HO CHI MINH <y

b e & i
: ml I

= % 4‘:,.4

USN-HCMV PARIS 13

JOINT MASTER 2

High Performance Computing

Pr. Laurence Halpern and Juliette Ryan

Purpose : This is all about solving Az = b, where A is a square matrix
and b is a given righthand side, or a family of given righthand sides, and the
size of the system is huge.

December 2017

Table des matiéres

1 Classical methods 5

1.1 Direct methods 5

1.1.1 Gaussmethod 5

1.1.2 Codes o 6

1.1.3 Theoretical results 7

1.1.4 Symmetric definite matrices : Cholewski decomposition 7

1.1.5 Elimination with Givens rotations 8

1.1.6 QR Decomposition 9

1.2 Stationary iterative methods 10

1.2.1 Classical methods 11

1.2.2 Fundamentals tools 11

1.3 Sparse and banded matrices 14

1.3.1 Direct methods 14

1.3.2 Iterative methods 19

1.3.3 Implementation issues 19

2 Nonstationary methods 25
2.1 Non-Stationary iterative methods. Symmetric definite positive

matriceso 25

2.1.1 Definition of the iterative methods 25

2.1.2 Comparison of the iterative methods 27

2.1.3 Condition number and error 28

2.2 Krylov methods for non symmetric matrices, Arnoldi algorithm 31
2.2.1 Gram-Schmidt orthogonalization and QR decomposition 31

2.2.2 Arnoldi algorithm 32
2.2.3 Full orthogonalization method or FOM 33
2.2.4 GMRES algorithm 35

3 Preconditioning 43
3.1 Introduction 43
3.2 Deflation method for GMRES 47
3.2.1 Building the preconditioner 48
3.2.2 Computing the invariant subspace 48
3.2.3 Numerical resultso 49

3.3 Fast methods using Fast Fourier Transform 50
3.3.1 Presentation of the method o1
3.3.2 Discrete and Fast Fourier Transform 55

3.3.3 The algorithm 59
4 Multigrid methods 63
4.1 Geometric multigrid A reprendre Laurence 63
4.1.1 The V-cycle process 63
4.1.2 The finite elements multigrid algorithm 70
4.2 Algebraic Multigrid AMG A rediger Juliette 78
5 Parallelism 79
5.1 Substructuring methods 79
5.1.1 The Schur Complement method 80
5.1.2 Direct method for the resolution of the interface problem 85
5.1.3 The conjugate gradient algorithm 86
5.1.4 Interest of subtructuring 87
5.1.5 The Dirichlet Neumann algorithm 88
5.1.6 Appendix : matlab scriptsin 1-D 90
5.2 Schwarz Algorithms 94
5.2.1 Introduction and a brief historical review 94
5.2.2 A very simple 1D example 96
5.2.3 A 2D, 3D tool : the Fourier transform. Optimal trans-
mission conditiono Lo 98
5.2.4 Approximation 100
5.2.5 A convergence proof for L=0 101
5.2.6 Notions on transmission conditions 102
5.2.7 Identification of the interface problem 105
5.2.8 Substructuring method revisited 108

Chapitre 1

Classical methods

Contents

1.1 Direct methods 5
1.1.1 Gaussmethod. 5
1.1.2 Codes 6
1.1.3 Theoretical results 7

1.1.4 Symmetric definite matrices : Cholewski decompo-
sition e 7
1.1.5 Elimination with Givens rotations 8
1.1.6 QR Decomposition 9
1.2 Stationary iterative methods. 10
1.2.1 Classical methods. 11
1.2.2 Fundamentals tools 11
1.3 Sparse and banded matrices 14
1.3.1 Direct methods 14
1.3.2 TIterative methods 19
1.3.3 Implementation issues 19

1.1 Direct methods

1.1.1 Gauss method

Example
1 3 1 9 9
1 1 -1 1 = 1
3 11 6 36 36
X S —— Hb,_/

and multiply on the left by M; to put zeros under the diagonal in the first
column :

1 3 1 9
MAlb]=] 0 —2 —2]|-8
0 2 3|9

Multiply now on the left by M; to put zeros under the diagonal in the second
column :

100
My=10120

011

13 119

0o 0 1|1

Define M = MyM;. Then the column j of M is the column j of M; :

1
M=

[)
_ o O

-1
-3
MI[A|b]=[MA|Mb].

Ar =b <= MAx = Mb: M is a preconditioner.

The matrix U = M A is upper triangular, and solving Ux = Mb is simpler
than solving Az = b. Define L = M~!. In the column j, the entries below
the diagonal are those of M with a change of signe.

1 0 0
L=M'=[1 1 0
3 -1 1

U=MA < A=LU Ar=b < LUr=b < {?Zb
=y

Solving Ax = b is then equivalent to performing the LU decomposition, and
solving two triangular systems. Counting of operations :

1. LU decomposition O(@) elementary operations.

2. Solve Ly =b O(n?) elementary operations.

3. Solve Uz =y O(n?) elementary operations.

For P values of the righthand side, N,, ~ % + P x 2n?.

1.1.2 Codes

function x=BackSubstitution(U,b)

% BACKSUBSTITUTION solves by backsubstitution a linear system
% Xx=BackSubstitution(U,b) solves Ux=b, U upper triangular by
% backsubstitution

n=length(b);

for k=n:—1:1
s=b(k);

for j=k+1:n
s=s—U(k,j)=*x(j);
end
x(k)=s/U(k,Kk);
end

X=x(1);

function x=Elimination(A,Db)

s ELIMINATION solves a linear system by Gaussian elimination
x=Elimination(A,b) solves the linear system Ax=b using Gaussian
Elimination with partial pivoting. Uses the function

s BackSubstitution

n=length(b);

norma=norm(A,1);

A=[A,b]; % augmented matrix

for i=1:n

[maximum, kmax]=max(abs(A(i:n,i))); % look for Pivot A(kmax,i)
kmax=kmax+i—1;

if maximum < le—14xnorma; % only small pivots

error('matrix is singular')

o® o° o°

o

end

if i ~= kmax % interchange rows
h=A(kmax, :); A(kmax,:)=A(1,:); A(i,:)=h;
end

A(i+l:n,i)=A(i+1l:n,i)/A(i,1); % elimination step
A(i+1l:n,i+1:n+1)=A(i+1l:n,i+1l:n+1)—A(i+1:n,i)*A(i,i+1:n+1);
end

x=BackSubstitution(A,A(:,n+1l));

1.1.3 Theoretical results

Theorem 1.1 (Regular case) Let A be an invertible matriz, with all prin-
cipal minors # 0. Then there exists a unique matriz L lower triangular with

l;; =1 for all i, and a unique matriz U upper triangular, such that A = LU.
Furthermore det (A) = T, ;.

Theorem 1.2 (Partial pivoting) Let A be an invertible matriz. There exist
a permutation matrix P, a matriz L lower triangular with l;; = 1 for all i,
and a matriz U upper triangular, such that

PA=LU
1.1.4 Symmetric definite matrices : Cholewski decom-

position

Theorem 1.3 If A is symmetric definite positive, there exists a unique lower
triangular matriz R with positive entries on the diagonal, such that A = RRT.

7

1.1.5 Elimination with Givens rotations

This is meant to avoid pivoting. It is used often in connection with the
resolution of least-square problems. In the i step of the Gauss algorithm, we
need to eliminate x; in equations ¢ + 1 to n of the reduced system :

(k) A+ 4+ agpTn = by

(1) : apz; +-+ + ppr, = by

If ax; = 0, nothing needs to be done. If ax; # 0, we multiply equation(z) with
sin @ and equation (k) with cosa and add. This leads to replacing equation
(k) by the linear combination

(k)pew = — sina - (i) + cosa - (k).
The idea is to choose « such that the first coefficient in the line vanishes, i.e.
—sina - a;; +cosa - ag; = 0.

Since ag; # 0, this defines cotgay;, that is ag; modulo 7. For stability reasons,
line (7) is also modified, end we end up with

(Dnew = cosa - (i) +sina - (k)
(K)pew = —sina - (i) +cosa - (k)

From which the sine and cosine of ay; are obtained through well-known tri-
gonometric formulas

sinag; = 1/v/1 + cotg?ay;, €osay; = sin oy; cotgay,;.
)

A

k] new

cos a; - Aij +sin oy - Agj
— sin Olfe; * Aij + cos ayg; - Akj

) new

function x=BackSubstitutionSAXPY(U,b)

% BACKSUBSTITUTIONSAXPY solves linear system by backsubstitution
% x=BackSubstitutionSAXPY(U,b) solves Ux=b by backsubstitution by
% modifying the right hand side (SAXPY variant)n=length(b);
n=length(b);

for i=n:-1:1

x(1)=b(i)/U(i,1);

b(1l:i—1)=b(1:i—1)}x(i)*U(1l:i—1,1i);

end

x=x(1);

function x=EliminationGivens(A,b);

% ELIMINATIONGIVENS solves a linear system using Givens—rotations
% x=EliminationGivens(A,b) solves Ax=b using Givens—rotations. Uses
% the function BackSubstitutionSAXPY.
n=length(A);

for i= 1:n

for k=i+l:n

if A(k,1)~=0

cot=A(i,1i)/A(k,1i); % rotation angle
si=1/sqrt(1l+cot”2); co=sixcot;
A(i,i)=A(i,1i)*co+A(k,i)*si; % rotate rows
h=A(1i,i+1:n)*co+A(k,i+1l:n)x*si;
A(k,i+l:n)=—A(i,i+1l:n)*si+A(k,i+1l:n)x*co;
A(i,i+1l:n)=h;

h=b(i)*co+b(k)*si; % rotate right hand side
b(k)=b(i)*si+b(k)*co; b(i)=h;

end

end;

if A(i,1)==0

error('Matrix is singular');

end;

end

x=BackSubstitutionSAXPY(A,b);

1.1.6 QR Decomposition

Note G which differs from identity only on the rows i and k where
Gii = Gkk = COSQ, Gik, = — gk = SN

Example for n = 5,

1 0 0 0 0
0 cosa 0 sina O
G*=10 0 1 0 0
0 —sina 0 cosa O
0 0 0 0 1

Multipliying a vector b by G** changes only the components i and k,

b; cosa - b; +sina - b

by —sina - b; 4cosa - by

G*e;, = cosae; —sinae,, G*e,=sinae; + cosaey.

G’ represents the rotation of angle o in the plane generated by e; and
er. (G*())* = G*(—a), (G*(a))*G*(a) = I. Thus it is an orthogonal
matrix. By applying successively Gy, ..., G, whereever a;; is not zero, we
put zeros under the diagonal in the first column. We continue the process
until the triangular matrix R is obtained. Then there are orthogonal matrices
G4, -+, Gy such that Then

Q is an orthogonal matrix,

then
A=QR,

we have reached the QR decomposition of the matrix A.

1.2 Stationary iterative methods

For any splitting A = M — N, write Mz = Nx + b,
Define the sequence Ma™ = Nz™ 4 b.
Mx™t = Nzg™m+b <= Mz™' = (M- A)z"+0b
— "= (I - M1TA)z™ + M
e g™t =™ - M tAx™ + M1
<= fixed point algorithm to solve x — M *Az + M~'b =2
<= fixed point algorithm to solve Mt Az = M~!b.

Again, M is a preconditioner.

o ¢ :=ux —a™ is the error at step m.
o 1" :=b— Ax™ = Ae™ is the residual at step m.
e R=M"N=1—M1A is the iteration matriz.

Then the sequence of the errors satisfies
Me™ ™ = Ne™, ™ = M~ 'Ne™

[l

Stopping criterion Usually, one stops if H+IL|H < €.

10

1.2.1 Classical methods
Use A =D — F — F.

Jacobi M=D R:=J=I1-D7"14

Relaxed Jacobi M = éD R=1—-wD1'A

Gauss-Seidel M=D-FE R:=L,=1I—-D1A

SOR M=1D-E R:=~L,=(D-wE)™((1-w)D+wF)
Richardson M = %I R=1-pA

The relaxed methods are obtained as follows : define 2" as an application
of Jacobi or Gauss-Seidel, then take the centroid of 2™ and 2™ as ™! =
wz™ 4+ (1 — w)x™.

For symmetric positive definite matrices A, Rlchardson is a gradient method
with fixed parameter. There is an optimal value for this parameter, given by
Popt = ﬁ where the \; are the eigenvaues of A.

1.2.2 Fundamentals tools

Define the sequence
e" = Re™, R= M"'N.
Then ™ = R™ey, and for any norm

le™ < IRBIHle™ [, lle™ [< =™]l]le]).

p(R) = max{|\|, A eigenvalue of R} is the spectral radius of R.
o pm(R) = ||R™||*™ is the mean convergence factor of R.
o poo(R) = limy,_o0 ||[R™||V™ is the asymplotic convergence factor of

R.

Theorem 1.4
e For any matriz R, for any norm, for any m, p,(R) > p(R). The
sequence py,(R) has a limit, called the asymptotic convergence factor
of R and denoted by pso(R).

o The sequence x™ is convergent for any x° if and only if p(R) < 1.

To reduce the initial error by a factor €, we need m iterations, defined by

il

ol < on(R)" ~

loge
log p(R)
. Then to obtain another decimal digit in the solution, one needs
In(10)
In(p(R))

11

So m ~ . It is easier to use the asymptotic value relation, m ~

log e
l0g poo(R)

to choose ¢ = 107!, then m ~ —

The asymptotic convergence rate is F' = —In(p(R)).

Diagonally dominant matrices

Theorem 1.5

e [f Ais a matriz, either strictly diagonally dominant, or irreducible and
strongly diagonally dominant, then the Jacobi algorithm converges.

o [f A is a matriz, either strictly diagonally dominant, or irreducible and
strongly diagonally dominant, then for 0 < w < 1, the SOR algorithm
converges.

M- matrices

A € R™™ 4s a M-matrix if
1. a; >0 fori=1,...,n,
2.a;5; <0 fori#j,1,7=1,...,n,
3. A is invertible,
4. A1 >0.
Theorem 1.6 If A is a M-matrix and A = M — N is a regular splitting

(M is invertible and both M~ and N are nonnegative), then the stationary
method converges.

Symmetric positive definite matrices

Theorem 1.7 (Householder-John) Suppose A is positive. If M+ MT — A
is positive definite, then p(R) < 1.

Corollary 1.1 1. If D+ E+F is positive definite, then Jacobi converges.
2. If w € (0,2), then SOR converges.

Tridiagonale matrices

Theorem 1.8 1. p(Ly) = (p(J)))?* : Jacobi Gauss-Seidel converge or di-
verge simultaneously. If convergent, Gauss-Seidel is twice as fast.

2. Suppose the eigenvalues of J are real. Then Jacobi and SOR converge
or diverge simultaneously for w €]0, 2.

3. Same assumptions, SOR has an optimal parameter w* = ,
1+ /1= (p(]))?
and then p(L+) = w* — 1.

12

FIGURE 1.1 — Variations of p(L,) as a fonction of w

13

1.3 Sparse and banded matrices

1.3.1 Direct methods

The first encounter of this name seems to be due to Wilkinson in 69 : any
matriz with enough zeros that it pays to take advantage of them.

Example : a banded matrix, with upper bandwidth p = 3 and lower
bandwidth ¢ = 2, in total p 4+ ¢ 4+ 1 nonzero diagonals.

p=3
(k=01 0 0 0)
T -4 23 0 6.0 0
0. —12 QR EEEOREG 0
0 0 -40 0 5_ 1 4
10 o~ —a 6 -
\ O 0 0 0 0 -8 0)

FIGURE 1.2 — A bandmatrix

Then L is lowerbanded with ¢ = 2, and Uis upperbanded with p = 3.

(i 0 0 0 0 0 0)

2 1.0 0 0 0 0

0 -3 1.0 0 0 0

L=l 0 0 -2 1t 0 0 0
0 0 =33 281 0 0

00 0 0 -3 1 0

\0 0 0 0 0 -931)

FIGURE 1.3 — LU decomposition

14

It is not the case anymore, when pivoting is used :

1

0

0

L= 0
0

0

—0.

5 —0.17 —0.05 —0.21 0.025 0.0027

-4 2
0 —12
0 O
0 O
0 0
0 0
0 O

OO OO O

0.6

Here the permutation matrix is

_ o O O O O O

OO OO oo

0

1

0
0

OO O oo+ o

o= O OO

0

o O oo

0

o O o oo

0
0
0
0
0
1 0
1

0 0 0
2 0 0
) 1 4
—-10 —0.6 —24
—-60 6 —23
0 -84 0
0 0 0.275
0 00
0 00
100
0 0 O
0 1 0
0 0 1
0 00

OO O H O OO

In the Cholewsky decomposition, there is no need of permutation, unless
some parameters are very small. Then if A is banded, R is banded with the
same lower bandwidth, but it may be less sparse, in the sense that it can
have more zeros. Consider as an example the 36 x 36 sparse matrix of 2 — D
finite differences in a square. With the command spy de matlab, the nonzero
terms appear in blue :

.
30

P
35

5

10

15

20
nz=158

E

A bandmatrix sparse matrix

Corresponding Cholewski

Even though R has the same bandwidth as A, nonzero diagonals appear.

15

EXERCISE Write the Gauss and Givens algorithms for a tridiagonal matrix
A = diag(c,—1) + diag(d,0) + diag(e, 1).

LU factorization : verify that

ek = U, diy1 = U fro + W1, ex = fr

then it is not necessary to compute fi, and only recursively

Ce = lpup, Upy1 = dpgr — i eg.

n=length(d);

for k=1:n—1 % LU—decomposition with no pivoting
c(k)=c(k)/d(k);
d(k+1)=d(k+1)—c(k)=*e(k);

end

for k=2:n % forward substitution
b(k)=b(k)—c(k—1)*b(k—1);

end

b(n)=b(n)/d(n); % backward substitution

for k=n—1:-1:1
b(k)=(b(k)—e(k)*b(k+1))/d(k);

end

Givens : verify that the process inserts an extra updiagonal.

n=1length(d);
e(n)=0;
for i=1: n—1 % elimination
if c(i)~=0
t=d(i)/c(i); si=1l/sqrt(1l+txt); co=txsi;
d(i)=d(i)*co+c(i)x*si; h=e(i);
e(i)=h*xco+d(i+1)*si; d(i+1l)=—hx*si+d(i+1)=*co;
c(i)=e(i+1)xsi; e(i+1)=e(i+1)*co;
h=b(i); b(i)=h*xco+b(i+1)x*si;
b(i+1l)=—hx*xsi+b(i+1)*co;
end;
end;
b(n)=b(n)/d(n); % backsubstitution
b(n—1)=(b(n—=1)—e(n—1)*b(n))/d(n—1);
for i=n—2:—1:1,
b(i)=(b(i)—e(i)*b(i+1l)—c(i)=*b(i+2))/d(1);
end;

Creation and manipulation of sparse matrices in matlab

>>8=sparse([2 3 1 2],[1123],[2413]
S =

16

(2,1)
(3,1)
(1,2)
(2,3)

W~ >N

>>S=speye(2,3)

S:

[y

(1,1)
(2,2)

[EE

>>n=4;
>>e=ones(n, 1)
e=

)

>>A=spdiags([e -2%e e],-1:1,n,n)
A =

(1,1) -2
(2,1) 1
(1,2) 1
(2,2) -2
(3,2) 1
(2,3) 1
(3,3) -2
(4,3) 1
(3,4) 1
(4,4) -2
>>full (A)
ans =
-2 1 0 0
1 -2 1 0
0 1 -2 1
0 0 1 -2

>>S=sparse([2 3 1 2],[1 12 3],[2 41 3])

17

(2,1)
(3,1)
(1,2)
(2,3)

W~ >N

>>S=speye(2,3)

S:

[

(1,1)
(2,2)

—

>>n=4;
>>e=ones(n,1)
e:

o e

>>A=spdiags([e -2*%e e],-1:1,n,n)

A =
(1,1) -2
(2,1 1
(1,2) 1
(2,2) -2
(3,2) 1
(2,3) 1
(3,3) -2
(4,3) 1
(3,4) 1
(4,4) -2
>>full(A)
ans =
-2 1 0 0
1 -2 1 0
0 1 -2 1
0 0 1 -2

The direct methods first transform the original system into a triangular

18

matrix, and then solve the simpler triangular system. Therefore a direct
method leads, modulo truncation errors, to the exact solution, after a number
of operations which is a function of the size of the matrix. Thereby, when
the matrix is sparse, the machine performs a large number of redundant
operations due to the large number of multiplication by zero it performs.

1.3.2 Iterative methods

The iterative methods rely on a product matrix vector, therefore are easier
to perform in a sparse way. They have gain a lot of popularity for sparse
matrix, in conjunction with preconditioning and and domain decomposition.
However their success relies on the convergence speed of the algorithm.

1.3.3 Implementation issues

To minimize computing costs and storage of a sparse matrix, it can be
useful to renumber the matrix coefficients. There are (for the moment) no
absolute ideal renumbering algorithms but one of the most efficient is the
Reverse Cuthill Mackee algorithm.

It is also called the bandwidth reduction problem, also known in the field
of sparse matrix applications as the bandwidth minimization problem (or
BMP in short) :

For a given symmetric sparse matrix, A(nxn), the problem is to reduce its
bandwidth B by permuting rows and columns so as to move all the non-zero
elements of A in a band as close as possible to the diagonal.

In other words, the problem consists in transforming through successive
row and column permutations as for example matrix Al (8x8 input matrix)
into A2 :

1 00 0 1 0 0 0 1 1 0 0 0 0 0 0
01 1 0 0 1 0 1 1 1 0 0 0 0 0 0
0O 1 1 0 1 0 0 0 o o0 1 1 1 0 0 0
O 0 o 1 0 0 1 0 o o0 1 1 1 0 0 0
1 ¢ 1 01 0 0 0 o o0 1 1 1 1 0 0
o1 0 0 0 1 01 o 0 0 0 1 1 1 0
O 0 o 1 0 0 1 0 o 0 0 0 0 1 1 1
01 0 001 01 O 0 0 0 0 0 1 1

=
>
DO

Notions of Graph
The graph G(A) corresponding to the matrix A we will have n nodes labelled
i= 1,2, ... ,n. For each non-zero element aij, i < j of A there will be an edge
connecting nodes i and j. From the graph of A we can determine the position
of all off-diagonal non-zero elements of A.

Two nodes of G(A) are said to be adjacent if they are connected by an
edge.

19

Two nodes of G(A) are said to be connected if there is a sequence of edges
joining them such that consecutive edges have a common end point. A graph
is said to be connected if every pair of nodes of the graph are connected. If
G(A) is connected, the corresponding matrix is irreducible.

A component of a graph is a connected subgraph which is not contained
in a larger connected subgraph.

The degree of a node i of G(A) is the number of edges meeting at i. For
the corresponding matrix, this is the number of non-zero off diagonal ele-
ments in row i.

For example, the corresponding graphs of A1 and A2 are

Graph(A2)

The two graph structures are identical, the only thing that is different is
the node (vertex) labelling. In other words the bandwidth reduction problem
can also be viewed as a graph labelling problem :

Find the node labelling that minimizes the bandwidth B of the adjacency
matrix of the graph G(A) , where we can formally define : B=max|Li-Lj|,
i,j=1..n and Li is the label of node i, Lj is the label of node j and nodes i and
j are adjacent.

20

The Reverse Cuthill Mackee algorithm (RCM)

This algorithm was presented by E. Cuthill and J. McKee in 1969 in
REDUCING THE BANDWIDTH OF SPARSE SYMMETRIC MATRICES
and improved by A. George

Algorithm RCM

Step 0 : Prepare an empty queue QQ and an empty result array R. ;

Step 1 : Select the node in G(A) with the lowest degree (ties are
broken arbitrarily) that hasn’t previously been inserted in the result
array. Let us name it P (for Parent). ;

Step 2 : Add P in the first free position of R. ;

Step 3 : Add to the queue all the nodes adjacent with P in the
increasing order of their degree. ;

Step 4.1 : Extract the first node from the queue and examine it. Let
us name it C (for Child). ;

Step 4.2 : If C hasn’t previously been inserted in R, add it in the first
free position and add to Q all the neighbours of C that are not in R
in the increasing order of their degree. ;

Step 5 : If Q is not empty repeat from Step 4.1 . ;

Step 6 : If there are unexplored nodes (the graph is not connected)
repeat from Step 1 . ;

Step 7 : Reverse the order of the elements in R. Element R]i] is
swaped with element R[n+1-i|. ;

The result array will be interpreted like this : R|L] = i means that the new
label of node i (the one that had the initial label of i) will be L.

Nodes are explored in the increasing order of their degree. Step 7 is not man-
datory, it is the modification introduced by George to the initial algorithm
(it has the purpose of further reducing the profile of a matrix).

Such a renumbering is also a good technique to reduce computing costs
and storage space.

Storage schemes

The main goal is to represent only the non zero elements, and to be
able to perform the common matrix operations. In the following, N denotes
the total number of non zero elements. Only the most popular schemes are
covered here.

— Compressed Sparse Row (CSR)

A real array AA that contains the real non zero values a;; stored row
by row, from row 1 to n. The length of AA is N

An integer array JA that contains the column indices of elements a;;
as stored in AA. The length of JA is N.

An integer array A that contains the pointers to the beginning of
each row in the arrays AA and JA. IA(1) = 0, IA(2) = number of

21

non zero elements in row 1, IA(ii+1)= IA(ii) + number of non zero
elements in row ii. The length of TA is n+1, and IA(n+1) = Ny

— Compressed Sparse Column (CSC)
A variation of CSR but based on storing columns instead of rows.

For example , matrix

L. 0. 0. 2. 0.

(3. 4. 0. 5 0. \
A=16. 0. 7. & O
0. 0. 10. 11. 0.

0. 0. 0. 0. 12,

FIGURE 1.4 — Matrix A

will be stored as follows/

JA- |1 4 1 2 4 1 3 4 5 3 4 5

IA 1 3 6 10 12 13

FIGURE 1.5 — Sparse Matrix A storage

The case of a CSR storage leads to an efficient matrix vector product.
The following Fortran 90 segment shows the main loop of the matrix-by-
vector operation for matrices stored in the Compressed Sparse Row stored
format.

DO I=1, N

K1 = TA(CI)

K2 TA(I+1)-1

Y(I) = DOTPRODUCT(A(K1:K2) ,X(JA(K1:K2)))
ENDDO

FIGURE 1.6 — Sparse Matrix vector product

Notice that each iteration of the loop computes a different component of
the resulting vector. This is advantageous because each of these components
can be computed independently.

22

Solving a lower or upper triangular system is another important kernel in
sparse matrix computations. The following segment of code shows a simple
and parallel routine for solving LX =Y for the CSR storage format.

X(1) = Y(1)
DO I =2, N
K1 = IAL(I)

K2 = IAL(I+1)-1
X(I)=Y(I)-DOTPRODUCT (AL(K1:K2) ,X(JAL(K1:K2)))
ENDDO

F1GURE 1.7 — Computing LX =Y

23

24

Chapitre 2

Nonstationary methods

Contents
2.1 Non-Stationary iterative methods. Symmetric de-
finite positive matrices 25
2.1.1 Definition of the iterative methods 25
2.1.2 Comparison of the iterative methods 27
2.1.3 Condition number and error 28
2.2 Krylov methods for non symmetric matrices, Ar-

noldi algorithm 31
2.2.1 Gram-Schmidt orthogonalization and QR decom-

position o 31

2.2.2 Arnoldi algorithm 32

2.2.3 Full orthogonalization method or FOM 33

2.2.4 GMRES algorithm 35

2.1 Non-Stationary iterative methods. Symme-

tric definite positive matrices

Descent methods

2.1.1 Definition of the iterative methods

Suppose the descent directions p,, are given beforehand. Define

m—+1

m+1 m+1

x ="+ a,p", e =e" —a,p", T =r" — a,, Ap™.

Define the A norm : | ||y||% = (Ay,v).

Theorem 2.1 z is the solution of Ax = b <= it minimizes over RY the

functional J(y) = 3(Ay,y) — (b, y).

25

This is equivalent to minimizing G(y) = 2(A(y — z),y — z) = 3|y — z|)%.
At step m, a,, is defined such as to minimize .J in the direction of p,,. Define
the quadratic function of «

1
om(a) = J(@™ 4+ ap™) = J(z™) — a(r™, p™) + §a2(Apm,pm)'

Minimizing ¢,, leads to

m .M

(p T) m m+1\ __
(Ap™, pm)’ ") =0

oy =

(Tm’pm)Q
Apm’ p'ffl)(A—lrm, Tm)

G = G (1~). o =

m

e Steepest descent (gradient a pas optimal) p™ = r™.

xm—&-l — " 4 am,r,m’ em—i—l — ™ am,r,m’ Tm+1 — ([— amA)pm
rm 2
O = i, (71 =0
)

e Conjugate gradient

")

xm+1 — l,m 4 Oémpm, Ay = (p , T :
(Ap™,p™)
Search p™ as p™ = r™ + B,,p™ !

G(a™) = G(a™)(1 = pim)

(o)

Hm = (Apm,pm)(A—lrm, Tm) (Apm,pm)<A_1’l“m, rm)

Maximize ft,,, or minimize

(Ap™,p™) = B (Ap™H p™ 1) + 2B, (Ap™ ™) + (Ar™, ™)

Apm—lﬂﬁm . .
P = —(ipml pm)l) = (A =0
™2
(rm,rm+1) =0, fBn=——"7"-.
[[rm=t]]?

Properties of the conjugate gradient Choose p® = 7°. Then VYm > 1,
if i £ 0 for i < m.

26

(rm™,p') =0 fori <m — 1.
vec(r®, ... r™) = vec(r®, Ar0 ... A™rY).
vec(p?, ..., p™) = vec(r®, Ar® ... A™r0).

(p™, Ap") =0 for i < m — 1.

(r™ r"y =0 fori <m — 1.

AR ol B

Krylov space K = vec(r®, Ar”, .., A™~1s0).

Theorem 2.2 (optimality of CG) A symétrique définie positive,

2" —zlla= inf ly—=la, [z]a=VaTAz.
yex+Knm,

Theorem 2.3 Convergence in at most N steps (size of the matriz). Fur-

thermore
G(z™) < 4 < wA) - 1) G(z™ 1)

VE(A) +1
The conjugate gradient algorithm
a'chosen, p° =7"=b— Az°

while m < Niter or ||r™|| > tol, do

N
" (Ap™,pm)
ZL‘erl = m _’_ampm’
rmtl = ™ — o, Ap™,
||7,,m+1||2
BWL+1 = HTmHQ 3
prtt = = ™,

end.

2.1.2 Comparison of the iterative methods

Basic example :. 1-D Poisson equation —u” = f on (0, 1), with Dirichlet
boundary conditions u(0) = g,4, u(1) = g4. Introduce the second order finite
difference stencil.

1
n+1’

(0,1) :U([Ej,ZL‘j+1), J]j+1—5(]j:h: j:O,,n

_u(l’7;+1) - QU}EQIZ) + u(@i1) ~ flz;), i=1,...n

27

Uy = Gg, Un4+1 = 9d-

(4)
SUDeqp |W (T
|Uz‘—u($i>|<h2 Pre| ’b]| (@)

12
The vector of discrete unknowns is u =" (uq, ..., uy,).
> -1 i
A 0 £
A= 73 . . b= :
0 1 2 -1 £y
—1 2 fn - i_g

The matrix A is symmetric definite positive.

The discrete problem to be solved is

Au=0>

2.1.3 Condition number and error

Define k(A) = [|A||a]|A7Y|2. If A is symmetric > 0, k(A) = 2axd

min \; °

Theorem 2.4
|2 — x|z

]l

and there is a b such that it is equal.

1o — bl
181l

r(A)

Eigenvalues and eigenvectors of A (h x (n+1) = 1).

4 kmh k
W = — sin? L, o) = (sin SO > ,
1<j<n

h? 2 n+1
) sin? ”%h cos? %h 4
Kj oy pr— ~Y
sin? %h sin? %h m2h?

For any iterative method, the eigenfunctions of the iteration matrix are equal
to those of A.

28

Eigenvectors of A, n=24=16

-0.2 1
—04f \ / \ / .

\ / \ /
-06f \ / \ / 1

\\ //J \ /
—08f \\ / \ /]

/ \ /

1 L L \/ L L { \/ I

0 0.5 1 1.5 2 25 3 35
FIGURE 2.1 — Eigenvectors of A
Algorithm Eigenvalues of the iteration matrix R
. 2
Jacobi Me(J) =1 =2y, = cos(kmh)

Gauss-Seidel

M(L1) = ()2 = cos?(krh)

SOR n = \.(L,,) solution of (n+w — 1)? = nw(Ax(J))>
TABLE 2.1 — Eigenvalues of the iteration matrix
Algorithm Convergence factor n= n=230|n=060
Jacobi cosTh 0.81 0.99 | 0.9987
Gauss-Seidel cos? h 0.65 | 0.981 | 0.9973
1 —sin7h
SOR T 0.26 | 0.74 | 0.9021
1+sinwh
K(A)—1
steepest descent # = cos7h 0.81 0.99 | 0.9987
K(A)—1 h —sinh
conjugate gradient (A) =1 _ cosmh—sinmh | o0 | o856 | 0.0020
VEK(A)+1 cosmh+sinmh

TABLE 2.2 — Convergence factor

29

Algorithm convergence factor p,, | convergence rate F'
Jacobi 1— % %
Gauss-Seidel 1—¢&? g2
SOR 1—2¢ 2e
Steepest descent 1—¢? 1e?
conjugate gradient 1-—2¢ 2e

TABLE 2.3 — Asymptotic behavior in function of € = 7wh

n | Jacobi and steepest descent | Gauss-Seidel | SOR | conjugate gradient
10 56 28 4 4
100 4760 2380 38 37
In(1
TABLE 2.4 — Reduction factor for one digit M ~ — n(FO)

finite differences, n=5
T

rezidual

—S0R

T
Jacobi
Gauss Seidel

Richardzon
conjugate gradient

I I
100 120

iteration

:11] &0

FI1GURE 2.2 — Convergence history, n =5

30

Gauss elimination n?
optimal overrelaxation | n?%/?
FFT nlng(n)
conjugate gradient no/4
multigrid n

TABLE 2.5 — Asymptotic order of the number of elementary operations nee-
ded to solve the 1 — D problem as a function of the number of grid points

finite differences, n=100

T T
— Jacobi
Gauss Seidel

10" ——S0R
Richardson

conjugate gradient

10* \ |
10 \

regidual

10”7 L L L L L L L L L
0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8

iteration win?

FIGURE 2.3 — Convergence history, n = 100

Not only the conjugate gradient is better, but the convergence rate being (9(/11/2)7 the
number of iterations necessary to increases the precision of one digit is multiplied by v/10
when the mesh size is divided by 10, whereas for the Jacobi or Gauss-Seidel it is divided
by 100. The miracle of multigrids, is that the convergence rate is independent of the mesh
size.

2.2 Krylov methods for non symmetric matrices,
Arnoldi algorithm

2.2.1 Gram-Schmidt orthogonalization and ()R decom-

position
Starting with a free family (v1,- -« , v, -+) in a vector space E with a scalar product
(+,-), the process builds an orthonormal family (wy,- -« , Wy, -) recursively.
v
e. Define w; = .
[[o1]

. Note 71,2 = (v, w1), and define ug = vo — r1 2w;y. By construction us is orthogonal to
u

wy. It only remains to make it of norm 1 by defining rg o = |luz||, we = —2
2,2

e. Suppose we have built (w1, --- ,w;_1) an orthonormal basis of L(v1,--- ,v;_1). Take v;

31

and define r; ; = (v;,w;) for 1 <4 < j—1, and

j—1
L]
wj =05 = rigwi, 1=l w; =
T5,3
i=1 >
Then (wn,--- ,w;) is orthonormal. Furthermore, we can rewrite the previous equality as
j—1
vj = T Y rigwi,
i=1

which gives for each j;

J

Uj = Z”'i,jwi . (21)

i=1
Define the matrix K whose columns are the v;, the matrix () whose columns are the wj,

and the upper triangular matrix R whose coeflicients are r; ; for 7 < j, and 0 otherwise.
Then (2.1) takes the matrix form

i
Kij=) mijQri K=QR (2.2)
i=1

The matrix @ is orthogonal, so this is exactly the so-called QR decomposition of the
matrix K. Note that the matrix K DOES NOT NEED TO BE SQUARE, nor the matrix
@, but the matrix R has size m x m.

2.2.2 Arnoldi algorithm

Let A a N x N matrix. The purpose is to build recursively a orthonormal basis of
the Krylov space K,,, = vect(r, Ar,--- , Am~1r) for r € RV, We will take advantage of the
special form of the generating family to proceed a slight modification of Gram Schmidt.

e
Il . |
e. Now we must orthogonalize ¢; and Ar, or equivalently ¢; and Aq; :

e. Define ¢; =

Uz
hii=(Aq,q1), ue=Aq —hi1qi, ho1=usl, ¢= o

s

Then ¢y € Vec(qr, Aqr) = Vec(r, Ar) = Ky and (¢1, g2) is an orthonormal basis of K. All
this can be rewritten as

Agqr = h11q1 + ho1go.
Then K3 = Vec(qr, gz, A’r) = Vec(qi, g2, Agz). Therefore, instead of orthonormalizing
with the new vector A%r, we can do it with the new vector Ags. Define

us
ug = Aga—h12q1 —h22q2, h22 = (Aq2,q2), hi2=(Agq2,q1), h32=|lusl, 3= o
3,2

)

This generalizes in building an orthonormal basis of Xj;1 by

Uj+1

J
ujp1 = Agj — Zhi,j(b’ o hig=(Ag5.4), hjy1j = llujalls g1 = o
1=1 J »J

Theorem 2.5 If the algorithm goes through m, then (qi,...,qm) s a basis of Kp,.

Below is the matlab script

32

for j=1:m do
h(i,j)=(Axv(j,:),v(i,:)) , i=1:i
w(j,:)=Axv(j,:)—sum(h(i,j)v(i,:)
h(j+1,j)=norm(w(j,:),2)
If h(j+1,j) == 0 stop
v(j+1,:)=w(j,:)/h(j+1,7)

The definition of the g; above can be rewritten as

j+1
Agj = th‘qz . (2.3)
i=1
r hia hi,m T
ha1 hao e ham
0 h :
[Aqla"' aAQWL] = [QIa"' 7Qm7Q’m+1] . 3,2
: 0
0 0 0 hm,m—l hmﬂ’n
00 0 0 hmpim |
Hessenberg matrix H,,
Define V,,, = [q1,** ,Gm] € Mnm(R) . Hy, is the m x m matrix obtained from the

(m+ 1) x m matrix H,, by deleting the last row.

Proposition 2.1
Avtm = erIHm = ‘/mHm + h’m+l,m(Jm+IE;{1,a Vr;IlA‘/m - Hm~ (24>

The first identity is just rewriting (2.3). As for the second one, rewrite the first
one in blocks as

H,
b m T :| - VmHm + hm-&-l,QO-ﬁ-leﬁ-
m+1,mem

Vm+1ﬁm - [Vmaqm-i-l] |:

Use this now in the first equality to obtain
AVm =V Hpy + hm-‘,—l,QO-{-leZ;L-

Multiply on the left by V,I'. Since V,,, is orthogonal, and V.2 ¢, 1 = [(q1, @m+1), > (@ms Gma1)]T =
0, we obtain
VI AV, = H,,.

2.2.3 Full orthogonalization method or FOM

Search for an approximate solution in o+ K, (4, r¢) in the form x,, = x¢ + V,,y, and
impose 7., LKC,, (A, ro). This is equivalent to V.17, = 0, which by

Tm =b— A(xo + Viny) = ro — AVipy
can be written by (2.4) as

VEAV,.y = V.Erg or Hpy = ||roller.
The small Hessenberg system

Hmy = HI}()HGI (25)

33

can be solved at each step using a direct method : suppose all the principal minors of H,,
are nonzero. Due to the special structure of H,,, the LU factorization of H,, has the form

1 S 0 U11 S Ut

L 1 - 0 0w S Um
L= 0 1, - >~ |, v=| 0o o

S0 . T 0

0 0 0 Ipq 1 0 0 0 0 Upnm

The following matlab code gives the LU factorization

u(1,:)=h(1,:);

for i=1:m-1
1(i)=h(i+1,i)/u(i,i);

for j=i+l:n
u(i+1,j)=h(i+1,j)-1(i)*u(i,j)
end
end

u(l,:)=h(1,:);
for i=1:m—1
1(i)=h(i+1,1)/u(i,i);
for j=i+l:n
u(i+l,j)=h(i+1,j)—1(i)=u(i,j)
end
end

The computational cost is m? + 2m — 1 operations.

Theorem 2.6 At each step m, 1., is parallel to qm1.-

Tm =T0 — Ame =To — (VmHm + hm+1,QO+1e£)y =To — VmHmy - hm+1,mmem+1'

But H,,y = ||rolle1, therefore ro — Vi Hyy = 1o — ||ro||Viner = 70 — ||70ll¢a = 0. Therefore
T'm = —hm41mYm@Gm+1 1 parallel to gm1.

function [X,R,H,Q]=FOM(A,b,x0);
s FOM full orthogonalization method
[X,R,H,Q]=FOM(A,b,x0) computes the decomposition A=QHQ?, Q
orthogonal
and H upper Hessenberg, Q(:,1)=r/norm(r), using Arnoldi in order to
solve the system Ax=b with the full orthogonalization method. X
contains
% the iterates and R the residuals
n=length(A); X=x0;
r=b—A*x0; R=r; rOnorm=norm(r);
Q(:,1)=r/rOnorm;
for k=1:n
v =AxQ(:,k);
for j=1:k
H(j,k)=Q(:,j) "*xv; v=vH(]j,k)*Q(:,]);

o

o°

o°

o°

end

34

end

e@=zeros(k,1); e0(l)=rOnorm; % solve system
y=H\e0; x= x0+Qxy;
X=[X x];
R=[R b—Axx];
if k<n

H(k+1,k)=norm(v); Q(:,k+1)=v/H(k+1,k);
end

2.2.4 GMRES algorithm

Here we minimize at each step the residual r,, in K,,(A,rg), which is equivalent to

the minimization of J(y) = ||ro — AVipyll2 for y in R™, Use the Proposition to write

10 — AViy = |Irollgr — Vins 1 Himy = Vi1 (Iroller — Hmy).

Since V41 is orthogonal, then

So in FOM we solve EXACTLY the square system H,,y = ||ro|le1, while in GMRES we
solve the LEAST SQUARE problem inf ||||7g|le1 — Hny/||. This small minimization problem
has a special form with a upper Hessenberg form, and is best solved by the Givens reflection

method. Let us consider the case of m =3 (g9 = ||70]|)-
hii hiz hig ”
~ h h h
z = Hzy —ope1 = PO Yo
0 hs2 hss
0 0 has Ys

Iro = AVinyll = [lllroller = Hmy|l-

C1 S1 0 0 1 0 0 0

. —S81 C1 0 0 o 0 C2 S92 0
Q1= 0 0 10| L= —s9 ¢ 0 |

0 0 0 1 0 0 0 1

i1 EL1,2 his ”
h h
Q3Q20Q12 = 0 22 223 Y2
0 0 hgs "
0 0 0

Therefore

where R is the upperblock of the matrix, and ¢! the upperblock of the vector. Now we

o

(=)

0
0
0

Multiply successively by the three (m + 1) x (m + 1) Givens matrices

Qs =

o O o

l2ll* = 1QsQ2Q12]* = || Ry — || + (ca)?

have a regular system, and y is THE solution of

Ry = ¢!,

which is now an upper triangular system.

OO = O

C3
—53

83
€3

function [x,iter,resvec] = GMRES(A,b,restart,tol,maxit)
%GMRES Generalized Minimum Residual Method for Schwarz methods
[x,iter]=GMRES(A,b,RESTART,TOL,MAXIT) uses gmres to solve a

[
“©

system

35

o°

Ax=b where A is defined as the procedure 'A'.
% This is an adapted copy of Matlabs GMRES.

n = length(b);
n2b = norm(b); % Norm of rhs vector, b

% x0=rand(n,1);
% X0 = ones(n,1);

f=1; % all frequencies to initialize
X0 = sin((1:n/2)"'/(n/2+1)*xpixf); x0=[x0; x0];
for f=2:n/2,

X0 = x0+[sin((1:n/2)'/(n/2+41)*pixf); sin((1:n/2)"'/(n/2+1)*xpixf)];
end;

X = x0;

% Set up for the method

flag = 1;
xmin = X; % Iterate which has minimal residual
so far
imin = 0; % Outer iteration at which xmin was
computed
jmin = 0; % Inner iteration at which xmin was
computed
tolb = tol * n2b; % Relative tolerance
if tolb==0,
tolb=tol; % use absolute error to find zero
solution
end;
r =>b— feval(A,x); % Zero—th residual
normr = norm(r); % Norm of residual
if normr <= tolb % Initial guess is a good enough
solution
flag = 0;
relres = normr / n2b;
iter = 0;

resvec = normr;

0os = sprintf(['The initial guess has relative residual %0.2g'
" which is within\nthe desired tolerance %0.2g'
' so GMRES returned it without iterating.'],
relres,tol);

disp(os);

return;

end

resvec = zeros(restartxmaxit+1l,1); % Preallocate vector for norm of
residuals

36

resvec(l) = normr; % resvec(l) = norm(b—Axx0)

normrmin = normr; % Norm of residual from xmin
rho = 1;
stag = 0; % stagnation of the method

% loop over maxit outer iterations (unless convergence or failure)
for i =1 : maxit
V = zeros(n,restart+1); % Arnoldi vectors

h = zeros(restart+1,1); % upper Hessenberg st AxV = VxH

QT = zeros(restart+l,restart+l); % orthogonal factor st QT+*H = R

R = zeros(restart, restart); % upper triangular factor st H = Q
*R
f = zeros(restart,1); % y = R\f => x = x0 + Vxy
W = zeros(n,restart); % W = Vxinv(R)
j =0; % inner iteration counter
vh = r;
h(1) = norm(vh);
V(:,1) = vh / h(1);
QT(1,1) = 1;
phibar = h(1);
for j =1 : restart
j
% MapU(x,sqrt(n),sqrt(n));
u= feval(A,V(:,7)); % matrix multiply

for k=1 : j
h(k) = V(:,k)' % u;
u=u-— h(k) * V(:,k);
end
h(j+1) = norm(u);
V(:,j+1) = u / h(j+1);
R(1:3,3) =QT(1:3,1:3) * h(1:3);
rt = R(j,j);

% find cos(theta) and sin(theta) of Givens rotation

if h(j+1) ==
c=1.0; % theta = 0
s =0.0;

elseif abs(h(j+1)) > abs(rt)
temp = rt / h(j+1);
s =1.0 / sqrt(1.0 + temp™2); % pi/4 < theta < 3pi/4
c = — temp * s;
else
temp = h(j+1) / rt;
c=1.0 / sqrt(1.0 + temp™2); % —pi/4 <= theta < 0 < theta <=
pi/4

37

s = — temp * c;
end

R(j,j) = ¢ * rt — s x h(j+1);
% zero = s x rt + ¢ * h(j+1);

q=QT(j,1:3);
QT(j,1:j) = c * q;
QT(j+1,1:j) = s * q;
QT(j,j+1) = —s;
QT(j+1,j+1) = c;
f(j) = ¢ * phibar;
phibar = s x phibar;

if j < restart
if f(j) == % stagnation of the method
stag = 1;
end
W(:,j) = (V(:,3) —W(:,1:5-1) * R(1:3-1,3))/ R(3,3);
% Check for stagnation of the method
if stag == 0
stagtest = zeros(n,1);
ind = (x ~= 0);
if ~(i==1 & j==1)
stagtest(ind) = W(ind,j) ./ x(ind);
stagtest(~ind & W(:,j) ~= 0) = Inf;
if abs(f(j))*norm(stagtest,inf) < eps
stag = 1;
end
end
end
x =x+ f(j) * W(:,3); % form the new inner iterate
else % j == restart
vrf = V(:,1:5)*(R(1:3,1:3)\F(1:3));
% Check for stagnation of the method
if stag ==
stagtest = zeros(n,1);
ind = (x0 ~= 0);
stagtest(ind) = vrf(ind) ./ x0(ind);
stagtest(~ind & vrf ~= 0) = Inf;
if norm(stagtest,inf) < eps

stag = 1;
end
end
X = x0 + vrf; % form the new outer iterate
end

normr = norm(b—feval(A,x));
resvec((i—1)*xrestart+j+1) = normr;

if normr <= tolb % check for convergence

38

if j < restart

y = R(1:3,1:3) \ f(1:3);
X =x0 + V(:,1:3) * vy; % more accurate computation of xj
r =>b— feval(A,x);

normr = norm(r);
resvec((i—1l)*restart+j+1) = normr;

end

if normr <= tolb % check using more accurate xj
flag = 0;
iter = [1 j1;
break;

end

end

if stag ==
flag = 3;
break;
end

o

if normr < normrmin
normrmin = normr;

s update minimal norm quantities

Xmin = X;
imin = 1i;
jmin = j;
end
end % for j = 1 : restart
if flag == 1
X0 = X; % save for the next outer
iteration
r=>b— feval(A,x0);
else
break;
end
end % for i =1 : maxit

% returned solution is that with minimum residual

if n2b==0,
n2b=1; % here we solved for the zero solution and thus show
end; % the absolute residual !
if flag == 0
relres = normr / n2b;
else
X = xmin;

iter = [imin jmin];
relres = normrmin / n2b;
end

39

% truncate the zeros from resvec
if flag <= 1 | flag ==
resvec = resvec(l:(i—1)*restart+j+1);

else
if j ==
resvec = resvec(l:(i—1)*xrestart+l);
else
resvec = resvec(l:(i—1)xrestart+j);
end
end

[}

% only display a message if the output flag is not used
switch(flag)
case 0,

0os = sprintf(['GMRES(%d) converged at iteration %d(%d) to a'

" solution with relative residual %0.29'],
restart,iter(1),iter(2),relres);

case 1,
os = sprintf(['GMRES(%d) stopped after the maximum S%d
iterations'
" without converging to the desired tolerance
%0.2¢g"
"\n The iterate returned (number %d(%d))'

' has relative residual %0.2g'],
restart,maxit,tol,iter(1),iter(2),relres);

case 2,
os = sprintf(['GMRES(%d) stopped at iteration %d(%d)"
" without converging to the desired tolerance

%0.2¢g"
"\n because the system involving the'
' preconditioner was ill conditioned.'
"\n The iterate returned (number %d(%d))'

' has relative residual %0.2g9'],
restart,i,j,tol,iter(1),iter(2),relres);

case 3,
os = sprintf(['GMRES(%d) stopped at iteration %d(%d) '
' without converging to the\n desired'

' tolerance %0.2g because the method stagnated.'

"\n The iterate returned (number %d(%d))'

40

' has relative residual %0.2g'],
restart,i,j,tol,iter(1l),iter(2),relres);

end % switch(flag)
if flag ==
disp(os);
else
warning(os);
end

semilogy(0:length(resvec)—1,resvec);

Remark If A is symmetric, H,, is tridiagonale.

Restarted GMRES For reasons of storage cost, the GMRES algorithm is mostly
used by restarting every M steps :

Compute x1, -+ ,xp.

If rjs is small enough, stop,

else restart with xg = xp.

41

42

Chapitre 3

Preconditioning

Contents
3.1 Introduction0 ... 43
3.2 Deflation method for GMRES 47
3.2.1 Building the preconditioner 48
3.2.2 Computing the invariant subspace 48
3.2.3 Numerical results 49
3.3 Fast methods using Fast Fourier Transform 50
3.3.1 Presentation of the method 51
3.3.2 Discrete and Fast Fourier Transform 99
3.3.3 The algorithm 59

3.1 Introduction

Preconditioning : purpose

Take the system AX = b, with A symmetric definite positive, and the conjugate
gradient algorithm. The speed of convergence of the algorithm deteriorates when x(A)
increases. The purpose is to replace the problem by another system, better conditioned.
Let M be a symmetric regular matrix. Multiply the system on the left by M ~!.

AX =b <= M 'AX =M1 <= (M 'AMYMX =M""b

Define : B ~
A=M"T1TAM™Y, X=MX, b=M""b,

and the new problem to solve AX = b. Since M is symmetric, A is symmetric definite
positive. Write the conjugate gradient algorithm for this “tilde* problem.
The algorithm for A

X0 given, p°=7"= b— AXO.

While m < Niter or ||7™]| > tol, do

N B H7:7n||2
m - T~ ~, b
N (Ap™,p™)
Xm+1 — Xm-l-Oszm,
Pl = o, AP,
||7:m+1||2
5 +1 = =0
" [Fmf>
P = B

43

Now define

pm — M_lﬁm, Xm — M_le, rm o= Mfm,
and replace in the algorithme above.

The algorithm for A

0 1.0 1 1 1 0 P’ = M0,
Mp"=M"r"=M"b—-M "AM "MX° +—
¥ =b— AXO.
||,i;m||2 _ (M_le,M_lT‘m) — (M_Q’I"m,’l“m)

(Zm—i-l7 rm—i—l)

6m+1 = (varm)

Define [= %" | Then

(Aﬁm,ﬁm) _ (M_lAM_lMpm,Mpm) — (Apm7pm)

(", ™)

= —_—— |
(Apm,pm)

Qg =

MXm+1 — MX™ 4 Othpm ‘X'm—&-l —xm 4 ampm ‘

M=yt = pr=tem o, MY AM T MY = ‘rm"'l =r™ — a, Ap™ ‘

Mp™tt =M~ — B Mp™ = ‘pm“ = 2" — B ap™ ‘

The algorithm for A
Define C' = M?2.

0

solve C2% = 70, 0

X0 given, " =b-—AX", p° =20

While m < Niter or ||r™]|| > tol, do

e
3 (Apm, pm)’
Xm+1 = X"+ Oémpma
rmtl = pm g Ap™,
solve Czmtl = pmtl
B » _ (Zm,—i—l),rm-&-l)
- = ¥ 7/
+1 (flm’rm))
prTt = 2T = Bap™.

How to choose C
C' must be chosen such that

1. A is better conditioned than A,
2. C is easy to invert.

Use an iterative method such that A = C'— N with symmetric C. For instance it can
be a symmetrized version of SOR, named SSOR, defined for w € (0,2) by

1

C=z-w

(D —wEYD YD — wF).

Notice that if A is symmetric definite positive, so is D and its coefficients are positive,
then its square root v/ D is defined naturally as the diagonal matrix of the square roots of
the coefficients. Then C' can be rewritten as

1

- (D—wE)D™ /2,
w(2—w)()

C=5858", with § =

yielding a natural Cholewski decomposition of C.

44

Another possibility is to use an incomplete Cholewski decomposition of A. Even if A
is sparse, that is has many zeros, the process of LU or Cholewski decomposition is very
expensive, since it creates non zero values.

Example : Matrix of finite differences in a square

Poisson equation

1
—(Bru)ig = =55 (Wit = 2uig + vim1g) = 55 (i1 = 2uij +uig-1) = fig,

1<i<M1<j<M

9 10 11 12
5 6 7 8
1 2 3 4

FIGURE 3.1 — Numbering by line

The point (z;,y;) has for number i+ (j —1)M. A vector of all unknowns X is created :

Z = (u1,1,u2,1,un,1), (U1,2,U2,2,Unr,2), - - - (Wi, 01, U, A, UnE, M)

with Zi—i—(j—l)*]\/[= Uj5-
If the equations are numbered the same way (equation #k is the equation at point k), the
matrix is block-tridiagonal :

B -C Ons
) -C B -C
-¢ B -C
O -C B
4 -1 0
-1 4 -1
C = [1\47 = '..
-1 4 -1
0 -1 4

The righthand side is bj4(j_1)«a = fi,j, and the system takes the form AZ = b.

Cholewski decomposition of A

The block-Cholewski decomposition of A, A = RRT, is block-bidiagonale, but the
blocks are not tridiagonale as in A, as the spy command of matlab can show, in the case
where M = 15.

45

100

120

140

160

spy(A)

20 40 [1] 80 100 120 140 160
nz= 2209

spy(R)

However, if we look closely to the values of R between the main diagonales where A
was non zero, we see that where the coefficients of A are zero, the coefficients of R are
small. Therefore the incomplete Cholewski preconditioning computes only the values of R
where the coefficient of A is not zero, and gains a lot of computational time.

¥ ALa0,50:100)
—— h?A(80,ED: 100]

FIGURE 3.2 — Variation
M =15

of the coefficients of Cholewski in the line 80 for

The matlab codes are as follows (|3])

for k=1:nn

Cholewski

end
end

Ch=tril(A);

Ch(k,k)=sqrt(Ch(k,k));

Ch(k+1:nn,k)=Ch(k+1:nn,k)/Ch(k,
Kk);

for j=k+1l:nn
Ch(j:nn,j)=Ch(j:nn,j)—Ch(j:

nn,k)*Ch(j,k);

46

ChI=tril(A);

for k=1:nn
ChI(k,k)=sqrt(ChI(k,k));
for j=k+1l:nn

if ChI(j,k) ~=0
ChI(j,k)=ChI(j,k)/ChI(k
K);
end
end
for j=k+1:nn
for i=j:n
if ChI(i,j) ~=0
ChI(i,j)=ChI(i,j)—
ChI(i,k)*ChI(j,k
);

Incomplete Cholewski

end
end
end
end

Then use C = R+ RT.

Comparison For the 2-D finite differences matrix and n = 25 internal points in each
direction, we compare the convergence of the conjugate gradient and various preconditio-
ning : Gauss-Seidel, SSOR with optimal parameter, and incomplete Cholewski. The gain

even with w = 1 is striking. Furthermore Gauss-Seidel is comparable with Incomplete
Cholewski.

finite diff erences 20, n=25

T T
conjugate gradient
— preconditioned conjugat e gradient Gauss-Seidel
preconditioned conjugate gradient SS0R
preconditioned conjugate gradient IC

FIGURE 3.3 — Convergence history, influence of preconditioning

3.2 Deflation method for GMRES

Contents
3.1 Imtroduction, 43
3.2 Deflation method for GMRES 47
3.2.1 Building the preconditioner 48
3.2.2 Computing the invariant subspace 48
3.2.3 Numerical results 49

3.3 Fast methods using Fast Fourier Transform 50

3.3.1 Presentation of the method 51
3.3.2 Discrete and Fast Fourier Transform 55
3.3.3 The algorithm 59

Recall the restarted GMRES algorithm to solve Az = b :

Algorithm GMRES(m)

Choose g ;

1. To = b—A{EO 5 ﬂ = HT()H, v = To/ﬂ ;

2. Generate the Arnoldi basis applied to A and the associated Hessenberg matrix

H,, starting with vy;

3. Compute y,,, which minimises ||Se; — ffmyH and T, = 2o + VinYm ;

4. If convergence Stop, else set g = x,, and Go To 1 ;

Here we choose a right preconditioning M in order to garantee a non increasing resi-
dual. This would not be true with a left preconditioner since the residual is multiplied by
M-1
This preconditioner can change at each restart. The algorithm becomes

Algorithm PRECGMRES(m)

Choose g ;

Choose M ;

l.ro=b—Axo, B =|roll, v1 :=710/8 ;

2. Generate the Arnoldi basis applied to AM ~! and the associated Hessenberg

matrix .Ffm starting with vq;

3. Compute y,,, which minimises ||8e; — Hpy|| and 2, = zo + M~ Vi ;

4. If convergence Stop, else set zo = z,, update M and Go To 1 ;

The objective of deflation is to remove the smallest eigenvalues of A which slow down
the GMRES convergence. With a restarted GMRES, information on these eigenvalues is
lost which explains why restarted GMRES can be quite slow and even fail to converge.
Deflation aims to replace them by real positive eigenvalues equal to the largest modulus
of the eigenvalues.

3.2.1 Building the preconditioner

In the following we assume that A is diagonalizable in C with eigenvalues |A\1| < |Ag| <
[An -
Let P be an invariant subspace of dimension r corresponding to the r smallest eigenvalues
of A and U an orthonormal basis of P. The deflating preconditioner is based on the idea
that the linear system is solved exactly in space P.

Theorem 3.1 if T = UT AU and M = I,,+U(1/|\o|T—1,)UT then M is non singular and
M=t =L, +U(M|T7t = I,)UT and the eigenvalues of AM ™1 are i1, Aryas ooy Ary [Al
and |A\,| is an eigenvalue of multiplicity at least r.

Note : If only a close approximation P is known , an improved convergence rate is
still to be obtained.

3.2.2 Computing the invariant subspace

The GMRES algorithm provides the Hesssenberg matrix Hy, = VkTAVk, which is the
restriction of A onto the Krylov subspace K (k, A,1q). The eigenvalues of Hj are called
Ritz values. Let H;, = SRS”T be the Schur canonical form of Hj with the eigenvalues
ordered by increasing values. Then vectors U = V.S approximate the Schur vectors of

48

A. The largest Ritz value approximates the largest eigenvalue of A thus providing a first
approximation of M.

After each restart new Ritz values can be estimated approximating eigenvalues of
AM Y also approximating remaining eigenvalues of A. By increasing the invariant sub-
space at each restart , a more powerful preconditioner is thus built.

To avoid loss of orthogonality , these vectors are orthogonalized against the previous basis
U.

Note : In some sense this algorithm recovers the superlinear convergence of the full
GMRES version which behaves as if the smallest eigenvalues were removed. The precondi-
tioner keeps the information on the smallest Ritz values which would be lost by restarting.

Algorithm DEFLGMRES(m)

Choose zj ;
M=1,;
U=

Lorg=b—Axg, B =|rol, vi:=10/B;
2. Generate the Arnoldi basis applied to AM ~! and the associated Hessenberg
matrix ffm starting with vy;
3. Compute y,,, which minimises ||Se; — Eny|| and T, = 20 + M " Vym ;
4. If convergence Stop, else set ;
To =T ;
Compute 1 Schur vectors of H,, noted .5; ;
Compute the approximation of |A,| ;
Orthogonalize V,,,S; against U ;
Increase U with V,,,.5; ;
T=UTAU ;
M t=1L+U(M|T = L)UT
GoTo1;

3.2.3 Numerical results

Results on two matrices of dimension 100 are given . A has the form A = SDS~! with
S = (1,8) an upper bidiagonal matrix.
Case 1: 4=0.9 and D = diag(1,2, ...,100)
Case 2 : =0.9 and D = diag(1, 100, 200, ..., 10000)

DEFLGMRES(10,1) is compared with GMRES(10) and full GMRES . Tolerance is
set to 1078

49

Residual

1 1 1 A
0 20 40 60 80 100 120
Iteration Number

FIGURE 3.4 — Convergence history, Case 1

Residual

DEFLGMRES(10,1)

10 1 b 1 i 1 i i A1 L
0 2 40 680 80 100 120 140 160 180 200

Iteration Number

FIGURE 3.5 — Case 2

3.3 Fast methods using Fast Fourier Transform

Contents
3.1 Introduction 0., 43
3.2 Deflation method for GMRES 47
3.2.1 Building the preconditioner 48
3.2.2 Computing the invariant subspace 48
3.2.3 Numerical results 49

3.3 Fast methods using Fast Fourier Transform 50

20

3.3.1 Presentation of the method 51
3.3.2 Discrete and Fast Fourier Transform 55
3.3.3 The algorithm 59

3.3.1 Presentation of the method

We’ll work with the finite difference approximation of the Laplace equation in dimen-

sion 2.
J (n+1)h, =a
b
o
O)—()—(=) "
5 6 7 8 = B C
I Sl
hy 1 2 3 4 \E/ 0o C
1

hy
N=i+(—-1)n

FIGURE 3.6 — Pavage de [0,a] x [0,b], n = 4
and m = 3

o1

Qo

(n+1)h, =a
© |
>
) =
/N
>/ —
(D)
A o/ S
Yy
)
h a
X
N=i+(—1)n
FIGURE 3.7 — Pavage de [0,a] x [0,b], n =4 and m = 3
242 : 0 0 ! 0 0 0 0 0 0 0
h hy hi h2
2 2 1 1
= w'm & 0 0 7z 0 0 0 0 0 0
1 2 2 1 1
0 i omtE R 0 0 72 0 0 0 0 0
1 2 2 ' 1
0 0 A 0 0 0 7z 0 0 0 0
I 72 I I
7z 0 0 0 Ete i 0 0 2 0 0 0
' 1 12 2 1 ' 1
L T "R wtR e O A T 0
0 oy = 0 0 L 2,2 ! 0 oy = 0
n2 2o on2n2 h2 n2
1 1 2 2 1
0 0 0 —= 0 0 =5 i 0 0 0 —
Y T x) Yy 9 > I y
0 0 0 0 iz 0 0 0 Ete R 0 0
1 1 2 2 1
0 0 0 0 0 7z 0 0 ot 3 0
' 1 1" 2 2 1
0 0 0 0 0 0 — 0 0 = mtm om
0 0 0 0 0 0 oy 1 0 0 1= 2,
h2 2 R h
B C 0
A= C B C
0 C B

2 2 1
17 2 T 1 ;
R2 R2 TR R 2
B= 1 2 T2 1 [=AU,
" TR BmTE TR y
0 0 22
\ 2R)
1
(ﬁ 0 0 0)
a
0 55 0 0)
0 0 — 0 y
hy
1
0

YR

Consider now the general problem Ax = b, where A is a nm X nm symmetric matrix
A, block tridiagonal in the form

B C 0
cC B C
A= A(B,C) = (3.2)
cC B C
0 C B

Each block is a n x n matrix. The vectors b and « can be split by block of size n as well,
27 is the sought solution on the ligne j.

b! x!
b = 5 xr =
bTTL mm
The system can be rewritten as
B C 0 ! b'
cC B C x? b’
¢ B C ||z bt

0 C B ™ b

which is a system of m systems of dimension n :

Bx! + Cz? = b
Cx'~! + Bz’ + Czxit! = b
Cz™ '+ Bz™ = b"

Suppose B and C are symmetric, and diagonalise in the same orthonormal basis
(g',...,q"). This is the case for our previous example. Denote by @ the corresponding

orthogonal matrix Q = [g',...,q"]. There exist two diagonal matrices D' and D? such

that
B=QD'QY, C=QD*Q".
Take for example the first equation
Bz!' 4+ Ca? =b'
and replace B and C' :
QDlQTCBl + QDZQTCEZ — bl

Multiply by Q7 :
DlQTwl +D2QTCB2 — QTbl

Denote by (¢!, y?) the coordinates of (b’, z?) in the new basis :

QTv' =¢', QTa'=vy', 1<i<m.
Then the problem takes the form
Dlyl +D2y2 — cl
D2yi=1 4+ Dlyi + D2yit1 -
D2ym—1 + Dlym = cm

These are all diagonal systems. Take the component number j in each block of the
previous system, for 1 < j <n:

1,1 2,2 1
Djyj JrDjyj = ¢
2, 1—1 1, 2, i+1]
Djyj —&-Djy;-i-Djyj = c

2 m—1 1
Djyj —l—Djy;” = CE"

which is written in matrix form as

o4

1 2 1 1
D; Dy 0 Yj ¢
2 1 2 2 2
Dy Dj Dj Yj ¢
D2 Dl D2 m—1 Cm—l
e Y i
o 0 oi) \up o

For each j, 1 < j < n, define the tridiagonal m x m matrix

Djl- DJQ- 0
2 1 2
Dj Dj Dj
T, =
2 1 2
Dy Dj Dj
2 1
0 Dj DJ
and 2 vectors in R™
¢ vj
d’ = , 2=
c;»” '

We have now n tridiagonal systems of size m,
Tjzl =d’, 1<j<n.

which can be solved in parallel with a LU decomposition for instance. For the 2D Laplace
equation with equidistant grid, the computation of the ¢/ and the reconstruction of can
be done by Fast Fourier transform.

We have to compute for each j, / = Qy’. The matrice C is —— I,,, the matrix B is

1
h3
Aq(hy) + h%ln. The eigenvalues of B are those of A7 + h%, which are h% + }% sin

)

2 kmhg
2

the eigenvectors of B and C' are those of Ay, given by (after orthonormalisation)

® _ | 2 . gk .
¢j = mslnm,].S]Sn,
Define the matrix @ as the matrix of eigenvectors
Q=[eW, ... ")

By
Qu = Z v @)

k=1

2 - . kjm
(Qu); = (QTv); = “nJrl ;vk sin =

Note that the sum can be extended to £ = 0 and £ = n + 1 since the sinus vanishes.

(Qv); = (QTv); = 4/ — ’fv sin T (3.3)
J J n+1 — k n+1" '

The next section is occupied with the FFT, we’ll come back to the algorithm later.

we obtain

3.3.2 Discrete and Fast Fourier Transform

Let n’ = n + 1. The Discrete Fourier Transform of length n’ is defined by

n/
_ggkin
w; = E vpe 2w j=1,---,n.
k=1

95

Define r = ¢?'77 the basic root of unity, then we rewrite the formula above as

wp =Y wer M =1, n (3.4)
k=1

Lemma 3.1 (Inverse DFT) If w = (w;)i<j<n’ 1S the discrete Fourier transform of
v = (vj)i<j<ns from (3.4), then the inverse discrete Fourier transform is given by

1 & .
/szgzwkrkja .7:17"'an/' (35)
k=1

Just replace

’
n

/
n
1 Y
E — E wprkp rki
n/
p=1

k=1

I
3\‘ —
3
i [M]=
LN
S
3
ol
I M{
N
5
=
=
d

Since z = P77 is a n’— root of unity,

3\

for z # 1, 2k =0,
k=1
n/
forz=1, > zF=n'
k=1
Therefore))
L3 0,3
p=1 k=1
and the lemma is proven. |
We now suppose that n’ = 2p. We need to specify more r, that we call r,,. Note for
further use that 7/, = 1 and r”, = —1. Split the sum above into even (k = 2(,{ =1 : p)

and odd terms (k=2{—1,£=1:p). For j=1,---,2p,

TL/ ki
_ —RJ
wj =) VkT,
k=1
P . P .
_ —20j —(20-1)j
wj = Y Ve, A Y VT,
=1 =1
p . p .
—2 j 2
= Ywvary A Y vaeary,
/=1 (=1

Defining for j =1,---,2p,

p p
_ —2¢j _ —2¢j
uj = E v, T, tj = E V21T, -
=1 =1

Then
I
w; = uj + 1,15,
We verify that for each j, uj1p, = u; and tj4, =t; :
Ep: ¢(j+p)
—20(j+p —2¢
Uj4p = V24 Ty =T, pU,j = Uj.
=1

This implies that we only need to compute (u;,%;) for 1 < j < p. Furthermore

. Jtpy . 00 P 2 g
Wjtp = Wjgp + 1/ i = Uj + 175,785 = uy — 1yt

o6

To compute u; and t; note that

P P

.y Py
E vogr,,) = E vae (ri)™
/=1 =1

_ 2ix _ 2inm
But 7"%' — (6 2p)2 =e »p 7‘%, =Tp- Therefore
P P
iy —Lj
uj = E vaery, Y,y = E :U%—l% 7.
/=1 (=1

The sums above are similar sums as that defining w;, but with p = n'/2. This is the
starting point for a dyadic computation of the w; : the Fast Fourier Transform.

To obtain {w;}1<;<2p from {v;}1<j<2p, do
Compute 77, J=1-.p

P p
—0j .y .
Compute u; = g V2T, Tt = E V21T Tog=1p
=1 =1

_ J _ J -
Compute wj; =u; +7r,tj, Wjtp =uj —1)t; j=1--,p.

”/
5 T — g .
r=eXw Jw; = E ver M, j=1,---,n.
c=1

n' =2, r = —1, initialization w; = —v; + vy, Wy = vy + Va.

function w=myFFT(v)
% MYFFT fast Fourier transform
% w=myFFT(v); computes recursively the Fourier tranform of
% the vector v whose length must be a power of 2.
n=length(v);
if n==2,

w=[—v(1)+v(2);v(1)+v(2)];

else
rp=exp(2ixpi/n*(1:n/2)"');
t=myFFT(v(1l:2:n-1));
u=myFFT(v(2:2:n));
w=[u+rp.*t; u—rp.x*t];
end;

57

n/
21 %, —ki . ,
7‘:612"”/711)]': g VT /s,]’]:1,"‘,71.
k=1

n' = 2, r = —1, initialization w; = —v; + vy, wo = vy + va.

function w=myFFT(v)
% MYFFT fast Fourier transform
% w=myFFT(v); computes recursively the Fourier tranform of
% the vector v whose length must be a power of 2.
n=length(v);
if n==2,

w=[—v(1)+v(2);v(1)+v(2)];

else
rp=exp(2ixpi/n*(1l:n/2)"');
t=myFFT(v(1:2:n-1));
u=myFFT(v(2:2:n));
w=[u+rp.*xt; u—rp.*xt];
end;

;| P (25\ 24 2i
; 2
’"py 2 — 2i

() \

N

4

FIGURE 3.8 - FFT for n' =4

It is easy to count the number of operations in the algorithm to be O(nlog,(n)), which
is much better than blockLU.

o8

3.3.3 The algorithm

We now show how to obtain the computation of Qu in (3.3) with FFT.

veR” n=n+1EVEN

Qv = %_HzER", zj=kasinkg,” 1<j<n,
k=1
o =[v;0] e R,
! kjm
DFT (%) = w € R", wj = Y O e 2 <j<n
k=1
n/ k
Note first that z; =) o sin “L% as well. Consider first the even indices 22, -+, 2p,—1 :
k=1
nl
. 2km n—1
Zog = U sin —— = —Imw,, (=1, .
n 2
k=1
Consider now the odd indices, z1,--- , 2,

noo_ _ik@(-Dnx n’ _ ikm. _oském
Zo0o1 = —Im > fpe = —Im Y (Gpetn e 2w

k=1 k=1

L ikm
= —Im(DFT({oge'"" }i))e, €=1,---, ”'2"1.

Resuming with matlab notations

QFFT
To = €i%
(Qu)ae = —\/727 Im(FFT(®)),, ¢=1,-- 551
QU)o = — %H Im(FFT (o - *ro(lzn')'))e’ (=1,... 2
Summarizing the solution of
B C 0 2! b
C B C x? b2
C B C mm,—l bmfl

Step 1 : FFT Compute ¢/ = Q7b’ by (3.6) for 1 < j < m.

Step 2 : Sort {c!,---,e™} The righthand side has been build by rows in the mesh :
b’ is the vector of the values of the forcing term on the line y = j h,,.

29

| L L] ’ | []
ﬂ[\h&/ n @ (5 (b) ——()—— b3
N 2T

7y h b ——(0)——(b5)——0) b
T]

N=i+(j—-1)n by

FIGURE 3.9 — Numbering

€2 €1
c3 cy
ci c3
4 CRr Y
c3 e g gl cs
c3 \c}l 3) c3
3 c3
s ci
s ci

FI1GURE 3.10 — Renumbering

The total vector o is numbered from 1 to nm, with N = i+ (j — 1) *n. The matrix
C is built as follows

o(l:n) —=C(,1) for j=1:m

on+1:2n) —C(:2) C(:,3)=sig((j—1)*n+1:j*n)
end

o((m—-1n+1:mn) — C(;,m)
and then instead of reading the columns, we read the rows.

Step 3 : Solving the n tridiagonal systems of size m,
szj:dj, 1<75<n.

60

with d’ = C(j,:), and

1 2
D! D? 0
2 1 2
Di Dj Dj
T, = :
2 1 2
Di Dj Dj
0 p? D!
1 2 4 jmh
D)=—-—— D= 4 "~ gn? 21—
T TR T TRt)

Step 4 : Reordering the 2/ into y’

Step 5 : Recovering 7 = Qy’ by (3.6).

For this method, we talk about FFT preconditioning, since the system Au = b is
premultiplied by the block-diagonal matrix

QT
QT 0
Q =
0 QT
That is we write
QAQT Qu = Qb.

61

62

