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Time discretization for the heat equation. 0-D

dtu + au = 0, u(0) = u0, t ∈ (0,T ) ⇐⇒ u(t) = e−atu0.
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(B + a I )u = F , u = (u1, . . . uN)

B = SDS−1, S(D + aI )S−1u = F

(1) SG = F , (2) (D + aI )v = G , (3) û = S v.
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Time discretization for the heat equation. d-D
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Time-space discretization for the heat equation.

Discretization in space, M degrees of freedom.
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N
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Direct method (Maday-Ronquist, CRAS 2007)

(B ⊗ Ix + It ⊗ (−∆h)︸ ︷︷ ︸
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N equations in space can thus be solved independently on the processors.
(2) is better conditioned than ∆h, easily parallelized with OSM.
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Direct method (Maday-Ronquist, CRAS 2007)

The method we have just proposed is first order in time, and since it
requires that all the time steps are different, the accuracy will be related
to the largest time step.

In order to make the method more efficient, we propose to use a higher
order scheme in time with time steps kn = ρn−1k1, with
ρ larger but close to 1, e.g. ρ = 1.2.

Note that, as can be expected, choosing ρ much closer to 1 may lead to
instabilities due to numerical errors.
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Error analysis (1)
We look for an exact solution of the form Uz = sin

(
π
l x

)
sin

(
π
L y

)
sin (ωπt)

(a) space solution on a 30× 20× 1 mesh (b) time solution

we use a known solution to compare

1) the ρ = 1 sequential newmark scheme error

2) the ρ < 1 sequential newmark scheme error

3) the ρ < 1 parallel newmark scheme error

4) the introduced parallelism error (i.e (3) - (2) )

Johann Rannou
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Error analysis (2)
Nt = 8, ρ = 0.80 → too much discretization error
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Error analysis (2)
Nt = 8, ρ = 0.95 → too much roundoff error
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Error analysis (2)
Nt = 8, ρ = 0.90 → OK
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Specifications

Choice of the timesteps kn = ρnk1,
∑N

n=1 kn = T

(B ⊗ Ix + It ⊗ (−∆h)) uh = Fh, B = SDS−1, D = diag(k1, . . . , kn).

(1) (S ⊗ Ix)G = Fh, ,
(2) ( 1

kn
−∆h)vn = G n, 1 ≤ n ≤ N,

(3) ûh = (S ⊗ Ix)V

1 The timesteps have to be all different for B to be diagonalizable.

2 The matrix S must be easy and cheap to invert (closed form is a
must).

3 The precision of the scheme can be affected.
4 Therefore it is better to keep the time steps close to equidistant.
5 Then the condition number of matrix S increases, deteriorating the

results of steps (1) and (3).
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1 The timesteps have to be all different for B to be diagonalizable.
2 The matrix S must be easy and cheap to invert (closed form is a

must).
3 The precision of the scheme can be affected.
4 Therefore it is better to keep the time steps close to equidistant.
5 Then the condition number of matrix S increases, deteriorating the

results of steps (1) and (3).

QUANTIFY ? STRATEGIZE ?

10/41



Outline Introduction The wave equation Conclusion and Perspectives Bibliography

Definitions

u(t, ·) = S(t)u0

(B ⊗ Ix + It ⊗ (−∆h)) u = Fh

u ←→ T = (k1, . . . kN)

u ←→ T = (k̄ , . . . , k̄),

(1) (S ⊗ Ix)G = Fh,

(2)
( 1

kn
−∆h

)
un = G n, 1 ≤ n ≤ N,

(3) û = (S ⊗ Ix)v.
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Total error

|S(T )u0 − ûN |
|u0|

≤ |S(T )u0 − uN |
|u0|︸ ︷︷ ︸

truncation error with equal time steps

+
|uN − uN |
|u0|︸ ︷︷ ︸

error due to heterogeneous time steps

+
|uN − ûN |
|u0|︸ ︷︷ ︸

error due to diagonalization
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Program for the wave equation

• The PDE ü −∆u = 0.

• Work on the O.D.E. ü + a2u = 0 (Fourier in space, a = ‖ξ‖) with
Crank-Nicolson scheme.

1 Evaluate the loss of precision produced by a set of kn = ρn−1k1 for

ρ = 1 + ε .

2 write (B + a2I )U = F , and B = SDS−1

3 Find explicit forms for S and S−1.
4 For given a and T , estimate the round-off error for the resolution of

the diagonalized system.
5 For given a and T , equilibrate 1 and 4.

• Apply to the P.D.E.
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• Work on the O.D.E. ü + a2u = 0 (Fourier in space, a = ‖ξ‖) with
Crank-Nicolson scheme.

1 Evaluate the loss of precision produced by a set of kn = ρn−1k1 for

ρ = 1 + ε .

2 write (B + a2I )U = F , and B = SDS−1

3 Find explicit forms for S and S−1.

4 For given a and T , estimate the round-off error for the resolution of
the diagonalized system.

5 For given a and T , equilibrate 1 and 4.

• Apply to the P.D.E.

14/41



Outline Introduction The wave equation Conclusion and Perspectives Bibliography

Program for the wave equation

• The PDE ü −∆u = 0.
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The Crank-Nicolson method





dtu = u̇
dt u̇ = ü
ü + a2u = 0





1
kn

(un − un−1) = 1
2 (u̇n + u̇n−1),

1
kn

(u̇n − u̇n−1) = 1
2 (ün + ün−1),

ün + a2un = 0.

U =

(
u
au̇

)
, Un =

(
un
au̇n

)
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(u̇n − u̇n−1) = 1
2 (ün + ün−1),

ün + a2un = 0.

U =

(
u
au̇

)
, Un =

(
un
au̇n

)

kn(ρ) := ρn−1k1, Tρ := (k1 · · · , kN) = k1(1, · · · , ρN−1),
N∑

n=1
kn = T

THEOREM Given a,T and N, for ε small,

‖UN(T1+ε)− UN(T1)‖ = φ( aT
2N ,N) ε2 ‖U0‖+O(ε3),

where φ(y ,N) := N(N2−1)
6

y3

(1+y2)2 .
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Matrix formulation (J. Rannou, T. Tran’s Thesis)



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B = (C−1B1)2

C =
1

2




1
1 1

. . .
. . .

1 1


 B1 =




1/k1

−1/k2 1/k2

. . .
. . .

−1/kN 1/kN



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
 B1 =

1

k1




1
− 1
ρ

1
ρ

. . .
. . .

− 1
ρN−1

1
ρN−1



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Computation of the eigenvectors

Special family : triangular unipotent Toeplitz matrices

T (X1, . . . ,XM−1) =




1

X1
. . . 0

X2
. . . 1

...
. . .

. . .
. . .

XN−1 X2 X1 1




THEOREM kn = ρn−1k1 =⇒ B = VDV−1, with

V = T (P1, . . . ,PN−1), with Pn :=
n∏

j=1

1 + ρj

1− ρj ,

V−1 = T (Q1, . . . ,QN−1), with Qn := ρ−n
n∏

j=1

1 + ρ−j+2

1− ρ−j

D = diag(
4

k1
2
, · · · , 4

kN2
)
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Sketch of proof

THEOREM

(1) V = T (P1, . . . ,PN−1) Pn =
n∏

i=1

1 + ρj

1− ρj easy

(2) V−1 = T (Q1, . . . ,QN−1) Qn =
n∏

i=1

1 + ρ−j+2

1− ρ−j ??

Equivalent to proving that

Pn + Pn−1Q1 + . . .+ P1Qn−1 + Qn = 0 for 1 ≤ n ≤ N − 1

Convention: P0 = Q0 = 1.
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Sketch of proof

n∑

k=0

Pk Qn−k = 0, Pn =
n∏

i=1

1 + ρj

1− ρj
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Sketch of proof

n∑

k=0

Pk Qn−k = 0, Pn =
n∏

i=1

1 + ρj

1− ρj

Gauss’ hypergeometric series (1812)

2F1(a1, a2; b; x) :=
∞∑
n=0

[a1]n[a2]n

[b]n n!
xn,

[a]n := a(a+1) · · · (a+n−1) =
Γ(a + n)

Γ(a)
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Heine’s q-hypergeometric series (1847)

2ϕ1(a1, a2; b; ρ; x) :=
∞∑
n=0

(a1; ρ)n(a2; ρ)n

(b; ρ)n(ρ; ρ)n
xn,

(a; ρ)n := (1−a)(1−ρa) · · · (1−ρn−1a)

20/41



Outline Introduction The wave equation Conclusion and Perspectives Bibliography

Sketch of proof
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Gauss’ hypergeometric series (1812)

2F1(a1, a2; b; x) :=
∞∑
n=0

[a1]n[a2]n

[b]n n!
xn,

[a]n := a(a+1) · · · (a+n−1) =
Γ(a + n)

Γ(a)

Summation formula

2F1(a1, a2; b; 1) =
Γ(b)Γ(b − a1 − a2)

Γ(b − a1)Γ(b − a2)

Heine’s q-hypergeometric series (1847)

2ϕ1(a1, a2; b; ρ; x) :=
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n=0

(a1; ρ)n(a2; ρ)n

(b; ρ)n(ρ; ρ)n
xn,

(a; ρ)n := (1−a)(1−ρa) · · · (1−ρn−1a)

Summation formula

2ϕ1(a1, a2; b; ρ;
b

a1a2
) =

( b
a1

; ρ)∞( b
a2

; ρ)∞

(b; ρ)∞( b
a1a2

; ρ)∞
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; ρ)∞

Pn =
(−ρ; ρ)n
(ρ; ρ)n
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Sketch of proof, continue

n∑
k=0

Pk Qn−k = 0, Pn =
n∏

i=1

1 + ρj

1 − ρj
=

(−ρ; ρ)n

(ρ; ρ)n

2ϕ1(a1, a2; b; ρ;
b

a1a2
) :=

∞∑
k=0

(a1; ρ)k (a2; ρ)k

(b; ρ)k (ρ; ρ)k

(
b

a1a2

)k

=
( b
a1

; ρ)∞( b
a2

; ρ)∞

(b; ρ)∞( b
a1a2

; ρ)∞

(a; ρ)k :=
k−1∏

i=0

(1− ρia)
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Sketch of proof, continue
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(b; ρ)∞( b
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; ρ)∞

(a; ρ)k :=
k−1∏
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(1− ρia)

q-Zhu-Vandermonde formula
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Sketch of proof, continue

n∑
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(
b
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)k

=
( b
a1

; ρ)∞( b
a2

; ρ)∞

(b; ρ)∞( b
a1a2

; ρ)∞

(a; ρ)k :=
k−1∏

i=0

(1− ρia)

q-Zhu-Vandermonde formula

a1 = ρ−k , a2 = −ρ, b = −ρ−k+2,

n∑

k=0

(−ρ; ρ)k(ρ−n; ρ)k
(ρ; ρ)k(−ρ−n+2; ρ)k

ρk = 0.
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Matrix S, properties

Normalize the eigenvectors with respect to the `2 norm: S = V D̃,
d̃i = 1/‖V (i)‖2.

B = VDV−1 = SDS−1.
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Roundoff estimate

(1) (B + aI )u = F , (2) Ŝ(D + aI )Ŝ−1û = F

Backward error analysis (Higham, Golub):u denotes the machine precision

(2) ⇐⇒ (B+δB)û = F , ‖δB‖ ≤ (2N+1)u‖ |S ||S−1| ‖‖D+aI‖+O(u2).

‖u− û‖
‖u‖ ≤ cond(B)

‖δB‖
‖B‖ ≤ (2N + 1)u ‖B−1‖ ‖ |S ||S−1| ‖ ‖D + aI‖
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(2) ⇐⇒ (B+δB)û = F , ‖δB‖ ≤ (2N+1)u‖ |S ||S−1| ‖‖D+aI‖+O(u2).

‖u− û‖
‖u‖ ≤ cond(B)

‖δB‖
‖B‖ ≤ (2N + 1)u ‖B−1‖ ‖ |S ||S−1| ‖ ‖D + aI‖

THEOREM.
‖u− û‖∞
‖u‖∞

. u ψ1( aT
2N ,N)ε−(N−1) ,

where ψ1(y ,N) :=
22(N+1)

(N − 1)!
(1 + 2N(N − 1))(1 + y2).

Sharper estimate: ψ3(y ,N) := 22N− 1
2 N

(N−1)!
1

y2+1 .
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Figure: Comparison of the logarithm of the functions ψj , j = 1, 2, 3
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Total error

|u(tN)− ûN |
|u0|︸ ︷︷ ︸

Total error

.
|u(tN)− uN |
|u0|︸ ︷︷ ︸

error 1: approximation with equal time steps

+
|uN − uN |
|u0|︸ ︷︷ ︸

error 2: due to heterogeneous time steps

φ(y ,N)ε2

+
|uN − ûN |
|u0|︸ ︷︷ ︸

error 3: due to diagonalization

ψ3(y ,N) u ε−(N−1)
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Total error

Total error . error 1: approximation with equal time steps
+ error 2: due to heterogeneous time steps
+ error 3: due to diagonalization
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T = 5, a = 1, N = 10 T = 10, a = 1, N = 20
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Optimization of ε

THEOREM For ε = ε∗(aT ,N) with

ε∗(aT ,N) =

(
3 22N

(N2 − 1)(N − 1)!

1 + y2

y3
u

) 1
N+1

, with y =
aT

2N
,

the error due to time parallelization is asymptotically comparable to the
one produced by the geometric time partition.
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Optimization of ε

THEOREM For ε = ε∗(aT ,N) with

ε∗(aT ,N) =

(
3 22N

(N2 − 1)(N − 1)!

1 + y2

y3
u

) 1
N+1

, with y =
aT

2N
,

the error due to time parallelization is asymptotically comparable to the
one produced by the geometric time partition.

φ(y ,N)ε2

︸ ︷︷ ︸
Discretization error

= ψ3(y ,N) u ε−(N−1)

︸ ︷︷ ︸
Parallelization error

26/41



Outline Introduction The wave equation Conclusion and Perspectives Bibliography
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One dimensional wave equation
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Figure: Approximate solutions obtained by the time parallel algorithm using
diagonalization. Left: ε = 0.015. Middle: ε = ε∗ = 0.05. Right: ε = 0.3.

28/41



Outline Introduction The wave equation Conclusion and Perspectives Bibliography

Two dimensional wave equation
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Figure: Discretization and parallelization errors in 1d, together with our
theoretical bounds for the PDE. Left: T = 1, N = 10. Right: T = 2, N = 20.
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Description

Response of a carbon/epoxy laminated composite panel (used in
aeronautical industry) to an impact-like loading (transverse isotropic
Hooke law).

Figure: Mesh configuration and loading for the elasticity problem.

2000 time steps over the 10ms simulation range. 152607 degrees of
freedom, 2000 time steps over the 10ms simulation range (time windows).
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Results, MPI

Figure: Computing times for the industrial elasticity problem.
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Results
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Figure: Deflection of the central node on the back face of the plate for the
sequential and the parallel solution with N = 16.

N 2 4 8 16

Eff := Time(1proc)
N×Time(Nproc) 0.96 0.86 0.66 0.45
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Improving the efficiency: asynchronous computations

N Numwin Time Error Eff
1 128 0.497E+01 5.77E-007
2 64 0.254E+01 6.13E-007 97.83 %
4 32 0.132E+01 7.71E-007 94.13 %
8 16 0.709E+00 1.71E-006 88.75 %

16 8 0.407E+00 5.15E-005 77.65 %
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4 32 0.132E+01 7.71E-007 94.13 %
8 16 0.709E+00 1.71E-006 88.75 %

16 8 0.407E+00 5.15E-005 77.65 %

N 2 4 8 16
CG 0.243E+01 0.125E+01 0.636E+00 0.319E+00

Total 0.254E+01 0.132E+01 0.709E+00 0.407E+00
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Conclusion

1 Robust strategy for parallelization in time. Independent of the
space-discretization.

2 The gain in optimal number of processors is significative: one could
solve the problem using 30 processors, and would obtain an error
which is within a factor two of the sequential computation.

3 Extension to nonlinear problems, coupled with Newton (DD23).
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Perspectives

1 Parallelization in space in combination with the time-parallel method
to solve the PDE thus adding another dimension to the
parallelization process through a completely parallel time-space
subdomains.

2 Application to control problems.
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A few references for iterative methods

J.-L. Lions, Y. Maday, and G. Turinici.
Résolution d’EDP par un schéma en temps “pararéel”.
C. R. Acad. Sci. Paris Sér. I Math., 332(7):661–668, 2001.

Amodio, Pierluigi, and Luigi Brugnano.
Parallel solution in time of ODEs: some achievements and perspectives.
Applied Numerical Mathematics ,59 (3): 424–435, 2009.

M. J. Gander and S. Güttel.
PARAEXP: A parallel integrator for linear initial-value problems.
SIAM Journal on Scientific Computing, 35(2):C123–C142, 2013.
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References for the direct method

Y. Maday and E. M. Rønquist.
Parallelization in time through tensor-product space–time solvers.
Comptes Rendus Mathematiques, 346(1):113–118, 2008.

J. Rannou, J. Ryan,
Time parallelization of linear transient dynamic problems through the
Newmark tensor-product form.
ECCOMAS, Wien, september 2012

M. Gander, L. Halpern, J. Ryan, and T. T. B. Tran.
A direct solver for time parallelization.
DD22, Lugano, september 2014, proceeding to appear

M. Gander, L. Halpern, J. Rannou, and J. Ryan
A Direct Time Parallel Solver by Diagonalization for the Wave Equation.

to be submitted soon
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Nonlinear problems

ut = f (u),
un − un−1

kn
= f (un), F(u) := Bu− f (u) = 0

Newton’s method, D(u) := diag(f ′(u1), f ′(u2), . . . , f ′(un))

(B − D(um−1))um = f(um−1)− D(um−1)um−1,

Quasi-Newton D(u) ≈ 1

N

n∑

j=1

f ′(uj) I .
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Nonlinear problems

iteration
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Figure: Left: linear convergence of the time parallel Quasi-Newton method for
two model problems(−u2 and

√
u) . Right: accuracy for different choices of

the time grid stretching ε.
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