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2.3 The algorithm

2.1 Presentation of the method

We’ll work with the finite difference approximation of the Laplace equation in dimen-

sion 2.
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Consider now the general problem Ax = b, where A is a nm X nm symmetric matrix
A, block tridiagonal in the form

B C 0
cC B C
A= A(B,C) = (2.1)
cC B C
0 C B

Each block is a n x n matrix. The vectors b and « can be split by block of size n as well,
27 is the sought solution on the ligne j.

b! x!
b = 5 xr =
bTTL mm
The system can be rewritten as
B C 0 ! b'
cC B C x? b’
¢ B C ||z bt

0 C B ™ b



which is a system of m systems of dimension n :

Bx! + Cz? = b
Cx'~! + Bz’ + Czxit! = b
Cz™ '+ Bz™ = b"

Suppose B and C are symmetric, and diagonalise in the same orthonormal basis
(g',...,q"). This is the case for our previous example. Denote by @ the corresponding

orthogonal matrix Q = [g',...,q"]. There exist two diagonal matrices D' and D? such

that
B=QD'QY, C=QD*Q".
Take for example the first equation
Bz!' 4+ Ca? =b'
and replace B and C' :
QDlQTCBl + QDZQTCEZ — bl

Multiply by Q7 :
DlQTwl +D2QTCB2 — QTbl

Denote by (¢!, y?) the coordinates of (b’, z?) in the new basis :

QTv' =¢', QTa'=vy', 1<i<m.
Then the problem takes the form
Dlyl +D2y2 — cl
D2yi=1 4+ Dlyi + D2yit1 -
D2ym—1 + Dlym = cm

These are all diagonal systems. Take the component number j in each block of the
previous system, for 1 < j <n:

1,1 2,2 1
Djyj JrDjyj = ¢
2, 1—1 1, 2, i+1 ]
Djyj —&-Djy;-i-Djyj = c

2 m—1 1
Djyj —l—Djy;” = CE"

which is written in matrix form as
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1 2 1 1
D; Dy 0 Yj ¢
2 1 2 2 2
Dy Dj Dj Yj ¢
D2 Dl D2 m—1 Cm—l
e Y i
o 0 oi) \up o




For each j, 1 < j < n, define the tridiagonal m x m matrix

1 2
D;  Dj 0
2 1 2
D5 D; D;
T, =
2 1 2
Dj Dj Dj
2 1
0 D5 Dj
and 2 vectors in R™
¢ vj
d’ = , 2=1:
h vj'

We have now n tridiagonal systems of size m,
Tzl =d, 1<j<n.

which can be solved in parallel with a LU decomposition for instance. For the 2D Laplace
equation with equidistant grid, the computation of the ¢/ and the reconstruction of x can
be done by Fast Fourier transform.

We have to compute for each j, / = Qy’. The matrice C is —— I,,, the matrix B is

1
b

Aq(hy) + h%ln. The eigenvalues of B are those of A; + h%, which are h% + ,;% sin® %
Y Y Yy x

)

the eigenvectors of B and C' are those of A;, given by (after orthonormalisation)

2 jkm
Y s 1<j<
J ntl tayr S =l=

Define the matrix @ as the matrix of eigenvectors

Q=[@", ... &

By
Qu = Z vk@(k),

k=1

2 < kj
(Qu); = (@Tv)j = /55 D vesin ni—ﬂl'
k=1

Note that the sum can be extended to £ = 0 and £k = n + 1 since the sinus vanishes.

. [[2 &k
(Qu); = (Q'v); = ] ka smn+1. (2.2)
k=1

The next section is occupied with the FFT, we’ll come back to the algorithm later.

we obtain

2.2 Discrete and Fast Fourier Transform

Let n’ = n + 1. The Discrete Fourier Transform of length n’ is defined by

n/
_ggkin
w; = E vpe 2w j=1,---,n.
k=1
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Define r = ¢?'77 the basic root of unity, then we rewrite the formula above as

wp =Y wer M =1, n (2.3)
k=1

Lemma 2.1 (Inverse DFT) If w = (w;)i<j<n’ 1S the discrete Fourier transform of
v = (vj)i<j<ns from (2.3), then the inverse discrete Fourier transform is given by

1 & o
vﬁ;wa’“, j=1-.n (24)
k=1

Just replace

’
n

/
n
1 Y
E — E wprkp rki
n/
p=1

k=1

I
3\‘ —
3
i [M]=
LN
S
3
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I M{
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=
=
d

Since z = P77 is a n’— root of unity,

3\

for z # 1, 2k =0,
k=1
n/
forz=1, > zF=n'
k=1
Therefore ) )
L3 0,3
p=1 k=1
and the lemma is proven. |
We now suppose that n’ = 2p. We need to specify more r, that we call r,,. Note for
further use that 7/, = 1 and r”, = —1. Split the sum above into even (k = 2(,{ =1 : p)

and odd terms (k=2{—1,£=1:p). For j=1,---,2p,

TL/ ki
_ —RJ
wj = ) VkT,
k=1
P . P .
_ —20j —(20-1)j
wj = Y Ve, A Y VT,
=1 =1
p . p .
—2 j 2
= Ywvary A Y vaeary,
/=1 (=1

Defining for j =1,---,2p,

p p
_ —2¢j _ —2¢j
uj = E v, T, tj = E V21T, -
=1 =1

Then
I
w; = uj + 1,15,
We verify that for each j, uj1p, = u; and tj4, =t; :
Ep: ¢(j+p)
—20(j+p —2¢
Uj4p = V24 Ty =T, pU,j = Uj.
=1

This implies that we only need to compute (u;,%;) for 1 < j < p. Furthermore

. Jtpy . 00 P 2 g
Wjtp = Wjgp + 1/ i = Uj + 175,785 = uy — 1yt
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To compute u; and t; note that

P P

.y Py
E vogr,, ) = E vae (ri )™
/=1 =1

_ 2ix _ 2inm
But 7"%' — (6 2p )2 =e »p 7‘%, =Tp- Therefore
P P
iy —Lj
uj = E vaery, Y,y = E :U%—l% 7.
/=1 (=1

The sums above are similar sums as that defining w;, but with p = n'/2. This is the
starting point for a dyadic computation of the w; : the Fast Fourier Transform.

To obtain {w;}1<;<2p from {v;}1<j<2p, do
Compute 77, J=1-.p

P p
—0j .y .
Compute u; = g V2T, Tt = E V21T Tog=1p
=1 =1

_ J _ J -
Compute wj; =u; +7r,tj, Wjtp =uj —1)t; j=1--,p.

”/
5 T — g .
r=eXw Jw; = E ver M, j=1,---,n.
c=1

n' =2, r = —1, initialization w; = —v; + vy, Wy = vy + Va.

function w=myFFT(v)
% MYFFT fast Fourier transform
% w=myFFT(v); computes recursively the Fourier tranform of
% the vector v whose length must be a power of 2.
n=length(v);
if n==2,

w=[—v(1)+v(2);v(1)+v(2)];

else
rp=exp(2ixpi/n*(1:n/2)"');
t=myFFT(v(1l:2:n-1));
u=myFFT(v(2:2:n));
w=[u+rp.*t; u—rp.x*t];
end;
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n/
21 %, —ki . ,
7‘:612"”/711)]': g VT /s,]’ ]:1,"‘,71.
k=1

n' = 2, r = —1, initialization w; = —v; + vy, wo = vy + va.

function w=myFFT(v)
% MYFFT fast Fourier transform
% w=myFFT(v); computes recursively the Fourier tranform of
% the vector v whose length must be a power of 2.
n=length(v);
if n==2,

w=[—v(1)+v(2);v(1)+v(2)];

else
rp=exp(2ixpi/n*(1l:n/2)"');
t=myFFT(v(1:2:n-1));
u=myFFT(v(2:2:n));
w=[u+rp.*xt; u—rp.*xt];
end;
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FIGURE 2.3 - FFT for n' =4

It is easy to count the number of operations in the algorithm to be O(nlog,(n)), which
is much better than blockLU.
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2.3 The algorithm

We now show how to obtain the computation of Qu in (2.2) with FFT.

veR" n’=n+1EVEN

n .
Qv:,/nil z e R”, Zj = kasinkgfr 1<j<n,
k=1
o = [v;0] € R,
, n’ S kjm
DFT(%) = w € R", wj = tpe B 1<j<n/
k=1

n’ .
Note first that z; = ) 0 sin kg,ﬂ as well. Consider first the even indices 2o, - - -
k=1

yZn—1 -
il .. 2km n—1
Zop = kasm = —Imwy, £=1,---, 5
k=1
Consider now the odd indices, z1,--- , 2,
220—1 = —7Zm Z ’[)ke_ik(zl;:’l)ﬂ =—7m Z (ﬁk€7’;«i)€_27krff
k=1 k=1
~ 1]“—’}' _ n+1
= —Im(DFT({Uke n }k))ea €_17 y T
Resuming with matlab notations
QFFT
To = ei%
(Qu)ey = -— %H Im(FFT(0)), (=1, "T_l (2.5)
(Qu)oe—y = -— n%rl Im(FFT(v - *7'0(1:”,)/))@, £=1,..., 0t
Summarizing the solution of
5N C 0 z! b'
C B C x? b
C B C ! bt
0 C B ™ b

Step 1 : FFT Compute ¢/ = QTd’ by (2.5) for 1 < j < m.

Step 2 : Sort {c!,---,e¢™} The righthand side has been build by rows in the mesh :

b’ is the vector of the values of the forcing term on the line y = j  h,,.
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The total vector o is numbered from 1 to nm, with N = i+ (j — 1) *n. The matrix
C is built as follows

o(l:n) —=C(,1) for j=1:m

on+1:2n) —C(:2) C(:,3)=sig((j—1)*n+1:j*n )
end

o((m—-1n+1:mn) — C(;,m)
and then instead of reading the columns, we read the rows.

Step 3 : Solving the n tridiagonal systems of size m,
szj:dj, 1<75<n.
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with d’ = C(j,:), and

1 2
D! D? 0
2 1 2
Di Dj Dj
T, = :
2 1 2
Di Dj Dj
0 p? D!
1 2 4 jmh
D)=—-—— D= 4 "~ gn? 21—
T TR T TRt )

Step 4 : Reordering the 2/ into y’

Step 5 : Recovering 7 = Qy’ by (2.5).

For this method, we talk about FFT preconditioning, since the system Au = b is
premultiplied by the block-diagonal matrix

QT
QT 0
Q =
0 QT
That is we write
QAQT Qu = Qb.
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Multigrid methods
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Multigrid methods are a prime source of important advances in algorithmic efficiency
, finding a rapidly increasing number of users. Unlike other known methods, multigrid
offers the possibility of solving problems with N unknowns with O(N) work and storage,
not just for special cases, but for large classes of problems. It relies on the use of several
nested grids. For the modal presentation of the method, we refer to [7],[2], [5]. For the

finite element part, we refer to [1].

3.1 The V- cycle process

One cycle of the multigrid method is given as follows. Suppose we want to solve

ARUR = b, We take an initial guess U”, and define M G(A" b, U") to be

o1



Step 1 : smoothing N, iterations of the smoother, with initial guess U”.
Uhl = Sh(A" b, U™ Ny), el =0 —-Uhl,

The residual is ! = b — APUMT = Ahell,
It is projected on the coarse grid

5 )
7,Jr, _ P}f/l,r/),jl

Step 2 : Coarse resolution The system A2 72" = 2" is solved approximately
by p iterations of the multigrid solver on the coarse grid

(]2}2.7’ _ ﬂr[G(AZh, ,,2/1" (]2}2.7’71% LrQh.() _ () 1 S r S p.
It is projected on the fine grid
Lf})«g _ (;h.l + P;z] []2})1‘ eh,2 _ eh,l _ PZthQh,T
7 2h ’ -
Step 3 : Smoothing again N, iterations of the smoother

Drh,?? _ Sh'(flh, bh ) LT}L’Z, :\YZ)

We will describe the process in the simple case where the coarse problem is solved
exactly, i.e.

Uh,Q _ Uh,l o P2th2h

Define D f2(p) the p x p matrix of 1 — D finite differences on a grid of mesh 1 :

Dfa(p) = , (Df2(p)U)j = =Uj_1+2U; — Ujy1.

Then A" = 5D fo(n — 1) and A*" = 5D fo(2n — 1).

3.1.1 The Smoother

If S is the iteration matrix of the smoother, the result of the smoothing is

(/:h.l _ SAL(%Uq ,,h.l _ Ah(ih’l. (31)

3.1.2 Projection on the coarse grid

The fine grid is <2£) for 1 < k < 2n — 1. The coarse grid is (E) for1 <k<n-1.
n n
Define h = 1/2n.

p 2n— — y l TT T
PR R (PO = i<(]§j*l +2U3; + Ugjy1)-
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The matrix of Pﬁh is

1 1 1

iz 1 00

oo 2 4 1 0 o0
=10 0 0 0 § 3 i

0 . o 1+ 1 1

Define now
,‘2/7 — P]f/l,,,h, _ P]?/l,/l/ze/ul.

3.1.3 Coarse resolution

Suppose the coarse grid problem is solved exactly.

/1211, U'Qh _ 7)271,

3.1.4 Projection on the fine grid

We define the projection operator as :

h 172h _ T72h
(P, U ')2.,'7[/7-

P/) ZR”_l - RQn—l‘ ) § ) )
2h ) <P2hh (’uh)ZjJrl _ E((szh + L‘}Zﬁl

The matrix is

1.0 0 0
1 0 0 0 0
4 0 0 0
01 0 0 0
Ph=10 5 & 0 0
00 1 0 0
0 0 0o 1

3.1.5 Result of the coarse walk

()’}1.2 _ (I o chh(AZh)ilP;fllgﬁl}l)(?}z'l

Lemma 3.1
Ker PP AM ={V e R Vp; =0, j=1---,n—1},
Ker P?h Ah & ImPl, = R?" -1,
vV e Rzn_l,Vj, (AhPthV)QjJrl =0,
P,thhPth = A%h,

23

)

P N
U W
o2



It is easy to compute

=

(PP AMU); = ((A"U)2j-1 + 2(AMU)25 — (AMU)2541)
= g (—Usjo+2Usj 1 — Uyj + 2(—Usj 1 + 2Us;j — Uzji1) — Usj + 2Uzj11 — Usjya)
= z(—Usja +2Uz; — Usji2)
U,
—_ Azh
U2n72
Denoting by U¢ the vector of the even coordinates of U, we have proved that for any

vector U € R?"~1,
P2 AN = U".

Therefore the kernel of P2" A" is equal to the space of U such that U¢ = 0, which proves
(3.2).
Now by the rank theorem,

dim Ker P2 + dim ZTmP?" = 2n — 1.
Since A" is an isomorphism in R?"~!, dim KerP,fh = dim KerP,%hAh. Then
dim Ker P AP + rg PP = 2n — 1.
Since P2 = 1(PJ)T, they have the same rank, and therefore
dim Ker P2" A" 4 vgP), = 2n — 1.

Furthermore, any U in ICerP}thh N ImPth is equal to chhw, and vy; = 0. Since
(Pl w)a; = w;, this proves that w = 0. Hence (3.3) is proved.
We now can prove in the same way, first that for V in R?~!,

(A"PJ,V)2j41 =0, (A"PJV )y, —vj1 + 205 — vj41) = 2(A%);.

1
= one

Then
(P AP V) = (A%);.

Lemma 3.2
eh,l —_ dh +P2hh€2h,

with

h2

?( h’l)

h h h h,1 2h __
d2j = 07 d2j+1 = A'e )2j+1a e, =e

J 2j

By (3.3), we can expand e"! as
ehl = gh 4 ph eh,
with d" € KerP" Ah. By (3.2), d’Q’j =0, and
eh;t = (Pye™)o; = €3,

which determines the components of €2”. Compute now the odd components,

1 1
h,1 h h 2k h 2h | _2h h 1,k
€giy = dyjyq + (Pope™")2j41 = dgjyq + 5(63' +eit1) =dyjp + 5(623‘ +e9j42)

o4



Therefore
1 h1 _ h h?

h h,1 h_h,
dajiq = 5(2e2j+1 €y — €3j42) = E(A e 1)21'+1~

Apply the lemma to compute e™2.

Pl (A2) PR AR = Pl (A2) 71 PR AR (0 4P e™) = Pl (A%) 7 PRhAMPY, e
————

A2h
Therefore
eh,2 — eh,l o P2hh€2h _ dh,
which implies the elegant formula

2
h 1
5 Tojt+1-

2
h,2 h.,2 o h* h _h,1 .
612]- — 0 {’2‘j+l = 7(44 & )‘-)j+'| =

the even components have disappeared.

3.1.6 Postsmoothing

oh3 — N2 h2.

h _ ph ,2h

2

h2

eh3 = SNzﬂogAhSNleh

3.1.7 Spectral analysis

The smoothing matrix S has eigenvalues \;, and eigenvectors ®*). For relaxed Jacobi

or the Gauss-Seidel algorithm, the eigenvalues are
kmh
M(w) = 1-2wsin? (L) for1<k<2n-1,
2
)\gs = cos?knh forl1<k<2n-1,

Figure 3.1 shows the eigenvalues as a function of k for n = 16.

Eigenvalue )\k as a fonction of k

-041 — relaxed Jacobi w=1
relaxed Jacobi w=1/3
relaxed Jacobi w=1/2
-08H —relaxed Jacobi w=2/3
Gauss—Seidel

0 é 1‘0 1‘5 20 25 30 35

FI1GURE 3.1 — Eigenvalues of the relaxed Jacobi iteration matrix as a function

of k for several values of w together with Gauss-Seidel
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k2 2h2
* For small k, A\ (w) ~ 1 —w 7; .

xForw=2/3,n<k<2n-1= [N(w) < 1/3
—

smoothing factor

4
* For other modes. [\ (w)| € (1/3,1 — gsinQ(ﬂ-?h))

When using Gauss-Seidel as a smoother, one can observe that the eigenvalues are small
when k ~n: A\ <1/2 for n/2 <k <3n/2..
For an initial error e = ®*), the error and residual after N; iterations is

el — /\i\/l @(k), il = p,k)\;cvl‘l)(k).

From
h2
h,2 0 h2 v hil
€aj » o €41 = 9 T25+1
we obtain
ha B N1 gk
e :?,ukAkl(DQjJ,-l'

If the same smoother is applied in postprocessing,

h,3 _ N2 _h,2
e = N\ 7e"”,

and finally,

h2
h,3 _ O7 h,3 Mk)\éVI+N2¢k

€5 = €o54+1 = 9 2j+1-

We can see now that even the low frequencies are damped. Choose relaxed Jacobi with
w=2/3. For n <k < 2n — 1, we have, with N = N; + No,

2
h,3 k
|e2j+1‘ < (g)N|q)2j+1‘»

and for 1 <k <n-—1,

1 N "
h,3 Ny &k k
cl< 1— 5. | < oy
il < s (20—l < s () 196l
For three iterations of the smoother (N=3), the low frequencies have been
damped by a factor 0.1582, and the high frequencies by a factor 0.2963!! The
figures below show the result of one cycle of the above described algorithm, compared to
three iterations of relaxed Jacobi, or Gauss-Seidel, for several inital guesses. n = 10.

frequency 1
! T

T
initial guess
one V-cycle
0.9 3 iterations relaxed Jacobi| |
3 iterations Jacobi

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

FIGURE 3.2 — Comparison of the iterative methods. Initial guess sin mx
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frequency 9

1 0 T L

/ \ initial guess

— I
08 3 iterations relaxed Jacobi| |

) 3 iterations Jacobi

06 | [ \ / \ | |
04| \ / \ | \ &
ozl ‘a | x | | | ‘: s H

FIGURE 3.3 — Comparison of the iterative methods. Initial guess sin(n—1)mrz

frequency 19
7

! ] T I T
I —— initial guess
one V-cycle
08l 3 terations relaxed Jacobil |
3 iterations Jacobi
A \

osf- I [ I [ M I .
oat A /T o Y  EY B 1

02+ L e e e E

FIGURE 3.4 — Comparison of the iterative methods. Initial guess sin(2n —
1)me.

S : ”‘\H\m, I H}””””\ = .
. ’ \ sl IR " “
: - ‘hw‘” mwwH‘”wa” “mm\” Sl |

.
y WMH MMU” ‘\UW HHW

: N (i
Al -

Initial guess sin 7z Initial guess sin(n — 1)z Initial guess sin(2n — 1

TABLE 3.1 — The effect of one V-cycle on one single mode for n = 100.
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The Ny last smoothing steps helps to reduce the high frequencies by a factor (%)NZ.

3.1.8 Number of elementary operations

method number of operations
Gauss elimination n?

optimal overrelaxation n3/?
preconditionned conjugate gradient no/4

FFT nlng(n)
multigrid n

TABLE 3.2 — Asymptotic order of the number of elementary operations as
a function of the number of grid points in one dimension for the Laplace
equation (sparse matrix)

3.2 The finite elements multigrid algorithm

Details on finite elements can be found in [4][6] and.[1].
We consider here an elliptic problem in V = H} (), where € is a convex polygone. If
aq S (%] S Qo a.e. in Q, s

a(u,v) = ‘Zl /Q (aij(x)Vu(z)Vo(z) + ag(z)u(z)v(z)) dx

is an elliptic bilinear form. It therefore defines a norm, which is equivalent to the H'
norme, that we call the energy norm

lvlle = va(v,v)
The variational problem is, to find v € V' such that
Vv € V,a(u,v) = (f,v) (3.6)
We know that there is a unique solution in V' which, furthermore, belongs to H?({2).and

[ullg20) < CllfllL2(@)-

3.2.1 Preliminaries

Let 7i be a sequence of triangulations of Q. hy is the longest measure of the side of
the triangles in 7. T is obtaind from 7;_; by dividing each triangle into four triangles.

Let (NT,N¥ N) be the number of triangles outside the boundary of €, edges and
vertices respectively. There is a recursion relation :

NIZ:H = 4NE7 Niy1 = Ng +N,§, N,ﬁ_l = 2N,§ —|—3Ng

which provides the total number of each, starting with the triangulation 77 in Figure 3.5 :
(NT,NE7N) = (N17N13N1 + 1)

Nifyy = 2Ny, N = 287128 = )Ny, N, = 2871 (22 1)V,
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FIGURE 3.5 — Recursive triangulation

We have asymptotically
Ni ~ 2271 Ny (3.7)

For each k, the diameter of the triangulation hy is the largest length of edge, therefore

hi+1 = hi /2. Then the triangulation is quasi-uniform (cf [1]), in the sense that there exists
p > 0 such that

inf diamBr > ph
Tlng iamBr > phy

where By is the largest ball contained in 7. Its diameter is given by %‘m with [T']: =

area(T) = %(AB)(AC) sin(ﬁ‘l\C), and length(T') is the perimeter of T'.

A

FIGURE 3.6 — triangle

It is easy to see that, after a refinement, the diameter is divided by 2, and so is h,
therefore it suffices to define p = h—ll infrey, diamBr.

Vi ={vevnCQ),VT € Tr,v|r € Py}

This defines a sequence of finite-dimensional spaces, of dimension Ny, with Vi C Viy1.
We define the variational problem in Vi, to find ug € Vj such that

Yo € Vi, a(uk, v) = (f,v) (3.8)

Classical finite element results assert that this problem has a unique solution, and the
following error estimate holds :

lu —url| 1) < Chy |ul g2 @)
We denote by Py the projection operator on Vi, defined for any w in V by

Vv € Vi, a(Prw, v) = a(w,v) (3.9)
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For w in V', we introduce the solution z of problem (3.6), and z, the solution of the discrete
problem (3.8), both with data w — Prw. Elementary algebra shows that

[lw — Pk'l,UH%z(Q) = a(w — Pyw, z — z,)
It follows that there exists a constant independent of hj such that

Yw €V, ||lw — Pk’LUHLz(Q) < Chyljlw — Pk’LUHHl(Q) (3.10)

We obtain the estimate on the error in L?(Q2) by using the same argument (duality
argument), replacing w — Pyw by u — uy.

lu — ukllz2(0) < Chillu — k|l ) < Chilulm(a)
We will need the

Theorem 3.1 (Inverse estimate)
C
Y € Vg, HUHHl < th’UHLz
k
For a proof see [6], [1].

The goal of the multigrid method is to compute an approximate
value Uy of uy in O(N},) operations, and such that

1Us — will r2(0) < Chilul gz

3.2.2 Discrete norm
Note globally S, -, Sn, the vertices. Define a scalar product on Vi by

N

(v, W) = hin(Si)w(Si) (3.11)

i=1

Theorem 3.2 It is equivalent to the L? scalar product on Vj,.

Use the exact integration formula in dimension 2 : denoting by M, the mid-points
of the edge in the triangle, we have for any v € Py,

3
T
HU||%2(T) 3 292(M
a=1

Now since v is affine, the values at point M, are the half-sum of values at points S,.

3 13
Zv2 ZZ (Mg) + v(M,))?
a=1 a=1
But
@E+y)?++2P+ G+ =2+ + 2+ (e +y+2)°
therefore
3 3 3
D> (W(Ma)? < (0(Mpg) +0(M,)* <4 (v(Ma))?
a=1 a=1 a=1
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7] ) 7] o~
D > 0A(Ma) < ol Fery < 3 > v(Ma),
a=1 a=1

and the result follows by summing over all the triangles. |
We define the operator Aj by
Yo, w € Vi, (Apv,w) = a(v, w) (3.12)

and fi € Vi by (fx,v) = (f,v)x for all v in V. Ay is the operator whose matrix in the
basis of hat functions ; is the stiffness matrix K.

oy

FIGURE 3.7 — Hat basis function ¢; associated to vertex S; in two dimensions

Solve the discrete problem amounts to solving the Niydimensional system of equations

Apug, = fi

The operator Ay, is obviously symmetric positive definite wih respect to (-, ). We define
mesh-dependent norms as

ollls,x = 1/ (Axv; v)

Theorem 3.2 asserts that ||| - |||o.x is equivalent to the L? norm in Vj. As to the norm for
s = 1, it coincides with the energy norm thanks to (3.12). We now estimate the spectral
radius of Ay, :

Lemma 3.3

C
p(Ar) < -5
h}

Let X be a (positive) eigenvalue, with eigenvector v.
a(v,v) = A|[v][[3

L <ol
=TIl 2

by the inverse inequality in Theorem 3.1. |
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3.2.3 Definition of the multigrid algorithm

(a) ®F! for S; € TH1 (b) ®F for S; € TF 1 (c) ®F for S; € TF\ TF 1
FIGURE 3.8 — Hat basis functions

In order to pass from one grid to the finer or coarser grid, we need to define transfer
operators, which are mutually dual

L: V-1 = Vg,
Yo € Vi1, Tyv: = v
(3.13)
Ri: Vi = Vi—1,

Vw € Vi—1, (Rpv, w)p—1 := (Zrw,v)r = (W, v)x;

For any k and initial guess zg € Vj, and right-hand side g € Vi, the k—th level iteration
is an approximate solution MG (A*, zy, g) in V}, of

Apz=g (3.14)

defined as follows :

For k=1, there is only one grid to deal with, and MG(A!, zg, g) is obtained by a direct
method.

For k > 1, z is obtained in three steps

1 Presmoothing on the fine grid : m; steps of a gradient algorithm
zir =2 — p(Apz — g), 0<1<my —1

2 Error correction on the coarse grid The residual g — Agz,, is transferred on
the grid Tx_1,
G = Rk(g — Akzml) (315)

Now we compute an approximate solution of the residual equation
Ax_1q=G (3.16)
by performing p steps of the multigrid algorithm on 7j_1 :
G =0,qg=MGA* 1 q_1,G), 1<1<p
Then we project on the fine grid again
Zma+1 = Zmy + Lrqp

3 Smoothing on the fine grid we perform again a few steps of the gradient algo-
rithm
zi41 = 21 — p(Akzr — g), m1 +1 <1 <my +my

MG(ka 20, g) = Zmi+mo

62



my and my are positive integers, p=1 is a V-cycle, p=2 is a W-cycle. Usually one uses
my =3 and mo = 1.
The full-multigrid algorithm to solve Ay f = fi is therefore

U1 = Al_lfla
Uk: = MG(Ak, Tk U—1, fr)

3.2.4 Convergence property of the multigrid algorithm

We suppose here for simplicity that there is no postsmoothing, i.e. mo = 0, we note
m := my, and we consider a W-cycle, i.e. p = 2.

Theorem 3.3 If the relazation coefficient py, satisfies

1 C
< —< — 3.17
Pk > m >~ h% ( )
the one-sided W-cycle is convergent, and the following estimate holds :
Uk — urlle < Chilul g2
The total error is
ug — Uy, = u, — MG(Ag, LUy -1, fr)

First, for z in Vj, solution of (3.14), we must estimate z — MG (A*, 2, g). It is equal to
Zm, + Zrq2. We rewrite the error as :

2= (2my + Tkq2) = 2 = (2m, +Liq) + Li(q — q2)-
We start with the estimate of the first part :
Lemma 3.4 Let g € Vi_1 the solution of (3.16), then ¢ = Px—1(z — 2n).
We should show that for any v € Vj,_q,
a(q,v) = a(z — zp,v)

We have successively

g — AkZm,, V) by definition of Ry in (3.13)
Ak (z — zm, ), v)i by definition of z in (3.14)
= a(z — zm,, v) by definition of Ay in (3.12)

(
(
= (Ri(g — Akzm),v)p—1by definition of G in (3.15)
(
(

[ |
We can now write
2= (2Zm, + @) =2—2my — Po—1(z2 — 2m;) = (I — Pr—1)(2 — 2z, )-
Since
z—2zm = — pdlr)™(z — 20)
SO
zZ — (Zm +qu) = (I — Pkfl)(f — ,ukAk)m(z — 20). (318)

We have to estimate the projection first :
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Lemma 3.5
Yv € Vy, ||U — Pk,ﬂ)”E < CthAkU”k

|lv = Py_1v||% = a(v — Py_1v,v) by the definition of Pj_1,
= (v — I Pr—1v, Agv)k, by definition of Ay in (3.12)
< o = i Pe—vvllk | Arvllx,
< Cllv — Pe—1v| 2 (o) | Axv|x by the equivalence of norms,
< Cllv = Pe—1vll 2o [[Arvllk
< Cth’U — Pkfl’UHHl(Q)HAk;'UHk by (3.10)
< Chy|lv — Pyr—1v||g||Axv||x by the equivalence of norms.

We now study the relaxation operator

Sk =1 — ppAy

Lemma 3.6 For any v in Vy,
1Skvllz < [vlle

Furthermore, there exists C' > 0 such that, for any k, for any v in Vi,
[AeST ||k < Chi'm ™2 (|v]| g1 (-

we expand v on the orthonormal eigenfunctions (with respect to the sca-
lar product ();) of the positive definite operator Ay, called (¢1,--- , %y, ) associated to

()\13"'7)\Nk)7v: ;'Vzklvjwj'

N N N
a(v,v) = (Apv,v) = (Z Ajvi;, Zvjzpj)k = Z)\jvjz-
j=1 j=1 j=1

N
Spv = Z(l — kA )V,
j=1
Ny,
a(Skv, Spv) = Z)\j(l — pk)\j)Q’U?
j=1

by the assumptions on py, we have 0 < upA; <1, and

a(Skv, Spv) < a(v,v)

Ny,
IARSTvlle =D X (1 = peds)> ™03

j=1
1 i

< — sup (z(1—2))) o?
Mk 2€(0,1) ; ’
1 1

< Lol
i 2m

1 2 1 2 1 2
< Cm—h%Hka < CmHU”LZ(Q) < CW||”||H1(Q)'

We return to the error in (3.18)
12 = (zm + T a1 () < Chul|ArSi™ (2 = 20) [l

< C ez
<7 ollH1(0)
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Lemma 3.7 For any v, 0 <y < 1, we can choose m such that
Vk > 1,2 = MG(A*, 20,9) |5 <7z — 20lls

The convergence rate in W-cycle is independent of the mesh size hy
The proof goes by recursion.
For k=1, 2 = MG(A*, 2y, g).
Suppose for any j < k, ||z — MG(A7,20,9)||lg < Y|lz — 20||p with A7z = g. we now
have 2 — MG(A*, 2z9,9) = 2z — (2m + Trq) + Ti(q — g2). By the recursion relation

lg — a2lle < VPllalle <Nz — zmlle
<A™ (z = 20) |l &
<Yz - 2le

and o
|z — MG(k,z0,9)||E < (ﬁ +79)lz = 20lle

Choosing m > (ﬂ/_c,y2 )2, we get the result. |
We can now conclude the proof of the theorem :
lur — Uklle < lluk — Uk-1llE
< v(lur —up—1llg + [[ur—1 — Ur—1|E)
<A(C(hg + h—1)lul 20y + luk—1 — Uk-1]l )
< Y@BChg|ul g2y + uk-1 — Ug-1llE)

Since the error at step 1 vanishes, we see by recursion that

k—2
lur — Uklle < 3Cy|ulmzi) Y ¥ hi—;

=2

Now we can choose v < 1/2, and we obtain

3C~
lur — Uklle < hi T 27|U‘H2(Q)

which concludes the proof of the theorem. |

Proposition 3.1 For a number of cycles p < 4, the work involved in the full multigrid
method is O(Ny,).

*x We call d the maximum number of neighbours of a vertex (d ~ 15 for a general
construction). Then the matrix A* has at most d non zero elements in each line.
The average number of elementary operations (+, —, X, : ) to make the product
of A* by a vector is 2d x Nj. The number of operations involved in one step of
the gradient is (2d 4+ 3) x Ng. All smoothings therefore require

(2d + 3)(m1 + ma) x Nj elementary operations.
x As for the projection of the residual, G is defined by
_ 1
G(Si ™ =7 > rm(S7)
neighbours of S; in T

where S¥ are the vertices in 7. Therefore the number of operations in the pro-
jection step is also
d x N} elementary operations.
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Let us call nj the number of operations needed to run one cycle of the multigrid
algorithm. We have the recursion relation

ne = (2d+ 3) X Ny, + png—1

and ny can be estimated asymptotically

i~ pF g+ (2d 4 3N Y k- 2 (g)j

Jj=1

and if p < 4, we can write
(n1+4a
ng~(—+ —
FTAN T3

x For the full multigrid, the number of operations 7, can also be estimated recursi-
vely by

)Nk,

Np = N+ Np_1

which we solve as
k
nE ~ny+ E nj,
Jj=2

which altogether produces the result in the Proposition.

3.3 Multigrid Preconditioner
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Chapitre 4

Substructuring methods

Contents

4.1 The Schur Complement method . ... ... ... 67

4.2 Direct method for the resolution of the interface
problem . . . .. ... e e e 72

4.3 The conjugate gradient algorithm . . ... ... .. 73

4.4 Interest of subtructuring . ... ... ... .. ... 74

4.5 The Dirichlet Neumann algorithm ... ... ... 75
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5.2 Convergence analysis in one dimension . . . . . . 75

4.6 Appendix : matlab scriptsin1-D . ... ... ... 77

Principle

— Split the domain into sub-domains,

— solve iteratively a "condensed interface problem" : at each iteration , solve indepen-
dantly local problems in the subdomains (using a direct or an iterative method).

Advantages :
These methods are :
e More robust than classical iterative ones and cheaper than direct methods.

e Better adapted to distributed parallel computing with message passing programming :

— one sub-domain per processor
— interface data update by message passing .
e Use of sequential legacy codes for local problems, modular approach to parallelism.

4.1 The Schur Complement method

Consider the problem

—Auy = f dansQ, n>0

u 0 sur 092

We write a variational formulation in V = H{(Q) :

VeV, a(u,v)=(fv)
with a(u,v) = [, VuVuvdz
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We introduce a triangulation 7, = UK with vertices 5;, 1 <i < N,
Vi, = {’U S V,VK S E,vth < ]Pl}.

where P, is the space of polynomials of degree lower than n in two variables. ¢; is the basis
function associated to S;, as described in Figure ?7?7. We write the linear system KU = F.
The entries of the matrix K are the

a(%,%)Z/QV%V% dr.

The components of U are the degrees of freedom, U; = uy(S;), and F; = (f, ¢;)..

FIGURE 4.1 — Mesh, D;, support of the basis function ; associated to vertex
S;.

a(pi, ¢j) = / ViV, dx.
D;ND

ND;

The domain {2 is split into two nonoverlapping subdomains 2; and {25, and T' is the
common boundary.

FIGURE 4.2 — Domain Decomposition

un = Y un(S))ei+ > un(Sp)ei + Y un(S;)e;

SjEQl SJ‘GQQ SjGF
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a1, &) = / Voi(x) - Voby(a) da

D;ND;

FIGURE 4.3 — Supports

a(un, 1) = Y un(Sy)ales, o) + Y un(S)alp;, o) + Y un(S))ale;, 1)

SjEQl SjEQz SjEF
S €, S5 €02 = alp;, 1) =0 = second sum vanishes
Sp €Dy, S5 € = alp;, ) =0 = first sum vanishes

For S; € T, all sums contribute, but for the last one, the support of .S is split according
to Figure 4.4.

FIGURE 4.4 — Decomposition of the interface nodes

If Sy e I" and S; € I' are neighbours,

/ Vo, -V de = / Vo, -V dz +/ Vo, Vo, dr
D;ND; 'DlﬁDjﬂﬂl 'Dlﬂ'DjﬂQQ

and the same for the computation of (f, ;). The unknown U is split into three blocks :
Uy is the block of the unknowns in the open domain 4, U is the block of the unknowns

69



in the open domain s, Us is the block of the unknowns on the boundary I'. The matrix
K is split according to the previous formula. We shall write

Kin 0 Kis Uy b
0 Koo Koz Uy = Fy (41)
K3 Kz Ks3 Us F3

with K33 = Ki; + K25 and F3 = Fi + FZ. We rewrite as a system of three systems.

Ki1Uy +Ki3U;s = F
KoUs +Ka3Us = Fy (4.2)
K31Uy +KszUs +Ks3Us = Fj

K1 = [a(pi, 0j)]s:8,€0,

K41 is the matrix of the Laplace problem in €2; with homogeneous Dirichlet boundary
conditions on 92y, and is therefore invertible. Solving the first equation in (4.2) amounts
to solving the Laplace equation in €2; with homogeneous Dirichlet boundary conditions on
001 \T', and Dirichlet data Us on I". Same for the second equation. The first two problems
can be solved in Uy, Uy knowing Us as

Up = (K1) ' (F1 — K13Us), Uz = (Ka2) ' (F2 — Ka3Us)
Carrying these values into the first equation gives

K31 (K1) Y (Fy — K13U3) + K3o(Ka) ™ H(Fy — Ko3Us) + K33Us = F3.

K31 (K1) H(Fy — K13U3) + Kso(Koo) ™ (Fy — Ko3Us) + K33Us = Fs.

SUs = (K33 — K31 K" K13 — K33 Koy Ko3)Us = G
with Gg = F3 - K31K1_11F1 - K32K2_21F2

The matriz S = K33 — K31 K ' K13 — K32 Koy Kog is the Schur Comple-
ment matriz.

Theorem 4.1 The matriz S est symmetric, positive, definite.

It will be computed in parallel as
S=8"+5°
with
St = K§3 — K3iKi;1Ki3
Then the interface problem will be solved with direct or parallel methods.

The first two equations in (4.2) is the resolution of Laplace equations. But what is the
third one ?
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K31Uy + K32Us + K33Us — 5 =0 (4.3)
Suppose w is a “regular” solution of —Aw = f in Q;. By the Green formula we have for

any v in HY/2(T),

< 5 v >a0= (Y, Vo) + (Aw,0) = aw,) — (f)
1

We apply this to w = (uy)n, and v = ¢;, with S; € T, and obtain

<% oosr = ay((un)n i) — (il
= Y wn(Spai(ej. 00 + Y (w)n(Syai(es, i) — (0
S;eQ S;er

0
[< g;ll)h,cpi >p] = K31U; + K§3U3 — F31 = SlUg — F31, with K11U; + K13U3 = Fi.

Now we have in (4.3)

KUy + Ki3Us = Fy
KooUs + Ko3Us = Iy

6(U1)h + 6(U2)h

i >r] =0
(9711 871,2 i F]

SUs — F3 = K31Uy + K35Uy + K33U3 — F3 = [<

The full substructuring method can now be understood as the finite element discretization
of : find ¢ defined on the interface I' such that, defining v, and usy as the solutions of

7A’U,j = f in Qj,
uj =0on 0Q; — T,

uj =gonl

then 5 9
Ul U9
— +—=0onT.
8n1 + Bng on
The resolution of the interface problem can be solved either by a direct method, or by a

Krylov method.
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4.2 Direct method for the resolution of the in-
terface problem

We work on system (4.1), and write a block-LU decomposition of K as follows

Ki1| 0 | Kis Lip| O 0 Ui | 0 |Uss
0 | Kog | Kog | = 0 [ Lyp| O 0 | Uz | Uss (4.4)
K3 | K3z | K33 L3y | Lo | L33 0 0 | Uss

We identify
Ky =L Uy Kz = L11Uss,

Kog = LogUse; Koz = LooUss,
K31 = L31U11;  K3o = L3oUso; K3z = L31Uss + L3aUaz + L33Uss

Notice that LgiUigg = K&K;lKﬁ, therefore K33 — L31U13 — L32U23 = S, and S = L33U33
The computations are made in parallel on the processors :

PROCESSOR (%)

Computation and storage of Kj;;, K;s,
Computation of F* and F}

Decomposition L;;U;; de Ky,
Computation of U;3, Ls;,
Computation of S* = K43 — L3;U;s

ASSEMBLING

Computation of S = S + S? and Fs = Fy + F},
Decomposition L33Uss of S.

We then solve the triangular problems

L11 0 0 Zl F] Ull 0 U13 Xl Zl
0 | Ly| O Zy | =| F2 | 0 | Uz | Uas Xo | = 22
L3y | Lo | Lss Z3 F3 0 0 Uss X3 Z3

PROCESSEUR (1)
Liizi = F, Gy = F§ — L3 Z;
ASSEMBLING
L3323 = G}i + Gg
Uss X3 = Z3
PROCESSOR (i)
UiXi = Z; — U3 X3
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4.3 The conjugate gradient algorithm

SUs := K33Us — K31 K1," K13Us — K32 K33' Ka3Us = G
with G3 = F3 — K31 K" Fi — K32 Koy Fy
S is a symmetric positive definite matrix. The conjugate gradient algorithm reduces

to a descent method,defined by the initial guess U the initial descent direction d° = 0 =
SUY — G3. Let r* be the residual a step k. The next step will be

= 5
ko el
P = Wk dmy
Uy ™t = Uf — ptd*
phtl ok kyk
Irt+
BB

dk

dk+1 — Tk+1 4

All the products have to be made in parallel. Let us go into details.
For the initialization choose U = 0, thus '’ = —G3 = —F3+ K31 K ;' Fi1 + K32 K5, Fs.

We define a special box for the product SX :

Product SX

PROCESSOR (1)
solve K11U; = K13X,
S'X = Kiy — K51Uy

PROCESSOR (2)
solve KooUy = Ka3X,
52X = K33 — K3Us

\/

ASSEMBLING
SX = S1X + 52X

Initialization

PROCESSOR (1)
solve K11U1 = f‘ﬂl7 G(ls = F31 — K31U1
solve KuU] = K];j’l"o,
S]’V‘O = K%g — K;;[U]

PROCESSOR (2)
solve K22U2 = F27 Gg = FJQ — KjQUQ
solve K22U2 = I(zg?"o,
52 0 = K§3 - K31U2

\/

ASSEMBLING

0 = §1go0 + S240

20 1 2 30 _ .0
r’=—-G3—G35,d° =7

PROCESSOR (1)
K1, K31, K33, 1, F3, G

STORAGE (DISTRIBUTED MEMORY)

PROCESSOR (2)
Kaa, K3, K33, Fa, F3, G3
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ITERATION

vk = SdF
k_ lIr* 1
(vk, d*)
Ué““ — Ué“ — pFd*
PRl =k pkyk

k+1||2

P S I

dk
7|2

Note that the scalar products can also be done partly in parallel.

4.4 Interest of subtructuring

o The interface problem has n unknowns when the full problem has n? unknowns.

e It can be proved that the interface problem is much better conditioned than the
full problem.

e Therefore the conjugate gradient algorithm converges rapidly.

e Futhermore most part of computation part can be made in parallel.
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4.5 The Dirichlet Neumann algorithm

The purpose of the algorithm is to solve the coupling problem

Lu= fon €,
u =0 on 99

by splitting 2 into two subdomains with interface I', and solving iteratively with an initial
guess go,

4.5.1 Presentation of the algorithm

Lu} = fin Oy,
u? =00on 0QUQ,, u} =g" onl.
Luf = fin Qo,
D, M D, M
ouy  Ouf

o= QU Qs 2 = n I
uy =0 on 0Q U Qo, 5 5 on

a . . .. . .
where Em in Q5 is the normal derivative, with v the exterior normal to 5.
v

g7l,+l _ 9“;1 + (l o (_))gﬂ

The choice of the parameter is crucial and unfortunately depends on the position of
the interface. If the subdomains and the problems are symmetric, the choice § = 1 is

2
optimal.

4.5.2 Convergence analysis in one dimension

0 d
Let £L=n—d2, Q= (a,b). Take c in (a,b). Then we have = dm the interface
v x
at point c.
Define the error in the subdomain, e? = u? — u, and A" = ¢g" — u(c). The algorithm

J J
for the error is
Ee’f =0in Ql,

er=00n0QUQ, e =h"onl.

Lef = 0in Qo,
—  Oel oe?
e =00n0QUQ,, 2 = ,(l on I'.
ov ov

hu,+l _ 9(75‘((7) + (1 — 9)}]!1.

This can be solved as

n __ n
el =h

8 = Bsh(yi(b — o).
The coefficient 5" is determined by the transmission condition d,e5(c) = d.e}(c), that

gives
_ ch(y/n(c — a))

B (A~ ) =" Y

5



il _ (_GSh(ﬁ(b —¢))ch(y/n(c — a))
sh(y/n(c—a))ch(y/n(b—c))

Convergence factor p

+(1-0)) h".

If the geometry is symmetric, that is if b — ¢ = ¢ — a, then the convergence factor
reduces to

p=1-20,
that is smaller than 1 for § € (0,1), and vanishes for # = 1/2. Suppose now that (¢ —a) =
(b—a)/5. Then defining x = /1/5, then

tanh(4y)

tanh(y) +1)-

p=1-6(

It is a linear function of 6, with a slope oo = —(tta;;};((%) +1) e (—5,-2).

Slope of the conwvergence factor

w3l

2 2

e — E —
tanh(4x) 5
tanh(x) +1

0o =

Then the algorithm is convergent if and only if 8 < 6.
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4.6 Appendix : matlab scripts in 1-D

function u=SolveDD(f,eta,a,b,ga,gb)
SOLVEDD solves eta—Delta in 1d using finite differences

o°® o° o°

o°

conditions u=ga at x=a and u=gb at x=b using a finite
difference approximation with length(f) interior grid points

o°

J=length(f);

h=(b—a)/(J+1);

% construct 1d finite difference operator

e=ones(J,1);

A=spdiags([—e/h"2 (eta+2/h"2)*e —e/h"2],[—-1 0 1]1,3,3);

f(1)=f(1)+ga/h"2; % add boundary conditions into rhs
f(end)=f(end)+gb/h"2;

u=A\T;

u=[ga;u;gbl; % add boundary values to solution

function u=SolveND(f,eta,a,b,ga,gb)

SOLVEND solves eta—Delta in 1d using finite differences
u=SolveND(f,eta,a,b,ga,gb) solves the one dimensional equation
(eta—Delta)u=f on the domain Omega=(a,b) with Neumann boundary
condition u'=ga at x=a and Dirichlet boundary
condition u=gb at x=b using a finite
difference approximation.
note the second order appproximation of the derivative

d® o° % o° o° o°

o°

J=length(f);

h=(b—a)/J;

% construct 1d finite difference operator

e=ones(J,1);

A=spdiags([—e/h"2 (eta+2/h"2)*e —e/h"2],[—-1 0 1]1,3,3);
A(1,2)=2%A(1,2); %% Neumann boundary condition

% construct 1d finite difference operator

f(1l)=Ff(1)—2*xga/h; % add boundary conditions into rhs
f(end)=f(end)+gb/h"2;

u=A\f;

u=[u;gbl; % add boundary value to solution on the right

7

u=SolveDD(f,eta,a,b,ga,gb,n) solves the one dimensional equation
(eta—Delta)u=f on the domain Omega=(a,b) with Dirichlet boundary




function [g,ul,u2]=algoDN(f,eta,a,b,step,ga,gb,gl,Nc,Imax,t)
% algoDN solves the Laplace equation by the Dirichlet—Neumann algorithm
%[g,ul,u2]=algoDN(f,eta,a,b,step,ga,gb,g,Nc,Imax,t)
%solves the Laplace equation eta u —Delta u = f in (a,b)
by the Dirichlet—Neumann algorithm on (a+Nc*step) and (Ncxstep,c)
% note the second order reconstruction of u_l'(c)
g=zeros(1,Imax);
g(1)=gl;
c=a+Ncx*step;
Xx=(a:step:b);x1l=(a:step:c); x2=(c:step:b);
y= SolveDD(f',eta,a,b,ga,gb);
for j=1l:Imax—1
% Dirichlet on (a,c)
fl=f(1:Nc—1);
ul=SolveDD((f1l)',eta,a,c,ga,qg(j));
%sextraction de u_1'(c) : second order
upl= (—ul(end—1)+(l+etaxstep”2/2)*ul(end))/step—step*f(Nc)/2;
% Neumann on (c,b) with u_2'(c)=u_1"'(c)
f2=f(Nc:end);
u2=SolveND( (f2)',eta,c,b,upl,gb);
g(j+1)=(1-1)*g(j)+t*xu2(1);
h=figure
plot(x1l,ul,'b',x2,u2,'m',x,y," 'r',c,linspace(ul(end),u2(1),100), 'k');
legend('u_1",'u 2", 'solution discrete')
title({['Algorithme de Dirichlet—Neumann',' c=',num2str(c), '\theta=",
num2str(t)l;...
['Iteration number ',int2str(j)1})
filename = ['figDNpos' int2str(Nc) 'relax' num2str(t) 'iter' int2str
(j) '.eps'l]
print(h, '—depsc',filename)

o°

pause% (1)
end
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function u=algoSchur(f,eta,a,b,h,ga,gb,Nc)

% algoSchur solves the Laplace equation by the Schur method
%[g,ul,u2]=algoSchur(f,eta,a,b,step,ga,gb,Nc)

%solves the Laplace equation eta u —Delta u = f in (a,b)
% by the Schur method m on (a+Ncxh) and (Ncxh,c)
J=length(f);

e=ones(J,1);

A=spdiags([—e/h"2 (eta+2/h"2)*e —e/h™2],[-1 0 1],3,3);
% decomposition of A

A11=A(1:Nc—1,1:Nc—1);

A22=A(Nc+1:end,Nc+1:end);

Alg=A(1:Nc—1,Nc);

Agl=A(Nc,1:Nc—1);

A2g=A(Nc+1:end,Nc);

Ag2=A(Nc,Nc+1l:end);

Agg=A(Nc,Nc);

%sdecomposition of f

fl=f(1:Nc—1);

f2=f(Nc+1l:end);

fg=Tf(Nc);

% Construction of the Schur problem

funS=@(x) Agg*x—Agl=*(A11\(Alg=*x))—Ag2*(A22\ (A2g*X));
fS=fg—Aglx(A11\f1)—Ag2x(A22\f2);

ug=pcg(funsS, fS)

%sreconstruct ul and u2

ul=A11\(f1l-Algx*ug)

u2=A22\ (f2—A2g*ug)

sreconstruct u

u=[ga; ul ; ug ; u2 ; gbl;
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clear all;close all;
% Validation of the Dirichlet and Neumann codes
a=0;
b=1;
Step=(b—a)*0.1./10.7(0:2);
for j=1l:length(Step)
step=Step(j);
x=(a:step:b);
y=sin(pixx);
eta=1;
f=(eta+pi™2)*y(2:end—-1);
ga=0;gb=0;
sol=SolveDD(f',eta,a,b,ga,gb);
X=a:step/100:b;
Y=sin(pi*X);
figure(1)
plot(x,sol,'b',X,Y,'r");
hold on

eld(j)=max(abs(sol—y'));
f=(eta+pi™2)*y(l:end—1);

ga=pi;
soll=SolveND(f',eta,a,b,ga,gb);
plot(x,soll,'b',X,Y,'r');

eln(j)=max(abs(soll—y'));
figure(2)
plot(x,soll—y');
pause
end

figure(3)

loglog(Step,eld, 'm«")

hold on

loglog(Step,eln, 'bo—")

hold on

loglog(Step,Step.”2,'r")
legend('Dirichlet', 'Neumann', 'slope 2')

% Algorithme de Dirichlet Neumann sur (a,c), (c,b)
clear all; close all;

a=0;

b=1;

J=9;

h=(b—a)/(J+1);

x=(a:h:b);

% eta=1;

% y=X."3;

% f=—6xx(2:end—1)+etaxy(2:end—1);
% ga=0;gb=1;

eta=1;

y=sin(pix*x);
f=(eta+pi”2)xy(2:end—1);
ga=0;gb=0;
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sol=SolveDD(f',eta,a,b,ga,gb);

% position de 1 interface
Nc=floor(length(x)/2);

Nc=2;

c=a+Ncxh;

% nombre d'iterations

Imax=10;

%parametre de relaxation

t=0.5;

% initialisation avec la valeur exacte
gl=y(Nc+l);

% ou initialisation avec 0

gl=0;
[g,ul,u2]=algoDN(f,eta,a,b,h,ga,gb,gl,Nc, Imax,t)
% algorithme

figure(99)

plot(g)

title('Interface value')
xlabel('Iteration number')

% Methode de Schur
u=algoSchur(f',eta,a,b,h,ga,gb,Nc);
splot(x,y,'r',x,yd,'g',x,u,'b")
figure(55)

plot(x,sol,'qg',x,u,'b")

=

of
[T

10;

chi=linspace(0,N,Nx100)
Y=tanh(4xchi)./tanh(chi)+1;
plot(chi,Y,'b")

xlabel('\chi")

ylabel('\alpha')

title('Slope of the convergence factor')
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