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TP 1 : You can’t Always Hear the Shape of a Drum. Multigrid
algorithm

Figure 1 – Cocotte (left) and arrow (right)

http://www.ams.org/samplings/feature-column/fcarc-199706

This question has a mathematical counterpart that we are going to investigate. It is
based on the problem defined in a domain D ⊂ R2,

∂ttu−∆u = 0 in D × (0,+∞)
u = 0 on ∂D × (0,+∞)
u = u0 on D × (0)
∂tu = u1 on D × (0)

(1)

We suppose the initial conditions to be smooth enough (u0 ∈ H1
0 (D)∩H2(D), u1 ∈ H1(D))

so that the theory ensures a unique solution in
C(]0,∞[;H1

0 (D) H2(D)) C1(]0,∞[;H1
0 (D)) C2(]0,∞1[;L2(D)). We suppose the initial

conditions to be smooth enough (u0 ∈ H1
0 (D) ∩H2(D), u1 ∈ H1(D)) so that the theory

ensures a unique solution in C(]0; 1[;H1
0 (D) H2(D)) C1(]0; 1[;H1

0 (D)) C2(]0; 1[;L2(D)).

1 Radial solutions

We suppose that the membrane is exactly the disc of center O and radius 1.

1. 1. Prove that if the initial data are radial, the solution is radial as well.
1. 2. Using the formula for the laplacian in polar coordinates, find the equation

(∗) that v(r, t) = u(x, t) satisfies on (0, 1)× (0,+∞).
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2 Solution of the radial equation by finite differences

2. 1. Write an explicit finite differences scheme to solve (∗) with initial data u0 = 0
and u1(x; y) = −((sinh

√
x2 + y2)2−1)2. Test the stability and the precision of the scheme.

2. 2. Write an implicit finite difference scheme for the same problem. Same ques-
tions. Compare with the explicit scheme

3 Solution of the 2−D problem by finite elements

3. 1. Write the variational formulation and discretize in space-time with a θ-
scheme and P1 finite elements. Use the matlab script delivered. Analyze the stability and
the precision with respect to θ, h and dt.

3. 2. Mass lumping. Is there a stage where the system becomes so large that the
solution comes too slowly ? In that case one uses either “mass-lumping”, or preconditioning.
Write a script and compare the two options.

4 Multigrid solution

Each step of the resolution needs the resolution of a big linear system. The tools in the
script given to you uses the “backslash” \ of matlab.

3. 3. Apply multigrid at each time step.

5 You can’t hear the form of the drum

Consider to the two domains on the first page.
3. 4. Design the geometric mesh (each domain is a gathering of 7 unit triangles)

Apply the previous study to compute the solution of the wave equation with oscillatory
initial data.

6 Further documents

— One cannot hear the shape of a drum, Authors : Carolyn Gordon, David L. Webb and
Scott Wolpert, Journal : Bull. Amer. Math. Soc. 27 (1992), 134-138. http://www.
ams.org/journals/bull/1992-27-01/S0273-0979-1992-00289-6/S0273-0979-1992-00289-6.
pdf

— More on this problem https://www.maa.org/sites/default/files/pdf/upload_
library/22/Ford/MarkKac.pdf
https://www.math.ucdavis.edu/~saito/courses/LapEig/lecpdf/lecture15.pdf
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TP 2 : You can’t Always Hear the Shape of a Drum.

Substructuring

Figure 1 – Cocotte (left) and arrow (right)

http://www.ams.org/samplings/feature-column/fcarc-199706

This question has a mathematical counterpart that we are going to investigate. It is
based on the problem defined in a domain D ⊂ R2,

∂ttu−∆u = 0 in D × (0,+∞)
u = 0 on ∂D × (0,+∞)
u = u0 on D × (0)
∂tu = u1 on D × (0)

(1)

We suppose the initial conditions to be smooth enough (u0 ∈ H1
0 (D)∩H2(D), u1 ∈ H1(D))

so that the theory ensures a unique solution in
C(]0,∞[;H1

0 (D) H2(D)) C1(]0,∞[;H1
0 (D)) C2(]0,∞1[;L2(D)).

1 Radial solutions

We suppose that the membrane is exactly the disc D1 of center O and radius 1.

1. 1. Prove that if the initial data are radial, the solution is radial as well.
1. 2. Using the formula for the laplacian in polar coordinates, find the equation

(∗) that v(r, t) = u(x, t) satisfies on (0, 1)× (0,+∞).
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2 Radial oscillatory solution of the radial equation by
finite differences

2. 1. By separation of variables v(r, t) = φ(x)ψ(t), show that the solution oscillates
in time, and that φ is solution of an eigenvalue problem denoted by (∗∗).

2. 2. Write a finite differences scheme to solve (∗∗) and deduce an approximate
value of the five first frequencies. Compute and draw the eigenmodes.

3 Oscillatory Solutions of the 2−D problem by finite
elements

3. 1. By separation of variables in (1), : u(x; t) = Φ(x)Ψ(t), show that the solution
oscillates in time, and that Φ is solution of an eigenvalue problem denoted by (∗ ∗ ∗).

3. 2. Write the variational formulation and obtain a matrix eigenvalue problem
when using P1 finite elements.

3. 3. Use the matlab script delivered to solve the eigenvalue problem in case of the
disk D1.

3. 4. Compute the first five modes, and compare with the radial modes.

4 You can’t hear the difference

Consider to the two domains on the previous page.
4. 1. Design the geometric mesh (each domain is a gathering of 7 unit triangles)
4. 2. Compute the first 10 modes for these domains and compare the results.
4. 3. Apply a substructuring process to compute the eigenmodes. Write the eigen-

mode problem, and solve it by finite elements.

5 Further documents

— A matlab library for finite elements graciously provided by Martin Gander (Genève
University) and Felix Kwok (Hong-Kong Baptiste University).

— One cannot hear the shape of a drum, Authors : Carolyn Gordon, David L. Webb and
Scott Wolpert, Journal : Bull. Amer. Math. Soc. 27 (1992), 134-138. http://www.
ams.org/journals/bull/1992-27-01/S0273-0979-1992-00289-6/S0273-0979-1992-00289-6.
pdf
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TP 3 : Why is it difficult to resolve the waves. Preconditioning

Figure 1 – Waves in a pool

Diving in a pool creates surface waves which can be modelized by the wave equation
∂ttu−∆u = 0 in D × (0,+∞)
u = 0 on ∂D × (0,+∞)
u = u0 on D × (0)
∂tu = u1 on D × (0)

(1)

We suppose the initial conditions to be smooth enough (u0 ∈ H1
0 (D)∩H2(D), u1 ∈ H1(D))

so that the theory ensures a unique solution in
C(]0,∞[;H1

0 (D) H2(D)) C1(]0,∞[;H1
0 (D)) C2(]0,∞1[;L2(D)). We suppose the initial

conditions to be smooth enough (u0 ∈ H1
0 (D) ∩H2(D), u1 ∈ H1(D)) so that the theory

ensures a unique solution in C(]0; 1[;H1
0 (D) H2(D)) C1(]0; 1[;H1

0 (D)) C2(]0; 1[;L2(D)).

1 Separation of variables

We suppose that the domaine is exactly the square of lenght 1. The pool is at rest at
initial time, u1 = 0. We search a solution in the form u(x, t) = v(x)ψ(t).

1. 1. Show that u and φ are solutions of two problems, and give explicitely th e
equations, the initial equations and the boundary data.

1. 2. Prove that v is solution of the Helmholtz equation in D, i.e. ∆v + ω2v = 0
in D with Dirichlet data on the boundary. Deduce the behavior of ψ.

1. 3. ω2 is therefore an eigenvalues of −∆ in D. By separation of variables again,
compute the eigenvalues and eigenfunctions.
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2 Solution of the Helmholtz equation

We suppose that a disturbance is injected in the pool, with a frequency k which is NOT
an eigenvalue of −∆ in D. We therefore have to solve{

∆u+ k2u = f in D
u = 0 on ∂D (2)

2. 1. Write the variational formulation in H1(D). Does the Lax-Milgram lemma
applies ? Why ? Prove that the bilinear form satisfy a Garding inequality, which ensures
well-posedness for this problem (see ref 4).

3 Numerical solution of the Helmholtz equation

3. 1. Discretize in space with P1 finite elements the Dirichlet problem. The matrix
is symmetric but not definite positive !

3. 2. In the FEM script, replace the matlab backslash \ by a Jacobi, Gauss-Seidel
algorithm, or Krylov algorithm (choose the last one carefully, the matrix is not definite).
Run the algorithm with a source close to a Dirac on the north-east corner. Study the
performance of the algorithm with respect to the mesh size(and hence the size of the
matrix) and the frequency k. What happens when j is close to an eigenvalue ?

3. 3. Propose a preconditioner seen in the lecture for the problem, and study again
the performance. Compare with the Laplace equation.

3. 4. Apply a multigrid solver with relaxed Jacobi smoother to the problem. What
happens ?

4 Further documents

— When all else fails, integrate by parts, an overview of new and old variational formu-
lations for linear elliptic PDEs. E.A. Spence. http ://people.bath.ac.uk/eas25/ibps.pdf

— Why it is Difficult to Solve Helmholtz Problems with Classical Iterative Methods, Oli-
ver G. Ernst and Martin J. Gander. https://www.unige.ch/~gander/Preprints/
HelmholtzReview.pdf
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TP 4 : The best way to solve to compute acoustics : domain
decomposition

Figure 1 – Acoustic computation in a twingo

As seen in TP3, the computation of acoustics in a structure relies on the resolution of
the Helmholtz equation

∆u+ k2u = f in D (1)

1 Dimension 1

Consider the interval D = (−1, 1).
1. 1. Show that the problem , with boundary condition u = 0 at x = ±1. as a

unique solution u ∈ C2(D) for f ∈ C(D), unless k takes the value π/2 + nπ, for n ∈ Z.
1. 2. Show that the problem , with boundary condition u′ = iku at x = −1 and

u′ = −iku at x = 1. as a unique solution u ∈ CCC2(D) for f ∈ C(D), for any k ∈ R.
(Attention, f is a real function, but the solution u takes complex values) .

1. 3. Build a P1 finite element approximation of the two problems, computing un ∈
VN = P1(x0, . . . , xn+1). Theoretical results say that if hk2 ≤ C, the finite approximation
is quasi-optimal, that is

‖u− un‖1 ≤ C ′min
v∈Vn

‖u− v‖1

Estimate the right hand side (to be found in so many textbooks) and check numerically
the result, using f = 1 on (−0.5, 0.5), 0 elsewhere.
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2 Domain decomposition in one dimension

An approximation of the solution is given by dividing the interval into two subdomains
D1 = (−1, L) and (D2 = (0, 1) with L > 0.. A sequence of problems is introduced, unj is
the solution at step n in Dj,

−dxxun1 + k2un1 = f in D1 −dxxun2 + k2un2 = f in D2

un1 (−1) = 0 u
(
1L) = un−12 (L) un2 (0) = un−11 (0) un2 (1) = 0

With data at step n = 0, u02(L) ≡ g1 and u01(0) ≡ g2.
2. 1. Show that the error unj − u is solution of the same algorithm with data

f ≡ 0, u02(L) ≡ g1 − u(L) and u01(L) ≡ g2 − u(0). Show that un1 = an sin k(x + 1) and
un2 = bn sin k(1− x) and find the recursion relation between the an and the bn.

2. 2. Analyze the convergence factor and show that for any k it is convergent
except for an numerable set of values of L. What happens when k is large ? Draw the
curve of convergence of the an for various relevant values of k.

2. 3. Compute the sequence by finite elements, and compare the curve of conver-
gence of ‖u − unj ‖L2(Dj) to the curve of the an for various relevant values of k, h and
h.

3 Improvement for domain decomposition in one
dimension

We replace the transmission conditions above by

(dx + ik)u
(
1L) = (dx + ik)un−12 (L), (dx − ik)un2 (0) = (dx +−ik)un−11 (0).

With data at step n = 0, u02(L) ≡ g1 and u01(0) ≡ g2.
3. 1. Show that the error unj − u is solution of the same algorithm with data

f ≡ 0, u02(L) ≡ g1 − u(L) and u01(L) ≡ g2 − u(0). Show that un1 = an sin k(x + 1) and
un2 = bn sin k(1− x) and find the recursion relation between the an and the bn.

3. 2. Analyze the convergence factor and show that for any k it is convergent
except for an numerable set of values of L. What happens when k is large ? Draw the
curve of convergence of the an for various relevant values of k.

3. 3. Compute the sequence by finite elements, and compare the curve of conver-
gence of ‖u − unj ‖L2(Dj) to the curve of the an for various relevant values of k, h and
h.

4 Further documents

— When all else fails, integrate by parts, an overview of new and old variational formu-
lations for linear elliptic PDEs. E.A. Spence. http ://people.bath.ac.uk/eas25/ibps.pdf

— Une méthode de décomposition de domaine pour le problème de Helmholtz, Bruno
Després, In french.

— Why it is Difficult to Solve Helmholtz Problems with Classical Iterative Methods, Oli-
ver G. Ernst and Martin J. Gander. https://www.unige.ch/~gander/Preprints/
HelmholtzReview.pdf
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TP 5 : Effective coefficient of a composite material.

Preconditioning

Figure 1 – Composite material

MAP431
Propriétés effectives d’un matériau composite

Sujet proposé par B. Maury

Bertrand.Maury@math.u-psud.fr

On considère un domaine bidimensionnel (le carré unité) assimilé à un matériau conducteur

de la chaleur, non homogène. On note a(x) la conductivité au point x, de telle sorte que

le flux de chaleur est donné par la loi de Ficke J = −a(x)∇u, où u est le champ de

température. On s’intéresse à la conductivité apparente de ce matériau définie selon le

protocole suivant : on porte la frontière Γ3 et Γ1 aux températures 0 et 1, respectivement,

et on suppose nul le flux de chaleur au travers des bords latéraux Γ2 et Γ4.

B1

B2

B3

B4

D

∂u/∂n = 0 ∂u/∂n = 0

u = 0

u = 1

Le système s’écrit donc





−∇ · a(x)∇u = 0 dans Ω

∂u

∂n
= 0 sur Γ2 ∪ Γ4

u = 1 sur Γ1

u = 0 sur Γ3

(1)

Le flux de chaleur traversant la plaque s’écrit

J = −
∫

Γ3

a
∂u

∂n
.

On définit la conductivité apparente comme la constante de proportionalité entre le flux

moyen et le gradient de température (L représente dans ce qui suit la largeur puis la

hauteur du domaine) : J/L = −aapp(0− 1)/L, d’où

aapp = −
∫

Γ3

a
∂u

∂n
.

1

Figure 2 – Computational domain

Composite material are everywhere nowadays, in the building, aircrapfts, chairs, etc..
It is important to understand their mechanical and thermical properties.
Start with a heat conducting material, non homogeneous, occupying the space delimite

by a square. a(x) denotes the conductivity at point xxx, and the heat flux is given by the
Ficke law, J = −a(xxx)∇u, where u is the temperature. We are interested in computing the
apparent conductivity of the material, defined as follows :
The boundaries Γ1 and Γ3 are heated to 0 and 1 respectively, and the heat flux across

the lateral boundaries Γ2 and Γ4 are supposed to be zero. The system is

−∇(a(x)∇u) = 0 in D
∂nu = 0 on B2 ∪B4

u = 1 on B1

u = 0 on B3

(1)

We are searching for a solution u ∈ H1(D). The apparent conductivity is the ratio between
the mean flux and the temperature gradient, that is

aapp = −
∫

B3

a∂yu(x, y)dx

We will suppose that the square is (0, 3)× (0, 3), that the conductivity depends on x only
and

a(x) = 1 on (0, 1), a(x) = ε on (1, 2), a(x) = 1 on (2, 3)

The aim of this work is to compute the apparent conductivity.

1



1 Closed form computations

1. 1. By separation of variables, if u(x, y) = v(x)w(y), give the equations for v
and w, together with their boundary conditions. Each of these functions is a solution of
an eigenvalue problem for a second order operator in one dimension.

1. 2. Show that the equation in x amounts to solving with k ∈ R,

(a(x)v′)′ + k2av = 0 in (0, 3), with v′(0) = v′(3) = 0.

show that for j = 0, . . . 2, vj in Dj = (j, j + 1) is solution of u′′ + k2u = 0, and that the
transmission conditions are enforced

v1(1) = v2(1), v2(2) = v3(2),
v′1(1) = εv′2(1), εv′2(2) = v′3(2).

From this compute explicitely the vj for fixed k up to a constant, and then use the
boundary conditions to obtain an equation giving k. Determine k and then w.

1. 3. Therefore we can expand u as u =
∑

k v
k(x)wk(y). Deduce from that the

apparent conductivity of the material with respect to ε when keeping N nodes in the sum
above.

2 Numerical computations

2. 1. Write a variational formulation and show well-posedness through Lax-Milgram
theorem.

2. 2. Use the matlab codes available, modify the newmesh to deal with the different
coefficients.Modify the finite element code to take the Neumann condition into account.

2. 3. Write a routine computing the apparent conductivity.
2. 4. Fix ε = 0.1. Compute the apparent conductivity for refined values of the

step size, and compare with the solution obtained by keeping N modes in the expansion
above.

2. 5. Choose ε = 10−4. Compute the apparent conductivity for refined values of
the step size, draw the solution, and see what the mesh size must be to be accurate. What
is the computational time in this case ?

2. 6. The FEM solver furnished are based on the use of the backslash \ of matlab.
Change it to a Krylov solver. Answer to the previous question.

2. 7. Add a Incomplete Cholewski preconditioner and compare the computational
cost.
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TP 6 : Effective coefficient of a composite material and domain
decomposition

Figure 1 – Composite material

MAP431
Propriétés effectives d’un matériau composite

Sujet proposé par B. Maury

Bertrand.Maury@math.u-psud.fr

On considère un domaine bidimensionnel (le carré unité) assimilé à un matériau conducteur

de la chaleur, non homogène. On note a(x) la conductivité au point x, de telle sorte que

le flux de chaleur est donné par la loi de Ficke J = −a(x)∇u, où u est le champ de

température. On s’intéresse à la conductivité apparente de ce matériau définie selon le

protocole suivant : on porte la frontière Γ3 et Γ1 aux températures 0 et 1, respectivement,

et on suppose nul le flux de chaleur au travers des bords latéraux Γ2 et Γ4.

B1

B2

B3

B4

D

∂u/∂n = 0 ∂u/∂n = 0

u = 0

u = 1

Le système s’écrit donc





−∇ · a(x)∇u = 0 dans Ω

∂u

∂n
= 0 sur Γ2 ∪ Γ4

u = 1 sur Γ1

u = 0 sur Γ3

(1)

Le flux de chaleur traversant la plaque s’écrit

J = −
∫

Γ3

a
∂u

∂n
.

On définit la conductivité apparente comme la constante de proportionalité entre le flux

moyen et le gradient de température (L représente dans ce qui suit la largeur puis la

hauteur du domaine) : J/L = −aapp(0− 1)/L, d’où

aapp = −
∫

Γ3

a
∂u

∂n
.

1

Figure 2 – Computational domain

Composite material are everywhere nowadays, in the building, aircrapfts, chairs, etc..
It is important to understand their mechanical and thermical properties.
Start with a heat conducting material, non homogeneous, occupying the space delimite

by a square. a(x) denotes the conductivity at point xxx, and the heat flux is given by the
Ficke law, J = −a(xxx)∇u, where u is the temperature. We are interested in computing the
apparent conductivity of the material, defined as follows : The boundaries Γ1 and Γ3 are
heated to 0 and 1 respectively, and the heat flux across the lateral boundaries Γ2 and Γ4

are supposed to be zero. The system is

−∇(a(x)∇u) = 0 in D
∂nu = 0 on B2 ∪B4

u = 1 on B1

u = 0 on B3

(1)

We are searching for a solution u ∈ H1(D). The apparent conductivity is the ratio between
the mean flux and the temperature gradient, that is

aapp = −
∫

B3

a∂yu(x, y)dx

We will suppose that the square is (0, 3)× (0, 3), that the conductivity depends on x only
and

a(x) = 1 on (0, 1), a(x) = ε on (1, 2), a(x) = 1 on (2, 3)

The aim of this work is to compute the apparent conductivity.

1



1 Global computations

1. -2. Write a variational formulation and show well-posedness through Lax-
Milgram theorem.

1. -1. Use the matlab codes available, modify the newmesh to deal with the different
coefficients.Modify the finite element code to take the Neumann condition into account.

1. 0. Write a routine computing the apparent conductivity.
1. 1. Fix ε = 0.1. Compute the apparent conductivity for refined values of the

step size, and compare with the solution obtained by keeping N modes in the expansion
above.

1. 2. Choose ε = 10−4. Compute the apparent conductivity for refined values of
the step size, draw the solution, and see what the mesh size must be to be accurate. What
is the computational time in this case ?

2 Domain decomposition in the y direction

An approximation of the solution is given by dividing the domain into two subdomains
D1 = (0, 3) × (0, 2) and (D2 = (0, 3) × (2 + L, 3) with L > 0. A sequence of problems is
introduced, unj is the solution at step n in Dj,

−∇(a(x)∇un1 ) = 0 in D1 −∇(a(x)∇un+1
2 ) = 0 in D2

∂xu
n
1 (0, y) = 0 un1 (x, 2 + L) = un−12 (x, 2 + L) un+1

2 (x, 2) = un1 (x, 2) ∂xu
n+1
2 (3, y) = 0

With data at step n = 0, u02(x, L) ≡ g1 and u01(x, 0) ≡ g2.
2. 1. Write a solver computing the sequence by finite elements.
2. 2. Take for initalization of the algorithm g1 = sin kπx and g2 = 0, and show the

iterates for various values of k and ε. Draw the curve of convergence of ‖u− unj ‖L2(Dj) for
each k and various relevant values of h and ε.

3 Improvement for domain decomposition in one
dimension

3. 1. Compute numerically the eigenmodes of the one-dimensional operator in x,
that is (λ, v) solution of

(a(x)v′)′ + λav = 0 in (0, 3), with v′(0) = v′(3) = 0.

3. 2. What happens in the previous algorithm if the initial guess is the first mode ?
3. 3. (optional) Replace the transmission conditions above by

(dy + p)un1 (x, L) = (dy + p)un−12 (L), (dy − p)un+1
2 (0) = (dy − p)un1 (0).
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TP 7 : Understanding and computing corner singularities for a
vibrating plate

Figure 1 – DIfffraction by a corner

�

�
⌦

↵

Figure 2 – Computational object

This subject aims at exploring the finite element method for elliptic problems, when
the geometry is singular and not convex. In that case, the solution is not in H2(D), and
therefore optimal error estimates are not available, for regular finite element methods.
Consider a metallic uniform plane plate, represented by the disk of center O and radius

1, cropped with an angle α > π, see Figure . The object is fixed on the internal boundary
γ, and free to vibrate on the remaining boundary Γ. The vertical vibrations are described
by the wave equation

∂2
t u−∆u = f in Ω × R+

u = 0 on γ × R+

∂nu = 0 on Γ× R+

(1)

and initial conditions u and ∂tu at initial time.

1 The steady problem

We first consider the steady problem , that is solving

−∆u = f in Ω
u = 0 on γ

∂nu = 0 on Γ
(2)

1. 1. Let φ decreasing and C2 on (0, 1), such that φ(1) = 0, φ′(0) = φ(1) = φ′(1) = 0
(give an example). Define in polar coordinates

u0(r, θ) = φ(r) r
π
α sin(

π

α
θ)

Show that u0 ∈ H1(Ω), u0 = 0 on γ and ∂nu = 0 on Γ (remember that ∂nu = ∇u · n, and
use the form of gradient and laplacian in polar coordinates

∇u = ∂ruer +
1

r
∂θueθ, ∆u =

1

r
∂r(r∂ru) +

1

r2
∂2
θ u

1



Compute ∆u0 and verify that it belongs to L2(Ω). Therefore it is solution of (2).
1. 2. Write the variational formulation of (2) in the space H1

γ = { v ∈ H1(Ω), v =
0 on γ}.

1. 3. Compute the solution with P1 finite elements, using the script PDE provided,
using f = ∆u0 as a source. Choose the function φ you want.

1. 4. Analysis : What is the numerical convergence order of the approximation :
if p is the order, that means that ‖u − uh‖L2 ∼ C(u)hp. If you draw the error for three
values of h on the same plot in loglog scale, you should recover a straight line, whose slope
is p. It can be calculated by

p ∼ log2

‖u− uh‖
‖u− uh/2‖

How the numerical order does it depend on α ∈ (0, 2π). ?
1. 5. For a regular domain, a theoretical result says that p = 2. It relies on the

following result : if ∆u ∈ L2(Ω), then u ∈ H2(Ω) ∩H1
0 (Ω). Does u0 belong to H2(Ω) ?

2 Singularity coefficient

From now on α ∈]π, 2π[. We give below some theory in functional analysis. Let L be
the operator

L : L2(Ω) → H1
γ ,

f 7→ u solution of (2)

Now define V = Range(L), then we have

H2(Ω) ∩ V = { v ∈ H2(Ω) ∩H1
γ(Ω), ∂nv = 0 on Γ}

2. 1. What do you think the convergence rate should be if u ∈ H2(Ω)∩V ? Check
this numerically.

2. 2. Note H = L−1(H2(Ω) ∩ V ), and D its orthogonal in L2(Ω)

H = { f ∈ L2(Ω), ∃v ∈ H2(Ω)∩V, −∆v = f}, D = { f ∈ L2(Ω), ∀v ∈ H2(Ω)∩V,
∫

Ω

f∆v = 0}.

Define the function p in polar coordinates by

p(r, θ) = cα(r
π
α + r−

π
α ) sin

π

α
θ, cα =

√
2

α

1− (π/α)2

2− (π/α)2

Show that p ∈ D and ‖p‖L2 = 1. We admit that D is of dimension 1 and H is closed
in L2(Ω). For f ∈ L2(Ω), we note c(f) and call singular coefficient the quantity c(f) =
(p, f)L2(Ω).

2. 3. For any f ∈ L2(Ω), define f̃ = f − c(f)p. Show that f̃ ∈ H.
2. 4. Write a matlab script to compute an approximation of c(f). Verify that the

order of approximation is at least 1 (test on f = p).

3 Approximation of the singular part

3. 1. Show that −∆u0 6∈ H. Deduce that for any f in L2(Ω), there exists a real
number β(f) such that L(f)− β(f)u0 ∈ H2(Ω) ∩ V .

3. 2. (Optional) Note β0 = β(p). Then β0 = 1/(πcα).
3. 3. Show that that for any f in L2(Ω), f + c(f)β0∆u0 ∈ H. What do you think

of the finite element approximation of L(f + c(f)β0∆u0 ∈ H) ? ‘
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3. 4. Propose and realize an approximation ûh of L(f) which is of order two, that
is

‖u− ûh‖L2(Ω) ≤ Ch2‖f‖L2(Ω)

Verify numerically the order of convergence for f ≡ 1.

4 Eigenvalue problem

We admit that there exist a complete set of eigenfunctions of L, that is a sequence
(φn) ⊂ H1(Ω) orthonormal in L2(Ω), and a sequence (λn) ⊂ R+ with

Lφn = φn, −∆φn = λnφn, φn = 0 on γ, ∂nφn = 0 on Γ.

We want to compute the fundamental mode of the structure, that is the largest eigen-
value of L 1/λ1, together with the fundamental mode φ1. We will use the method of power
or Von Mises iteration which computes the largest eigenvalue of an operator when it is
simple. The initialization is with v0 ∈ L2(Ω). Then solve

ṽk+1 = L(vk) or equivalently−∆ṽk+1 = vk, ṽk+1 = 0 on γ, ∂nṽk+1 = 0 on Γ.

and normalize by µk+1 = ‖ṽk+1‖, vk+1 = ṽk+1/µk+1‖. It can be shown that if the eigenvalue
λ1 is simple (which is the case) and v0 has a non-void component on φ1, then the sequence
vk converges to ±φ1 and the sequence µk converges to λ1.

4. 4. Write a solver for the method of power iteration, for the problem above with
regular solution, that is α ∈ (0, π).

4. 5. Extend the solver to the problem above with singular solution, that is α ∈
(π, 2π).
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Figure 1 – DIfffraction by a corner
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Figure 2 – Computational object

This subject aims at exploring the finite element method for elliptic problems, when
the geometry is singular and not convex. In that case, the solution is not in H2(D), and
therefore optimal error estimates are not available, for regular finite element methods.
Consider a metallic uniform plane plate, represented by the disk of center O and radius

1, cropped with an angle α > π, see Figure . The object is fixed on the internal boundary
γ, and free to vibrate on the remaining boundary Γ. The vertical vibrations are described
by the wave equation

∂2
t u−∆u = f in Ω × R+

u = 0 on γ × R+

∂nu = 0 on Γ× R+

(1)

and initial conditions u and ∂tu at initial time.

1 The steady problem

We first consider the steady problem , that is solving

−∆u = f in Ω
u = 0 on γ

∂nu = 0 on Γ
(2)

1. 1. Let φ decreasing and C2 on (0, 1), such that φ(0) = 1, φ′(0) = φ(1) = φ′(1) = 0 
(give an example). Define in polar coordinates

u0(r, θ) = φ(r) r
π
α sin(

π

α
θ)

Show that u0 ∈ H1(Ω), u0 = 0 on γ and ∂nu = 0 on Γ (remember that ∂nu = ∇u · n, and
use the form of gradient and laplacian in polar coordinates

∇u = ∂ruer +
1

r
∂θueθ, ∆u =

1

r
∂r(r∂ru) +

1

r2
∂2
θ u

1



Compute ∆u0 and verify that it belongs to L2(Ω). Therefore it is solution of (2).
1. 2. Write the variational formulation of (2) in the space H1

γ = { v ∈ H1(Ω), v =
0 on γ}.

1. 3. Compute the solution with P1 finite elements, using the script PDE provided,
using f = ∆u0 as a source. Choose the function φ you want.

1. 4. Analysis : What is the numerical convergence order of the approximation :
if p is the order, that means that ‖u − uh‖L2 ∼ C(u)hp. If you draw the error for three
values of h on the same plot in loglog scale, you should recover a straight line, whose slope
is p. It can be calculated by

p ∼ log2

‖u− uh‖
‖u− uh/2‖

How the numerical order does it depend on α ∈ (0, 2π). ?
1. 5. For a regular domain, a theoretical result says that p = 2. It relies on the

following result : if ∆u ∈ L2(Ω), then u ∈ H2(Ω) ∩H1
0 (Ω). Does u0 belong to H2(Ω) ?

2 Singularity coefficient

From now on α ∈]π, 2π[. We give below some theory in functional analysis. Let L be
the operator

L : L2(Ω) → H1
γ ,

f 7→ u solution of (2)

Now define V = Range(L), then we have

H2(Ω) ∩ V = { v ∈ H2(Ω) ∩H1
γ(Ω), ∂nv = 0 on Γ}

2. 1. What do you think the convergence rate should be if u ∈ H2(Ω)∩V ? Check
this numerically.

2. 2. Note H = L−1(H2(Ω) ∩ V ), and D its orthogonal in L2(Ω)

H = { f ∈ L2(Ω), ∃v ∈ H2(Ω)∩V, −∆v = f}, D = { f ∈ L2(Ω), ∀v ∈ H2(Ω)∩V,
∫

Ω

f∆v = 0}.

Define the function p in polar coordinates by

p(r, θ) = cα(r
π
α + r−

π
α ) sin

π

α
θ, cα =

√
2

α

1− (π/α)2

2− (π/α)2

Show that p ∈ D and ‖p‖L2 = 1. We admit that D is of dimension 1 and H is closed
in L2(Ω). For f ∈ L2(Ω), we note c(f) and call singular coefficient the quantity c(f) =
(p, f)L2(Ω).

2. 3. For any f ∈ L2(Ω), define f̃ = f − c(f)p. Show that f̃ ∈ H.
2. 4. Write a matlab script to compute an approximation of c(f). Verify that the

order of approximation is at least 1 (test on f = p).

3 Approximation of the singular part

3. 1. Show that −∆u0 6∈ H. Deduce that for any f in L2(Ω), there exists a real
number β(f) such that L(f)− β(f)u0 ∈ H2(Ω) ∩ V .

3. 2. (Optional) Note β0 = β(p). Then β0 = 1/(πcα).
3. 3. Show that that for any f in L2(Ω), f + c(f)β0∆u0 ∈ H. What do you think

of the finite element approximation of L(f + c(f)β0∆u0 ∈ H) ? ‘

2



3. 4. Propose and realize an approximation ûh of L(f) which is of order two, that
is

‖u− ûh‖L2(Ω) ≤ Ch2‖f‖L2(Ω)

Verify numerically the order of convergence for f ≡ 1.

4 Substructuring

The domain Ω is divided into two parts, in any of these two configurations

�

�⌦1

⌦2

↵
I

Figure 3 – Subdivision 1

�

�

↵⌦2

I

Figure 4 – Subdivision 2

Start with the regular case.
4. 1. Split the domain Ω into two domains Ωj with angle α/2 (Figure 4). Design one

mesh in each subdomain, with the same interface mesh on I. The substructured problem
can be designed as follows : take g on I, solve the problem 2 in each subdomain with data
g on I, call Lj(f, g) the solution in Ωj. Then the problem to be solved is

A1(f1, g) +A2(f2, g) = 0, fj = f |Ωj .

This is a linear problem, solved by iteration, like Richardson or Krylov method.
4. 2. Design the iteration process, using Gauss-Seidel algorithm.
4. 3. Plot the iterates, and the convergence history.
4. 4. Do the same for the non regular case.
4. 5. Do the same for Decomposition 1 in Figure 4.
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Figure 1 – Ventilation in a house

1 Modelisation

1. 1. Draw a scheme of your room with walls, windows, doors and main furnitures.
The temperature in the room occupying a geometrical domain Ω, is subject to variations

due to source of heating (or cooling) and boundary conditions on the walls, windows and
doors. The Fourier’s law asserts that the equation modelizing the temperature in the room
is subject to the heat equation

c(x)ρ(x)∂tu−∇(K∇u) = Q (1)

where c(x) is the specific heat, ρ(x) is the density, and K(x) the thermal conductivity
of the material at point x. Q(x, t) is used to represent any external sources or sinks (i.e.
heat energy taken out of the system) of heat energy. If Q(x, t) > 0 then heat energy is
being added to the system at that location and time and if Q(x, t) < 0 then heat energy
is being removed from the system at that location and time.
The initial data u0 tells us what the initial temperature distribution in the room is.
The boundary data tell us what happens on the walls and doors and windows. There

are of four different sorts.
Prescribed temperature or Dirichlet boundary condition .

u = g

Prescribed heat flux or Neumann boundary conditions . Using Fourier’s low it can
be written

−K∂nu := −K∇u · n = g

where n is the exterior unit normal to the boundary. If the boundary is insulated, i.e.
there is no heat flow out of them then the boundary conditions reduces to ∂nu = 0.

1



Newton’s law of cooling or Robin boundary conditions . These are usually used
when the material is in a moving fluid and note we can consider air to be a fluid for
this purpose. In a room they can stand for wind coming from a window.

−K∂nu := H(u− g),

where H is a positive quantity that is experimentally determined, and g gives the
temperature of the surrounding fluid at boundary.

Periodic boundary conditions They arise from particular geometries like a disk or an
infinite channel

we can also mix and match these boundary conditions so to speak.
1. 2. Write a two dimensional model for the temperature in your room, and give

precisely the boundary conditions on the wall, doors and windows. The source Q might
be a heater (or a cooler !).

2 Insight on the heat equation in one dimension

Suppose the room is compressed into a nail Ω of length L., with constant density,
specific heat, and thermal conductivity. Suppose the nail with initial temperature u0(x),
x ? (0,L) is placed between two ice cubes. We assume that the nail is thin enough so that
we can consider it to be one dimensional. The ice cubes are naturally at temperature zero,
and they touch the nail at both extremities. This defines the boundary conditions of the
problem, and therefore we treat the heat equation

∂tu− ∂xxu = 0 in Ω× (0, T ),

with given initial value u0.
2. 1. Show that the solution tales the form of a series

u(x, t) =
∑
k

φk(x)ψk(t),

and give the explicit form for the basis functions φk(x) and ψk(t). For each j = 1, 510,
u0 = sin(jpix/L), draw on the same plot the value of u at different times.

2. 2. Suppose now that Neumann conditions are imposed at each end of the nail.
What physical meaning does it have ? Can you also get the solution explicitely. Draw
some snapshots of the solution.

3 The steady state in two dimensions

Suppose again that the room has constant density, specific heat, and thermal conduc-
tivity. It seems from the 1-D analysis that a steady state can be reached. Suppose the
heat furnished by the heater is f(x) independent of time. At the moment the temperature
u si stabilized in the room, it does not depend on time anymore, and is solution of the
Poisson equation

−∆u = f

If there is no external force, we have the Laplace equation −∆u = 0.
3. 1. Write the the matlab script NewMeshinto Myroommesh to insert the geometry,

the material properties, and the boundaries of your room.
3. 2. When the heater is off, and the windows and doors are at 20◦C, draw the

temperature repartition.
3. 3. Compute now a very warm day with 30 degrees outside, and the door are

20◦C.
3. 4. Turn the cooler on a temperature of 20◦C.
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4 The heat equation in two dimensions

In the same geometry, we now want to solve the heat equation with a θ schéma. Let
K be the stiffness matrix and M the mass matrix in the finite element approximation of
−∆ with the boundary conditions designed in Section 3. The semi-discrete approximation
of the problem (1) (with the simplification in the previous section) is uh(t) =

∑
ξi(t)φi,

where the φ are the basis functions in the finite element methods

∂t −∆u = f ;M∂tξ +Kξ = Gh

where Gh represents all sources contained in the volume and on the boundaries. This is
now an ordinary differential equation we solve by the θ scheme. Let a time discretisation
of the interval (0, T ) with step dt. The approximation of uh at time tn is denoted by unh,
and the scheme is :

M
ξn+1 − ξn

dt
= θ(Gn+1

h −Kξn+1) + (1− θ)(Gn
h −Kξn) (2)

When θ = 0, it is called forward Euler, when θ = 1, it is called backward Euler, and for
θ = 1/2, it is called Crank-Nicolson.

4. 1. Write a matlab program called Heat taking as entries θ, the data and the
spacial geometry, and computing the sequence of values in time. The initial value is a
gaussian centered at the center of the room, there is no source, the boundary data are
zero everywhere, but on the window where the temperature it is equal to 0.5 for t ≥ 0.1.

4. 2. It is well establish that for θ = 0 the scheme is stable for θ sufficiently small
and of order 1 in time, and inconditionnally stable and of order 1 for θ = 1/2. Illustrate
this result by numerical computation (find the relevant theory in reference 6.

5 Substructuring

Suppose the problem is first discretized in time by the implicit Euler scheme

un+1 − un

dt
−∆un+1 = Gn+1.

Split the domain Ω into two rectangular subdomains Ωj. Design one mesh in each subdo-
main, with the same interface mesh on I. The substructured problem can be designed as
follows : take g(t) on I, solve the problem ?? in each subdomain with data g on I, call
Lj(f, g) the solution in Ωj. Then the problem to be solved is

A1(f1, g) +A2(f2, g) = 0, fj = f |Ωj
.

This is a linear problem, solved by iteration, like Richardson or Krylov method.
4. 3. Design the iteration process, using Gauss-Seidel algorithm.
4. 4. Plot the iterates, and the convergence history.

6 Further documents

— http://tutorial.math.lamar.edu/Classes/DE/TheHeatEquation.aspx
— Quarteroni Valli, Numerical approximation of partial differential equations.
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