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@ Direct methods

@ Stationary iterative methods

© Non-Stationary iterative methods
@ Preconditioning

© Krylov methods for non symmetric matrices
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Purpose

Solve AX = b.

@ A is a squared matrix,

@ b is a given righthand side,
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Purpose

Solve AX = b.

@ A is a squared matrix,

@ b is a given righthand side, or a family of given righthand sides

3/60



Direct methods

Outline

@ Direct methods
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Direct methods
Description

1 3 1 9
1 1 -1 = 1
3 11 6 36
~ —— N——
A X b
1 3 1,9 1 3 1,9 1 3 1,9
11 -1]1 10 -2 -2|-8 ] =10 -2 —-2|-8
3 11 6 |36 0 2 319 0 0 1|1
1 00 13 119 1 3 119
-1 10 1 1 —-1]1 =0 -2 -2|-8
-3 11 3 11 6 |36 0 0 1|1

M (Alb) (UIMb)
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Direct methods

Ax = b < Ux: MAx = Mb

M is a preconditioner

1 00 1 0 0
M=| -1 10| —L=M'=]1 1 0
311 3 -1 1

U=MA <—= A=LUAx=b < LUx=0b

© LU decomposition 0(2—?)3) elementary operations.
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Direct methods

Ax =b «<— Ux: MAx = Mb

M is a preconditioner

1 00 1 0 0
M= -110| —L=MI=[1 1 0
-3 11 3 -1 1

U=MA < A=LUAx=b — LUx=b

© LU decomposition O( ) elementary operations.
@ Solve Ly =b O(n?) elementary operations.
© Solve Ux =y O(n

2) elementary operations.

For P values of the righthand side, Ny, ~ % + P x 2n?.
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Direct methods

Theoretical results

Theorem 1 Let A be an invertible matrix, with principal minors
# 0. Then there exists a unique matrix L lower triangular with

lii =1 for all i, and a unique matrix U upper triangular, such that
A = LU. Furthermore det (A) = [[\_; uii.

Theorem 2 Let A be an invertible matrix. There exist a
permutation matrix P, a matrix L lower triangular with /;; = 1 for
all 7, and a matrix U upper triangular, such that

PA=LU
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Direct methods
Sparse and banded matrices

Wilkinson 69" : any matrix with enough zeros that it pays to take
advantage of them.

p=3
( 2 1 0——1 0 0 0 \
3] 472 3 0 7O 0 0
0. —12 NEREERERL
0 0 -—-244 -7 0 0
0 0 —-40 0 5 1 4
0 0 0 0 —-60 6 —23
\ 0 0 0 0 0 -8 0 )

A banded matrix, upper bandwidth p = 3 and lower bandwidth
g = 2, in total p+ g + 1 nonzero diagonals.
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Direct methods

0
(<]
O
=
-
(g0}
S
e
[}
e
c
(g0}
o)
e
[
()
Q
(V2]
—
T
o
wn

0

0

-3.3 2.81

0

-

(=]

9/60

3.

= 2, and U upperbanded p =

L lowerbanded g



Direct methods

Manipulating sparse matrices in matlab

>>A=spdiags([e -2%e e],-1:1,n,n)

>>S=sparse([2 3 1 2],[1 1 23],[2413]) A=
S =

(2,1 2 1,0 -2
(3,1 4 (2,1 1
1,2) 1 (1,2) 1
(2,3) 3 (2,2) -2
>>§= (2,3) (3,2) 1
oo T F (2,3) )
1,1 1 (3,3 -2
(2,2) 1 (4,3 1
>>n=4; (3,4) 1
>>e=ones(n,1) (4,4) -2
°7 >>full(A)
1 ans =
1
1 -2 1 0 0
1 1 -2 1



Direct methods

Manipulating sparse matrices in matlab

>>B = repmat((1:n)’,1,3)
B =

1
2
3

w N =

>>full (A)

=W N

4 4
>>A=spdiags(B,[-2 0 1],n,n) ans =
A =

(1,1)
(3,1)
(1,2)
(2,2)
(4,2)
(2,3)
(3,3)
(3,4)
(4,4)

O = O =
N O NN
O W w o

S s oo

W WwWNDDNDN R

11/60



Direct methods
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Direct methods
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Direct methods

Cholewski

36 x 36 sparse matrix of 2 — D finite differences in a square.
With the command spy de matlab

% a0 3 g T i 3

g i 75

W 20
nz=156 ne=221

A bandmatrix sparse matrix Corresponding Cholewski
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Direct methods

Summary

Direct methods for small full systems

Iterative methods — matrix vector product — sparse systems.
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Stationary iterative methods

Outline

© Stationary iterative methods
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Stationary iterative methods
Stationary iterative methods

AX=b; A=M-N; MX = NX + b,
MXmM+L = NX™ + b,
UseA=D-E-F.

@ Jacobi : M = D diagonal part of A.
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Stationary iterative methods
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Stationary iterative methods
Stationary iterative methods

AX=b; A=M-N; MX = NX + b,
MX™HL = NX™ + b.
UseA=D-E-F.
@ Jacobi : M = D diagonal part of A.

© Gauss-Seidel : M = D — E lower part of A.
© Relaxation :

M=lp_E N=F+1ZYp_E
w w
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Stationary iterative methods
Stationary iterative methods

AX=b; A=M-N; MX = NX + b,
MXmM+L = NX™ + b,
UseA=D-E-F.

@ Jacobi : M = D diagonal part of A.
© Gauss-Seidel : M = D — E lower part of A.
© Relaxation :

1 1-—
M=-D-E N=F+—"D-E
w w
@ Richardson algorithm

X = XM _ pr™ = X™ — p(AX™ — b)

17/60



Stationary iterative methods
Stationary iterative methods

AX=b; A=M-N; MX = NX + b,
MX™+L = NX™ + b.
UseA=D-E-F.
@ Jacobi : M = D diagonal part of A.

Q Gauss-Seidel : M = D — E lower part of A.
© Relaxation : 0m+1 obtained by Gauss-Seidel,

X = 0™t 4 (1 —w)X™.

o e nersl=¥ ¢
w w
@ Richardson algorithm

XM= XM _ pr™ = X™ — p(AX™ — b)

M =
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Stationary iterative methods
Stationary iterative methods

AX=b; A=M-N; MX = NX + b,
MXmM+L = NX™ + b,
UseA=D-E-F.

@ Jacobi : M = D diagonal part of A.
© Gauss-Seidel : M = D — E lower part of A.
© Relaxation :
M=lp_E N—F+1Z% _F
w

w

@ Richardson algorithm
XL = XM pr™ = X™ — p(AX™ — b)
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Stationary iterative methods
Stationary iterative methods

AX=b; A=M-N; MX = NX + b,
MXmM+L = NX™ + b,
UseA=D-E-F.

@ Jacobi : M = D diagonal part of A.
© Gauss-Seidel : M = D — E lower part of A.
© Relaxation :

M=lp_E N—F+1Z% _F
w

w

@ Richardson algorithm

XL = XM pr™ = X™ — p(AX™ — b)

_1 _ 2
M - pl popt - )\1+)\n
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Stationary iterative methods

Stationary methods, continue

MX™HL = NX™ + b <= MX™1 = (M- A)X™+b
= Xml = (] - M71A)X" + M~1b
<= fixed point algorithm to solve M~1AX = M~1p
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Stationary iterative methods
Stationary methods, continue

MX™ = NXT 4+ b = MXT"Tl = (M- A)X™+b
= X™ = (] - M TAX"+ M 1h
<= fixed point algorithm to solve M~1AX = M~1p

Preconditioning

AX = b M~TAX = M~1b
X =(

— M71A)X + M~1b
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Stationary iterative methods
Stationary methods, continue

Error €™ := X — X™,
Residual r™:=b— AX™ = AX — AX™ = Ae™.

MX™ = NX™ + b
MX = NX + b
Me™ 1 = Ne™

™ = M~ Ne™

Useful alternative formula R = I — M~ 1A.
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Stationary iterative methods

Fundamentals tools

X™1 = RX™4+ b, e"l=Re™ R=MIN.
Theorem The sequence is convergent for any initial guess X° if
and only if p(R) < 1.

p(R) = max{|\|, A eigenvalue of A} : convergence factor.

le™ ]
< p(R
S p(R)
le™]
Convergence rate C = — Injg p(R). ||e™ ]| ~ 10~|[e™].

C digits per iteration.
To reduce the initial error by a factor ¢, we need

le™]]

oo S (R ~

Ine

SO we have M ~ m
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Stationary iterative methods

M-matrices

Definition : A € R™" is a M-matrix if
(1] a,-,->0fori:1,...,n,
Q@ a;<0fori#,j, i, j=1,...,n,
© A is invertible,
Q0 Al>o

Theorem If Ais a M-matrix and A= M — N is a regular splitting
(M is invertible and both M~ and N are nonnegative), then the
stationary method converges.
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Stationary iterative methods

Symmetric positive definite matrices

Householder-John theorem : Suppose A is positive. If
M+ MT — Ais positive definite, then p(R) < 1.

Corollary
Q@ If D+ E + F is positive definite, then Jacobi converges.
Q If w € (0,2), then SOR converges.
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Stationary iterative methods

Tridiagonale matrices

Q o(L1) = (p(J))? : Jacobi Gauss-Seidel converge or diverge
simultaneously. If convergent, Gauss-Seidel is twice as fast.

@ Suppose the eigenvalues of J are real. Then Jacobi and SOR
converge or diverge simultaneously for w €]0, 2][.

© Same assumptions, SOR has an optimal parameter

w* = p(Ly+) =w* — 1.

L4y g )
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Non-Stationary iterative methods

Outline

© Non-Stationary iterative methods
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Non-Stationary iterative methods

Descent methods. A sdp

The descent directions p,, are given. Define
Xm+1 — Xm_{_ampm’ em+1 — em_ampm’ rm+1 _ rm_amApm'

Theorem X is the solution of AX = b <= it minimizes over RV
the functional J(y) = 3(Ay,y) — (b, y).

Equivalent to minimizing

G(y) = H(Ay = X),y — X) = Ly — X2,

At step m, minimize J in the direction of p,,

(pm’ rm) m _.m+1
Oy = ey p ’r = O
(Apmypm) ( )

(rm, pm)2

G(Xm+1) = G(X")1 = pm),  pm = (Ap™, p™)(A=Lrm, rm)
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Non-Stationary iterative methods

Steepest descent (gradient a pas optimal)

pm=r".

XM= XM ypq ™ e™l =eM—a ™ ™ = (1—anA)p™.

O = ||rm”2 (m m+1)_0
T (Armpm)’ Tor B

66 = 66 (1 G yasram )< (1) S0
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Non-Stationary iterative methods

Conjugate gradient

XM= X"+ amp™,  am= (i\ppn; rpn3)7 (rm p" ) =0.

Search p™ as p™ = r™ + Bpp™ 1
G(x™) = G(x™)(1 - pm)
N - I
(Ap™, p™)(A=Lrm rm) — (Ap™, pm)(A~trm, rm)
Maximize i, or minimize
(Ap™,p™) = Ba(Ap™ 1, p™ ) + 2Bm(Ap™ L, rT) + (AFT, ™)

(Apm—l7 rm)

O = ~apm T prry  ~ APTTPT) =0
m _m+1y\ __ _ ”rmHZ
(r", rm) =0, Bm= T(;;;:i](i.
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Non-Stationary iterative methods

Other properties

Choose p® = r%. Then Vm > 1, if r' #£ 0 for i < m.
O (r",p')=0fori<m-—1.

Definition Krylov space K, = vec(r® Ar9 ... Am~1/0)
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Non-Stationary iterative methods

Other properties
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Non-Stationary iterative methods

Other properties

Choose p® = r%. Then Vm > 1, if r' # 0 for i < m.
Q@ (rm,p')=0fori<m-—1.
Q@ vec(r®,...,r™) = vec(r® A0, ... A™/D).
© vec(p®,...,p™) = vec(r® A0, ... A™(0).
Q (p™,Ap') =0fori<m-—1.
Q@ (rm,ry=0fori<m-—1.
Definition Krylov space KC,,, = vec(r®, Ar®, ... A™~1/0),

Theorem (optimality of CG) A symétrique définie positive,

X" =xlla=_inf |y =xlla, [Ix]la=VxTAx.
yexP+Km
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Non-Stationary iterative methods

Final properties

Convergence in at most N steps (size of the matrix)

k(A) -1

VE(A)+1

Theorem ||x™||a < 2 me_1||A
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Non-Stationary iterative methods

The algorithm

X%hosen, p°=r"=b-— AXO.

While m < Niter or ||[r™|| > tol, do

B 12
m =
(Ap™, pm)’
Xm+1 - Xm +Oémpm,
rmtl = M, Ap™,
Hrm+1H2
pm+1 — rm—i—l o Berlpm-
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Non-Stationary iterative methods

1-D Poisson problem
Poisson equation —u” = f on (0, 1),
Dirichlet boundary conditions u(0) = gz, u(1) =gq .
Second order finite difference stencil.

1
n+1

(O,I)ZU(XjanJrl)y Xj+1_Xj:h: ) j:0,...,n.

u(Xit1) — 2u(xi) + u(xi-1)
h2

~f(xj), i=1,...n

Up = 8g, Untl1 = &d-

SUPxe[a, ) |4 (X)]

C—u(x)| < W
|ui — u(x;)] < 12
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Non-Stationary iterative methods

1-D Poisson problem

Discrete unknowns U =t (uy, ..., up).
2 1 f—%
) -1 2 -1 0 >
0 -1 2 -1 fa_1
12 . — &

The matrix A is symmetric definite positive.

Discrete problem to be solved is

AX =b

32/60



Non-Stationary iterative methods

Condition number and error

AX =b, AX=h
Define 1(A) = ||All2||A~Y||2. If Ais symmetric > 0, r(A) = D2

min \; °

Theorem . .
IX = X]l2 1b — bl
=0 < g(A)—2
1X112 15112

and there is a b such that it is equal.

Eigenvalues of A (h x (n+ 1) =1).

)\k = ﬁ(l — COS m) = ﬁ sin T) vk = (Sin )1§"§”’
(A) sin® ”%h cos? %h 4
K = = ~
sin2 2k sin2z8  m2h?
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Non-Stationary iterative methods

Comparison of the iterative methods

Algorithm spectral radius p(R) | n=5 | n=30
Jacobi cosTh 0.81 0.99
Gauss-Seidel (p(J))* = cos’ mh 0.65 0.98
SOR L= sinmh 026 | 0.74
1+sinmh
K(A) -1
steepest descent m 0.81 0.99
jugate gradient VK@) -1 051 | 0.86
conjugate gradien Y .
jugate & VK(A)+1
1
Reduction factor for one digit M ~ ————— :
Logp(R)
n Jacobi | Gauss-Seidel | SOR | St Des | CG
10 56 28 4 56 8
100 4759 2380 37 4759 74
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Non-Stationary iterative methods

Asymptotic behavior

Algorithm spectral radius
Jacobi 1-— %2h2,
Gauss-Seidel 1— 72h?,
SOR 1—2wh
gradient 1—mh,
. . mh
conjugate gradient 1-— bR

35/60



Non-Stationary iterative methods

Convergence history

. e dtornes s . e atarsnces =100
1w 1w
]
- Gauss seidl
on w n
Retartsan Retwrtson
10* conjugate gradient conjugate gradient
e \
104
W i} \
H H
B e [
w 10
10"
10?
10"
aa 0™
w
' 10
EI T T [T T ) L R B R R R
teration teration xi0?
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Non-Stationary iterative methods

Number of elementary operations

Gauss elimination n’
optimal overrelaxation n3/2
FFT nlna(n)
conjugate gradient n°/4
multigrid n

Asymptotic order of the number of elementary operations needed
to solve the 1 — D problem as a function of the number of grid
points

37/60



Preconditioning

Outline

@ Preconditioning
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Preconditioning

Preconditioning : purpose

Take the system AX = b, with A symmetric definite positive, and
the conjugate gradient algorithm. The speed of convergence of the
algorithm deteriorates when x(A) increases. The purpose is to
replace the problem by another system, better conditioned. Let M
be a symmetric regular matrix. Multiply the system on the left by

M1,
AX=b <= MIAX=M"1h — (MTAM HMX = M~1b

Define 3 y y
A=MTAM™L, X =MX, b=M1h,

and the new problem to solve AX = b. Since M is symmetric, A is
symmetric definite positive. Write the conjugate gradient algorithm
for this “tilde" problem.

39/60



Preconditioning

~

The algorithm for A

X° given, pl== b— AXC.
While m < Niter or ||F™|| > tol, do

s
am B NNITI AMm ’
. (Ap™, p™)
Xm+1 — Xm+am?m,
il = M — amApT,
H,:m—i-1||2
B +1 = =0
" [Fm||2
e e

Now define
pm — Mflﬁm’ XM — ,\/Ifl)?m7 Fm— MFm,

and replace in the algorithme above.
40 /60



Preconditioning

The algorithm for A

pO — /\472,,07

Mp® = M~10 = M~ tb—MTAMIMXY =
r®=b— AXO.

[P712 = (M2 Mt em) = (M2, )

(zm-i-l7 rm+1)

Define - Then | fmi1 = W

(Ap™, ™) = (M~*AM~*Mp™, Mp™) = (Ap™, p™)

(", r™)

=lam = ~——-—C|.
(Ap™, p™)

MX™ = MX™ + apMp™ <= | X" = X™ + a,p™)|.

Mflrm+1 — Mflrm_amelAMflMpm — rm+1 — m_ amApm )

Mp™L = MLl g Mp™ e [ p = 2 g ]



Preconditioning

The algorithm for A

Define C = M2,
X0 given, O =p— AXO7 solve Cz0 = ro, p0 = 20,

While m < Niter or ||r™|| > tol, do

L)
=
. (Ap™, p™)’
rmtl = M, Ap™,
solve Czm1 = pm+l
1 1
ﬁm-i—l = 7(2,"—’_ ’rm+ )
)
(zm, rm)

1 1
pm+ = zm = Bm+1P™-

42 /60



Preconditioning

How to choose C

C must be chosen such that

© A is better conditioned than A,

@ C is easy to invert.
Use an iterative method such that A= C — N with symmetric C.
For instance it can be a symmetrized version of SOR, named
SSOR, defined for w € (0,2) by

1
C=————(D-wE)D}D —wF).
@) (D~ (D~wF)
Notice that if A is symmetric definite positive, so is D and its
coefficients are positive, then its square root /D is defined
naturally as the diagonal matrix of the square roots of the
coefficients. Then C can be rewritten as

C=5ST, withS— -+ (D—wE)D" V2,
w(2 —w)

yielding a natural Cholewski decomposition of C.

Another noscibilitv ic to 11ce an incombplete Choleweki 43 /60



Preconditioning

Example : Matrix of finite differences in a square

Poisson equation

1 1
—(Bpu)ij = =15 (Uivry = 2uij + vim1g) = 45 (Uijer = 2uij + uijoa) = fiy,
I<is<M1I<j<M

9 10 11 12|

5 6 7 8

1 2 3 4

Numbering by line

The point (x;,y;) has for number i + (j — 1)M. A vector of all
unknowns X is created :

Z = (u11,u01,upm1), (Uio, uso, upmo), - (UL pm, Us g, U ) 44760



Preconditioning

Example : Matrix of finite differences in a square

If the equations are numbered the same way (equation #k is the
equation at point k), the matrix is block-diagonal :

B —C Om
) -C B -C
A= p .. . (1)
-C B -C
Om -C B
4 -1 0
-1 4 -1
C=1Ily, B= KR
-1 4 -1
0 -1 4
The righthand side is bi; (j_1)«m = fij, and the system takes the

form AZ = b.

45 /60



Preconditioning

Cholewski decomposition of A

The block-Cholewski decomposition of A, A= RRT, is
block-bidiagonale, but the blocks are not tridiagonale as before, as
the spy command of matlab can show, in the case where M = 15.

o0 1m

120

140 140

160 160

o 40 80 80 00 120 0 {60 I 40 65 80 1 1 W1 160
2= e = 2209

spy(A) spy(R)
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Preconditioning

Cholewski decomposition of A, continue

However, if we look closely to the values of R between the main
diagonales where A was non zero, we see that where the
coefficients of A are zero, the coefficients of R are small. Therefore
the incomplete Cholewski preconditioning computes only the values
of R where the coefficient of A is not zero, and gain a lot of time.

4

h? &(80,60:100)
gl hERL80,60:100)

w
T

251 4

2k -




Preconditioning

Cholewski

Ch=tril(A);

for k=1:nn
Ch(k,k)=sqrt(Ch(k,k));
Ch(k+1:nn,k)=Ch(k+1:nn,k)/Ch(k,k);
for j=k+1l:nn

Ch(j:nn,j)=Ch(j:nn,j)-Ch(j:nn,k)*Ch(j,k);

end

end
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Preconditioning

Incomplete Cholewski

ChI=tril(A);
for k=1:nn
ChI(k,k)=sqrt(ChI(k,k));
for j=k+1l:mn
if ChI(j,k) "= 0
ChI(j,k)=ChI(j,k)/ChI(k,k);
end
end
for j=k+l:nn
for i=j:n
if ChI(i,j) "= 0
ChI(i,j)=ChI(i,j)-ChI(i,k)*ChI(j,k);
end
end
end
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Preconditioning

Comparison

For the 2-D finite differences matrix and n = 25 internal points in
each direction, we compare the convergence of the conjugate
gradient and various preconditioning : Gauss-Seidel, SSOR with
optimal parameter, and incomplete Cholewski. The gain even with
w = 1 is striking. Furthermore Gauss-Seidel is comparable with
Incomplete Cholewski.

finite differences 20, n=25

conugate gradient
- precondtioned eonjugale gradient Gauss-Seidel
precondtioned canjugate aradient SSOR

precondiioned conjugale gradient IC
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Krylov methods for non sym

Outline

© Krylov methods for non symmetric matrices
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Krylov methods for non sym

The return of CG

X%hosen, p°=r"=b-— AXO.

While m < Niter or ||[r™|| > tol, do

B 12
m =
(Ap™, pm)’
Xm+1 - Xm +Oémpm,
rmtl = M, Ap™,
||rm+1||2
pm+1 — rm—i—l o Berlpm-
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Krylov methods for non sym

The return of CG

1
Asdp Ax=b <= x = Argmin EHAy — bH%
Definition Krylov space K (A, rp) = vec(r®, Ar%, ..., Am=1/0).
[x™ —x[la=_inf |y —x]|a,
y

EXOHKpn

x4 = VxT Ax = \/(Ax, x).

(ri,rj) =0 and (Ap;,p;) =0 fori # j
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Krylov methods for non sym

Extension to non symmetric matrices

1
Asdp Ax=b <= x = Argmin iHAy —b|)3

rq:xp=0=rg=—b.

Anonsdp x = xpy

Km(A, ro) = vec(r® A0, ... Am=1/0),

rm=Ax"—b, ||| = inf |r|.
rekc

m

We start with the determination of an orthogonal basis for ICp,.
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Krylov methods for non sym

Arnoldi algorithm

Let vi with [Jvq|| = 1.

for j=1:m do
h(i,j)=A*v(j,:),v(i,:)) , i=1:j
w(j,:)=A*xv(j,:)-sum(h(i,j)v(i,:)
h(j+1,j)=norm(w(j,:),2)

If h(j+1,j) == 0 stop

v(j+1,:)= w(j,:)/h(+1,7)

Theorem If the algorithm goes through m, then (wi,..., wpy) is
an orthonormal basis of K, = L(vi,. .., Vm).
The proof goes by recursion.
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Arnoldi algorithm, continue

Krylov methods for non sym

Define Vp, = [w1, ..

h11
ha1  ho
H = 0  hsx2
0
0 0
0 0

hmm

hm+1m

-, Vm| (matrix with column j equal to vj),

H,, is the m X m matrix obtained from the (m+ 1) x m matrix Hpm

by deleting the last row.
Proposition

AVp = m+1'zl;7 = VnHn + Wme,;’7-7

VIAV,, = Hy
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Krylov methods for non sym

Solving Ax = b, full orthogonalization method or FOM

Search for an approximate solution in xo + Kn(A, rp) in the form
Xm = Xo + Vmy, and impose r,, LK,,(A, ro). This is equivalent to
V,Zrm = 0, which is written as

V,ZAme = V,Zro or Hny = ||roe1.

The small system can be solved at each step using a direct method
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Krylov methods for non sym

FOM algorithm

function [X,R,H,Q]=FOM(A,b,x0);
% FOM full orthogonalization method
% [X,R,H,Q]=FOM(A,b,x0) computes the decomposition A=QHQ?, Q orthogonal
% and H upper Hessenberg, Q(:,1)=r/norm(r), using Arnoldi in order to
% solve the system Ax=b with the full orthogonalization method. X contains
% the iterates and R the residuals
n=length(A); X=x0;
r=b-A*x0; R=r; rOnorm=norm(r);
Q(:,1)=r/rOnorm;
for k=1:n

v =A*Q(:,k);

for j=1:k

H(j,k)=Q(:,j) *v; v=v-H(j,k)*Q(:,j);

end

e0=zeros(k,1); e0(1)=rOnorm; % solve system

y=H\eO; x= x0+Qxy;

X=[X x];

R=[R b-A*x];

if k<n

H(k+1,k)=norm(v); QC:,k+1)=v/H(k+1,k);

end

end
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Krylov methods for non sym

GMRES algorithm

Here we don't expect to find r,, orthogonal to KCp,(A, rp), but we
minimize the residual in K,,(A, rp), which is equivalent to the
minimization of J(y) = ||b — A(xo + Vmy)||2 for y in R™, with
vi = ro/||ro]|. Use the Proposition to write

b—A(x0+Viny) = 10— AViny = ||ro]vi—Vins1Hmy = Vins1(l|roller—Humy)
Since V11 is orthogonale, then
16— A(xo + Vmy)l| = [llroller — Hmy |-

This small minimization problem can be solved by the Givens
reflection method.

Theorem Let A € R” x R" be invertible, b € R™ and m be the
degree of the minimal polynomial of A. Then GMRES applied to
the linear system Ax = b converges to the exact solution in at

most m iterations.
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Krylov methods for non sym

Restarted GMRES

For reasons of storage cost, the GMRES algorithm is mostly used
by restarting every M steps :

Compute x1,- -+, xpm.

If ryy is small enough, stop,

else restart with xg = xp.
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