
Domain decomposition methods

Inspired by Martin J. Gander ∗ Laurence Halpern †

13 mars 2013

1 Block matrices

1.1 Generalities

Remember first that two matrices A and B can be multiplied if and only if the number of columns
of A is equal to the number of rows of B : A is m× n and B is n× p. Split A in 4 submatrices as

A =





























a11 · · · a1J a1J+1 · · · a1n
...

...
...

...
aI1 · · · aIJ aIJ+1 · · · aIn

aI+11 · · · aI+1J aI+1J+1 · · · aI+1n
...

...
...

...
am1 · · · anJ anJ+1 · · · amn





























=

(

A11
(I,J) A12

(I,n−J)

A21
(m−I,J) A22

(m−I,n−J)

)

The matrix A11
(I,J) =







a11 · · · a1J
...

...
aI1 · · · aIJ






has dimension(I, J),

A12
(I,n−J) =







a1J+1 · · · a1n
...

...
aIJ+1 · · · aIn






has dimension(I, n − J),

A21
(m−I,J) =







aI+11 · · · aI+1J
...

...
am1 · · · amJ






has dimension(n − I, J),

A21
(n−I,n−J) =







aI+1J+1 · · · aI+1n
...

...
amJ+1 · · · amn






has dimension(m − I, n− J).

Consider a matrix B split as

B =

(

B11
(J,K) B21

(J,p−K)

B12
(n−J,K) B22

(n−J,p−K)

)

,

then the product AB can be done in a natural way as for 2× 2 matrices :

∗Section de Mathématiques. Université de Genève. 2-4 rue du Lièvre, CP 64, CH-1211 Genève. SUISSE
†LAGA et CNRS UMR7539. Université Paris 13. Avenue J.B. Clément, 93430 Villetaneuse. FRANCE

1



AB =

(

A11
(I,J) A12

(I,n−J)

A21
(m−I,J) A22

(m−I,n−J)

) (

B11
(J,K) B12

(J,p−K)

B21
(n−J,K) B22

(n−J,p−K)

)

=

(

A11B11 +A12B21 A11B12 +A12B22

A21B11 +A22B21 A21B12 +A22B22

)

.

To make the product of a matrix A of size m× n by a vector of size n, it can be useful to decompose
A into I × J blocks, and X into J blocks :

A =







A(11) · · · A(1J)

...
...

A(I1) · · · A(IJ)






, X =







X(1)

...

X(J)






(1.1)

Block diagonal and triangular matrices have the form

D =

















D(11) 0 0 · · · 0

0 D(22) 0 · · · 0

0 0
. . . 0 0

0 0 · · · . . . 0

0 0 · · · 0 D(JJ)

















T =

















T (11) 0 0 · · · 0

× T (22) 0 · · · 0

× × . . . 0 0

× × · · · . . . 0

× × · · · × T (JJ)

















The product of lower (resp. upper) block-triangular matrices is lower (resp. upper) block triangular
matrix . Same for the inverse. An example of block-tridiagonal matrix is the equidistant finite differences
in 2D, constituted of N blocks, each block of size M ×M ,

A =
1

h2



















B −C 0M · · · 0M

−C B −C
. . .

...

0M
. . .

. . .
. . . 0M

...
. . . −C B −C

0M · · · 0M −C B



















C = IM , B =



















4 −1 0 · · · 0

−1 4 −1
. . .

...

0
. . .

. . .
. . . 0

...
. . . −1 4 −1

0 · · · 0 −1 4



















1.2 Block relaxation

For a system AX = b, split as in (1.1), it is possible to write the same algorithms as before with
A = D − E − F , D being block-diagonal, E lower block-triangular and F upper block triangular.

D =

















A(11) 0 0 · · · 0

0 A(22) 0 · · · 0

0 0
. . . 0 0

0 0 · · · . . . 0

0 0 · · · 0 A(JJ)

















− E =

















0 0 0 · · · 0

A(21) 0 0 · · · 0
...

. . .
. . . 0 0

...
. . .

. . .
. . . 0

A(J1) · · · · · · A(JJ−1) 0

















For example the Jacobi method for a 2× 2 block matrix is

(

A(11) 0

0 A(22)

) (

X(1)

X(2)

)m+1

=

(

0 −A(12)

−A(21) 0

) (

X(1)

X(2)

)m

+

(

b(1)

b(2)

)

2



and the Gauss-Seidel method is

(

A(11) 0

A(21) A(22)

) (

X(1)

X(2)

)m+1

=

(

0 −A(12)

0 0

) (

X(1)

X(2)

)m

+

(

b(1)

b(2)

)

They can be rewritten as systems of two matrix equations

Jacobi

{

A(11)(X(1))m+1 = −A(12)(X(2))m + b(1)

A(22)(X(2))m+1 = −A(21)(X(1))m + b(2)

Gauss-Seidel

{

A(11)(X(1))m+1 = −A(12)(X(2))m + b(1)

A(21)(X(1))m+1 + A(22)(X(2))m+1 = b(2)

Each resolution needs to invert the matrices A(ii) which are much smaller matrices !.

2 Schwarz methods

We explain in the 1d-case the historical methods of H.A. Schwarz (alternate method) in [7]. and
P.L. Lions (parallel method) in [6]. Then we discretize these algorithms, and interpret those discrete
algorithms as relaxations algorithms. Then we present the discrete algorithm, in particular the additive
Schwarz method of M. Dryja et O. Widlund [2, 3], which are a major invention. In the next paragraph,
we interpret the latter as a preconditioning for a linear system . This system involves either the internal
unknowns, or the interface unknowns. Then we study the conditioning of the preconditioned problem.

2.1 Alternate and parallel Schwarz

The problem is
−u′′ + ηu = f in (0, 1), u(0) = gg, u(1) = gd. (2.1)

Ω = [0, 1] is divided into two overlapping subdomains Ω1 = [0, β] and Ω2 = [α, 1]. The boundary of Ω1

in Ω2 is Γ1 = {β}, and symmetrically Γ2 = {α}.The overlap is δ = β − α.
In the alternate Schwarz method, a sequence (un1 , u

n
2 ) for n ≥ 0 is build by solving alternatively the

same equation as in (2.1), in Ω1 and Ω2, defining the values on the border by the previously computed
values in the othersubdomain :

−d2un+1
1

dx2
+ η un+1

1 = f dans Ω1, −d2un+1
2

dx2
+ η un+1

2 = f dans Ω2,

un+1
1 (0) = gg, un+1

2 (1) = gd,

un+1
1 (β) = un2 (β), un+1

2 (α) = un+1
1 (α).

(2.2)

The algorithm is initialized by g ∈ R, with the convention u02(β) ≡ g, which means that u11 is computed
with u11(β) = g.

In the parallel Schwarz method [5], the computations in Ω1 et Ω2 are made in parallel :

−d2ũn+1
1

dx2
+ η ũn+1

1 = f dans Ω1, −d2ũn+1
2

dx2
+ η ũn+1

2 = f dans Ω2,

ũn+1
1 (0) = gg, ũn+1

2 (1) = gd,

ũn+1
1 (β) = ũn2 (β), ũn+1

2 (α) = ũn1 (α).

(2.3)

Then two values g1 et g2 are necessary for the initialization.
Figure 2.1 shows the solution of (2.1) in a model case : the distribution of temperature in a bar of

length 1, subjected to a source of heat on a part of its length, with a fixed temperature at each end.
On Figure 2.2 are represented the iterates of the two algorithms.

3



Theorem 2.1 For any η ≥ 0, the algorithms of alternate and paralllel Schwarz for problem (2.1) are
convergent.

Proof By liinearity, the errors eni = uni − u are solution of the same equations in the subdomains
with f = 0 gg = 0 and gd = 0. They can be solved with sinhx = (ex − e−x)/2 for η > 0, modulo a
multiplicative constant ani :

for η > 0, en1 = an1 sinh(
√
η x), en2 = an2 sinh(

√
η (1− x)),

for η = 0, en1 = an1 x, en2 = an2 (1− x).

At first iteration , a11 is determined by the condition u11(β) = g, thus e11(β) = g − u(β) :

{

for η > 0, a11 sinh(
√
η β) = g − u(β),

for η = 0, a11 β = g − u(β).

The transmission conditions en+1
1 (β) = en2 (β) and en+1

2 (α) = en+1
1 (α) thereafter give a recursion

relation to determine the coefficients ani :

{

for η > 0, an+1
1 sinh(

√
η β) = an2 sinh(

√
η (1− β)), an+1

2 sinh(
√
η (1− α)) = an+1

1 sinh(
√
η α),

for η = 0, an+1
1 β = an2 (1− β), an+1

2 (1− α) = an+1
1 α.

Let

ρ1 =
sinh(

√
η (1− β))

sinh(
√
η β)

, ρ2 =
sinh(

√
η α)

sinh(
√
η (1− α))

. (2.4)

These formulas hold also for η = 0 by passing to the limit. Rewrite the recursion relation as

an+1
1 = ρ1a

n
2 , an+1

2 = ρ2 a
n+1
1 , or an+1

i = ρ1ρ2 a
n
i .

The sequences an1 and an2 are geometric sequences with ratio ρ = ρ1ρ2, which is also called convergence
factor of the method . The function sinh is increasing, and since α < β, we have sinh(

√
η α) <

sinh(
√
η β) and sinh(

√
η (1 − β)) < sinh(

√
η (1 − α)). Thus ρ is positive and strictly smaller than 1.

The coefficients ani are now given by

an+1
1 = ρna11, an+1

2 = ρ2ρ
na11. (2.5)

The functions uni satisfy Ωi :

un+1
i (x)− u(x) = ρ(uni (x)− u(x)) = ρn(u1i (x)− u(x)).

In the domain Ωi, the sequence uni converge uniformly to u, with a linear convergence In the parallel
case, there is an similar relation between coefficients ãni de ũni :

ãn+1
1 = ρ1ã

n
2 , ãn+1

2 = ρ2ã
n
1 , or ãn+1

i = ρ ãn−1
i ,

and ã2n+1
i = ρn ã1i . The even and odd iterates of ũni converge linearly with the same convergence factor

ρ.

Remark 2.1 Defining g = g1, yields ũ2n−1
1 = un1 , then ũ2n2 = un2 . Therefore performing two steps of

the parallel algorithm is equivalent to performing one step of the alternate algorithm, as shown in 2.2.

Remark 2.2 The smaller ρ, the faster the convergence. This is realized for large η, or large overlap
δ.

4



2.2 Discretized alternate et parallel Schwarz

The interval [0, 1] is divided into J + 1 subintervals with length h. The discretization points are
xj = jh for 0 ≤ j ≤ J + 1. The finite differences schemes associated to (2.1) computes uj ∼ u(xj),
with fj ∼ f(xj), as follows

−uj+1 − 2uj + uj−1

h2
+ η uj = fj, 1 ≤ j ≤ J.

These J equations are complemented with u0 = gg and uJ+1 = gd, to obtain the linear system with

unknowns u = (u1, · · · , uJ)T , in matrix form

Au = f , A =



















2

h2
+ η − 1

h2

− 1

h2
2

h2
+ η

. . .

. . .
. . . − 1

h2

− 1

h2
2

h2
+ η



















, f =















f1 +
1
h2 gg

f2
...

fJ−1

fJ + 1
h2 gd















. (2.6)

The matrix A is written in sparse format sparse in Matlab using the script spdiags :

function A=A1d(eta,a,b,J)

% A1D one dimensional finite difference approximation

% A=A1d(eta,a,b,J) computes a sparse finite difference approximation

% of the one dimensional operator eta-Delta on the domain

% Omega=(a,b) using J interior points

h=(b-a)/(J+1); e=ones(J,1);

A=spdiags([-e/h^2 (eta+2/h^2)*e -e/h^2],[-1 0 1],J,J);

The script below gives the details of resolution in Matlab of the discrete problem with non homo-
geneous boundary conditions The linear system is solved with the script "\" of Matlab, based on the
Gauss method, optimized for sparse matrices. Since A is symmetric definite positive, the conjugate
gradient with preconditioning defined in the first chapter could be used as well.

function u=Solve1d(f,eta,a,b,gg,gd)

% SOLVE1D solves eta-Delta in 1d using finite differences

% u=Solve1d(f,eta,a,b,gg,gd) solves the one dimensional equation

% (eta-Delta)u=f on the domain Omega=(a,b) with Dirichlet boundary

% conditions u=gg at x=a and u=gd at x=b using a finite

% difference approximation with length(f) interior grid points

J=length(f);

A=A1d(eta,a,b,J); % construct 1d finite difference operator

h=(b-a)/(J+1);

f(1)=f(1)+gg/h^2; % add boundary conditions into rhs

f(end)=f(end)+gd/h^2;

u=A\f;

u=[gg;u;gd]; % add boundary values to solution

In the example, the length of the bar is 1, the source is constant equal to 5 on [0.4 0.7]), vanishes
elsewhere. The temperature is fixed at both ends. The Matlab script below Bar.m calls the resolution
script Solve1d for these data, and produces figure 2.1.

%eta=0;J=20; % J number of interior mesh points

x=0:1/(J+1):1; % finite difference mesh, including boundary

f=zeros(J,1); % source term zero, except for a

5



f(x>0.4 & x<0.7)=5; % heater in this position

gg=0.1; gd=0; % put warm wall on the left, cold on the right

u=Solve1d(f,eta,0,1,gg,gd);

figure

plot(x,u,’-’); xlabel(’x’); ylabel(’solution’);

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

x

so
lu

ti
o
n

Figure 2.1 – Example of resolution of equation (2.1) by finite differences

In order to discretize the alternate Schwarz algorithm, the point α is described by α = l h and
β = mh with m = l+ d. d represents the overlap, δ = dh. The points x1, · · · , xJ are interior to Ω, the
points x1, · · · , xb−1 are interior to Ω1, twhile points xa+1, · · · , xJ are interior to Ω2. The discretization
of alternate Schwarz algorithm (2.2) is

−(un+1
1 )j+1 − 2(un+1

1 )j + (un+1
1 )j−1

h2
+ η (un+1

1 )j = fj, 1 ≤ j ≤ b− 1, (un+1
1 )b = (un2 )b,

−(un+1
2 )j+1 − 2(un+1

2 )j + (un+1
2 )j−1

h2
+ η (un+1

2 )j = fj, a+ 1 ≤ j ≤ J, (un+1
2 )a = (un+1

1 )a,

(2.7)
with exterior boundary condition (un+1

1 )0 = gg and (un2 )J+1 = gd. The script below realizes the algo-
rithm (2.7) (the first line “Bar;”, executes the commands of the above example, which are imperatively
in the file Bar.m) :

eta=0;J=20; Bar; % to include problem parameters

ue=u;a=floor(J/2); d=4; % subdomain decomposition

f1=f(1:a+d-1); f2=f(a+1:J); % subdomain source terms

u1=[gg; zeros(a+d,1)]; % zero initial guess, except boundary value

u2=[zeros(J-a+1,1); gd];

x1=x(1:a+d+1); x2=x(a+1:end);

h=1/(J+1);

% finite difference meshes

figure(1)

line(([a,a])*h,[min(ue ),max(ue )],’Color’,’r’)

line(([a,a]+d)*h,[min(ue ),max(ue )],’Color’,’r’)

hold on

plot(x,ue,’m’);

hold on;

pause

for i=1:200 % Alternating Schwarz iteration

u1=Solve1d(f1,eta,x1(1),x1(end),gg,u2(d+1));

u2=Solve1d(f2,eta,x2(1),x2(end),u1(end-d),gd);

6



plot(x1,u1,’-’,x2,u2,’-’); xlabel(’x’);

ylabel(’Alternating Schwarz iterates’);

hold on; pause

end

hold off

Run in Matlab, it produces the sequence of curves in Figure 2.2a.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

x

A
lt
er

n
a
ti
n
g

S
ch

w
a
rz

it
er

a
te

s

(a) Algorithme alternate

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

x

P
a
ra

ll
el

S
ch

w
a
rz

it
er

a
te

s
(b) Algorithme parallel

Figure 2.2 – Example of resolution of equation (2.1) by the Schwarz algorithm discretized par finite
differences

To obtain the parallel Schwarz algorithm, and the results in figure 2.2b, the loop above has to be
modified into

u1old=u1;

u1=Solve1d(f1,eta,x1(1),x1(end),gg,u2(d+1));

u2=Solve1d(f2,eta,x2(1),x2(end),u1old(end-d),gd);

plot(x1,u1,’-’,x2,u2,’-’); xlabel(’x’);

ylabel(’Parallel Schwarz iterates’);

Algebraic interpretation Algorithm (2.7) will now be written as an algebraic algorithm for the
vectors un

1 = ((un1 )1, · · · , (un1 )b−1)
T and un

2 = ((un2 )a+1, · · · , (un2 )J)T . The matrix A is split into blocs
as

A =

















































2

h2
+ η − 1

h2

− 1

h2
2

h2
+ η

. . .

. . .
. . . − 1

h2

− 1

h2
2

h2
+ η − 1

h2

− 1

h2
2

h2
+ η − 1

h2

− 1

h2
2

h2
+ η

. . .

. . .
. . . − 1

h2

− 1

h2
2

h2
+ η

















































. (2.8)

7



Introduce two such decompositions :

A =

(

A1 B1

C1 D1

)

=

(

D2 C2

B2 A2

)

, (2.9)

The size of A1 is (m−1)×(m−1), and that of D2 is l× l, et therefore A2 has a size (J− l)×(J− l). The
matrices A1 et D2 coincide when m = l+1, that is d = 1. The geometric overlap is in this case minimal,
and the algebraic overlap is empty. The matrices A1 et A2 are the matrices of the operator η−∆ over
Ω1 and Ω2, discretized by finite differences,with homogeneous Dirichlet data on the endpoints, they
are therefore invertible.

Complete now the matrices Bi with zero entries in

B̃1 = [0m−1,d−1 B1], B̃2 = [B2 0J−l,d−1].

Thus B̃1 has size (m − 1) × (J − l) . To a vector defined on Ω2, it associates a vector defined on
Ω1, extended by 0 outside Ω2. Accordingly, B̃2 has size (J − l) × (m − 1). To a vector defined on Ω1

it associates a vector defined on Ω2„ extended by 0 outside Ω1. With these notations, the alternate
algorithm (2.7) takes the form

A1u
n+1
1 = f1 − B̃1u

n
2 , A2u

n+1
2 = f2 − B̃2u

n+1
1 , (2.10)

which is nothing else but block Gauss-Seidel

(

A1 0

B̃2 A2

) (

u1

u2

)n+1

=

(

0 −B̃1

0 0

)(

u1

u2

)n

+

(

f1

f2

)

(2.11)

for the augmented system

Ãũ = f̃ :

(

A1 B̃1

B̃2 A2

) (

u1

u2

)

=

(

f1

f2

)

. (2.12)

When the overlap is minimal, the augmented matrix coincides with the matrix A.
The discretized parallel Schwarz algorithm can also be written in algebraic form

A1u
n+1
1 = f1 − B̃1u

n
2 , A2u

n+1
2 = f2 − B̃2u

n
1 , (2.13)

which is now a block Jacobi method for the augmented system (2.12), i.e.

(

A1 0
0 A2

) (

u1

u2

)n+1

=

(

0 −B̃1

−B̃2 0

)(

u1

u2

)n

+

(

f1

f2

)

. (2.14)

Note that, even though the matrix A is symmetric, the augmented matrix is not, since the matrices
B̃T

2 et B̃1 are different, except for minimal overlap i.e. d = 1 (it can be seen as follows : the only
non-zero term in B̃1 is (B̃1)b−1,d, and (B̃T

2 )b−1,d = (B̃2)d,b−1 = 0 si d 6= 1). This forbidds to use the
conjugate gradient for the system

(

A−1
1 0

0 A−1
2

)(

A1 B̃1

B̃2 A2

) (

u1

u2

)

=

(

A−1
1 0

0 A−1
2

)(

f1

f2

)

, (2.15)

However, Krylov algorithm have been designed for non symmetric matrices.
Other domain decomposition algotihms have been design to provide symmetric augmented matrices,

as described in the next paragraph.

8



2.3 Discrete Schwarz methods : AS, MS et RAS

To understand additive Schwarz (AS), go back to (2.14). In the case d = 1, B̃i = Bi, and the
iteration is identical to

(

u1

u2

)n+1

=

(

u1

u2

)n

+

(

A−1
1 0

0 A−1
2

)(

f −A

(

u1

u2

)n)

. (2.16)

In this form, it appears that parallel Schwarz discretized with finite differences (2.14) is an iterative
method for the preconditioned system

(

A−1
1 0

0 A−1
2

)(

A1 B1

B2 A2

) (

u1

u2

)

=

(

A−1
1 0

0 A−1
2

)(

f1

f2

)

. (2.17)

If the matrix A is symmetric definite positive, then so is the preconditioner
(

A−1

1
0

0 A−1

2

)

and (2.17)

can be solved by conjugate gradient.
Introduce now the restriction matrices

R1 = [Ib−1 0b−1,J−b+1], R2 = [0J−a,a IJ−a]. (2.18)

The preconditioner can be written with these restriction matrices as :

(

A−1
1 0

0 A−1
2

)

=

2
∑

i=1

RT
i A

−1
i Ri .

Since in this case (u1,u2) = u, we deduce a new form of the parallel Schwarz algorithm discretized by
finite differences with minimal overlap , d = 1, i.e. (2.16) :

un+1 = un +

2
∑

i=1

RT
i A

−1
i Ri (f −Aun). (2.19)

This algorithm can still be written for the general overlpa, but it is not so useful, as proved by the
following counter-example.

Theorem 2.2 If d > 1, algorithm (2.19) applied to the finite difference matrix (2.6) is not convergent :
there exists an initial guess u0 such that the algorithm oscillates betweeen u0 and −u0.

Proof Split A as in (2.9). For each iteration , the vector un is split into (un
11,u

n
12) according to the

first decomposition de A, and in (un
21,u

n
22) according to the second decomposition. The right-hand side

f is decomposed accordingly. Therefore

R1Au
n = [A1 B1]u

n = A1u
n
11 +B1u

n
12, R2Au

n = [B2 A2]u
n = B2u

n
21 +A2u

n
22 .

Compute now
RT

1 A
−1
1 R1Au

n = RT
1 u

n
11 +RT

1 A
−1
1 B1u

n
12,

RT
2 A

−1
2 R2Au

n = RT
2 u

n
22 +RT

2 A
−1
2 B2u

n
21 .

The equation (2.19) can be written as

un+1 = un −
(

un
11

0

)

−
(

0
un
22

)

−
(

A−1
1 B1u

n
12

0

)

−
(

0

A−1
2 B2u

n
21

)

+

(

A−1
1 f1

0

)

+

(

0

A−1
2 f2

)

.

To study convergence of the algorithm, choose f = 0 nul, and for an index j strictly between a et
a + d, an initial guess u0 = ej , the j vector of the canonical basis in R

J . The only non-vanishing

9



terms in the right-hand side of the previous equation are the three first, and they have the same value
u0, thus u1 = −u0. Itarating the argument, it appears that the iterates oscillate between u0 and −u0.

The script Matlab below BarAS.m realizes the iterates of Additive Schwarz (2.19) for the same
example as before. The iterates are drawn figure 2.3. The lack of convergence in the overlap appears
clearly.

eta=0;J=20; Bar; % to include problem parameters

ue=u;a=floor(J/2); d=4; % subdomain decomposition

h=1/(J+1);

f(1)=f(1)+gg/h^2; f(end)=f(end)+gd/h^2; % add boundary conditions into rhs

A=A1d(eta,0,1,J); % construct finite difference operator

R1=[speye(a+d-1) sparse(a+d-1,J-a-d+1)];

R2=[sparse(J-a,a) speye(J-a)];

A1=R1*A*R1’; A2=R2*A*R2’;

figure(4)

line(([a,a])*h,[min(ue ),max(ue )],’Color’,’r’)

line(([a,a]+d)*h,[min(ue ),max(ue )],’Color’,’r’)

hold on

plot(x,ue,’b’);

hold on;

pause

u=zeros(J,1);

for i=1:20

r=f-A*u;

u=u+(R1’*(A1\(R1*r))+R2’*(A2\(R2*r)));

plot(x,[gg;u;gd],’-k’); xlabel(’x’); ylabel(’Additive Schwarz stationnary iterates’);

hold on;

pause

ri(i)=norm(r); % keep residual for plotting later

end

hold off

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

x

A
d
d
it
iv

e
S
ch

w
a
rz

st
a
ti
o
n
n
a
ry

it
er

a
te

s

Figure 2.3 – Attempt to solve (2.6) by Additive Schwarz (2.19)

The true additive Schwarz method or AS is based on the iteration (2.19), seen as a precondi-
tionneur. It consists in solving the limit spreconditioned system

M−1
ASAu :=

2
∑

i=1

RT
i A

−1
i RiAu =

2
∑

i=1

RT
i A

−1
i Rif . (2.20)

10



If A est symmetric, M−1
AS =

∑

iR
T
i A

−1
i Ri est symmetric, and the conjugate gradient can be used.

The multiplicative Schwarz method or MS (see [1]) is the sequential version of additive Schwarz.
For our example, it takes the form

un+ 1

2 = un +RT
1 A

−1
1 R1(f −Aun),

un+1 = un+ 1

2 +RT
2 A

−1
2 R2(f −Aun+ 1

2 ) .
(2.21)

For Matlab implementation, replace in the loop of the previous script the computation of r and u by

r=f-A*u; u=u+R1’*(A1\(R1*r));

r=f-A*u; u=u+R2’*(A2\(R2*r));

which produces the iterations in Figure 2.4.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

x

M
u
lt
ip

li
ca

ti
v
e

S
ch

w
a
rz

it
er

a
te

s

Figure 2.4 – Example of multiplicative Schwarz algorithm

There is no oscillating mode in the overlap, the iterative algorithm is convergent. It is in many
cases equivalent to discretized alternate Schwarz [4] . Since the preconditioner is not symmetric, the
use of conjugate gradient is however prohibited.

Références

[1] T. F. Chan and T. P. Mathew, Domain decomposition algorithms, in Acta Numerica 1994,
Cambridge University Press, 1994, pp. 61–143.

[2] M. Dryja, A capacitance matrix method for Dirichlet problem on polygon region, Numer. Math.,
39 (1982), pp. 51–64.

[3] M. Dryja and O. B. Widlund, An additive variant of the Schwarz alternating method for the
case of many subregions, Tech. Rep. 339, also Ultracomputer Note 131, Department of Computer
Science, Courant Institute, 1987.

[4] M. J. Gander, Schwarz methods over the course of time, Electron. Trans. Numer. Anal, 31 (2008),
pp. 228–255.

[5] P.-L. Lions, On the Schwarz alternating method I, in First International Symposium on Domain
Decomposition Methods for Partial Differential Equations, R. Glowinski, G. H. Golub, G. A. Meu-
rant, and J. Périaux, eds., Philadelphia, PA, 1988, SIAM, pp. 1–42.

[6] , On the Schwarz alternating method II : Stochastic interpretation and orders properties, in
Domain Decomposition Methods, T. Chan, R. Glowinski, J. Périaux, and O. Widlund, eds., Phila-
delphia, PA, 1989, SIAM, pp. 47–70.

11



[7] H. A. Schwarz, Über einen Grenzübergang durch alternierendes Verfahren, Vierteljahrsschrift der
Naturforschenden Gesellschaft in Zürich, 15 (1870), pp. 272–286.

12


