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OPTIMIZED SCHWARZ WAVEFORM RELAXATION METHODS
FOR ADVECTION REACTION DIFFUSION PROBLEMS∗

M. J. GANDER† AND L. HALPERN‡

Abstract. We study in this paper a new class of waveform relaxation algorithms for large sys-
tems of ordinary differential equations arising from discretizations of partial differential equations
of advection reaction diffusion type. We show that the transmission conditions between the subsys-
tems have a tremendous influence on the convergence speed of the waveform relaxation algorithms,
and we identify transmission conditions with optimal performance. Since these optimal transmission
conditions are expensive to use, we introduce a class of local transmission conditions of Robin type,
which approximate the optimal ones and can be used at the same cost as the classical transmission
conditions. We determine the transmission conditions in this class with the best performance of
the associated waveform relaxation algorithm. We show that the new algorithm is well posed and
converges much faster than the classical one. We illustrate our analysis with numerical experiments.
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1. Introduction. Waveform relaxation algorithms have been invented to solve
extremely large systems of ordinary differential equations arising in circuit simulation
[26]. They use a partition of the original problem into subproblems, which are then
solved separately, and an iteration with information exchange between subproblems
leads to the solution of the original problem. Since the solution of the subproblems
can be done in parallel, these algorithms are very well suited for implementations
on parallel computers. The main drawback of waveform relaxation algorithms is in
general their slow convergence, for a review, see [1].

There are two main classical approaches in the literature to solve parabolic prob-
lems in parallel. The first approach consists of discretizing the equations uniformly in
time with an implicit scheme and then applying a domain decomposition technique to
the elliptic problems obtained at each time step, see, for example, [2, 32, 3] and refer-
ences therein. This approach has the disadvantage that a uniform time discretization
needs to be enforced across different subdomains, and one thus loses one of the main
features of domain decomposition algorithms, namely, to be able to treat different
subdomains numerically differently with an adapted procedure for each subdomain.
A second disadvantage is that small amounts of information need to be exchanged
at every time level, which can be costly in a parallel environment where the startup
cost to send information is significant. In addition, the iteration in time cannot pro-
ceed before all the subdomains have converged. An interesting variant, which avoids
iterating by making explicit predictions at the interfaces, can be found in [36].

The second classical approach consists of discretizing the equations in space first
and then applying a waveform relaxation algorithm to the large system of ordinary
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differential equations obtained from the spatial discretization. A formulation using
discretized subdomains can be found in [25]. The main disadvantage of this approach
is that spatial information of the connectivity of the subsystems in the large system of
ordinary differential equations is lost, and parameters like physical overlap and infor-
mation exchange are difficult to interpret in this context. Using a different approach
and abandoning the idea of subsystems, efficient waveform relaxation algorithms of
multigrid type, see [29, 38, 21, 22], and also convolution waveform relaxation algo-
rithms, see [20, 23], have been introduced and analyzed.

To avoid the inherent problems of the classical decomposition approaches, wave-
form relaxation algorithms for problems in space-time were formulated in [16, 14, 13]
and independently in [18] directly at the continous level without discretization. The
spatial domain is decomposed into subdomains, and time dependent problems are
solved iteratively on subdomains, exchanging information at the interfaces between
subdomains. This approach permits a different numerical treatment in both space
and time of the subdomain problems, and information is exchanged less often be-
tween subdomains. The iteration is defined as in the classical Schwarz case, but
as in waveform relaxation, time dependent subproblems are solved, which explains
the names of these methods. Unfortunately these algorithms, although robust with
respect to refinement, if the overlap is held constant, are still converging only slowly.

We show in this paper for a model problem of advection reaction diffusion type
why the convergence of the Schwarz waveform relaxation algorithm is slow. By analyz-
ing the convergence behavior of the classical overlapping Schwarz waveform relaxation
algorithm applied to the model problem, we show that the classical algorithm is using
ineffective transmission conditions. The classical transmission conditions inhibit the
information exchange between subdomains and therefore slow down the convergence
of the algorithm. Using ideas introduced in [10], we derive optimal transmission con-
ditions for the Schwarz waveform relaxation algorithm. These transmission conditions
coincide with the transparent boundary conditions used to truncate computational do-
mains, which were first studied in [7] for hyperbolic problems and in [19] for advection
diffusion problems. Transparent transmission conditions lead to Schwarz waveform re-
laxation algorithms which converge in a finite number of steps, equal to the number of
subdomains, see [11] for the wave equation case. In general, however, the transparent
boundary conditions are expensive to compute since they involve nonlocal operators.
Similar to the approach for stationary problems in [34, 24, 8, 17], we approximate
the transparent transmission conditions locally at the interfaces between subdomains,
see [10, 12, 31]. This leads to algorithms which converge even without overlap and
are well suited to couple different numerical methods, like finite element and finite
differences methods, see [4]. We then optimize the convergence rate, including an
overlap in the optimization if desired.

Since the algorithms are eventually discretized to be used on a parallel computer,
we analyze the performance of the optimized algorithms asymptotically as the dis-
cretization parameter goes to zero. This analysis reveals an interesting relationship
between the space-time discretization (implicit-explicit) and the convergence of the
optimized algorithm. Numerical experiments show that the convergence rates are
improved by orders of magnitude over the rate of the classical overlapping Schwarz
waveform relaxation methods.

This paper is organized as follows: In section 2, we present the model problem
for which we study the overlapping Schwarz waveform relaxation algorithm in what
follows. We include fundamental existence results for the solution, which are later
used to prove well posedness and convergence of the algorithm. In section 3, we intro-
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duce the classical overlapping Schwarz waveform relaxation algorithm, show that it
is well posed when applied to the advection reaction diffusion equation, and analyze
its convergence. In section 4, we introduce the optimal Schwarz waveform relaxation
algorithm, an algorithm that uses, instead of Dirichlet transmission conditions, trans-
parent ones. Because such transmission conditions can be expensive to use, we also
introduce local approximations of these transmission conditions. The core of this
paper is contained in section 5, where we analyze the optimized Schwarz waveform
relaxation algorithm with Robin transmission conditions. We show that the algorithm
is well posed and convergent. We also derive the optimal parameters in the Robin
transmission conditions and their dependence on the problem parameters, and we
study the asymptotic dependence of the discretized algorithm on the mesh parame-
ters. In section 6, we show numerical results for the classical and optimized Schwarz
waveform relaxation algorithms, which show how drastically the convergence behavior
is improved using optimized transmission conditions. We present our conclusions in
section 7. All our analysis is performed for the simple case of a two subdomain de-
composition, since we improve the algorithm locally between subdomains. We show,
however, numerical experiments for more than two subdomains, which indicate that
the results of our analysis are valid in that case as well.

2. Model problem and function spaces. Our guiding example is the one
dimensional advection reaction diffusion equation

(2.1) Lu := ∂tu− ν∂xxu+ a∂xu+ bu = f in Ω× (0, T ),

where Ω = R, ν > 0, and a and b are constants which do not both vanish simul-
taneously. The case of the heat equation needs special treatment and can be found
in [12]. Without loss of generality, we can assume that the advection coefficient a is
nonnegative since a < 0 amounts to changing x into −x. We can also assume that
the reaction coefficient b is nonnegative. If not, a change of variables v = ue−σt with
σ + b > 0 will lead to (2.1) with a positive reaction coefficient.

A weak solution of (2.1) for Ω = R is defined to be a u ∈ C(0, T ;L2(Ω)) ∩
L2(0, T ;H1(Ω)) such that for any v in H1(Ω)

(2.2)
d

dt
(u, v) + ν(∂xu, ∂xv) +

a

2
((∂xu, v)− (∂xv, u)) + b(u, v) = (f, v) in D′(0, T ),

where (·, ·) denotes the inner product in L2(Ω). Problem (2.1) is completed by the
initial condition

(2.3) u(x, 0) = u0(x) in Ω.

We have a first existence and uniqueness result, proved in [27].
Theorem 2.1. For Ω = R, if the initial value u0 is in L2(Ω) and the right-hand

side f is in L2(0, T ;L2(Ω)), then there exists a unique weak solution u of (2.1), (2.3).
With the transmission conditions we will introduce later, we will need more

regularity in our analysis, in the anisotropic Sobolev spaces Hr,s(Ω × (0, T )) =
L2(0, T ;Hr(Ω)) ∩Hs(0, T ;L2(Ω)) defined in [27].

Theorem 2.2. For Ω = R, if the initial value u0 is in H1(Ω) and the right-hand
side f is in L2(0, T ;L2(Ω)), then the weak solution u of (2.1), (2.3) is in H2,1(Ω ×
(0, T )). If u0 is in H2(Ω) and f is in H1,1/2(Ω × (0, T )), then u is in H3,3/2(Ω ×
(0, T )).

For the proof, and the trace theorems in Hr,s, we refer to [27].
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3. Classical Schwarz waveform relaxation. We decompose the spatial do-
main Ω = R into two overlapping subdomains Ω1 = (−∞, L) and Ω2 = (0,∞), L > 0.
The overlapping Schwarz waveform relaxation algorithm consists then of solving iter-
atively subproblems on Ω1 × (0, T ) and Ω2 × (0, T ) using as a boundary condition at
the interfaces x = 0 and x = L the values obtained from the previous iteration. The
algorithm is thus for iteration index k = 1, 2, . . . , given by

(3.1)
Luk

1 = f in Ω1 × (0, T ), Luk
2 = f in Ω2 × (0, T ),

uk
1(·, 0) = u0 in Ω1, uk

2(·, 0) = u0 in Ω2,

uk
1(L, ·) = uk−1

2 (L, ·) in (0, T ), uk
2(0, ·) = uk−1

1 (0, ·) in (0, T ),

where an initial guess u0
1(0, t) and u

0
2(L, t), t ∈ (0, T ), needs to be provided. We

first study the well posedness of algorithm (3.1) and then analyze its convergence
properties. While algorithm (3.1) is also well defined without overlap, L = 0, it is not
convergent, since no information is exchanged in that case. This will be different for
the optimized algorithms proposed in section 5.

3.1. Well posedness of the algorithm. We first need to show the well posed-
ness of each subdomain problem. Without loss of generality, we consider the subdo-
main problem on Ω1 only:

(3.2)
Lv = f in Ω1 × (0, T ),

v(·, 0) = u0 in Ω1,
v(L, ·) = g in (0, T ).

Theorem 3.1. If f ∈ L2(0, T ;L2(Ω1)), u0 ∈ H1(Ω1), and g ∈ H 3
4 (0, T ) and if

the compatibility condition

(3.3) u0(L) = g(0)

is satisfied, then problem (3.2) has a unique solution v in H2,1(Ω1× (0, T )). Moreover
v(0, ·) is in H

3
4 (0, T ), and the following compatibility property holds:

(3.4) lim
t→0+

v(0, t) = u0(0).

Proof. The proof of existence and uniqueness in H2,1(Ω1× 0, T )) can be found in
[27]. The compatibility relation follows from the trace theorem in [27].

By the Sobolev embedding theorem, u0 is continuous on Ω̄1 and g is continuous
on [0, T ], which gives a classical meaning to the compatibility condition (3.3). The
preceding result ensures that the subdomain problems are well posed in the classi-
cal algorithm, provided the initial and boundary conditions satisfy the compatibility
condition (3.3) for each iteration step.

To show that this is indeed the case, let u0
2(L, ·) and u0

1(0, ·) be given in H
3
4 (0, T )

such that u0
2(L, ·) = u0(L) and u0

1(0, ·) = u0(0). Then, by Theorem 3.1, the first
iteration of the overlapping Schwarz waveform relaxation algorithm (3.1) defines a
unique first iterate (u1

1, u
1
2) in H

2,1(Ω1 × (0, T )) × H2,1(Ω2 × (0, T )). Furthermore,
u1

1(0, ·) and u1
2(L, ·) are in H

3
4 (0, T ), limt→0+ u

1
1(0, t) = u0(0), and limt→0+ u

1
2(L, t) =

u0(L). Hence by induction, the algorithm is well posed.

3.2. Convergence of the algorithm. By linearity, the error between the so-
lution u and the iterates uk

j , j = 1, 2, of the overlapping Schwarz waveform relaxation
algorithm (3.1) satisfy a homogeneous advection reaction diffusion equation with a
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homogeneous initial condition. We therefore study in what follows the homogeneous
problem with data on the interfaces only. Let hL and h0 be given in H

3
4 (0, T ) with

hL(0) = 0 and h0(0) = 0, to satisfy the compatibility conditions, and let (e1, e2) be
the solution in H2,1(Ω1 × (0, T ))×H2,1(Ω2 × (0, T )) of the equations

(3.5)
Le1 = 0 in Ω1 × (0, T ), Le2 = 0 in Ω2 × (0, T ),

e1(·, 0) = 0 in Ω1, e2(·, 0) = 0 in Ω2,
e1(L, ·) = hL in (0, T ), e2(0, ·) = h0 in (0, T ).

Our analysis is based on the Fourier transform, which we denote for any function h ∈
L2(R) by ĥ := Fh. We define the one-sided space 0H

3
4 (0, T ) = {ϕ ∈ H 3

4 (0, T ), ϕ(0) =
0}, equipped with the norm ‖ϕ‖

0H
3
4 (0,T )

:= inf { ‖Φ‖
H

3
4 (R)

,Φ = ϕ a.e. in (0, T ),Φ =

0 a.e. in (−∞, 0)}.
Lemma 3.2. Let L > 0. If a > 0 or a = 0 and b > 0, then the map GD associated

with equations (3.5),

(3.6) GD : (hL, h0) �→ (e2(L, ·), e1(0, ·)),

is defined from (0H
3
4 (0, T ))2 into itself, and G2

D is a strict contraction on (0H
3
4 (0, T ))2.

Proof. Since hL and h0 are in 0H
3
4 (0, T ), we can extend them in H

3
4 (R) to obtain

h̃L and h̃0 vanishing on (−∞, 0). We then extend equations (3.5) in time to R, and
their solution coincides with (e1, e2) on (0, T ). Therefore, we still call it (e1, e2). By
Fourier transform in time, we find in each subdomain the same ordinary differential
equation

(3.7) iωêj − ν∂xxêj + a∂xêj + bêj = 0, j = 1, 2,

with the characteristic roots

(3.8) r+ =
a+
√
d

2ν
, r− =

a−
√
d

2ν
, d = a2 + 4ν(b+ iω),

where
√
d is the complex square root with positive real part. Therefore, �(r+) > 0

and �(r−) < 0, and we find, using that ej is in L2(Ωj),

(3.9) ê1(x, ω) = F h̃L(ω)er
+(x−L), ê2(x, ω) = F h̃0(ω)er

−x.

On the interfaces of the subdomains, we therefore have

F(GD(h̃L, h̃0))(ω) = (F h̃0(ω)er
−L,F h̃L(ω)e−r+L).

Since h̃0 and h̃L vanish in R−, their Fourier transforms are analytic in the half-plane
�τ < 0, and by (3.9) and the Paley–Wiener theorem [37], e1(0, ·) and e2(L, ·) vanish
in R−. Since they are in H

3
4 (R), they are continuous, and therefore e2(L, 0) = 0 and

e1(0, 0) = 0: the map GD maps (0H
3
4 (0, T ))2 into itself. We have furthermore

(3.10) F(G2
D(h̃L, h̃0))(ω) = e(r

−−r+)L(F h̃0(ω),F h̃L(ω)).

Denoting by

(3.11) CD := sup
ω∈R

e(r
−−r+)L = e−

L
ν (
√

a2+4νb),
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we get for any extension (h̃0, h̃L) of (h0, hL)

‖G2
D(hL, h0)‖(0H

3
4 (0,T ))2

≤ ‖G2
D(h̃L, h̃0)‖(H 3

4 (R))2
≤ CD‖(h̃L, h̃0)‖(H 3

4 (R))2
.

Taking the infimum on all the extensions on the right-hand side, we get

‖G2
D(hL, h0)‖(0H

3
4 (0,T ))2

≤ CD‖(hL, h0)‖(0H
3
4 (0,T ))2

,

and since CD is positive and strictly less than 1, we have proved that G2
D is a con-

traction.
We now prove convergence of the overlapping Schwarz waveform relaxation algo-

rithm.
Theorem 3.3. Let L > 0. For a > 0 or a = 0 and b > 0, the iterates (uk

1 , u
k
2) of

algorithm (3.1) converge to the solution of (2.1), (2.3) for any initial guess g0 and gL
in H

3
4 (0, T ) such that g0(0) = u0(0) and gL(0) = u0(L).

Proof. The errors ekj = uk
j − u, j = 1, 2, satisfy for k ≥ 1 (3.1) with f = 0

and u0 = 0. For positive k, we introduce the interface functions hk
L = ek2(L, ·) and

hk
0 = e

k
1(0, ·) and denote by h0

0 = h0 and h0
L = hL. Using the map GD, we obtain by

induction

(h2k
L , h

2k
0 ) = G2k

D (h
0
L, h

0
0),

and thus by Lemma 3.2

‖(h2k
L , h

2k
0 )‖(0H

3
4 (0,T ))2

≤ Ck
D‖(h0

L, h
0
0)‖(0H

3
4 (0,T ))2

,

with CD given in (3.11). Solving (3.5) and using (3.9), we obtain for e1

‖e1‖2L2(0,T ;H2(Ω1)) ≤
∫ ∞
−∞
|r+|4

∫
Ω1

e2	(r+)(x−L)|F h̃L|2dx dω =
∫ ∞
−∞

|r+|4
2�(r+)

|F h̃L|2dω.

For a > 0 or a = 0 and b > 0, the denominator in the factor in front of |F h̃L|2 is
bounded from below, and for |ω| large, the factor behaves like |ω|3/2. Therefore

‖e1‖L2(0,T ;H2(Ω1)) ≤ C‖h̃L‖
H

3
4 (R)

,

and the same result also holds for ‖e1‖H1(0,T ;L2(Ω1)). Hence

(3.12) ‖e1‖H2,1((Ω1)×(0,T )) ≤MD‖hL‖
0H

3
4 (0,T )

,

and similarly for e2. Now we apply (3.12) to the errors e2k+1
1 and e2k+1

2 in the iteration
and obtain

‖(e2k+1
1 , e2k+1

2 )‖H2,1(Ω1×(0,T ))×H2,1(Ω2×(0,T ))

≤MD‖(h2k
L , h

2k
0 )‖(0H

3
4 (0,T ))2

≤MDC
k
D‖(gL − u(L, ·), g0 − u(0, ·))‖(0H

3
4 (0,T ))2

,

which together with Lemma 3.2 completes the proof. A similar argument also holds
for even iteration numbers.

Theorem 3.3 shows that the overlapping Schwarz waveform relaxation algorithm
converges and that the convergence rate is at least linear and is independent of the
length of the time interval. It does however depend on the problem parameters ν,
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a, and b and the overlap L. Using also the preceding Lemma 3.2, the error in the
overlapping Schwarz waveform relaxation algorithm satisfies on the interfaces over a
double iteration step in Fourier space relation (3.10) or equivalently

(3.13) êk+1
1 (L, ω) = ρD ê

k−1
1 (L, ω), êk+1

2 (0, ω) = ρD ê
k−1
2 (0, ω),

where the convergence factor ρD = ρD(ω,L, ν, a, b) is given by

(3.14) ρD(ω,L, ν, a, b) := e(r
−−r+)L = e−

√
a2+4ν(b+iω)

ν L.

Note that the convergence factor ρD is uniformly bounded in modulus for all ω by a
quantity strictly less than 1,
(3.15)

RD(ω,L, ν, a, b) := |ρD(ω,L, ν, a, b)|≤R̄D(L, ν, a, b) :=RD(0, L, ν, a, b)=e−
√
a2+4νb
ν L,

and for L small, we have

(3.16) R̄D = 1−
√
a2 + 4νb
ν

L+O(L2).

Using the convergence factor ρD from Fourier analysis allows us to obtain a
sharper convergence result for bounded time intervals.

Theorem 3.4 (superlinear convergence). For the advection reaction diffusion
equation on a bounded time interval (0, T ), the asymptotic convergence rate of the
overlapping Schwarz waveform relaxation algorithm (3.1) is superlinear:

||e2k
j (0, ·)||L∞(0,T ) ≤ erfc

(
kL√
νT

)
||e0j (0, ·)||L∞(0,T ), j = 1, 2,

where the error function complement is defined by erfc(x) := 2√
π

∫∞
x
e−s2

ds.

Proof. By induction on the relations (3.13), we obtain

(3.17) ê2k
1 (0, ω) = ρ

k
D ê

0
1(0, ω), ê2k

2 (L, ω) = ρ
k
D ê

0
2(L, ω).

Using the inverse Fourier transform and the convolution theorem, we find

(3.18) e2k
1 (0, t) = (F−1ρk

D) ∗ e01(0, t), e2k
2 (L, t) = (F−1ρk

D) ∗ e02(L, t).

Now the inverse Fourier transform of ρk
D is

F−1ρk
D =

kL√
νπt3/2 e

− (kL)2

νt −
(
a2
4ν +b

)
t
,

and we can therefore estimate for j = 1, 2

‖e2k
j (0, ·)‖L∞(0,T )≤‖F−1ρk

D‖L1(0,T )‖e0j (0, ·)‖L∞(0,T )≤erfc
(
kL√
νT

)
‖e0j (0, ·)‖L∞(0,T ),

where the last inequality follows from estimating the term e−( a
2

4ν +b)t by 1. By a similar
argument for the second subdomain, the result follows.

This result was first proved for bounded domains in [18], see also [15]. It also holds
in higher dimensions and for general decompositions, for the heat equation, see [14],
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Fig. 3.1. On the left, the first few iterates of the classical Schwarz waveform relaxation algo-

rithm (dashed) at the end of the time interval t = T , together with the exact solution (solid), and
on the right the first iterates of the new optimized Schwarz waveform relaxation algorithm.

and for advection diffusion, see [5]. The result differs significantly from the classical
linear convergence result of the overlapping Schwarz method for elliptic problems and
also from the classical superlinear convergence results for waveform relaxation, which
is slower, see [35]. Furthermore, one can show that the convergence rate depends only
on the number of subdomains in higher order terms, see [15], and hence coarse grid
preconditioners are not necessary for evolution problems of this type.

The Dirichlet transmission conditions at the interfaces are however responsible for
slow convergence in the classical Schwarz waveform relaxation algorithm: in Figure
3.1 on the left, we show the first few iterations at the end of the time interval for a
model problem. On the right, we show the first few iterations of the new, much faster
algorithm we will develop in what follows.

4. Optimal Schwarz waveform relaxation. We now introduce transmission
conditions which are more effective for the information exchange between subdomains.
The new algorithm is

(4.1)
Luk

1=f in Ω1 × (0, T ), Luk
2=f in Ω2 × (0, T ),

uk
1(·, 0)=u0, uk

2(·, 0)=u0,

(∂x + S1)uk
1(L, ·)=(∂x + S1)uk−1

2 (L, ·), (∂x + S2)uk
2(0, ·)=(∂x + S2)uk−1

1 (0, ·),

where S1 and S2 are linear operators in time, possibly pseudodifferential.

4.1. Optimal transmission conditions. The following theorem gives the op-
timal choice for S1 and S2.

Theorem 4.1. For a > 0 or a = 0 and b > 0, algorithm (4.1) converges to the
solution u of (2.1) in two iterations for all initial guesses u0

1 ∈ H2,1(Ω1 × (0, T )) and
u0

2 ∈ H2,1(Ω2 × (0, T )), independently of the size of the overlap L ≥ 0, if and only if
the operators S1 and S2 have the corresponding symbols

(4.2) σ1 = −r−, σ2 = −r+,

where r± are defined in (3.8).
Proof. Using the Fourier transform with parameter ω as in Lemma 3.2, we find

for the error

(4.3) êk1(x, ω) = α
k(ω)er

+(x−L), êk2(x, ω) = β
k(ω)er

−x, k ≥ 1,
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where αk and βk are constants, which, using the new transmission conditions, satisfy
for k ≥ 1 the recurrence relation

(4.4)
αk+1(r+ + σ1) = βk(r− + σ1)er

−L,

βk+1(r− + σ2) = αk(r+ + σ2)e−r+L.

Now for an arbitrary initial guess u0
1 and u

0
2, the coefficients α

1 and β1 will in general
not vanish. Since r− + σ1 = r+ + σ2 = 0 implies r+ + σ1 �= 0 and r− + σ2 �= 0, we
obtain from (4.4) that α2 and β2 are identically zero if and only if r−+ σ1 = r++ σ2
= 0.

Note that the symbols σ1, σ2 given in (4.2) are not polynomials in iω, and hence
the optimal corresponding transmission operators S1, S2 are nonlocal operators in
time; they correspond to integral transfer operators in time along the interfaces be-
tween subdomains. Even though such operators can be efficiently implemented, see,
for example, [30], they are more costly than local transfer operators and the latter are
in general preferred. It is therefore of interest to approximate the nonlocal operators
by local ones, whose symbols are polynomials in iω. Using each equation in (4.4) at
iteration k in the other one at iteration k + 1, we find

αk+1 = ραk−1, βk+1 = ρβk−1

with the new convergence factor

(4.5) ρ =
r− + σ1

r+ + σ1
· r

+ + σ2

r− + σ2
e(r
−−r+)L.

4.2. Approximations of the optimal transmission conditions. We approx-
imate the symbols σ1 and σ2 from (4.2) corresponding to the optimal transmission
operators by constants, which leads to Robin transmission conditions in the Schwarz
waveform relaxation algorithm (4.1), i.e.,

(4.6) S1 :=
−a+ p
2ν

, S2 :=
−a− p
2ν

.

The choice of the parameter p is restricted by the requirement that the subdomain
problems need to be well posed, and a good choice should lead to a rapidly converging
algorithm; both issues we will analyze in detail in the following section.

Notice that using the knowledge of the symbols (4.2) of the optimal transmission
conditions, we have chosen a particular form for the low order approximation, leading
to (4.6). In general one is not required to do so; in particular, we could have chosen, for
example, two different parameters p in (4.6), which would have given more freedom
in the optimization process we study later, or even choosen a different p at each
iteration, as it was done for a steady problem in [9]. One could also choose higher
order transmission conditions, i.e., approximations by polynomials in iω. Having one
parameter only however greatly simplifies the optimization process, so we leave the
more general cases for future studies.

5. Optimized Schwarz waveform relaxation. We now study the Schwarz
waveform relaxation algorithm with Robin transmission conditions. We start with the
overlapping case, L > 0. We first show under what conditions on the free parameter
p the algorithm is well posed and then prove convergence of the algorithm for a
general choice of p satisfying these conditions. We also study the influence of p on the
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performance of the algorithm and propose two choices for p: one choice motivated by a
low frequency approximation and a second choice which optimizes the performance of
the algorithm. We then prove that the algorithm converges also without overlap, and
we again study the influence of p on the performance of the nonoverlapping algorithm.

5.1. Well posedness of the algorithm. As in the case of the classical Schwarz
waveform relaxation algorithm studied in section 3, we first need to analyze under
which conditions the subdomain problems of the algorithm with Robin transmission
conditions is well posed. Without loss of generality, we study only the well posedness
of the subdomain problem on Ω1:

(5.1)
Lv = f in Ω1 × (0, T ),

v(·, 0) = u0 in Ω1,
(∂xv + S1v)(L, ·) = gL in (0, T ).

We first show an extension result, which allows us to reduce the study of the well
posedness to the case with homogeneous initial and boundary conditions.

Lemma 5.1. If u0 is in H1(Ω1) and gL is in H
1
4 (0, T ), then there exists an

extension w in H2,1(Ω1×(0, T )) such that w(·, 0) = u0 in Ω1 and (∂xw+S1w)(L, ·) =
gL on (0, T ).

Proof. Let g̃L be in H
3
4 (0, T ) such that g̃L(0) = u0(L). By the continuous

extension theorem, there exists a w1 in H2,1(Ω× (0, T )) such that

w1(·, 0) = u0, w1(L, ·) = g̃L, ∂xw1(L, ·) = 0

and a w2 in H2,1(Ω× (0, T )) such that

w2(·, 0) = 0, w2(L, ·) = 0, ∂xw2(L, ·) = gL − S1g̃L.

Now the sum w := w1 + w2 is the desired extension in H2,1(Ω× (0, T )).
Thus it suffices to analyze the well posedness of the problem with homogeneous

initial and boundary conditions:

(5.2)
Lṽ = F in Ω1 × (0, T ),

ṽ(·, 0) = 0 in Ω1,
(∂xṽ + S1ṽ)(L, ·) = 0 in (0, T ),

where ṽ = v − w and the right-hand side function F = f − Lw is in L2(0, T ;L2(Ω1))
if f is in L2(0, T ;L2(Ω1)). We start with the weak formulation: for any ϕ in H1(Ω1),
we multiply the equation by ϕ, integrate, and use Green’s formula and the boundary
condition to obtain in D′(0, T )

(5.3)
d

dt
(ṽ, ϕ)+ν(∂xṽ, ∂xϕ)+

a

2
((∂xṽ, ϕ)− (∂xϕ, ṽ))+ b(ṽ, ϕ)+

p

2
ṽ(L)ϕ(L) = (F,ϕ).

The following Theorem gives existence, uniqueness, and regularity of the weak solu-
tion.

Theorem 5.2. Suppose F is in L2(0, T ;L2(Ω1)). Then, for any p, problem (5.2)
has a unique weak solution ṽ in H2,1(Ω1 × (0, T )).

Proof. The proof is based on a priori estimates.
1. Multiplying equation (5.2) by ṽ, integrating in space, and using the boundary
condition, we obtain

(5.4)
1
2
d

dt
‖ṽ‖2 + ν‖∂xṽ‖2 + b‖ṽ‖2 +

p

2
ṽ2(L) = (F, ṽ).
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(a) Suppose first p ≥ 0.
• If b > 0, by the Cauchy–Schwarz inequality, and using the inequality

(5.5) αβ ≤ η
2
α2 +

1
2η
β2 for all α, β ∈ R and η > 0

in the form ||F || ||ṽ|| ≤ 1
2b ||F ||2 +

b
2 ||ṽ||2, we obtain

1
2
d

dt
‖ṽ‖2 + ν‖∂xṽ‖2 +

b

2
‖ṽ‖2 ≤ 1

2b
‖F‖2,

which gives, after integration on any time interval (0, t),

(5.6)
1
2
||ṽ||2(t) + ν

∫ t

0
||∂xṽ||2 +

b

2

∫ t

0
||ṽ||2 ≤ 1

2b

∫ t

0
||F ||2.

• If b = 0, we use (5.5) with η = 1 and get through integration on
(0, t)

1
2
‖ṽ‖2(t) + ν

∫ t

0
‖∂xṽ‖2 ≤

1
2
‖F‖2L2(0,T ;L2(Ω1)) +

1
2

∫ t

0
‖ṽ‖2.

We then apply the Gronwall lemma and obtain

‖ṽ‖2(t) + 2ν
∫ t

0
‖∂xṽ‖2 ≤ eT ‖F‖2L2(0,T ;L2(Ω1).

(b) Suppose now p < 0. We move the boundary term in (5.4) to the right-
hand side; using the Sobolev inequality in H1(Ω1),

(5.7) ‖ṽ‖2
L∞(Ω1) ≤ 2‖∂xṽ‖ ‖ṽ‖,

we bound the boundary term, applying again (5.5),

−p
2
ṽ2(L) ≤ ν

2
‖∂xṽ‖2 +

p2

2ν
‖ṽ‖2;

and we conclude using the Gronwall lemma as before.
Thus, in both cases, we have a bound for ṽ in L∞(0, T ;L2(Ω1)) ∩ L2(0, T ;
H1(Ω1)),

(5.8) ‖ṽ‖L∞(0,T ;L2(Ω1)), ‖ṽ‖L2(0,T ;H1(Ω1)) ≤ C(T )‖F‖L2(0,T ;L2(Ω1)).

2. To obtain the higher regularity result in the theorem, we need to show that
∂2

xṽ and ∂tṽ are also in L2(0, T ;L2(Ω1)). Multiplying the equation by −∂2
xṽ

and integrating in space, we get

1
2
d

dt
||∂xṽ||2 + ν||∂2

xṽ||2 + b||∂xṽ||2

−
(
(∂tṽ)∂xṽ +

a

2
(∂xṽ)

2 + b(∂xṽ)ṽ
)
(L) = −

∫ L

−∞
F∂2

xṽ.

Now using the boundary condition to replace ∂xṽ, we obtain

d

dt

(
1
2
‖∂xṽ‖2 +

p− a
4ν

ṽ2(L)
)
+ ν‖∂2

xṽ‖2 + b‖∂xṽ‖2

+
p− a
2ν

(
b− a

2
p− a
2ν

)
ṽ2(L) = −

∫ L

−∞
F∂2

xṽ.
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Again using the Cauchy–Schwarz inequality and (5.5) on the right, we find
after integrating in time

(5.9)

(
1
2
‖∂xṽ‖2 +

p− a
4ν

ṽ2(L)
)
(t) +

ν

2

∫ t

0
‖∂2

xṽ‖2 + b
∫ t

0
‖∂xṽ‖2

+
p− a
2ν

(
b− a

2
p− a
2ν

)∫ t

0
ṽ2(L) ≤ 1

2ν

∫ t

0
||F ||2.

First the term p−a
2ν

(
b− a

2
p−a
2ν

) ∫ t

0 ṽ
2(L) is handled as in 1, using (5.7) and

(5.8). Then, if p ≥ a, we obtain

‖∂xṽ‖2 + ν‖∂2
xṽ‖L2(0,T ;L2(Ω1)) ≤ C(T )‖F‖L2(0,T ;L2(Ω1)).

If p < a, then we pass the term containing ṽ(L) to the right-hand side, and
using (5.7), we obtain

1
2
‖∂xṽ‖2 +

ν

2

∫ t

0
‖∂2

xṽ‖2 ≤
a− p
4ν

(
α||∂xṽ||2 +

1
α
||ṽ||2

)
+ C(T )

∫ t

0
||F ||2.

Now choosing α = ν/(a− p) and using (5.8), we obtain

‖∂xṽ‖L∞(0,T ;L2(Ω1)), ‖∂2
xṽ‖L2(0,T ;L2(Ω1)) ≤ C(T )‖F‖L2(0,T ;L2(Ω1)),

where we omit the dependence of the constant C on a, p, b, and ν.
Now using (5.2), we have

∂tṽ = ν∂2
xṽ − a∂xṽ − bṽ + F,

and since all the terms on the right-hand side are in L2(0, T ;L2(Ω1)) by the previous
estimates, it follows that ∂tṽ is in L2(0, T ;L2(Ω1)), which concludes the a priori
estimates in H2,1(Ω1 × (0, T )). Existence and uniqueness can now be shown using a
Galerkin method [27].

Using Lemma 5.1 and Theorem 5.2, we obtain now the well posedness of the
subdomain problems.

Theorem 5.3. If f is in L2(0, T ;L2(Ω1)), u0 is in H1(Ω1), and gL is in
H

1
4 (0, T ), then, for any p, problem (5.1) has a unique solution v in H2,1(Ω1×(0, T )).
The same result also holds on subdomain Ω2, the only difference being that −a

becomes +a in the estimate (5.9).
Theorem 5.4. Let gL and g0 be given in H

1
4 (0, T ). If algorithm (4.1) with Sj

defined in (4.6) is initialized by (∂xu
1
1+S1u

1
1)(L, ·) = gL and (∂xu

1
2+S2u

1
2)(0, ·) = g0,

then, for any p, (4.1) and (4.6) define a sequence of iterates (uk
1 , u

k
2) in H2,1(Ω1 ×

(0, T ))×H2,1(Ω2 × (0, T )).
Proof. The proof is done by induction: for k = 1, (4.1) defines a unique first

iterate (u1
1, u

1
2) in H

2,1(Ω1 × (0, T )) ×H2,1(Ω2 × (0, T )) by Theorem 5.3. Assuming
now that (uk

1 , u
k
2) is in H

2,1(Ω1 × (0, T )) ×H2,1(Ω2 × (0, T )), by the trace theorem,
we have that (∂xu

k
2 + S1u

k
2)(L, ·) and (∂xu

k
1 + S2u

k
1)(0, ·) are in H

1
4 (0, T ), and thus

by Theorem 5.3, (uk+1
1 , uk+1

2 ) must be in H2,1(Ω1× (0, T ))×H2,1(Ω2× (0, T )), which
concludes the proof.

For the proof of convergence in the overlapping case, we need however more
regularity.
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Theorem 5.5. For a > 0 or a = 0 and b > 0, let p ≥ 0 and f be in H1, 1
2 (Ω1 ×

(0, T )), u0 be in H2(Ω), and gL be in H
3
4 (0, T ), with the compatibility conditions

(5.10) gL(0) = ∂xu0(L) + S1u0(L).

Then the solution v of the subdomain problem (5.1) is in H3, 3
2 (Ω1× (0, T )). Further-

more the following compatibility property at x = 0 is satisfied:

(5.11) lim
t→0+

(∂xv + S2v)(0, t) = ∂xu0(0) + S2u0(0).

Proof. In this more regular situation, the solution u of (2.1) is in H3, 3
2 (Ω× (0, T ))

by Theorem 2.2. Furthermore g̃L = (∂xu + S1u)(L, ·) is in H
3
4 (0, T ). Subtracting

u from v, the difference e is in H3, 3
2 (Ω1 × (0, T )), the solution of (5.1) with data

(0, 0, hL = gL − g̃L). By Fourier transform, the same calculation as in Lemma 3.6
gives with h̃L being an extension of hL on R vanishing in R−

(5.12) ê =
2ν√
d+ p

F h̃L(ω)er
+(x−L).

The norm of ∂3
xe is therefore given by

‖∂3
xe‖2L2(Ω1×R) =

∫
R

4ν2|r+|6

2�r+|
√
d+ p|2

|F h̃L(ω)|2dω,

and the norm of e in H
3
2 (R, L2(Ω1)) is

‖e‖2H3/2(R,L2(Ω1)) =
∫
R

4ν2(1 + ω2)3/2

2�r+|
√
d+ p|2

|F h̃L(ω)|2dω.

In both cases, for a > 0 or a = 0 and b > 0, and p ≥ 0, the denominator in the factor
in front of |F h̃L(ω)|2 is bounded from below, and it is easy to see that for large |ω|,
it is equivalent to a constant times |ω|3/2. Therefore we have the bound

(5.13) ‖e‖
H3, 32 (Ω1×(0,T ))

≤ C‖h̃L‖
H

3
4 (R)

.

For the compatibility condition, since h̃L vanishes in R−, its Fourier transform is
analytic in the half-plane �τ < 0, and by (5.12) and the Paley–Wiener theorem [37],
e(0, ·) and ∂xe(0, ·) vanish in R−. Since they are in H

5
4 (R) and H

3
4 (R), respectively,

they are continuous, and therefore limt→0+(∂xe + S2e)(0, t) = 0, which gives the
compatibility property for v.

This regularity result shows the well posedness of the algorithm in H3, 3
2 (Ω1 ×

(0, T )).
Theorem 5.6. For a > 0 or a = 0 and b > 0, and p ≥ 0, let f be in

H1, 1
2 (Ω1 × (0, T )), u0 be in H2(Ω), and gL and g0 be in H

3
4 (0, T ), with the com-

patibility conditions

(5.14) gL(0) = ∂xu0(L) + S1u0(L), g0(L) = ∂xu0(0) + S2u0(0).

Then, algorithm (4.1) with transmission operators (4.6) defines a sequence of iterates
(uk

1 , u
k
2) in H3, 3

2 (Ω1 × (0, T ))×H3, 3
2 (Ω2 × (0, T )).
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5.2. Convergence of the overlapping algorithm. Let hL and h0 be given
in 0H

3
4 (0, T ). Let (e1, e2) be the solution in H3, 3

2 (Ω1 × (0, T ))×H3, 3
2 (Ω2 × (0, T )) of

the problem

(5.15)
Le1=0 in Ω1 × (0, T ), Le2=0 in Ω2 × (0, T ),

e1(·, 0)=0 in Ω1, e2(·, 0)=0 in Ω2,
(∂xe1 + S1e1)(L, ·)=hL in (0, T ), (∂xe2 + S2e2)(0, ·)=h0 in (0, T ).

Lemma 5.7. For a > 0 or a = 0 and b > 0, if p ≥ 0 and L > 0, the map G0
associated with (5.15),

(5.16) G0 : (hL, h0) �→ ((∂xe2 + S1e2)(L, ·), (∂xe1 + S2e1)(0, ·)),

is defined from (0H
3
4 (0, T ))2 into itself, and G2

0 is strictly contracting.
Proof. The proof is analogous to the proof of Lemma 3.2 using Fourier analysis.

Defining h̃L and h̃0 as any extensions of hL and h0 in H
3
4 (R), vanishing in R−, we

obtain after a short calculation

F(G2
0(h̃L, h̃0))(ω) =

(√
d− p√
d+ p

)2

(F h̃0(ω)e(r
−−r+)L,F h̃L(ω)e(r

−−r+)L),

where d and r± are defined in (3.8). Since p ≥ 0, we have
∣∣∣√d−p√

d+p

∣∣∣ ≤ 1 and thus
‖G2

0(hL, h0)‖(0H
3
4 (0,T ))2

≤ CD‖(hL, h0)‖(0H
3
4 (0,T ))2

,

and since CD defined in (3.11) satisfies CD < 1, the result follows.
From the proof of this Lemma, we can see that the contraction of the overlap-

ping Schwarz waveform relaxation map with Robin transmission conditions, G0 given
in (5.16), is at least as good as the contraction of the classical map with Dirichlet
transmission conditions, GD given in (3.6), no matter what one chooses for the pa-
rameter p ≥ 0 in the Robin transmission conditions. Before doing a more thorough
comparison, we use the contraction property from Lemma 5.7 to prove convergence
of the new algorithm.

Theorem 5.8. Let f be in H1, 1
2 (Ω1 × (0, T )) and u0 be in H2(Ω). For a > 0 or

a = 0 and b > 0, if p ≥ 0 and L > 0, then the solution (uk
1 , u

k
2) of algorithm (4.1),

(4.6) converges to the solution u of (2.1) for any initial guess (g0, gL) ∈ (H
3
4 (0, T ))2

with the compatibility conditions (5.14).
Proof. The errors ekj = u

k
j−u, j = 1, 2, satisfy for k ≥ 1 (4.1) with f = 0 and u0 =

0. Introducing the interface functions hk
L = (∂xe

k
2+S1e

k
2)(L, ·), hk

0 = (∂xe
k
1+S2e

k
1)(0, ·)

and using the map G0, we obtain by induction (h2k
L , h

2k
0 ) = G2k

0 (h
0
L, h

0
0), and thus by

Lemma 5.7

‖(h2k
L , h

2k
0 )‖(H 3

4 (0,T ))2
≤ Ck

D‖(h0
L, h

0
0)‖(H 3

4 (0,T ))2
.

We have by (5.13)

‖(e2k+1
1 , e2k+1

2 )‖
H3, 32 (Ω1×(0,T ))×H3, 32 (Ω2×(0,T ))

≤ C‖(h2k
L , h

2k
0 )‖(H 3

4 (0,T ))2

≤ CCk
D‖(h0

L, h
0
0)‖(H 3

4 (0,T ))2
,

which together with Lemma 5.7 completes the proof.
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Having proved convergence, we now compare the performance of the classical
Schwarz waveform relaxation algorithm and the new one with Robin transmission
conditions. We do this first at the continuous level, which motivates the optimization
procedure we introduce in subsections 5.4 and 5.7 for the discretized case. Using The-
orem 5.8 and Lemma 5.7, the error in the overlapping Schwarz waveform relaxation
algorithm with Robin transmission conditions satisfies on the interfaces over a double
iteration step in Fourier the relation

F(G2
0(h̃L, h̃0))(ω) =

(√
d− p√
d+ p

)2

e(r
−−r+)L(F h̃L(ω),F h̃0(ω)),

where d, r−, and r+ are defined in (3.8). Equivalently, we have

(5.17) êk+1
1 (L, ω) = ρ0ê

k−1
1 (L, ω), êk+1

2 (0, ω) = ρ0ê
k−1
2 (0, ω),

where the convergence factor ρ0 = ρ0(ω, p, L, ν, a, b) of the new algorithm with Robin
transmission conditions is given by

(5.18) ρ0(ω, p, L, ν, a, b) :=

(√
a2 + 4ν(b+ iω)− p√
a2 + 4ν(b+ iω) + p

)2

e−
√
a2+4ν(b+iω)

ν L.

For any frequency ω, we can therefore directly compare the performance of the classi-
cal Schwarz waveform relaxation algorithm with the new one with Robin transmission
conditions: we have ρ0 = (

√
d−p√
d+p

)2ρD, where ρD is the classical convergence factor de-
fined in (3.14). This shows that for each ω we have |ρ0| < |ρD| for p > 0. Furthermore,
for any ε > 0 there exists an ωε such that∫

|ω|>ωε

(1 + ω2)3/4|ê01(L, ω)|2dω ≤ ε

because we assume that e01(L, ·) is in H
3
4 . Since |ρ0| < 1, we obtain

‖ê2k
1 (L, ·)‖2

H
3
4 (0,T )

≤ ε+
∫
|ω|≤ωε

(1 + ω2)
3
4 |ρ0(ω, p, L, ν, a, b)|2k|ê01(L, ω)|2dω,

and taking the supremum of the convergence factor out of the integral, we have

‖ê2k
1 (L, ·)‖2

H
3
4 (0,T )

≤ ε+ sup
|ω|≤ωε

|ρ0(ω, p, L, ν, a, b)|2k‖ê01(L, ·)‖2
H

3
4 (0,T )

.

A similar estimate for the classical algorithm gives

‖ê2k
1 (L, ·)‖2

H
3
4 (0,T )

≤ ε+ sup
|ω|≤ωε

|ρD(ω,L, ν, a, b)|2k‖ê01(L, ·)‖2
H

3
4 (0,T )

,

which shows that improving the convergence factor on a sufficiently large bounded
frequency range improves the overall convergence of the algorithm. The choice of a
bounded frequency range is further motivated by the fact that computations are per-
formed on a discretized problem, whose grid cannot carry arbitrarily high frequencies.
We carefully analyze how to chose the free parameter p for optimal performance of
the algorithm in the next subsections.
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5.3. Low frequency approximation for the algorithm with overlap. We
have seen that the convergence factor of the new algorithm with Robin transmission
conditions is given by (5.18), and any choice of the free parameter p ≥ 0 is admissible
to obtain a well posed algorithm. But how should p be chosen, apart from p ≥ 0? A
simple choice is to use a low frequency approximation of the symbols σj , j = 1, 2, of
the optimal transmission operators given in (4.2), based on a Taylor expansion about
ω = 0. This is motivated by the fact that with overlap, L > 0, the exponential term
in the convergence factor (5.18) is exponentially small for ω large, and hence p should
be used to make the transmission conditions effective for ω small. Using a Taylor
expansion of the square root

√
a2 + 4ν(b+ iω) in (4.2) about ω = 0, we find

(5.19)
√
a2 + 4ν(b+ iω) =

√
a2 + 4νb+

2ν√
a2 + 4νb

iω +O(ω2),

and hence the low frequency approximation choice for p in the Robin transmission
condition is

(5.20) p = pT :=
√
a2 + 4νb.

With this choice, the convergence factor vanishes for ω = 0 and also when ω goes
to infinity, since L > 0. To further analyze the convergence factor, we introduce a
change of variables based on the real part of the square root in the convergence factor
(5.18),

(5.21) x := �(
√
a2 + 4ν(b+ iω)).

In this new variable, the convergence factor (5.18) in modulus becomes

(5.22) R0(x, p, x0, L) := |ρ0| =
(x− p)2 + x2 − x2

0

(x+ p)2 + x2 − x2
0
e−

Lx
ν ,

where x2
0 := a

2 + 4νb. Note that R0 ≥ 0 by definition, which can also be seen from
x2 ≥ a2 + 4νb = x2

0 from the change of variables (5.21). Using now the parameter pT

from the Taylor expansion, we find for the Taylor–Robin method (T0 for Taylor of
order 0) the convergence factor in modulus to be

(5.23) RT0(x, x0, L) := R0(x, pT , x0, L) =
x− x0

x+ x0
e−

Lx
ν ≥ 0, x ≥ x0.

Theorem 5.9 (T0 performance with overlap). Let L > 0 and x0 :=
√
a2 + 4νb.

The convergence factor RT0 in (5.23) of the overlapping Schwarz waveform relaxation
algorithm with Robin transmission conditions (4.1),(4.6) and p = pT from the Taylor
low frequency approximation (5.20) is for x0 ≤ x <∞ uniformly bounded by

(5.24)

RT0(x, x0, L) ≤ R̄T0(x0, L) := RT0(x̄, x0, L) =
x̄− x0

x̄+ x0
e−

Lx̄
ν , x̄ =

√
x2

0 +
2νx0

L
.

For L small, we have R̄T0(x0, L) = 1− 2
√

2x0
ν

√
L+O(L).

Proof. Taking a derivative of RT0 with respect to x shows that there is a unique
maximum of RT0 for x0 ≤ x <∞ at x̄, which leads to the bound given in (5.24). An
expansion for L small leads then to the asymptotic result of the theorem.
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Now in a numerical calculation, two additional issues come into play: First the
frequency parameter ω cannot be arbitrarily high, there is a maximum frequency that
can be represented on a grid with spacing ∆t, and an estimate for this maximum
frequency is ωmax = π

∆t , the signal that oscillates between ±1 from grid point to grid
point. Second, the overlap L is in general not a fixed quantity, one can afford only
a few grid cells overlap, and often L = ∆x. The question therefore arises, if for a
particular discretization, which might have to satisfy a stability constraint, the bound
on the contraction factor in (5.24) is really relevant, or if the highest frequencies rep-
resented on the grid of the particular discretization stay below ω̄ where the maximum
of RT0 is attained, which corresponds to x̄ given in (5.24) in the transformed problem.
To answer this question, we need to study for which cases the maximum numerical
frequency ωmax stays below ω̄ or, in the transformed problem, under which conditions

(5.25) xmax =

√√
x4

0 + 16ν2ω2
max + x2

0

2

stays below x̄ given in (5.24). A direct comparison shows that for

(5.26) L > L0 :=
4νx0√

x4
0 + 16ν2ω2

max − x2
0

the maximum numerical frequency ωmax > ω̄, and hence the bound given in Theorem
5.9 determines the convergence rate of the algorithm. If however L ≤ L0, then
the maximum on the numerically relevant convergence factor is attained at ωmax.
Numerically, we therefore have
(5.27)

RT0(x, x0, L) ≤ R̃T0(x0, L) :=



RT0(x̄, x0, L) =

x̄− x0

x̄+ x0
e−

Lx̄
ν if L > L0,

RT0(xmax, x0, L) =
xmax − x0

xmax + x0
e−

Lxmax
ν if L ≤ L0.

To obtain a concrete asymptotic result for the case where the overlap L is linked to
the space discretization ∆x, L = C1∆x, and the space discretization ∆x is linked to
the time discretization ∆t by a stability or accuracy constraint, ∆t = C2∆xβ , β > 0,
we insert these relations into L0 and expand to find

(5.28) L0 =
x0

π
∆t+O(∆t2),

which leads to the following asymptotic results.
Theorem 5.10 (T0 discrete convergence estimate with overlap). Let x0 :=√

a2 + 4νb. If L = C1∆x and ∆t = C2∆xβ, then the bound R̃T0 in (5.27) on the con-
vergence factor estimate of the discretized overlapping Schwarz waveform relaxation
algorithm with Robin transmission conditions (4.1),(4.6) and p = pT from the Taylor
low frequency approximation (5.20) is for ∆x small given by

(5.29)

R̃T0 =




1− 2
√
2C1x0

ν

√
∆x+O(∆x) if β > 1 or β = 1 and C1

C2
> x0

π ,

1−
√
2(C2x0 + C1π)√

C2πν

√
∆x+O(∆x) if β = 1 and C1

C2
≤ x0

π ,

1− x0

√
2C2

πν
∆x

β
2 + o(∆x

β
2 ) if β < 1.
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Proof. Comparing L = C1∆x with the expansion of L0 given in (5.28) and using
that ∆t = C2∆xβ , we see that for ∆x small the first case in (5.27) corresponds to
the first case given in (5.29). The asymptotic bound on the convergence factor then
follows by simply expanding for L = C1∆x and ∆x small. For the second case, one
can set β = 1 and directly expand the second case of (5.27) to find the result given.
For the last case, we first notice that xmax satisfies

(5.30) xmax =
√
2πν

1√
∆t

+O(
√
∆t) =

√
2πν
C2

∆x−
β
2 +O(∆x

β
2 ),

which together with L = C1∆x gives for the exponential the expansion

(5.31) e−
Lxmax
ν = 1− C1

√
2π
C2ν

∆x1− β2 +O(∆x2−β).

Multiplying this with the expansion for the coefficient in front of the exponential in
(5.27), whose expansion is

(5.32)
xmax − x0

xmax + x0
= 1− x0

√
2C2

πν
∆x

β
2 +O(∆xβ),

the result follows.
The preceding theorem shows that for explicit discretizations, which have a sta-

bility constraint of the type ∆t = C2∆x2 for this problem and for which the present
algorithm would still be of interest for nonmatching time grids, the optimized Schwarz
waveform relaxation algorithm with Robin transmission conditions based on a low fre-
quency approximation and an overlap of the order of the spatial discretization ∆x will
have an asymptotic convergence factor 1 − O(

√
∆x), as one could expect from the

continuous analysis in Theorem 5.9. This is still true for implicit discretizations, as
long as ∆t is of the same order as ∆x. Once ∆t becomes much larger than ∆x,
however, one can expect the algorithm to converge faster asymptotically because of
the last relation in (5.29).

5.4. Optimization of the algorithm with overlap. We investigate now if
there exists a better choice for p such that the overall convergence factor is smaller
than with the parameter from the low frequency approximation. We will use the label
O0 for these methods, which stands for optimized of order 0. We place ourselves first
again in the continuous context, where ω ∈ R, and thus ωmax =∞. Later, we will also
investigate the discretized case where ωmax <∞. We introduce a change of variables,
which will greatly simplify the analysis of the optimal parameter p. Setting x := yν

L ,
p := p̃ν

L , and x0 := y0ν
L in the convergence factor (5.22), we obtain

(5.33) R0(y, p̃, y0) =
(y − p̃)2 + y2 − y2

0

(y + p̃)2 + y2 − y2
0
e−y,

which is now an expression independent of the overlap parameter L and the viscosity
parameter ν. The best choice for the parameter p̃ is the one that makes R0 as small
as possible uniformly for all y ≥ y0 and is hence the solution of the min-max problem

(5.34) min
p̃

(
max
y≥y0

R0(y, p̃, y0)
)
= min

p̃≥0

(
max
y≥y0

(y − p̃)2 + y2 − y2
0

(y + p̃)2 + y2 − y2
0
e−y

)
,

where minimizing over nonnegative p̃ is equivalent to minimizing over all p̃, as one can
see from (5.33). Note that p̃ nonnegative is also a requirement for the convergence
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proof of the algorithm in Theorem 5.8. To analyze the min-max problem (5.34), we
need two lemmas.

Lemma 5.11. The function y �→ R0(y, p̃, y0) defined in (5.33) has a unique local
maximum at

(5.35) ȳ(y0, p̃) =

√
y2

0 + 2p̃+
√
d(y0, p̃)

2
, d(y0, p̃) = p̃(−p̃3−4p̃2+(4+2y2

0)p̃+8y
2
0),

if 0 ≤ p̃ < p̃1(y0), where p̃1(y0) is the unique positive root of d(y0, p̃) for y0 > 0. If
p̃ ≥ p̃1(y0), then R0(y, p̃, y0) is a monotonically decreasing function of y.

Proof. A partial derivative of R0(y, p̃, y0) with respect to y gives

∂R0

∂y
= −e

−y(4y4 − 4(2p̃+ y2
0)y

2 + (p̃2 − y2
0)(y

2
0 − 4p̃− p̃2))

((p̃+ y)2 + y2 − y2
0)2

,

and therefore R0(y, p̃, y0) can have at most two extrema, ȳ =
√
(y2

0 + 2p̃+
√
d(y0, p̃)/2

and y =
√
(y2

0 + 2p̃−
√
d(y0, p̃))/2, with the discriminant d(y0, p̃) given in (5.35). The

larger of the two, ȳ, must be a maximum, since R0 ≥ 0 and R0 goes to 0 as y goes to∞.
Since the discriminant is positive for small positive p̃ and is negative for large positive
p̃, it must have by continuity at least one real positive root p̃1(y0) > 0, d(y0, p̃1) = 0.
To prove that this root is unique, we use the derivative of d(y0, p̃)/p̃ with respect
to p̃, which shows that there are two extrema, one at r1 = − 1

3 (4 −
√
28 + 6y2

0) and
one at r2 = − 1

3 (4 +
√
28 + 6y2

0). The larger one, r1, must be a maximum, since
the discriminant goes to −∞ as p̃ goes to ∞, and thus r2 is a minimum. Since r2
is negative, p̃1 is the only positive root of the discriminant, since this latter is still
positive for arbitrary small p̃. For p̃ ≥ p̃1, R0 has no extrema in y and hence decreases
monotonically to 0 as y goes to infinity.

Lemma 5.12. For fixed y > y0 and p̃ > 0, we have ∂R0(y,p̃,y0)
∂p̃ (p̃ − p̃2(y)) ≥ 0,

where p̃2(y) :=
√
2y2 − y2

0.
Proof. A partial derivative of R0(y, p̃, y0) with respect to p̃ gives

∂R0

∂p̃
= −4e

−yy(−p̃2 + 2y2 − y2
0)

((p̃+ y)2 + y2 − y2
0)2

,

which has only one root in p̃, p̃2(y) =
√
2y2 − y2

0 , which is positive. For p̃ < p̃2, ∂R0
∂p̃

is negative and hence R0(y, p̃, y0) decreases when p̃ increases, whereas for p̃ > p̃2,
R0(y, p̃, y0) increases when p̃ increases.

Theorem 5.13 (O0 performance with overlap). Let L > 0 and x0 :=
√
a2 + 4νb.

The best performance of the optimized overlapping Schwarz waveform relaxation al-
gorithm at the continuous level with Robin transmission conditions (4.1),(4.6) is ob-
tained for p = p∗ := p̃∗ν

L , where p̃∗, the solution of the min-max problem (5.34), is for
y0 := x0L

ν < yc given by the unique solution p̃∗ ≥ y0 of the nonlinear equation

(5.36) R0(y0, p̃
∗, y0) = R0(ȳ(y0, p̃

∗), p̃∗, y0),

where R0(y, p̃, y0) is given in (5.33) and ȳ(y0, p̃) is given in (5.35). For y0 ≥ yc, p̃∗ is
given by the unique solution of

(5.37) y0 = p̃∗
√

p̃∗

(4 + p̃∗)
.
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The constant yc is universal, yc = 1.618386576 . . . , and the convergence factor with
the optimal p∗ is uniformly bounded by

(5.38) R0(y, p̃∗, y0) ≤ R̄O0(y0, p̃
∗) := R0(ȳ(y0, p̃

∗), p̃∗, y0).

For L small, we have the asymptotic result

(5.39) p∗ =
p̃∗ν

L
≈ (2x2

0ν)
1
3L−

1
3 , R̄O0 ≈ 1−

(
25x0

ν

) 1
3

L
1
3 .

Proof. By Lemma 5.12, the optimal p̃∗ ≥ y0 since for p̃ < p̃2(y0) = y0, increasing
p̃ decreases R0(y, p̃, y0) for all y > y0. Now Lemma 5.11 implies that for y0 ≤ p̃ ≤
p̃1(y0), the maximum of R0 in the min-max problem can be attained at y = y0 or
at the interior maximum at ȳ given in (5.35). For p̃ = y0, we have R0(y0, p̃, y0) =
R0(y0, y0, y0) = 0 and d(y0, p̃) = d(y0, y0) = y2

0(2 + y0)2 ≥ 0, and hence R0(y, p̃, y0)
has for y ≥ y0 a unique maximum at ȳ(y0, y0) =

√
y0(2 + y0) > y0. Increasing p̃

from y0 increases R0(y0, p̃, y0) by Lemma 5.12 monotonically for all p̃ > p̃2(y0) = y0.
Increasing p̃ from y0 also decreases R0(ȳ(y0, p̃), p̃, y0) by Lemma 5.12, as long as it
exists, p̃ < p̃1(y0) according to Lemma 5.11, and p̃ < p̃2(ȳ(y0, p̃)) =

√
2ȳ2 − y2

0 , after
which R0(ȳ, p̃, y0) will increase again according to Lemma 5.12. By continuity, the
maximum of R0 is minimized either for p̃∗1 satisfying

(5.40) R0(y0, p̃
∗
1, y0) = R0(ỹ, p̃∗1, y0),

provided that p̃∗1 ≤ p̃2(ȳ(y0, p̃
∗
1)) =

√
2(ȳ(y0, p̃∗1))2 − y2

0 , or for p̃
∗
2 given by

(5.41) p̃∗2 = p̃2(ȳ(y0, p̃
∗
2)) =

√
2(ȳ(y0, p̃∗2))2 − y2

0 .

It depends on the only parameter left, y0, which of these two cases is the solution.
Imposing p̃∗1 = p̃

∗
2 and both (5.40) and (5.41), we can solve for the value of y0 where

both are equally optimal. We find

y0 = yc = 1.618386576 . . . , p̃∗1 = p̃
∗
2 = 2.583490822 . . . .

Hence for y0 < yc and for y0 ≥ yc (5.40) and (5.41), respectively, give the solution.
(5.41) can be simplified by solving it for y0, which gives (5.37) stated in the theorem,
and a derivative with respect to p̃∗ shows that there is a unique positive root p̃∗ for
y0 > 0.

The uniform bound given in (5.38) is a direct consequence of (5.36) and (5.37),
since in both cases the maximum is attained at ȳ.

To show the asymptotic result (5.39), we note that for L small and the other
problem parameters a, b, and ν fixed, we have y0 small, since from the variable
transform we have y0 = x0

ν L =
√

a2+4νb
ν L and therefore the first result (5.36) applies

asymptotically, y0 < yc. To solve (5.36) asymptotically, we insert the ansatz p̃∗ =
Cpy

α
0 into (5.36) and expand both sides for y0 small. Using that p̃∗ ≥ y0, we find

from its definition that asymptotically ȳ ≈
√
2Cpy

α
2
0 . Using this in equation (5.36),

we find for the leading order terms

1− 2 5
3 y1−α

0 − y0 + 2
5
3 y1−α+1

0 y0 + · · · = 1− 2
3
2
√
Cpy

α
2
0 + 4Cpy

α
0 + · · · ,

which implies 1− α = α
2 and thus α =

2
3 and Cp = 2

1
3 , which leads to (5.39).
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Fig. 5.1. The top curve is the convergence factor RT0 from the Taylor low frequency approx-
imation, and the curve below is the optimized convergence factor RO0, for an example from the
numerical section.

Table 5.1

Comparison of the optimal p̃∗ from Theorem 5.13 and its asymptotic approximation.

y0 0.1 0.01 0.001 0.0001 0.00001
p̃∗ 0.2936 0.05952 0.01265 0.002717 0.0005849

Asymptotic p̃∗ 0.2714 0.05848 0.01260 0.002714 0.0005848

In Figure 5.1 we show the convergence factors RT0 and RO0 for an example
with x0 = 1, L = 0.08, and ν = 0.2 from the numerical section. One can see the
better performance of the optimized Robin transmission conditions over the Taylor
transmission conditions and also the equioscillation of the optimal choice.

Table 5.1 gives a comparison of the optimal p̃∗ from (5.36) with the asymptotic
approximation (5.39). One can see that the asymptotic approximation is very close to
the optimal p̃∗ already for moderately small values of y0, which corresponds to a small
overlap L. For larger values of y0, the asymptotic approximation can be a valuable
initial guess for the nonlinear equation solver to find the optimal p̃∗ from (5.36).

In Figure 3.1 on the right, we show the first few iterations, at the end of the
time interval, of the optimized Schwarz waveform relaxation algorithm with Robin
transmission conditions for the same model problem for which the iterates of the
classical Schwarz waveform relaxation algorithm are shown on the left. One can clearly
see that the new algorithm with Robin transmission conditions converges much faster
than the algorithm with Dirichlet transmission conditions.

Theorem 5.13 gives the optimal choice for the parameter in the Robin transmission
conditions of the optimized Schwarz waveform relaxation algorithm at the continuous
level. In a numerical setting, however, not all the frequencies are present, as we have
seen, and we have to address the question again if the maximum of the convergence
factor attained at ȳ is relevant in a computation. Letting L = C1∆x and ∆t = C2∆xβ

as before, the maximum numerical frequency we can expect on the time discretization
grid is ωmax = π

∆t =
π

C2∆xβ
, which corresponds with the variable transform to

(5.42)

ymax =
Lxmax

ν
= C1∆x

√√√√√
√
x4

0 +
(

4νπ
C2∆xβ

)2
+ 2x2

0

2
= C1

√
2π
νC2

∆x1− β2 +O(∆x1+ β
2 ),
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whereas ȳ from the optimization in (5.36) has the expansion

(5.43) ȳ = 2
2
3

(
x0C1

ν

) 1
3

∆x
1
3 +O(∆x).

Hence, if 1− β
2 =

1
3 or β =

4
3 and C1 =

√
x0

(
2νC3

2
π3

) 1
4
=: Cc, the numerical ymax and

ȳ from the optimization are asymptotically at the same location, which represents the
boundary between the usefulness of the continuous optimization result (5.36) and a
different optimization for the discretized algorithm, which we show in the following
theorem.

Theorem 5.14 (O0 discrete convergence estimate with overlap). Let x0 :=√
a2 + 4νb. If L = C1∆x and ∆t = C2∆xβ, then the convergence factor R0(y, p̃, y0) of

the discretized overlapping Schwarz waveform relaxation algorithm with Robin trans-
mission conditions (4.1),(4.6) is for ∆x small bounded for all y ∈ [y0, ymax] by R̃O0,
where ymax is given in (5.42), R̃O0 and p̃∗ satisfy

(5.44)

R̃O0 ≈ 1−
(

25C1x0
ν

) 1
3
∆x

1
3 , p∗ ≈

(
2x2

0ν
C1

) 1
3
∆x−

1
3 if β > 4

3 or β = 4
3 and C1 > Cc,

R̃O0 ≈ 1− 8C1x0
Cpν ∆x

1
3 , p∗ ≈ Cp∆x−

1
3 if β = 4

3 and C1 ≤ Cc,

R̃O0 ≈ 1− 2
(

2C2x2
0

νπ

) 1
4
∆x

β
4 , p∗ ≈

(
23x2

0νπ
C2

) 1
4
∆x−

β
4 if β < 4

3 ,

and the constants are given by Cp = 1
2C2

(
√
π2C2

1 + 8
√
2νπC

3
2
2 x0 − πC1), Cc =

√
x0(

2νC3
2

π3 )
1
4 .

Proof. The first case is a direct consequence of Theorem 5.13, which applies in
this case, since the maximum ȳ is relevant for the numerical discretization if β > 4

3 or
β = 4

3 and C1 > Cc, as can be see from (5.42) and (5.43). For case two and three, the
local maximum at ȳ lies outside of the numerical frequencies, ȳ > ymax, and hence
the min-max problem needs to be adapted to this situation; the maximum needs now
be minimized only for y ∈ [y0, ymax]. For a small overlap, which corresponds to y0
small, the solution is achieved according to Theorem 5.13 when

(5.45) R0(y0, p̃
∗, y0) = R0(ymax, p̃

∗, y0).

Expanding both sides asymptotically for small ∆x, we find, using the ansatz p̃∗ =
C̃p∆xα, that the leading order terms of (5.45) are

1− 4x0C1

C̃pν
∆x1−α + · · · = 1− 2C̃p

C1

√
νC2

2π
∆xα−1+ β

2 − C1

√
2π
νC2

∆x1− β2 + · · · .

Hence in the limiting case, where β = 4
3 , we have α =

2
3 , and both terms on the right

have the same exponent. This leads to the constant Cp given in the theorem in case
two, after having used the back transform p∗ = p̃∗ν

C1∆x . If however β <
4
3 , then the last

term on the right-hand side is of lower order. Balancing the remaining two, we find

for the exponents 1−α = α−1+ β
2 or α = 1−

β
4 and the constant C̃p = C1

(
23x2

0π
ν3C2

) 1
4
,

which leads after the back transform to the last case stated in the theorem.
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5.5. Convergence for the nonoverlapping algorithm. We now assume that
the overlap is zero, L = 0. We first analyze convergence of the algorithm in the
appropriate Sobolev spaces. The convergence analysis for the nonoverlapping case is
based on energy estimates and follows an idea from [28], which has also been used
in [6] and [33] for Schwarz algorithms applied to steady problems and in [11] for
a nonoverlapping Schwarz waveform relaxation algorithm for hyperbolic evolution
equations.

Theorem 5.15. Without overlap, L = 0, the Schwarz waveform relaxation al-
gorithm (4.1),(4.6) converges for p > 0 in (L∞(0, T ;L2(Ω1))) ∩ L2(0, T ;H1(Ω1)) ×
(L∞(0, T ;L2(Ω2))) ∩ L2(0, T ;H1(Ω2)) to the solution u of (2.1) for any initial guess
g0 ∈ H

1
4 (0, T ) and gL ∈ H

1
4 (0, T ).

Proof. As in the proof of Theorem 5.2 we obtain the energy estimates

1
2
d

dt
‖ek1‖2 + ν‖∂xe

k
1‖2 + b‖ek1‖2 −

(
ν∂xe

k
1 −

a

2
ek1

)
(0)ek1(0) = 0,(5.46)

1
2
d

dt
‖ek2‖2 + ν‖∂xe

k
2‖2 + b‖ek2‖2 +

(
ν∂xe

k
2 −

a

2
ek2

)
(0)ek2(0) = 0.(5.47)

Introducing the boundary operators B+ = ∂x + S1, B− = ∂x + S2 and rewriting the
terms on the interface in the form (ν∂xe − a

2e)e =
ν2

2p ((B+e)2 − (B−e)2), we obtain
the new energy estimates

1
2
d

dt
‖ek1‖2 + ν‖∂xe

k
1‖2 + b‖ek1‖2 +

ν2

2p
(B−ek1)2(0) =

ν2

2p
(B+ek1)

2(0),(5.48)

1
2
d

dt
‖ek2‖2 + ν‖∂xe

k
2‖2 + b‖ek2‖2 +

ν2

2p
(B+ek2)

2(0) =
ν2

2p
(B−ek2)2(0).(5.49)

Now note that the transmission conditions can be expressed with the operators B±,

B+ek1 = B+ek−1
2 , B−ek2 = B−ek−1

1 on {0} × (0, T ).

Replacing the corresponding terms in the two equations (5.48) and (5.49), adding the
resulting equations, and summing in k, we get a telescopic sum on the interfaces and
therefore

(5.50)

∑K
k=1

[ 1
2

d
dt (‖ek1‖2 + ‖ek2‖2) + ν(‖∂xe

k
1‖2 + ‖∂xe

k
2‖2) + b(‖ek1‖2 + ‖ek2‖2)

]
+

+ν2

2p ((B−eK1 )2 + (B+eK2 )
2)(0) = ν2

2p ((B−e11)2 + (B+e12)
2)(0).

We can now integrate in time, and since the initial values of the error vanish, the sum
of the energies over all the iterates remains bounded. Hence the energy in the iterates
needs to go to zero and the algorithm converges.

5.6. Low frequency approximation for the algorithm without overlap.
One can choose the free parameter p in the Robin transmission conditions based on a
low frequency Taylor approximation, as given in (5.20). But now there is no overlap
to be effective on the high frequencies, the convergence factor (5.23) becomes

(5.51) RT0(x, x0) =
x− x0

x+ x0
,

where x ≥ x0 is given by the variable transform (5.21). Clearly RT0 is a monotonically
increasing function of x for x ≥ x0 and tends to one as x tends to infinity. There is
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therefore no uniform bound on RT0 which is strictly less than one for all x ≥ x0 in
the case without overlap. But we have already seen that in a numerical calculation
the frequency parameter ω cannot be arbitrarily high. It suffices therefore for the
numerical case to find a bound for RT0 for x0 ≤ x ≤ xmax, where xmax is given in
(5.25).

Theorem 5.16 (T0 discrete convergence estimate without overlap). Let x0 :=√
a2 + 4νb and L = 0. Then the convergence factor estimate RT0 of the discretized

nonoverlapping Schwarz waveform relaxation algorithm with Robin transmission con-
ditions (4.1),(4.6) and p = pT from the Taylor low frequency approximation (5.20) is
for x0 ≤ x ≤ xmax, where xmax is defined in (5.25), bounded by
(5.52)

RT0(x, x0) ≤ R̃T0(x0) := RT0(xmax, x0) =

√√
∆t2x4

0 + 16ν2π2 + x2
0∆t−

√
2∆tx0√√

∆t2x4
0 + 16ν2π2 + x2

0∆t+
√
2∆tx0

.

For ∆t small, we have R̃T0(x0) = 1− x0

√
2

νπ

√
∆t+O(∆t).

Proof. By the monotonicity of RT0 in x, the bound for x0 ≤ x ≤ xmax on RT0 is
attained at x = xmax, which leads, using the variable transform (5.21) and ωmax = π

∆t ,
to the bound given in (5.52).

Now we can compare the asymptotic performance of the algorithm without over-
lap to the performance of the algorithm with overlap. If in the discretization the time
step ∆t is linked to the spatial discretization step ∆x by the relation ∆t = C2∆xβ ,
then we see by comparing the results of Theorem 5.10 with the results of Theorem
5.16 that for β ≥ 1 adding an overlap of size ∆x does improve the asymptotic per-
formance of the algorithm, whereas for β < 1 adding an overlap of the order of ∆x
does not improve the asymptotic performance. In particular this shows that with the
Taylor transmission conditions and using an explicit time discretization with the sta-
bility constraint ∆t = C1∆x2, an overlap is helpful. Note that if an explicit scheme
is used with the same time steps in both subdomains, there is no need to iterate,
since one can explicitly advance the algorithm on the interface as well. A subdomain
iteration would still be of interest if one uses nonmatching time grids, however, see,
for example, [11].

5.7. Optimization of the algorithm without overlap. As in the case with
overlap, there is a better choice for p than the low frequency approximation based on
a Taylor expansion of the optimal symbol. We can again try to choose p such that
the convergence factor

(5.53) R0(x, p, x0) =
(x− p)2 + x2 − x2

0

(x+ p)2 + x2 − x2
0

is minimized over all x0 ≤ x ≤ xmax. Hence the optimal choice for p for the discretized
algorithm is the solution of the min-max problem

(5.54) min
p

(
max

x0≤x≤xmax
R0(x, p, x0)

)
= min

p≥0

(
max

x0≤x≤xmax

(x− p)2 + x2 − x2
0

(x+ p)2 + x2 − x2
0

)
,

where minimizing over nonnegative p is equivalent to minimizing over all p, as one
can see from (5.53). The following theorem can be proved as in the case with overlap.

Theorem 5.17 (O0 performance without overlap). Let L = 0, x0 :=
√
a2 + 4νb,

and xmax < ∞ be given. Then the best performance of the optimized nonoverlapping
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Table 5.2

Summary of the asymptotic convergence factors for the various parameter choices in the Robin
transmission conditions for ∆t = ∆xβ .

Method Convergence factor Parameter p

T0 overlap ∆x

{
1−O(

√
∆x) if β ≥ 1

1−O(∆x
β
2 ) if β < 1

√
a2 + 4νb

O0 overlap ∆x

{
1−O(∆x

1
3 ) if β ≥ 4

3

1−O(∆x
β
4 ) if β < 4

3

(2ν(a2 + 4νb))
1
3∆x−

1
3

(8νπ(a2 + 4νb))
1
4∆x−

β
4

T0 no overlap 1−O(
√
∆t)

√
a2 + 4νb

O0 no overlap 1−O(∆t
1
4 ) (8νπ(a2 + 4νb))

1
4∆t−

1
4

Schwarz waveform relaxation algorithm with Robin transmission conditions (4.1),(4.6)
is obtained for p = p∗, where p∗, the solution of the min-max problem (5.54), is for
xmax ≥ 1+

√
5

2 x0 given by

(5.55)

p∗ =
√
x0(2xmax + x0), R0(x, p∗, x0) ≤ R̃O0 =

xmax + x0 −
√
2xmaxx0 + x2

0

xmax + x0 +
√
2xmaxx0 + x2

0

,

and for xmax <
1+
√

5
2 x0 we have

(5.56) p∗ =
√
2x2

max − x2
0, R0(x, p∗, x0) ≤ R̃O0 =

√
2x2

max − x2
0 − xmax√

2x2
max − x2

0 + xmax
.

Theorem 5.18 (O0 discrete convergence estimate without overlap). Let L = 0
and x0 :=

√
a2 + 4νb. If the nonoverlapping Schwarz waveform relaxation algorithm

with optimized Robin transmission conditions is discretized in time with time step ∆t,
then for ∆t small we have

(5.57) p∗ = (23x2
0πν)

1
4∆t−

1
4 +O(∆t

1
4 ), R̃O0 = 1− 2

(
2x2

0

πν

) 1
4

∆t
1
4 +O(

√
∆t).

Proof. Using the variable transform (5.21), xmax behaves like

xmax =
√
2πν∆t−

1
2 +O(

√
∆t),

and thus the first result of (5.55) in Theorem 5.17 applies. Expanding p∗ and R̃O0
from (5.55) leads to (5.57).

To summarize the results of this section, we show in Table 5.2 an overview of
the performance one can obtain with the various choices of the parameter p in the
transmission conditions. It is interesting to note that, for optimized Schwarz waveform
relaxation methods, without overlap does not necessarily mean less performance than
with overlap: in the T0 case, if β ≤ 1, the performance of the overlapping and
nonoverapping algorithms is the same, and the same holds in the O0 case if β ≤ 4

3 .

6. Numerical results. We perform in this section numerical experiments to
measure the convergence factors of the numerical implementation of the Schwarz
waveform relaxation algorithms analyzed at the continuous level in this paper. We
use the parabolic model problem (2.1) with Ω = (0, 6). We impose homogeneous
boundary conditions, u(0, t) = 0 and u(6, t) = 0, and use various initial conditions
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u(x, 0), x ∈ Ω. We first use a decomposition of the domain Ω into the two subdomains
Ω1 = (0, L2) and Ω2 = (L1, 6), L1 ≤ L2, and hence L = L2 − L1. We refer with
the term iteration to a double iteration of the respective algorithms, since for two
subdomains one can perform all the iterations in an alternating fashion and thus
obtain the even iterates on one subdomain and the odd ones on the other without
having to compute the remaining ones. We show results of numerical experiments
for only the algorithm with overlap since with overlap we can compare the results
to the classical Schwarz waveform relaxation algorithm with Dirichlet transmission
conditions, which does not converge without overlap.

6.1. Dirichlet transmission conditions. In this first set of experiments, we
use the classical Schwarz waveform relaxation algorithm with Dirichlet transmission
conditions analyzed in section 3. We chose for the problem parameters ν = 0.2, a = 1,
and b = 0. We discretize (2.1) using an upwind finite difference discretization in space
with mesh parameter ∆x = 0.02 and a backward Euler discretization in time, with
time step ∆t = 0.005. We chose L1 = 2.96 and L2 = 3.04, which means the overlap
is L = 0.08, and we compute the numerical solution in the time interval [0, T ]. Using
as initial condition

u(x, 0) = e−3(1.2−x)2
,

we have already shown in Figure 3.1 for this example the first few iterations at the end
of the time interval T = 2.5, where we started the algorithm with a zero initial guess.
We show in Figure 6.1 the convergence behavior of the classical Schwarz waveform
relaxation algorithm for this example for three different lengths of the time interval,
T = 1, T = 2.5, and T = 10, together with the linear bound on the convergence
rate from Theorem 3.3 and the superlinear convergence bound from Theorem 3.4.
The dashed curve shows the error measured in the L2 norm between the converged
solution and the iterates at the interface L2. One can clearly see that the behavior of
the algorithm depends on the length of the time interval T , as predicted by Theorem
3.4. For short time intervals, the superlinear bound on the convergence rate is sharper,
and hence the algorithm must converge superlinearly, as shown in Figure 6.1 on the
left. If the time interval becomes longer, as in the middle graph of Figure 6.1, the
linear bound of Theorem 3.3 is sharper than the superlinear one early in the iteration,
and hence the algorithm converges linearly. But later the superlinear bound becomes
sharper and hence a transition to the superlinear convergence regime occurs. For long
time intervals, the initial linear convergence regime also prevails for more iterations,
as one can see in Figure 6.1 on the right.
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Fig. 6.1. Convergence rate of the classical Schwarz waveform relaxation algorithm with Dirich-
let transmission conditions together with the theoretical linear and superlinear bounds on the con-
vergence rates: on the left for T = 1, in the middle for T = 2.5, and on the right for T = 10.
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Fig. 6.2. Left: Convergence rates of the classical Schwarz waveform relaxation algorithm with
Dirichlet transmission conditions compared to the same algorithm with the new Robin transmission
conditions, with the low frequency Taylor approximation or optimized. Right: The error obtained
running the algorithm with Robin transmission conditions for 5 steps and various choices of the free
parameter p, and indicated by a star the choice p∗ predicted by the theory.

6.2. Robin transmission conditions. We now change the transmission condi-
tions in the Schwarz waveform relaxation algorithm to Robin transmission conditions.
Using the same numerical configuration as in the previous subsection, we obtain for
the parameter p in the transmission conditions using a Taylor expansion p = pT = 1,
and using the optimization from Theorem 5.13, we obtain p = p∗ = 2.054275607. In
Figure 3.1 on the right, we have already seen the first few iterations at the end of
the time interval T = 2.5 for this example with the optimal parameter p∗, starting
the iteration with the zero initial guess. In Figure 6.2 one can see how much faster
the algorithm converges with Robin transmission conditions compared to the classi-
cal algorithm. One can also see that the optimized parameter p∗ leads to an even
better performance than the parameter pT from the Taylor transmission conditions.
Note that for all the results comparing the performance of the algorithms, we started
the iteration with a random initial guess. This is important to obtain a relevant
comparison since, for smooth solutions starting with a smooth initial guess, high fre-
quencies would not be present on the mesh and thus a much coarser mesh would have
been sufficient for the computation. The random initial guess has the effect that the
mesh resolution is indeed needed to resolve the iteration and thus corresponds to the
relevant case in practice.

Next, we verify if the optimal choice for the parameter p = p∗ derived using the
continuous Fourier analysis in Theorem 5.13 really corresponds to the best choice one
can make in the fully discretized algorithm. In Figure 6.2 on the right we show the
error obtained after running the Schwarz waveform relaxation algorithm with Robin
transmission conditions for five steps using various values for the free parameter p in
the transmission conditions. The optimal choice p∗ from Theorem 5.13 is indicated by
a star. Clearly the continuous analysis predicts the optimal choice of the parameter
p very well.

Finally, we illustrate the asymptotic analysis by performing two sets of experi-
ments according to Theorems 5.10 and 5.14. We choose the same problem parameters
as before but start now with a coarser mesh both in space and time, ∆x = 0.08 and
∆t = 0.02, and we fix the overlap to be L = ∆x. We then run the classical and
optimized Schwarz waveform relaxation algorithms with Taylor–Robin transmission
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Fig. 6.3. Asymptotic behavior as the mesh is refined with an overlap L = ∆x: on the left
the case where ∆t = O(∆x) and on the right the case where ∆t = O(

√
∆x), together with the pre-

dicted rates from the analysis, both for the classical and the optimized Schwarz waveform relaxation
algorithms with Taylor and optimized Robin transmission conditions.

conditions until the error becomes smaller than 10−6 and count the number of it-
erations. We repeat this experiment dividing ∆x and ∆t by 2 several times, which
implies ∆t = O(∆x). This corresponds to (3.16) for the classical algorithm, where
the convergence factor should behave like 1−O(∆x). For the algorithm with Taylor
transmission conditions it corresponds to the case in Theorem 5.10, where the con-
vergence factor should behave like 1 − O(

√
∆x), and for the optimized algorithm it

corresponds to the case in Theorem 5.14, where the convergence factor should behave
like 1−O(∆x 1

4 ). Figure 6.3 shows on the left the results obtained from these exper-
iments. One can see that the asymptotic analysis predicts very well the numerical
behavior of the algorithms. Next, we perform a similar experiment, starting with
the same values for ∆x and ∆t, but now we divide ∆x by 2 each time and ∆t only
by
√
2 (such a refinement is admissible since our scheme is implicit), which implies

∆t = O(
√
∆x). While this does not change anything for the classical algorithm,

which still has the same bad convergence factor 1 − O(∆x), for the algorithm with
Taylor–Robin transmission conditions now case 3 of Theorem 5.10 applies, and the
algorithm should show the much better convergence factor 1 − O(∆x 1

4 ). The op-
timized algorithm has according to Theorem 5.14 now the even better convergence
factor 1−O(∆x 1

8 ), virtually independent of ∆x. In Figure 6.3 on the right, one can
clearly see that this is the case. The algorithm has different asymptotic convergence
factors with the same overlap, depending on the discretization in time, as predicted.

6.3. Experiments with many subdomains. We now show experiments which
indicate that the results we obtained for two subdomains are also relevant for many
subdomains. Using the same model problem as before, we now decompose the domain
into eight subdomains. In Figure 6.4, we show in the top row the first three itera-
tions of the classical Schwarz waveform relaxation algorithm, and below we show the
same iterations for the algorithm with optimized Robin transmission conditions. This
clearly shows how important the transmission conditions are in the many subdomain
case. We show the corresponding convergence rates in Figure 6.5 on the left, and on
the right we perform the same asymptotic experiments as in Figure 6.3 on the left
but now with eight subdomains, which indicates that the results of Theorems 5.10
and 5.14 also hold for more than two subdomains.
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Fig. 6.4. From left to right, the first iterates ukj (x, T ), j = 1, . . . , 8, (dashed) at the end of the
time interval t = T together with the exact solution (solid) for the same model problem as before:
top row the classical algorithm and bottom row the optimized algorithm.
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Fig. 6.5. Left: convergence rate comparison for the eight subdomain case. Right: Asymptotic
behavior as the mesh is refined with an overlap L = ∆x for the eight subdomain case, with ∆t =
O(∆x), together with the predicted rates from the two subdomain analysis.

7. Conclusions. We have analyzed Schwarz waveform relaxation algorithms for
advection reaction diffusion equations. We have shown that these methods, using
the classical Dirichlet transmission conditions, are well defined and have a conver-
gence rate which is bounded both by a linear and a superlinear rate. Both rates
can be sharp, depending on the length of the time interval of the simulation. We
then showed that there exist much better transmission conditions than the classical
Dirichlet conditions. Optimal transmission conditions are transparent conditions, but
they are in general nonlocal and thus less convenient to use. We introduced instead
Robin transmission conditions in the Schwarz waveform relaxation algorithm, showed
that the new algorithm is well posed and convergent, even if there is no overlap, and
analyzed how to chose the free parameter in the new transmission conditions. We
also gave asymptotic results when the overlap or the mesh parameters become small.
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We finally illustrated our findings with numerical experiments which document the
relevance of our continuous analysis.
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Recherches Math. 17–18, Dunod, Paris, 1968.

[28] P.-L. Lions, On the Schwarz alternating method. III: A variant for nonoverlapping subdomains,
in Proceedings of the Third International Symposium on Domain Decomposition Methods
for Partial Differential Equations, Houston, TX, SIAM, Philadelphia, PA, 1990.

[29] C. Lubich and A. Ostermann, Multi-grid dynamic iteration for parabolic equations, BIT, 27
(1987), pp. 216–234.

[30] C. Lubich and A. Schädle, Fast convolution for non-reflecting boundary conditions, SIAM
J. Sci. Comput., 24 (2002), pp. 161–182.

[31] V. Martin, An optimized Schwarz waveform relaxation method for unsteady convection diffu-
sion equation, Appl. Numer. Math., 52 (2005), pp. 401–428.

[32] G. A. Meurant, Numerical experiments with a domain decomposition method for parabolic
problems on parallel computers, in Proceedings of the Fourth International Symposium on
Domain Decomposition Methods for Partial Differential Equations, SIAM, Philadelphia,
PA, 1991.

[33] F. Nataf, F. Rogier, and E. de Sturler, Optimal Interface Conditions for Domain Decom-
position Methods, Technical report 301, CMAP (Ecole Polytechnique), 1994.

[34] F. Nataf and F. Rogier, Factorization of the convection-diffusion operator and the Schwarz
algorithm, M3AS, 5 (1995), pp. 67–93.
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