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Figure 1 – Composite material
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On considère un domaine bidimensionnel (le carré unité) assimilé à un matériau conducteur

de la chaleur, non homogène. On note a(x) la conductivité au point x, de telle sorte que

le flux de chaleur est donné par la loi de Ficke J = −a(x)∇u, où u est le champ de

température. On s’intéresse à la conductivité apparente de ce matériau définie selon le

protocole suivant : on porte la frontière Γ3 et Γ1 aux températures 0 et 1, respectivement,

et on suppose nul le flux de chaleur au travers des bords latéraux Γ2 et Γ4.
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Le système s’écrit donc
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−∇ · a(x)∇u = 0 dans Ω

∂u

∂n
= 0 sur Γ2 ∪ Γ4

u = 1 sur Γ1

u = 0 sur Γ3

(1)

Le flux de chaleur traversant la plaque s’écrit

J = −
∫

Γ3

a
∂u

∂n
.

On définit la conductivité apparente comme la constante de proportionalité entre le flux

moyen et le gradient de température (L représente dans ce qui suit la largeur puis la

hauteur du domaine) : J/L = −aapp(0− 1)/L, d’où

aapp = −
∫

Γ3

a
∂u

∂n
.
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Figure 2 – Computational domain

Composite material are everywhere nowadays, in the building, aircrapfts, chairs, etc..
It is important to understand their mechanical and thermical properties.
Start with a heat conducting material, non homogeneous, occupying the space delimite

by a square. a(x) denotes the conductivity at point xxx, and the heat flux is given by the
Ficke law, J = −a(xxx)∇u, where u is the temperature. We are interested in computing the
apparent conductivity of the material, defined as follows :
The boundaries Γ1 and Γ3 are heated to 0 and 1 respectively, and the heat flux across

the lateral boundaries Γ2 and Γ4 are supposed to be zero. The system is

−∇(a(x)∇u) = 0 in D
∂nu = 0 on B2 ∪B4

u = 1 on B1

u = 0 on B3

(1)

We are searching for a solution u ∈ H1(D). The apparent conductivity is the ratio between
the mean flux and the temperature gradient, that is

aapp = −
∫

B3

a∂yu(x, y)dx

We will suppose that the square is (0, 3)× (0, 3), that the conductivity depends on x only
and

a(x) = 1 on (0, 1), a(x) = ε on (1, 2), a(x) = 1 on (2, 3)

The aim of this work is to compute the apparent conductivity.
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1 Closed form computations

1. 1. By separation of variables, if u(x, y) = v(x)w(y), give the equations for v
and w, together with their boundary conditions. Each of these functions is a solution of
an eigenvalue problem for a second order operator in one dimension.

1. 2. Show that the equation in x amounts to solving with k ∈ R,

(a(x)v′)′ + k2av = 0 in (0, 3), with v′(0) = v′(3) = 0.

show that for j = 0, . . . 2, vj in Dj = (j, j + 1) is solution of u′′ + k2u = 0, and that the
transmission conditions are enforced

v1(1) = v2(1), v2(2) = v3(2),
v′1(1) = εv′2(1), εv′2(2) = v′3(2).

From this compute explicitely the vj for fixed k up to a constant, and then use the
boundary conditions to obtain an equation giving k. Determine k and then w.

1. 3. Therefore we can expand u as u =
∑

k v
k(x)wk(y). Deduce from that the

apparent conductivity of the material with respect to ε when keeping N nodes in the sum
above.

2 Numerical computations

2. 1. Write a variational formulation and show well-posedness through Lax-Milgram
theorem.

2. 2. Use the matlab codes available, modify the newmesh to deal with the different
coefficients.Modify the finite element code to take the Neumann condition into account.

2. 3. Write a routine computing the apparent conductivity.
2. 4. Fix ε = 0.1. Compute the apparent conductivity for refined values of the

step size, and compare with the solution obtained by keeping N modes in the expansion
above.

2. 5. Choose ε = 10−4. Compute the apparent conductivity for refined values of
the step size, draw the solution, and see what the mesh size must be to be accurate. What
is the computational time in this case ?

2. 6. The FEM solver furnished are based on the use of the backslash \ of matlab.
Change it to a Krylov solver. Answer to the previous question.

2. 7. Add a Incomplete Cholewski preconditioner and compare the computational
cost.
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