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RESUME

Dans la premiére partie, nous avons longuement étudié 1'approximation
dite. "pa.raboliqite" en milieu homogéne et hétérogéne. Certains résultats
Staient d8jd connus, mats nous avons rsurtout mis en évidence la diffi-
culté d'obtenir une "bomne' équation parabolique en milieu hétérogéﬁe.
Nous avons ainsi proposé ume équation qui respecte un certain nombre de
eritéres de "qualité”, c'est-d-dire principalement qui méne a un problé-
me bien posé, et qui, en milieu stratifié, a de bonnes propriétés de

réflesion et transmission sur 1 'interface.

Nowre but ici est d'établir des approzimavions paraziales d'ordre supé-—
rieur, pour approcher de mieux en mieux la solution de l'équation des

" ondes.

Nous commengons par généraliser des équations déjd introduites dans la
littérature (cf. [43 1) en milieu homagé_ne. Nous étudions en particulier
les solutions élémentaires et nous montrons que les pmblémeé de CAUCHY
associés, dans l'espace libre et dans le demi-espace, sont bien posés.

Nous domnons un résultat d'approzimation de 1'équation des ondes. Nous
nous intéressons alors d@ un miZ{eu hétérogéne : dans le méme esprit que
pour l'équation parabolique, nous établissons un probléme b;len posé, et
nous étudions la réflezion et la transmission par rapport & wne interface. '

ABSTRACT

A new family of paraxial wave equation approximations is derived.
These approximations are of higher order accuracy than the parabolic approxi-=
mation and they can be applied to the same computational problems e.é in
seismology, underwater acoustics, and as artificial boundary counditions. The
equafions are written as systems which simplifies computations. The support and
singular support are studied, energy estimates are given which prove the weli-
posedness. The reflection and transmission are shown to be continuously depen-

ding on material interfaces in heterogeneous media.
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1 - INTRODUCTION

Paraxial wave equation approximations are used to describe wave propagation

4

with a preferred direction. The most common paraxial approximation is the para-

bolic equation

1 32y 32u ¢ 92u

Yexat T2
at2 Xy9 .

1.1

approximating the scalar wave equation

2, 2 2 |
I R e I
¢ at ax] X,

The solution u(x,t) of (1.1)‘is an exact approxfmation of solut{éns to (1.2)

. for plane waves fraveﬁng - in the positive X3 directién, u‘; %(xz - ct).

In [1], we studied mathematical properties of the pérabolié eduation (1.1 and

its generalization to 'variable velocity c(x). The paper-[1j élso ;ontains
references to the applications of paraxial approximations in seisé&ibgy, acoustics,
and as artificial computational boundary conditions.

The error in the approximation above increases with increasing aﬁgle 8 between
the direction of propagation and the x, axis (u = f(éos 8 x, +sin 8 x; - ct)). -
In order to reduce this error higher order approximations than (1.1) have been

suggested. Claerbout [5] introduced a third order equation :

L 1 3% 3%u 3¢ 3% ¢ 3y
1.3) - + - - =Y =0,
€ 5¢3 8t26x2 &3 ataxi 2 axzaxi '

the so—called 45°~approximation, for applications in seismology. Higher order
paraxial approximations have also been suggested as artificial boundary condi-

tions € (81, [111).



In this paper we shall present a new family of higher order paraxial approxi=-
mations. The approximations are written as second order systems of partial
differential equations. The higher order scalar equations in [8] can be equi-

valently written as systems of our type (see also [16]).

In Section 2, the paraxial systems of equations are derived for homogeneous
media. The derivation is based on rational apbroxfmations of the dispersion
relation for (1.2). The section also contains analysis of the propagation
properties of the equations and an error estirnate. The error estimatg shows
that it is possible to approximate ¢1.2) by paraxial equation to any accuracy

by choosing the order of the paraxial equation high enough.

New higher order approximations for heterogeneous media are derived in section 3,
It is here esSential that the approximatioﬁ be written as a system rather than

a scalar higher order equation. The formulation as a system is also fundamental
for the analysis. The well-posedness is éstablfshed and propagation properties
are analysed. The support of the fundamental solution is proved to propagate in
a half-space with a finite speed. This is an essential feature for a paraxial
equation. The transmission and reflection at an interface is showed to be conti-

nuously dependent on its location.

In section 4, numerical results are presented. Numerical approximations of
‘the fundamental solution of two higher order paraxial systems were com-
puted. Different calculations with different velocity profiles were performed

by F. Collino [6].

Some of the results of this papér where announced in [9] ‘and some technical

details in the proofs are omitted here but are given in the report [3]. As in

{1] we restrict ourselves to two space dimensions, but the techniques are the

. n
same 1n R .



2 - HIGHER ORDER APPROXIMATIONS IN HOMOGENEOUS MEDIA

2.1. DERIVATION OF THE EQUATIONS

Consider thg two-dimensional wave equation (1.2).

Let us recall [1] that the paraxial (or one way) approximation consists of
approximafing the part of the solution to the Cauchy problem propagating close
to the>positive X direction. By usihg tﬁe Fourier transform, this part u,

can be written as a sum of harmonic waves traveling 1in the positive x,

direction =
2.1 u, (x,t) = ” & ) exp Tt - k.x) dk

where the amplitude 25(k) depends on the iditial values, and w is defined by :

k, 2
1,

2.2) ¢ =y = (1~ —t5 )%

The function u, is solution of a pseudo-differential equation, the symbol
(or the dispersion relation) of which is :

(2.3) L=ck- ot - k—l)z)%

w

Our aim is to approximate u, by the solution of a partial differential equation,
suitable for computation. We hence have to approximate the symbol % by ratio-

nal functions in w and k. This is done by approximating the function

Nij=

(2.4) fX) = (1 -X)

k
. . . . 1
by polynomial or rational functions in X = ¢ -
k
S - .
The term ¢ — in (2.3) represents the sine of the angle between the direction

. k
of propagation of the harmonic plane wave and the x, direction : ¢ i% = sin 5.



Many applications are concerned with a narrow range of wave vectors, so that
this angle remains small. Thus the classical approach was to approximate f(x)
for small values of X,

A first-Taylor approximation to f =
fO0 =1 - 2X + 002
yields the following approximation to &
(5 - (c —-J

Multiplying by w Lleads to the quadratic polynomial

1

2.5) c ky w —-w? + 7 ¢ k2

which is the symbol of the so-called parabolic or 15° approximation (1.1) (for

details see [1]) :

1 3% 32y ¢ 3%u

(2.6) — - L= =9
ap2  9tdX, 2 axf
A first Padé approximation :
1 - %-x
£(X) = + 0(x3)
1 -1«
I

leéds to the symbol
@D cultek, et 3o kK- k, K2

of the so-called 45° approximation (1.3) =

3 3 3 2 3
.8y 1 3w, 3% _%cau_% Bu_ 4
€ a3 at%x, atax? 3x,8x?

A generalization to any order, by means of continued fractions {corresponding
to three diagonals of the Padé-table) has been used in {8] for ébsorbing boundary

conditions. They are defined by :



-1 X
WX 1 T S
2.9
9,0 =1

These functions are rational fractions in X, and they have been shown in (2]

to have the important approximation property :

- - 1
"o - o, =

From gy ¢an be derived partial differential operator of order N. The

high order of dgrivative makes the practical use of these equations more diffi-
cult. An other way of writing the equations has been found independently by the
authors [9] and Zhang Guan—Quan [16], and had been used previously to design |
absorbing boundary conditions in [11]. It is based on the remark that a rational
fraction can be split up into a sum of prime fractions. For example, the first

Padé approximation is also equal to :

1
5 X .
fOX) = 1 -—fa— 03y .

1 ‘z—x
A natural generalization of the approximation (2.9) is then

n

B, X
2100 f O =1-8x-3 Kk
k=1 1 - y2 X

The coefficients B8, Bk and Y, are such that :
2.1 0<'yn_< ...<Yi<1

(2.12 B>0;Bk>0,1<k<.n -



This generalization is justified by the fact that the Padé approximations 9
can be written in the form (2.10). More precisely, the results are the

following :

(i) 92n+1(X) = fn(x)
B =0
. - 2 -zk‘n
with Bk =z ST Znm
- km
Y = €08 ZRF

G g, 0O = fn;1(x)

B = 2n
3 =l 'ZH
with Bk P sin 5m
= cos 53
Yk 2n

' 2
\

Figure 2.1 : Variations of fn for 8 =0



The constraints (2.11) are natural. They express that fn is continuous on
[0,1] . The constraints (2.12) on 8 and Bk ensure the hyperbolicity of the

corresponding operator, as will be discussed below.

REMARK 2.1 : The choice of the coefficients #k’ B, Bk depends on the applica-
tions. In many areas, one is concerned with thin beams, and hence the family
9\ will be chosen. For other purposes, one could for instance compute them to
get a L= approximation to f (for a more complete discussion see [14]).

The decomposition (2.10) of the function fn enables us to write the approxi-

mate equation in a very convenient form. If u is a solution, its Fourier

transform { satisfies
- k132 AL
(2.13) [c k= wt,(=))0=0
which implies, if =0 - '
n c? k%

.10 ck, 0- b v0 T 8 — - t=0
N

We define n function @ r 1<k <n, by their Fourier transforms :

2 12
c k1 A
u

A
(2.15) 9, =
w2 = y2 2 g2

_ k 1

so that equation (2.14) can be rewritten as :

n A
A A
(2.16) ¢k, U -ul +ow g%sk“’k=° .
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When the inverse Fourier transform is applied, the equations (2.15) and (2.16)

lead to the following system of equations :

y—-}cﬂ.— n.B i(p_k-o
at 3%, = ket
.17 , )
Y, 3, 2
—%‘-c2 yﬁ — K o2 2y ; 1<k<n
-3t ax2 ax2

This is a system of (n + 1) Llinear equations : one transport equation in the
X, direction and n one dimensional wave equation in the x;=direction. For

8 # 0, we get the system :

2 2 2 n 3%p
St e e Ul ¥ B — =0
ot2 2 ax§ k=1 at2
(2.18) ) ) :
a_wli - ¢2 Y2 9 ‘ok = 2 32u
ot 2 k axf Bxf

This formulation is useful in three ways. It is easy to derive a priori estimates,

it can be extended to heterogeneous media, and it is convenient for numerical

computations.

REMARK 2.2 : In order to solve the Cauchy prohlems for (2.17) and (2.18),
- 30
additional initial data are required for the functions wk and 'EEE .

\
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2.2 PROPAGATION PROPERTIES OF THE OPERATOR

In this section, we shall only consider the case B8 = 0. If 8 # 0, the
results are somewhat different, but the techniques are the same [3].
The propagation properties depend only on the determinant of the system, i.e.

the approximate operator _Ef_l the symbol of which is

k k, .2
weg ()

or, after clearing the denominator :

n
(2.1 L w,k) = € ky = 0) T (W2 - ¢2 y2 k2)
n k=1 k 1
n n
-2 y2 kf Z Bk M (w2 - ¢2 .YZ- kf)
k=1 j=1 ]
J¥Fk

-9: is a homogeneous operator of global order 2n + 1, and of order 1 in Xg «

It is clear from (2.17) that the equation is hyperbolic. Let us make this precise.

DEFINITION [10] : The operator & <is hyperbolic in time if 41,00 # 0 (i.e.
time is not characteristic for %) and if H(w,k) has only real roots w for
k € R2 - -{0,0} - If, in addition, the roots are ‘sirpie , ¥ 1is strictly

hyperbolic.

LEMMA 2.1 : The operator £ <is hyperbolic in time, but not strictly hyperdolic :

the x, direction is characteristic.

PROOF : k beeing fixed, the number of roots of gﬂ is the number of solutions

Z (finite or not) to the system :

Y n

e

T L2%)
z

|
[N

1
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It is now easy to check that the number of intersection points is 2n + 1.

In particular, if k), =0, w=- k, 1is the only simple root of 5?; , and

-

w =0 1is a root of multiplicity 2n :

the axis x, {is characteristic for Qﬁr

The theory of hyperbolic operators (cf [18]) ensures that ;2; has an unique

fundamental solution En’ defined for t > 0. 1Its support can be given expli-
in the set

citly. We define a subset E@L of R3 as the component of (1,0,0)

{(w,k) ,52;(m,k) #* 0} - Then ([10]) the support %; of En is included in

the closed convex cone with vertex at 0, dual of E@% in R?, but in no

smaller closed convex cone with vertex at 0. In our case we can write an

explicit formula :

THEOREM 2.1 : The support 8;(t)of the fundamental solution at time t s the

domain of R? bounded by the x; aris and the curve

' Xp =21 f 02 x,
1

Oty =
(2.20) o)

2y - 2 £'¢y2
ct [fn()‘) 2 A an\ )] X,

K X

2

ct

-~

——

ey

cy,t =

Figure 2,2 = Support of the fundamental solution
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The form of the fundamental solution provides important informations concerning
the propagation of the solutions of _fz,’;‘ Every Solution of equation .9’;; u=20
propagates in the positive x, direction, with a velocity V < c¢. This is

formulated precisely in the following theorem.

THEOREM 2.2 : If the initial values are of compact support in ¥, at any time t

one has

supp u c F+ é’n(t)

Theorem 2.2 proceeds directly from Theorem 2.1. Theorem 2.1 is achieved by
writing expl.'icitly the equation of '@n’ and then the equation of the dual.

For more details see [3].

It is more difficult to study the singular suppor't than the support of the
fundamental solution, since .gn is not strictly hyperbolic. Let us first
recall that the singular support of a distribution u is the smallest closed
domain where u 1is not € . One can use the notion of wave front set (WFS)
which provides additional informations on the singularities [10]. We restrict

ourselves here to giving the singular supporf of En.r

THEOREM 2.3 : The singular support of En at time t consists of two parts :
the curve defined by :

4
X1

22 f.(A2) x
' n 2
(2.21) T (0= x2 20 , A €ER
2y =212 ¢ (12
ct [fn(')‘ ) 2 ) fn(x )] x,

\}

and the segment {x sy < yget, x, = 0} .
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A X

Figure 2.3 : Singular support of the fundamental solution

The proof is technical and will be omitted here. It is given in [3]. Let us

only point out that, for a strictly hyperbolic'operator the wave front set

is the set T;(t) of nullbicharacteristics passing through the origin. When
the operator is no longer strictly hyperbolic, the wave front set contains in

addition the lines making the set convex (see [71).

Since the operator.ﬁi is hyperbolic, it follows in standard fashion that the
Cauchy problem is well-posed. Moreover, the form of the support of the fundamen-
tal solution enables us to conclude that the initial boundary value problem in

the half-space x, >0 is well-posed (for details see [10]).

‘We now turn to an approximation result. ALl the calculations are formal, but

will be fully justified by the regularity results given in section 3.
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2.3. AN ERROR ESTIMATE

In practice we wish to approximate the problem in the half-space

2 =
R? -{x,x2>0}

\ _
-12--3—‘1-Au=0 . x€R , t>0
c at2

(2.22) ult,x) =0 x€ERZ , t<0
ult,x;,0) = glt,x;) xy € R , t=0

by the problem .

.E% u, =0 - x € R , t>0
2
(2.23) u (t,x) = 0 , x€R, , t<0 X
un(t,xl,O) = glt,xy) x; €ER , t=20

wé shall make the following assumptions on the boundary value g :

(2.24) g € L2(R, x R)
A kl
(2.25) S = supp § < {(w,k),lc 7;4 < 1}

where 6 is the Fourier transform of g with respect to t and x;. The
first assumption is only a smoothness assumption, and the second one ensures
that g and u contain only propagating modes. This hypothesis is essential

for obtaining any approximation result.

THEOREM 2.4 : If the boundary data g satisfies assumptions (2.24) and (2.25)

and if jZ; is such that.‘fn approximates f uniformly on [0,1] then u,

converges to u 1in the following sense :

(2.26) ¥ X, € [0,+ =] Lim flu - unH - + =0
n-w L C{0,X,]; L2(R" x R))
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Let us recall that fn approximates f uniformly on [0,1] means that
WE - tends to 0 when n tends to infinity. The sequence 9y

L7¢[0,11)
of Padé approximants introduced in (2.9) satisfies this assumption.

PROOF : The analysis is similar to the one given for the absorbing boundary
conditions in [8] . The Fourier transforms in t and x; of u and u, can

be written as :

'L\J'(m,kl,xz) = a(w,kl) exp - .'im(‘l - (c -‘;—1)2)% X,

U Gw,ky,x2) = §lw,k)) exp = fu £.((c %)2) X2

Using Parseval's theorem, the L2 norm of the error is given at every point
X by :
- 2 = Yo~ 02
Ty = u il JJ fu unl dw dk,
S

The integral on S 1is handled in the following way =

k12
’\J-’\oz A2 —_ —
JJ [u unl dw dk, <TJJ 1812 lexp - iw xzf(( - ) )
S . S .

= o0 = 10 1y, (6 L)) o e,

Lebesgue's theorem ensures this term to converge to zero if fn tends uniformly

to f.

REMARK 2.3 : Hypothesis (2.25) is restrictive, and can be removed by expressing
g as the solution of the wave equation on [-L,0] with g given at. xp = =.L.
L can then be chosen such that (2.26) holds for any datum at - L (for details

see [3]).
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3 - NEW HIGHER ORDER EQUATIONS IN HETEROGENEOUS MEDIA

The purpose in this section is the same as for the extension ‘of the parabolic
approximation to heterogeneous media [1]. We wish to generalize the equations
(2.17) and €2.18) in such a way that =

(i) The Cauchy problem and the initial boundary Qatue problem are wel l-posed.
(i1) - 1t is a good approximation.of the wave equation for heterogeneous media
with small vélocity Qariétibns.

(iid) It has good continuity properties uitﬁArespecf to_material interfaces.
The precise definitions are given in {11, and we shall come béck to the last

two points below. |

For the parabolic approximation

1 3%u 32u 2

w
[~

n
o

- £
2 C ax

AN

we introduced unknown functions g, £, x of ¢ and determined them so that

the equation

_ 1 ]
2xCc)ECc)  3x

au
(z Ce) —?J

32u 1 ]
+
a‘

at2 cgle)  3x,

35 (x(e) =2 (ECIW) = 0
c 1 °X)

satisfied (i), (i) and (iii). The resulting equation had the form :

2 a2 : . |
O R RSN

It is of course tempting to app’ the same method to higher order equations,
but it seems to be practically very difficult. We therefore restrict ourselves

2
to transforming the terms —— in (2.17) and (2.18) as we did it for the

X
parabolic approximation. 1
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We set

G vEctu; oy =Ty

(3.2a) ——3V+—-a"-£:ls——a"bk=0
-ca c ot X, k=1 € k 9t
32y 3y
1 k 2 ) k 3 oV
(3.2b) - -y Ce ) = (c ) : 1<k<n
5¢2 k ax1 axl ax1 ax1
if 8 =0, and
1 32 22 5 3 To1 o
v v v
(3.3a) - -8 (c ) - -8B, ——=0
342 dt3x, ax, 3%, EE% c 'k 32
32y v
1 K _ > 3 k 2 v
(3.3b) - -y (c ) = (c ) ; 1<k<n
32 k ax1 ax1 ax1 ax1

if B # 0. We shall see that these equations have the properties we expected

and we begin with the well-posedness,

3.1. ANALYSIS OF THE WELL-POSEDNESS

We shall prove the well-posedness for the system 3.2), and we only state the
results for system (3.3). We define the initial value problem for system (3.2) as :
Find (v,wk>1 <k<n® R2x [0,T] — R, solutions of (3.2) with the initial

data

vix,0) = 0

= nQ
(3.2¢) ®, .0 A x € R2
30

k -
Tl R



THEOREM 3.1 : Assume that the initial values (3.2¢) have the regularity :

Q
av® v, o, %

0 0 1
vo, v " Qv 2V X
7Tk 7 TR 7 ax, fax) Yk 3x,

€ L2(R?) 1<k<n .

The problem (3.2) then has a unique weak solution, with the regularity :

v, b € WLSGO,T ; LZCRE) A WZS0,T ; HU(R2) 1< k<n
v , 2 - 2(R2

A . <k <
et T € LT LR 1<k<n
Y e 1¥,T ; L2(R2))

3X2

Moreover the following energy is constant as a function of time :

n

, .
=1 1 2vy2. 1 2 11 K2
(3.4)  E(®) =5 ” = |5pl2dx + 5 Z_: 8, 12 ” = l5pl? ax
R2 k=1 R2

1 d 3V 2 awk 2
to X Bk” ¢ lox- * Tk el 9
k=1 R 1 1

For a definition of the Sobolev spaces Hk_ and wm,p’ see [12] .

PROOF : The well-posedness follows in standard fashion from the energy estimate

using the Galerkin method. We derive the latter in four steps :

(i) - We differentiate (3.2a) with respect to t, multiply by g%- and
jntegrate over RZ . We then have :
_ 2 n 3%y
1 'd 1 ,9v - 1 k 3v
" R? R? o
' v Wy
Gii) We multiply (3.2b) by ==+ yﬁ ~¢ and integrate over R2 . We get :
y, 2 , 2
1 d [, 1 %% w o, . Y
s Fg[t]] tieE e ] i@ 54«
. ' R? R2
32y
+ ” 1k Xg-o
at2
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(3i1) We multiply (3.6) by Bk and add the resulting identities for

1<k <n. This yields :

7 11[%5 2 [ 1_|ff_l_<_|2dx+‘£5 c|ﬂ+2w"|d
(. 7 @ kY JJ Tt o Bk > Yk a0 W

k 1 %y,
\ -
"’Z BkJT E————atdx-o

Giv) We eventually add (3.5) and (3.7), and we obtain

a‘%em:o )

REMARK 3.1 : Since the coefficients do not depend on time, the regularity in
time of the solution only depends on the regularity of the data. The regularity

in space is limited by the regularity of ¢, even if the data are smooth.

REMARK 3.2 : As a consequence of the energy estimate, a continuity result of

the solution with respect to the velocity can be stated (see [3]).

For the case B8 +# 0, we need to specify an other inftial value :
1ex) = 2V
3.8) v: (x) =T (x,0)

The result is then the fol.l.om‘ng‘.-. ‘

THEOREM 3.2 : Assume that the initial values have the regularity :

v av0
’ 9X3

, v € L2(R?)

0
0 oy 1 2¢m2
Ver 3y s Yk ELARD ; 1<k <n

The Cauchy problem for B8 # 0 then has a unique weck solution, with the regu-

larity :

Vb, € WTO,T ; L2R2) 0 w2T,T ; KR ; 1<k<n
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'\ 2Wk
3X1 ’ axl

€ L70,T;L2(R2)) ; 1<k<n

Moreover this solution satisfies the identity E(t) = E) a.e. in [0,T],
where the energy E(t) <s given by :

1 1 av° B
3.9 ECt) = > JI ? I‘Z_)'t-l dx + 2- IJ

i oV 2
c Ia—xl- dx
R? R2

The proof is -similar to the one for Theorem 3.1 above (see [3]).

REMARK 3.3 : Remarks 3.1 and 3.2 are still valid.

We shall now define the initial boundary value problem for (3.2) in the half-
space lRi :

Find (v,n,bk) : Ri x [0,T]— R, solutions of (3.2), with initial
(3.10) data 9O, 'J;g , wi : ]R%_ — R and a boundary value at x, =0 :

vixy,0,t) = glxy,t) on R x[0,T] .

TEEOREM 3.3 : Assuming the data have the regularity :

0 0 1 vt oav? L, awa 2(R2 -
.V/‘pk/wkr‘é_x';,ﬁ;""YkmeL(R*’) ; 1<k<n
g € H1(O,T,L2(R)) ,

the initial boundary value problem (3.2), (3.10) has a unique weck solution

with the regularity :



g
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v,u, € w1r°°(o,r,-L2cR§ »N N uz'”co,T;H'lcmg)) ; 1<k<n

oY
+y2 —£ € L°0,T;L2(R2))
k 9x31 7 s +

oV
Xy

A
=
A
3

v w 12 (p2
3;5- €L w,T;L (R+))

Moreover the following energy identity holds :

t 2
(.11 E(t) = EWD) +%IJ |-g% (xy,8)] dx; ds
, 0 g 4

The energy E(t) being 'given.by :

, € ot 2 5

2 n = Y, 2
1 1,2 1 1%
(3.12) E(t)=-2-Jer 11 ax + 1 T ekyzﬁ 12k Tax
R+ <

n Yy, 2
+%Z Bk” ¢ |2+ y2 K| gy
=1 1

=

PROOF : The energy estimate is obtained exactly in the same way as for the
Cauchy problem. Only step (i) is modified since a boundary term appears. The

well-posedness is proved using a Galerkin method.

REMARK 3.4 : We required here a strong regularity for the datum on the boundary.

It can, actually be removed and weaker solutions can be found [3].

In the case B # 0, we get a similar result, with the same differences as

stated in Theorem 3.2 (see [3]).

3.2. PROPAGATION_PROPERTIES

We restrict ourselves to the case where 8 = 0, i.e to the solution of problenm
(3.2). We intend to generalize the propagation properties for homogeneous medium.
The results are similar to those stated in [1] for the parabolic approximation

and the technique ig again based on energy estimates.
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Theorems 3.4 and 3.5 express in different ways that the solution propagates
only in the positive x, direction, even in heterogeneous medium. Theorem 3.6

specifies an upper bound for the propagation speed.

TEEOREM 3.4 : Under the assumptions of Theorem 3.1, and if

N ,
supp v0 U C U (supp xpa U supp wi)) c Ri

k=1
then, at any time t > 0, one has :

n
supp v(.,t) U (U supp §, (.,t)) < ]R+2
k=1

’ . . 0 0 1 0 1
TEEOREM 3.5 : Let <v1,, wd Widy » ¢ and (vg , ,(‘”k)z s R, o, e))

1 r'd
be two Ffamilies of data, satisfying the assumptions of Theorem 3.1, and defining
two solutions of problem (3.2) (v , (npk)l) and (v, , (xpk)z). Suppose: also

that the data are equal in R?2

0 = 0
vi = v,
8y = (y0
(wk)l (npk)2 |
. R a.e. in RZ
(‘pk?l = (‘wk.)z
c1 = ¢2

then, at any time t > 0, the solutions are equal in R2 :
viC.,t) = v (., t) a.e. tn R2Z

W) ¢ 1) = cwk>2c.,t) Yk ,1<k<n , ag.e. in R2

vhere R? ={x , x2<0}

PROOFS : as in {1], both results follow from an a priori estimate in a half-space :



- 24 -

LEMMA 3.1 : The solution of the problem (3.2) has the regularity
v(.,%0,.) € L¥(R ;Hl (0,T;L2(R))), and satisfies the energy estimate in the

half-space sz = {x s X3 < XZ} :

1 - 3v ATh
E A 2 _K
i3 Bk —”g ¢ lax1 Y axll dx

k=1 X,
t
1 3 2
(3.13) * ;H I35 x1,%2,9) | dx; ds =
R
n 8 n ) ' )
1” av0 k 41 1 2 1.1
z B2 EulaelT e = 1ok ] ox
cllag ™1 oo 25 Rk ), T
X2 X,

The energy estimate is achieved by the same technique as in Theorem 3.3. To get
the Theorem 3.4, we apply the Lemma to (v,wk), and to get the Theorem 3.5, we

apply it to (v1 vy L (wk 1 (wk

In order to describe the last result, we introduce some ‘notations =

c* is the maximum of ¢ on R2

c* = max cx)
x € R?

(%) denotes the curve

n

y=f&x2)=1-3
n k=

2
ka

2

2

1- ‘v.'i X

and (43) is the part of (&) included in the slab v, x| <1,
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&*(t) denotes the support at time t of the fundamental solution in homogeneous
medium with velocity c*. Let us recall (section 2) that the boundary of &* (1)

is the dual of c*t x i?b-

For any 6 € ]=n,w(, Da is the line x; = xj cotg6. P(8) 'is the intersection

point of D_ with i?;, and M(8) 1is the point of be such that

6
loP¢e)|.|oM(8)| = 1. When 6 wvaries, M varies on the set of group velocity

vectors. A velocity is then defined by :
(3.14)  V*(e) = c*[oM(@) |

where | | denotes the length of the segment OM.
The theorem below gives an upper bound for the propagation velocity of the

solution (v,$k) to problem (3.2).

THEOREM 3.6 : If the initial values for (3.2) are of compact suvport ./

n n
F = supp VO U/ U supp wO)U U supp wl)
\e=1 k" \e=1 k

then at any time t, (v, ) is compactly supported and

. n ~
supp v(.,t) U{ U supp ¢, C.,0)) e K+ &*(t)
\k=1 k

PROOF : The proof is based on an energy estimate in a moving domain. As in (1]

we first assume that the data are smooth, and ¥ is the disc centered in 0

t

8 by =

and of radius R. We define the half-plane @

af = {x ER , (x - (R + VO B.E> o}

for a fixed value of V. r; is the Q; boundary, and do {s the measure

t
oq re.
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We shall actually prove that for any 6 the energy in Qt is a decreasing

(¢}
function of time if V 2 V*(p). This will give the first part of the t heorenm.

The energy is denoted by E(v,wk,ng,t) and is given by =

2 n Y, 2
t .y _ 1 1 3v 1 2 L TE
(3.15) E(V,\Dk,ﬂe,t) = -2- JI E ls{l dx + '2‘ ; Bk Yk JJ c | 3t ' dx
ot k=1 ot
6 6
1 < 2
k=1 : t
Qe

. By a Green formula, ‘the energy can be expressed as
d 1 1 _
(3.16) s E(v,wk, e,t) + -Z-J . r $do =0 .

To

3y
- N - k
where ¢ can be written as a quadratic form in ‘at ’, ( )1 <k <

3
'_3_\_/_ + YZ wk) .
ERS) X, /1 <k <n

. a3y, 2 n 3y, 2
(3.17) ¢ = (V - cos 6) la—l + 2.8 V==
= at
k=1
n
Wy v
2 Vv 2 k i\l_ 2 k
* 262 sin 0 1§1 e 5t ke ) Gtk R

Y, 2
2 2 k
vt v Z, B laxl B ra

In order to determine the sign of ¢, we now perform a Gauss decomposition

of ¢ ¢

n - Y 2 oY
¢ ==2 B, Y2V [—5~+ 5 sin o (——3"1 +y2 k)]

k=1 ot v X k
: 2 X < sin 9
+ 2 E__ s 2 oV 2 k Vv -3_\/_
v :4;1 8 AvF & sin? o) [c(—ax1 * ¥+ — d
v - - [ - 2
1=y, = sin® ¢
Y

2

vV [fn((% sin 6)2) - % cos e]lg—\tll .
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It is easy to see under which conditions ¢ 1is positive, and to conclude that,
for any value of V such that V =2 v*(g) the energy in Q; is decreasing as

a function of time. This proves the first part of the Theorem. The second part

is then ' derived by taking the intersection of all the half-spaces Q; for

V = V*(8), when © wvaries. By translation, linearity and continuity, the

result is extended to any support, and to discontinuous data.

3.3. REFLECTION AND TRANSMISSION AT A LINEAR INTERFACE

As for the parabolic approximation, we consider two homogeneous half-spaces
- + . . - + E

Q and Q , with a velocity ¢ and ¢ respectively, separated by an
interface TI'(a). The unit normal and tangent vectors to the interface are

denoted by v and 1t respectively :

Tt = (cos a,sin a) ; v = (= sin o,co0s o)

r(a) = ;x,x.v = Os
(3.18)
3x,x.v < 0%

Q ()

ot )

3x,x.v > 0%

It is easy to derive the transmission conditions at the interface for the
equations written on the form (3.2), (3.3).

. If a=0
(3.19) vl =0
. If a# 0

Equation (3.2) :

vy =0
(3.20) v ,1 =0 ; 1<k<n
3 5 _ .
[ciTl(kak+V)]—O ; 1<k<n



Equation (3.3) :

vl =0

1<k<n

N

[v, ] =0

oV 4 _.
[c Ixd ° 0

oY
k1 -
[C —5;— =0

(3.21)

1<k<n

“e

Again the cases of oblique interfaces and horizontal interfaces are very
different. The latter produces no reflecfed wave and one transmitted wave,
while the former gives rise to n reflected waves and (n + 1) traﬁsmitted
waves (equation 3.2) or (n + 1) reflected waves and (n + 1) transmitted

waves (equation 3.3).

We first recall some basic definitions and notations -

u is the incident wave in Q :

I

(3.22) uI(x,t) = exp ilwt-k.x)

where w and k are related by the dispersion relation in Q

k ky.2
- 2 _ - 1
3.2 < 2=f ((c T) )
.k
(For simplicity, the vector k defined here is such that -£33> o.

We define the incident slowness vector :

-~

(3.24) K=k
w

and the group velocity vector :

(3.25) VG(K) = ng

-~

The group velocity vector is said to be "ingoing” (in the interface) in Q

if = V..v> 0, . "outgeing” ctherwise.
ALl throughout the remainder of this paper, we assume that |c-K.! <‘#L7 that
1

is to say that the vector K belongs to the "parabolic' branch of the dispersiqn

curve.
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(i) REFLECTION

" When the interface is horizontal, there is no reflected wave.

When it is oblique, the reflected slowness vectors are defined to have the same
projection as K on the interface, and such that their group velocity vectors
are outgoing in Q. The number of such vectors is n ard they are denoted

- N I Y
by ¢z' ,1<i<n, £;<g] .

pK2

Figure 3.1 : Reflected slowness vectors (n = 2)

The following lemma gives the behaviour of z',...,;  when o tends to O :

LEMMA 3.4 : When o tends to 0, the reflected slcumess vectore aré sueh that :

Cj = :;—~- M@ + 062

(3.26) R EC T , 1<i<n
i_ 1 _ 1 2
CZ_:(KI _—+\)_.lc.+0(a )

c vy

where P and v, are gtven by :



(3.27)

PROOF OF LEMMA
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&

ZC-ZY,BE(' Ky + 71-)
c Y'i 1 <7< n

Kz'l'yi

1

2 tends to

3.4 : It is clear that c; tends to 1;— and ¢

infinity when

i
3

2

¢y,

i .
a tends to zero. We then seek the expansion of ;1 in the fora :
=1 2
--_——"uiG*O(G)

c v,
=X . + v a+ 062N

a i i

where the coefficients Wis Vi, 0 are to be determined.

We first write

1

that K and c1 bave the same projection on the interface :

Ky cosa + Ky sina = cI cos o + ;; sin a

and we expand the equality in terms of a.

We thus get :

=K —71_.
[~ Yi
= ui + Kz

We then write the dispersion relation for ' =

i
L, <

When a tends

-~

1
o v

c

n 8 (c'z;{)
=0 o)

k=11 - yﬁc,cfg;-)z
to zero, we have :

_ 42
Bi (c cl) 8. 1

. 1
- — L VI,

© 1 =yieh? € 2cy

1
X —
a

which gives a third relation between the three unknowns :

B.

-1 oy -
2¢7 23 u. c
iFi Y

The three equations then define Mi, by and Ve
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(i1) TRANSMISSION

We choose here ¢ < ¢ .

When the interface is horizontal (i.e. a = 0), there is one transmitted

slowness vector n* such that :
* _
nl-Kl

<t nf = 1, ("))

When o # 0 there are n + 1 transmitted vectors n°,...nn, n® belonging to

(3.28)

the "parabolic'" branch of the dispersion curve, i.e.

1
+
c vl

[ad] <

A2

W

\' 4
R
4

--.---:-—-;2

N

>
%
Figure 3.2 : Transmitted slowness vectors

i

Again we give the behaviour of n when @ tends to O :
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LEMMA 3.5 : When o tends to 0, the transmitted sicumess veciors have the

expanstion :

ﬁg = KI + CKZ - n;) a + 0¢a?)
(3.29) a = === =1, a + 0G?) 1<i<n
C Y. i
1
1 1 ) i
nz_a(Kl+c+Y+pza+0(a)) 1<€i{<n

i

where A and p; are givem by :

B
2 v, + 4
(3.30) | ¢ty 1<i<n

>
n

°
1

— . +
A v Ko

The proof is similar to that of Lemma 3.4.

(iii) REFLECTION AND TRANSMISSION COEFFICIENTS

We start with the case of horizontal interface. There is no reflected wave

and one transmitted wave :

(3.31) u, =T*exp io (t -~n%x) .

T

When the interface is oblique, the reflected wave is :

n
3.32) up = 3 Rj(a)exp iw (t=-zgl.x)
j=1 .

and the transmitted wave is

Tj(a) exp 1w (¢t - nJ,x)

n
(3.3 u = >
=0

Lae

The main result of this part is the following theorem, which shows that the

equation has the properties we aimed for.
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THEOREM 3.7 : When o =0, the transmiésion coefficient T* 1is :

(3.34) T =/

c

When o # 0,  one has :

lim R.C) = lim T.() =0 1<j<€n
(3.35) a0 a>0 ’
Lim To(a) = T* -
a >0
The coefficients have the following form :
| B (* - K,
RyG@) v — —— . « ;1<i<n
' (1+Y_ic Ky) (1-Yic Ky)
(3.36) )
+ -
Ti(a)'\»——z— — - 2u;1<i‘<n
(1 +y; ¢ KD +y5 ¢ K

PROOF : We seek the solution u of (3.2) in the following form :

u=u, +u in Q

. +
U =u in Q

. : ' ’ <1
If o« =0, T* is easily obtained from the transmission condition [c ful = 0.
If o# 0, the transmissi‘oh conditions (3.20) pro.vide a @2n + Dx2n + 1)

system of equations the solution of which is (Rl---arrTOITlr---rT )
n

n n
1 1
(14 2R == 2T
f( =1 ’) et i=0 7
1 ( 1 i Ry )- 2 Xn: T
- — + — | = : ! - ; 1<k<n
\/E— 1—Yk.c K, {=1. 1-ch C} \ZT i=0 1-yk c+ n;
\/::7 1+ch‘K1 i=1 ‘1+ch.;;I c =0 1+ykc n; ’
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The solution of this system is given by the following formulae (using a Gauss

determinant).

) i -
R o= - I_I gy T K ¢ m cK1
k 1<j<in - 0'<;|*<§r'ucn“’*t:-'cjlZ
J#k b

We now apply Lemmas 3.4 and 3.5 to each term of the product which finfshes

the proof of the Theorem.

REMARK 3.5 : n0 appears to be the approximation to the exact transmitted

. n . . s .
wave, while nl,...,n can be considered as "parasitic" transmitted waves.
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4 - NUMERICAL EXPERIMENTS

In order to illustrate our theoretical results, we present here numerical
experiments implemented by F. Collino at IFP. The results correspond to two
equations of the family (3.2) obtained by the continued fractions expansion

(2.8) for N=3 and N =5, i.e:

4.12) v=ciu ; v=cio
1 3v, ov _ 1 3y _
(4.1b) T 3t + _axz e 3% 0
1 3%y 1 23 1) " Yy,
(4.1¢) —_— —— = c = c
c 8t2 4 axl ( axl) axl axl)
-1 -1 -1
(4.2a) v=c?u ; ¢, =c? wl ; wz = ¢ 2 wz
) EL
1 av, 8v _ 2 fo.om Y1 .,21m P2y _
(4.2b) T 3t + 3%, 52 (sm T ¢ *tsin® 5 5 ) 0
2
1 27 s D Wiy 3v
c 7z~ %" F 3 (c 3xX % 3x. \° 3x
at 1 1 1 1
(4.2¢) )
o9y oy
1 2 _ 2 2m o 2 _ 9o oV
r , COS% —— c ) == \° )

5
Bx1 ax1 ax1

The way the equations are written enables to use a splitting method. As in (11,

the time dependence in the equations (4.1a) and (4.1b) is handled by Fourier
transform. The equations are then semi-discretized in x; by P, finite elements.
A Crank-Nicolson scheme is finally used in the Xy direction. For further details
and properties about these numerical schemes see [6]. Each of the figures we
present here are snapshots of the solution at a given time.. This gives an

image of the solution in the (xj,x;) plane fthis representation is commonly

used by geophysicists). The areas where the solution is positive are darker, the

ones where = %3 negative 2re lichter.
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For each simulation, the source is quasi punctual, i.e. its support is very
small. Its position is indicated on the figures by the point S. Its time
dependence is given by the second derivative of a gaussian function (Ricker

source in Geophysics).

In Figure 4.1 are plotted the fundamental solutions of the paraxial approximations
for (4.1) and (4.2). We can easily see that the support of the solution tends to

the ideal semi-disk and that the number of parasitic branches increases with N.

Equation (4.1 : Equation (4.2)

Figure 4.1 : Fundamental solutions

We now consider the specific heterogeneous medium we studied in section 3 (see
3.18). This medium consists of two homogeneous haLf—spéces Qi (with velocity
¢) and o (with velocity c+) separated by an interface I'(a) whose angle

with the horizontal x; direction is equal to «a. The ratio E; is equal to
2 and the source is located in the medium Q . )

Figure 4.2 is a snapshot of the solution when the interface is horizontal (i.e

o = 0). In each case we easily distinguish, as indicated, the incident wave
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and the unique transmitted one. Note that the parasitic waves have not yet
reached the interface at the time . we consider. Also it is interesting to
remark that for equation (4.2) the wave front, although it is not, seems to
be discontinuous along the interface. In fact such a discontinuity occurs for,

the full wave equation if one does not consider the reflected waves : the

head wave connects the reflected wave and the transmitted one.

Equation (4.1) Equation (4.2)

Figure 4.2 : Horizontal interface

In Figure 4.3 we give the results when a = % . For equation (4.1) one clearly
sees the reflected wave R; (whose amplitude is rather strong) and the two
transmitted ones T0 and Tl. Note the curious shape of the second transmitted
wave front, which is the parasitic one. Its amplitude is much less important than
the one of the first transmitted wave. For equation (4.2), the two reflected waves
R1 and R2 z-2 clearly visible but we can only distinguish two transmitted waves

(denoted by T0 and T1 in the Figure). The slowest transmitted wave (which would

pe Tz) is {00 weak to be visible. We can also remark the existence of a second
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family of reflected and transmitted waves which are due to the first parasitic

arch of the incident wave which reached the interfacea

Finally we notite in both cases the existence in the medium Q of a head-wave

connecting the first transmitted wave to the first reflected one.

:‘:

Equation (4.2)

Equation (4.1

Figure 4.3 : o = %

In Figure 4.4 the angle o is equal to % - The involved phenomena are qualita-
tively the same as for o = % . It is moreover interesting to notice that the
reflected and parasitic transmitted waves are much weaker, as the theory predicts,

=1
than for a = Z -



Equation (4.1) ' Equafion (4.2)

[ E]

Figure'4.4 -]

Acknowledgment : we are very grateful to F. Collino who authorized the

publication of his numerical experiments.
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