖2L2

`Q
(Q) dt.

Similarly the Paley-Wiener Theorem implies that V j(τ) is the Laplace trans-
form of a function U j(t) ∈ eMtL2(R;H−1(Q)) supported in t ≥ 0 and satis-
fying∫ ∞

0
e2Mt

∥∥MU j(t), ∂tU
j(t)
∥∥2

H−1(Q)
dt .

∫ ∞
0

e2Mt‖f(t)‖L2
`Q

(Q) dt.

The fact that v =
∑
V j implies that u =

∑
U j . Equation (4.9) implies that

(U1, U2, U3) satisfies the Bérenger split equations. The last two estimates
are exactly those required in Theorem 1.7.

Denoting by L the Laplace transform, one has

L
(
π−(ν)u|Gj

)
= π−(ν)

(
L(u|Gj )

)
= π−(ν) v|Gj = 0 .

This proves the boundary condition π−(ν)u|Gj = 0. This completes the
proof that the U j satisfy the boundary value problem and estimates of The-
orem 1.7. �
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