Chapter 1. On the resolution of linear systems

Laurence HALPERN

LAGA - Université Paris 13

HCMV, november 2016
(1) Direct methods
(2) Stationary iterative methods
(3) Non-Stationary iterative methods
4) Preconditioning
(5) Krylov methods for non symmetric matrices

Purpose

Solve $A X=b$.

- A is a squared matrix,
- b is a given righthand side,

Purpose

Solve $A X=b$.

- A is a squared matrix,
- b is a given righthand side, or a family of given righthand sides

Outline

(1) Direct methods
(2) Stationary iterative methods
(3) Non-Stationary iterative methods
4) Preconditioning
(5) Krylov methods for non symmetric matrices

Description

$$
\underbrace{\left(\begin{array}{ccc}
1 & 3 & 1 \\
1 & 1 & -1 \\
3 & 11 & 6
\end{array}\right)}_{A} \underbrace{\left(\begin{array}{c}
\\
1 \\
36
\end{array}\right)}_{X}
$$

$$
\left(\begin{array}{ccc|c}
1 & 3 & 1 & 9 \\
1 & 1 & -1 & 1 \\
3 & 11 & 6 & 36
\end{array}\right) \rightarrow\left(\begin{array}{ccc|c}
1 & 3 & 1 & 9 \\
0 & -2 & -2 & -8 \\
0 & 2 & 3 & 9
\end{array}\right) \rightarrow\left(\begin{array}{ccc|c}
1 & 3 & 1 & 9 \\
0 & -2 & -2 & -8 \\
0 & 0 & 1 & 1
\end{array}\right)
$$

$$
\underbrace{\left(\begin{array}{ccc}
1 & 0 & 0 \\
-1 & 1 & 0 \\
-3 & 1 & 1
\end{array}\right)}_{M} \underbrace{\left(\begin{array}{ccc|c}
1 & 3 & 1 & 9 \\
1 & 1 & -1 & 1 \\
3 & 11 & 6 & 36
\end{array}\right)}_{(A \mid b)}=\underbrace{\left(\begin{array}{ccc|c}
1 & 3 & 1 & 9 \\
0 & -2 & -2 & -8 \\
0 & 0 & 1 & 1
\end{array}\right)}_{(U \mid M b)}
$$

$$
\begin{gathered}
A x=b \Longleftrightarrow U x: M A x=M b \\
M \text { is a preconditioner } \\
M=\left(\begin{array}{ccc}
1 & 0 & 0 \\
-1 & 1 & 0 \\
-3 & 1 & 1
\end{array}\right) \longrightarrow L:=M^{-1}=\left(\begin{array}{ccc}
1 & 0 & 0 \\
1 & 1 & 0 \\
3 & -1 & 1
\end{array}\right) \\
U=M A \Longleftrightarrow A=L U, A x=b \Longleftrightarrow L U x=b
\end{gathered}
$$

(1) $L U$ decomposition $\mathcal{O}\left(\frac{2 n^{3}}{3}\right)$ elementary operations.

$$
\begin{gathered}
A x=b \Longleftrightarrow U x: M A x=M b \\
M \text { is a preconditioner } \\
M=\left(\begin{array}{ccc}
1 & 0 & 0 \\
-1 & 1 & 0 \\
-3 & 1 & 1
\end{array}\right) \longrightarrow L:=M^{-1}=\left(\begin{array}{ccc}
1 & 0 & 0 \\
1 & 1 & 0 \\
3 & -1 & 1
\end{array}\right) \\
U=M A \Longleftrightarrow A=L U, A x=b \Longleftrightarrow L U x=b
\end{gathered}
$$

(1) $L U$ decomposition $\mathcal{O}\left(\frac{2 n^{3}}{3}\right)$ elementary operations.
(2) Solve $L y=b \quad \mathcal{O}\left(n^{2}\right)$ elementary operations.

$$
\begin{gathered}
A x=b \Longleftrightarrow U x: M A x=M b \\
M \text { is a preconditioner } \\
M=\left(\begin{array}{ccc}
1 & 0 & 0 \\
-1 & 1 & 0 \\
-3 & 1 & 1
\end{array}\right) \longrightarrow L:=M^{-1}=\left(\begin{array}{ccc}
1 & 0 & 0 \\
1 & 1 & 0 \\
3 & -1 & 1
\end{array}\right) \\
U=M A \Longleftrightarrow A=L U, A x=b \Longleftrightarrow L U x=b
\end{gathered}
$$

(1) $L U$ decomposition $\mathcal{O}\left(\frac{2 n^{3}}{3}\right)$ elementary operations.
(2) Solve $L y=b \quad \mathcal{O}\left(n^{2}\right)$ elementary operations.
(3) Solve $U x=y \quad \mathcal{O}\left(n^{2}\right)$ elementary operations.

$$
A x=b \Longleftrightarrow U x: M A x=M b
$$

M is a preconditioner

$$
\begin{gathered}
M=\left(\begin{array}{ccc}
1 & 0 & 0 \\
-1 & 1 & 0 \\
-3 & 1 & 1
\end{array}\right) \longrightarrow L:=M^{-1}=\left(\begin{array}{ccc}
1 & 0 & 0 \\
1 & 1 & 0 \\
3 & -1 & 1
\end{array}\right) \\
U=M A \Longleftrightarrow A=L U, A x=b \Longleftrightarrow L U x=b
\end{gathered}
$$

(1) $L U$ decomposition $\mathcal{O}\left(\frac{2 n^{3}}{3}\right)$ elementary operations.
(2) Solve $L y=b \quad \mathcal{O}\left(n^{2}\right)$ elementary operations.
(3) Solve $U x=y \quad \mathcal{O}\left(n^{2}\right)$ elementary operations.

For P values of the righthand side, $N_{o p} \sim \frac{2 n^{3}}{3}+P \times 2 n^{2}$.

Theoretical results

Theorem 1 Let A be an invertible matrix, with principal minors $\neq 0$. Then there exists a unique matrix L lower triangular with $l_{i i}=1$ for all i, and a unique matrix U upper triangular, such that $A=L U$. Furthermore $\operatorname{det}(A)=\prod_{i=1}^{n} u_{i i}$.

Theorem 2 Let A be an invertible matrix. There exist a permutation matrix P, a matrix L lower triangular with $l_{i i}=1$ for all i, and a matrix U upper triangular, such that

$$
P A=L U
$$

Sparse and banded matrices

Wilkinson 69' : any matrix with enough zeros that it pays to take $\mathrm{p}=3$ advantage of them.
$\stackrel{\pi}{\sigma}\left(\begin{array}{ccccccc}2 & 1 & 0 & -1 & 0 & 0 & 0 \\ -4 & 2 & 3 & 0 & 0 & 0 & 0 \\ 0 & -12 & 3 & 1 & 2 & 0 & 0 \\ 0 & 0 & -24 & 4 & -7 & 0 & 0 \\ 0 & 0 & -40 & 0 & 5 & 1 & 4 \\ 0 & 0 & 0 & 0 & -60 & 6 & -23 \\ 0 & 0 & 0 & 0 & 0 & -84 & 0\end{array}\right)$

A banded matrix, upper bandwidth $p=3$ and lower bandwidth $q=2$, in total $p+q+1$ nonzero diagonals.

Sparse and banded matrices

$$
\begin{aligned}
& U=\left(\begin{array}{ccccccc}
2 & 1 & 0 & -1 & 0 & 0 & 0 \\
0 & 4 & 3 & -2 & 0 & 0 & 0 \\
0 & 0 & 12 & -5 & 2 & 0 & 0 \\
0 & 0 & 0 & -6 & -3 & 0 & 0 \\
0 & 0 & 0 & 0 & 20 & 1 & 4 \\
0 & 0 & 0 & 0 & 0 & 9 & -11 \\
0 & 0 & 0 & 0 & 0 & 0 & -102.7
\end{array}\right) \\
& L=\left(\begin{array}{ccccccc}
1 & 0 & 0 & 0 & 0 & 0 & 0 \\
-2 & 1 & 0 & 0 & 0 & 0 & 0 \\
0 & -3 & 1 & 0 & 0 & 0 & 0 \\
0 & 0 & -2 & 1 & 0 & 0 & 0 \\
0 & 0 & -3.3 & 2.81 & 0 & 0 & \\
0 & 0 & 0 & 0 & -3 & 1 & 0 \\
0 & 0 & 0 & 0 & 0 & -9.3 & 1
\end{array}\right)
\end{aligned}
$$

L lowerbanded $q=2$, and U upperbanded $p=3$.

Manipulating sparse matrices in matlab

$$
\begin{aligned}
& \text { S = } \\
& (1,2) \quad 1 \\
& (2,3) \quad 3 \\
& \text { >>S=speye }(2,3) \\
& \text { S = } \\
& (1,1) \\
& (2,2) \\
& 1 \\
& \text { >>n=4; } \\
& \text { >>e=ones (} \mathrm{n}, 1 \text {) } \\
& \text { e = }
\end{aligned}
$$

1

$$
\gg A=\text { spdiags }([e-2 * e \text { e],-1:1,n,n) }
$$

$$
\mathrm{A}=
$$

$(1,1)$	-2
$(2,1)$	1
$(1,2)$	1
$(2,2)$	-2
$(3,2)$	1
$(2,3)$	1
$(3,3)$	-2
$(4,3)$	1
$(3,4)$	1
$(4,4)$	-2

$\gg f u l l(\mathrm{~A})$
ans $=$

-2	1	0	0
1	-2	1	0
0	1	-2	1

$10 / 60$

Manipulating sparse matrices in matlab

```
>>B = repmat((1:n)',1,3)
B =
    1 1 1
        2 2 2
        3 3
        4 4 4
>>A=spdiags(B,[-2 0 1],n,n)
A =
\begin{tabular}{ll}
\((1,1)\) & 1 \\
\((3,1)\) & 1 \\
\((1,2)\) & 2 \\
\((2,2)\) & 2 \\
\((4,2)\) & 2 \\
\((2,3)\) & 3 \\
\((3,3)\) & 3 \\
\((3,4)\) & 4 \\
\((4,4)\) & 4
\end{tabular}
>>full (A)
ans \(=\)

1 \begin{tabular}{cccc} 
\\
0 & 2 & 0 & 0 \\
1 & 0 & 3 & 0 \\
0 & 2 & 0 & 4
\end{tabular}
```


Sparse and banded matrices with pivoting

$$
L=\left(\begin{array}{ccccccc}
1 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 & 0 & 0 \\
0 & 0 & 0.6 & 1 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 1 & 0 \\
-0.5 & -0.17 & -0.05 & -0.21 & 0.025 & 0.0027 & 1
\end{array}\right)
$$

$$
U=\left(\begin{array}{ccccccc}
-4 & 2 & 3 & 0 & 0 & 0 & 0 \\
0 & -12 & 3 & 1 & 2 & 0 & 0 \\
0 & 0 & -40 & 0 & 5 & 1 & 4 \\
0 & 0 & 0 & 4 & -10 & -0.6 & -2.4 \\
0 & 0 & 0 & 0 & -60 & 6 & -23 \\
0 & 0 & 0 & 0 & 0 & -84 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0.275
\end{array}\right)
$$

The permutation matrix

$$
P=\left(\begin{array}{lllllll}
0 & 1 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 1 \\
1 & 0 & 0 & 0 & 0 & 0 & 0
\end{array}\right)
$$

Cholewski

36×36 sparse matrix of $2-D$ finite differences in a square.
With the command spy de matlab

A bandmatrix sparse matrix

Corresponding Cholewski

Summary

Direct methods for small full systems

Iterative methods \rightarrow matrix vector product \rightarrow sparse systems.

Outline

(1) Direct methods

(2) Stationary iterative methods

(3) Non-Stationary iterative methods

4) Preconditioning
(5) Krylov methods for non symmetric matrices

Stationary iterative methods

$$
\begin{array}{r}
A X=b ; \quad A=M-N ; \quad M X=N X+b \\
M X^{m+1}=N X^{m}+b .
\end{array}
$$

Use $\mathrm{A}=\mathrm{D}-\mathrm{E}-\mathrm{F}$.
(1) Jacobi : $M=D$ diagonal part of A.

Stationary iterative methods

$$
\begin{array}{r}
A X=b ; \quad A=M-N ; \quad M X=N X+b \\
M X^{m+1}=N X^{m}+b .
\end{array}
$$

Use $\mathrm{A}=\mathrm{D}-\mathrm{E}-\mathrm{F}$.
(1) Jacobi : $M=D$ diagonal part of A.
(2) Gauss-Seidel : $M=D-E$ lower part of A.

Stationary iterative methods

$$
\begin{array}{r}
A X=b ; \quad A=M-N ; \quad M X=N X+b \\
M X^{m+1}=N X^{m}+b .
\end{array}
$$

Use $\mathrm{A}=\mathrm{D}-\mathrm{E}-\mathrm{F}$.
(1) Jacobi : $M=D$ diagonal part of A.
(2) Gauss-Seidel : $M=D-E$ lower part of A.
(3) Relaxation:

$$
M=\frac{1}{\omega} D-E, N=F+\frac{1-\omega}{\omega} D-E
$$

Stationary iterative methods

$$
\begin{array}{r}
A X=b ; \quad A=M-N ; \quad M X=N X+b \\
M X^{m+1}=N X^{m}+b .
\end{array}
$$

Use $A=D-E-F$.
(1) Jacobi : $M=D$ diagonal part of A.
(2) Gauss-Seidel : $M=D-E$ lower part of A.
(3) Relaxation:

$$
M=\frac{1}{\omega} D-E, N=F+\frac{1-\omega}{\omega} D-E
$$

(4) Richardson algorithm

$$
X^{m+1}=X^{m}-\rho r^{m}=X^{m}-\rho\left(A X^{m}-b\right)
$$

Stationary iterative methods

$$
\begin{array}{r}
A X=b ; \quad A=M-N ; \quad M X=N X+b \\
M X^{m+1}=N X^{m}+b .
\end{array}
$$

$$
\text { Use } \mathrm{A}=\mathrm{D}-\mathrm{E}-\mathrm{F} \text {. }
$$

(1) Jacobi : $M=D$ diagonal part of A.
(2) Gauss-Seidel : $M=D-E$ lower part of A.
(3) Relaxation: \hat{U}^{m+1} obtained by Gauss-Seidel,

$$
\begin{gathered}
X^{m+1}=\omega \hat{U}^{m+1}+(1-\omega) X^{m} . \\
M=\frac{1}{\omega} D-E, N=F+\frac{1-\omega}{\omega} D-E
\end{gathered}
$$

(4) Richardson algorithm

$$
X^{m+1}=X^{m}-\rho r^{m}=X^{m}-\rho\left(A X^{m}-b\right)
$$

Stationary iterative methods

$$
\begin{array}{r}
A X=b ; \quad A=M-N ; \quad M X=N X+b \\
M X^{m+1}=N X^{m}+b .
\end{array}
$$

Use $\mathrm{A}=\mathrm{D}-\mathrm{E}-\mathrm{F}$.
(1) Jacobi : $M=D$ diagonal part of A.
(2) Gauss-Seidel : $M=D-E$ lower part of A.
(3) Relaxation:

$$
M=\frac{1}{\omega} D-E, N=F+\frac{1-\omega}{\omega} D-E
$$

(1) Richardson algorithm

$$
\begin{gathered}
X^{m+1}=X^{m}-\rho r^{m}=X^{m}-\rho\left(A X^{m}-b\right) \\
M=\frac{1}{\rho} I
\end{gathered}
$$

Stationary iterative methods

$$
\begin{array}{r}
A X=b ; \quad A=M-N ; \quad M X=N X+b \\
M X^{m+1}=N X^{m}+b .
\end{array}
$$

Use $A=D-E-F$.
(1) Jacobi : $M=D$ diagonal part of A.
(2) Gauss-Seidel : $M=D-E$ lower part of A.
(3) Relaxation:

$$
M=\frac{1}{\omega} D-E, N=F+\frac{1-\omega}{\omega} D-E
$$

(1) Richardson algorithm

$$
\begin{gathered}
X^{m+1}=X^{m}-\rho r^{m}=X^{m}-\rho\left(A X^{m}-b\right) \\
M=\frac{1}{\rho} I \quad \rho_{o p t}=\frac{2}{\lambda_{1}+\lambda_{n}}
\end{gathered}
$$

Stationary methods, continue

$$
\begin{aligned}
M X^{m+1}=N X^{m}+b & \Longleftrightarrow M X^{m+1}=(M-A) X^{m}+b \\
& \Longleftrightarrow X^{m+1}=\left(I-M^{-1} A\right) X^{m}+M^{-1} b \\
& \Longleftrightarrow \text { fixed point algorithm to solve } M^{-1} A X=M^{-1} b
\end{aligned}
$$

Stationary methods, continue

$$
\begin{aligned}
M X^{m+1}=N X^{m}+b & \Longleftrightarrow M X^{m+1}=(M-A) X^{m}+b \\
& \Longleftrightarrow X^{m+1}=\left(I-M^{-1} A\right) X^{m}+M^{-1} b \\
& \Longleftrightarrow \text { fixed point algorithm to solve } M^{-1} A X=M^{-1} b
\end{aligned}
$$

Preconditioning

$$
\begin{aligned}
A X=b & \Longleftrightarrow M^{-1} A X=M^{-1} b \\
& \Longleftrightarrow X=\left(I-M^{-1} A\right) X+M^{-1} b
\end{aligned}
$$

Stationary methods, continue

$$
\text { Error } e^{m}:=X-X^{m} \text {, }
$$

Residual $r^{m}:=b-A X^{m}=A X-A X^{m}=A e^{m}$.
$M X^{m+1}=N X^{m}+b$
$M X=N X+b$

$$
\begin{gathered}
M e^{m+1}=N e^{m} \\
e^{m+1}=M^{-1} N e^{m}
\end{gathered}
$$

Useful alternative formula $R=I-M^{-1} A$.

Fundamentals tools

$$
X^{m+1}=R X^{m}+\tilde{b}, \quad e^{m+1}=R e^{m}, R=M^{-1} N
$$

Theorem The sequence is convergent for any initial guess X^{0} if and only if $\rho(R)<1$. $\rho(R)=\max \{|\lambda|, \lambda$ eigenvalue of $A\}$: convergence factor.

$$
\frac{\left\|e^{m+1}\right\|}{\left\|e^{m}\right\|} \lesssim \rho(R)
$$

Convergence rate $C=-\ln _{10} \rho(R) .\left\|e^{m+1}\right\| \sim 10^{-C}\left\|e^{m}\right\|$. C digits per iteration.
To reduce the initial error by a factor ϵ, we need

$$
\frac{\left\|e^{m}\right\|}{\left\|e^{0}\right\|} \lesssim(\rho(R))^{m} \sim \epsilon
$$

So we have $M \sim \frac{\ln \epsilon}{\ln \rho(R)}$.

M-matrices

Definition : $A \in \mathbb{R}^{n \times n}$ is a M-matrix if
(1) $a_{i i}>0$ for $i=1, \ldots, n$,
(2) $a_{i j} \leq 0$ for $i \neq j, i, j=1, \ldots, n$,
(3) A is invertible,
(9) $A^{-1} \geq 0$.

Theorem If A is a M-matrix and $A=M-N$ is a regular splitting (M is invertible and both M^{-1} and N are nonnegative), then the stationary method converges.

Symmetric positive definite matrices

Householder-John theorem : Suppose A is positive. If $M+M^{T}-A$ is positive definite, then $\rho(R)<1$.

Corollary
(1) If $D+E+F$ is positive definite, then Jacobi converges.
(2) If $\omega \in(0,2)$, then SOR converges.

Tridiagonale matrices

(1) $\rho\left(\mathcal{L}_{1}\right)=(\rho(J))^{2}$: Jacobi Gauss-Seidel converge or diverge simultaneously. If convergent, Gauss-Seidel is twice as fast.
(2) Suppose the eigenvalues of J are real. Then Jacobi and SOR converge or diverge simultaneously for $\omega \in] 0,2[$.
(3) Same assumptions, SOR has an optimal parameter

Outline

(1) Direct methods

(2) Stationary iterative methods
(3) Non-Stationary iterative methods
4) Preconditioning
(5) Krylov methods for non symmetric matrices

Descent methods. A sdp

The descent directions p_{m} are given. Define $X^{m+1}=X^{m}+\alpha_{m} p^{m}, \quad e^{m+1}=e^{m}-\alpha_{m} p^{m}, \quad r^{m+1}=r^{m}-\alpha_{m} A p^{m}$.

Theorem X is the solution of $A X=b \Longleftrightarrow$ it minimizes over \mathbb{R}^{N} the functional $J(y)=\frac{1}{2}(A y, y)-(b, y)$.
Equivalent to minimizing

$$
G(y)=\frac{1}{2}(A(y-X), y-X)=\frac{1}{2}\|y-X\|_{A}^{2} .
$$

At step m, minimize J in the direction of p_{m}

$$
\alpha_{m}=\frac{\left(p^{m}, r^{m}\right)}{\left(A p^{m}, p^{m}\right)}, \quad\left(p^{m}, r^{m+1}\right)=0
$$

$$
G\left(x^{m+1}\right)=G\left(x^{m}\right)\left(1-\mu_{m}\right), \quad \mu_{m}=\frac{\left(r^{m}, p^{m}\right)^{2}}{\left(A p^{m}, p^{m}\right)\left(A^{-1} r^{m}, r^{m}\right)}
$$

Steepest descent (gradient à pas optimal)

$$
p^{m}=r^{m}
$$

$$
X^{m+1}=X^{m}+\alpha_{m} r^{m}, \quad e^{m+1}=e^{m}-\alpha_{m} r^{m}, \quad r^{m+1}=\left(I-\alpha_{m} A\right) p^{m}
$$

$$
\alpha_{m}=\frac{\left\|r^{m}\right\|^{2}}{\left(A r^{m}, r^{m}\right)}, \quad\left(r^{m}, r^{m+1}\right)=0
$$

$$
G\left(x^{m+1}\right)=G\left(x^{m}\right)\left(1-\frac{\left\|r^{m}\right\|^{4}}{\left(A r^{m}, r^{m}\right)\left(A^{-1} r^{m}, r^{m}\right)}\right) \leq\left(\frac{\kappa(A)-1}{\kappa(A)+1}\right)^{2} G\left(x^{m}\right)
$$

Conjugate gradient

$$
X^{m+1}=X^{m}+\alpha_{m} p^{m}, \quad \alpha_{m}=\frac{\left(p^{m}, r^{m}\right)}{\left(A p^{m}, p^{m}\right)}, \quad\left(r^{m}, p^{m-1}\right)=0 .
$$

Search p^{m} as $p^{m}=r^{m}+\beta_{m} p^{m-1}$

$$
\begin{gathered}
G\left(x^{m+1}\right)=G\left(x^{m}\right)\left(1-\mu_{m}\right) \\
\mu_{m}=\frac{\left(r^{m}, p^{m}\right)^{2}}{\left(A p^{m}, p^{m}\right)\left(A^{-1} r^{m}, r^{m}\right)}=\frac{\left\|r^{m}\right\|^{4}}{\left(A p^{m}, p^{m}\right)\left(A^{-1} r^{m}, r^{m}\right)}
\end{gathered}
$$

Maximize μ_{m}, or minimize

$$
\begin{gathered}
\left(A p^{m}, p^{m}\right)=\beta_{m}^{2}\left(A p^{m-1}, p^{m-1}\right)+2 \beta_{m}\left(A p^{m-1}, r^{m}\right)+\left(A r^{m}, r^{m}\right) \\
\beta_{m}=-\frac{\left(A p^{m-1}, r^{m}\right)}{\left(A p^{m-1}, p^{m-1}\right)} \Rightarrow\left(A p^{m-1}, p^{m}\right)=0 \\
\left(r^{m}, r^{m+1}\right)=0, \quad \beta_{m}=\frac{\left\|r^{m}\right\|^{2}}{\left\|r^{m-1}\right\|^{2}}
\end{gathered}
$$

Other properties

Choose $p^{0}=r^{0}$. Then $\forall m \geq 1$, if $r^{i} \neq 0$ for $i<m$.
(1) $\left(r^{m}, p^{i}\right)=0$ for $i \leq m-1$.

Definition Krylov space $\mathcal{K}_{m}=\operatorname{vec}\left(r^{0}, A r^{0}, \ldots, A^{m-1} r^{0}\right)$.

Other properties

Choose $p^{0}=r^{0}$. Then $\forall m \geq 1$, if $r^{i} \neq 0$ for $i<m$.
(1) $\left(r^{m}, p^{i}\right)=0$ for $i \leq m-1$.
(2) $\operatorname{vec}\left(r^{0}, \ldots, r^{m}\right)=\operatorname{vec}\left(r^{0}, A r^{0}, \ldots, A^{m} r^{0}\right)$.

Definition Krylov space $\mathcal{K}_{m}=\operatorname{vec}\left(r^{0}, A r^{0}, \ldots, A^{m-1} r^{0}\right)$.

Other properties

Choose $p^{0}=r^{0}$. Then $\forall m \geq 1$, if $r^{i} \neq 0$ for $i<m$.
(1) $\left(r^{m}, p^{i}\right)=0$ for $i \leq m-1$.
(2) $\operatorname{vec}\left(r^{0}, \ldots, r^{m}\right)=\operatorname{vec}\left(r^{0}, A r^{0}, \ldots, A^{m} r^{0}\right)$.
(3) $\operatorname{vec}\left(p^{0}, \ldots, p^{m}\right)=\operatorname{vec}\left(r^{0}, A r^{0}, \ldots, A^{m} r^{0}\right)$.

Definition Krylov space $\mathcal{K}_{m}=\operatorname{vec}\left(r^{0}, A r^{0}, \ldots, A^{m-1} r^{0}\right)$.

Other properties

Choose $p^{0}=r^{0}$. Then $\forall m \geq 1$, if $r^{i} \neq 0$ for $i<m$.
(1) $\left(r^{m}, p^{i}\right)=0$ for $i \leq m-1$.
(2) $\operatorname{vec}\left(r^{0}, \ldots, r^{m}\right)=\operatorname{vec}\left(r^{0}, A r^{0}, \ldots, A^{m} r^{0}\right)$.
(3) $\operatorname{vec}\left(p^{0}, \ldots, p^{m}\right)=\operatorname{vec}\left(r^{0}, A r^{0}, \ldots, A^{m} r^{0}\right)$.
(4) $\left(p^{m}, A p^{i}\right)=0$ for $i \leq m-1$.

Definition Krylov space $\mathcal{K}_{m}=\operatorname{vec}\left(r^{0}, A r^{0}, \ldots, A^{m-1} r^{0}\right)$.

Other properties

Choose $p^{0}=r^{0}$. Then $\forall m \geq 1$, if $r^{i} \neq 0$ for $i<m$.
(1) $\left(r^{m}, p^{i}\right)=0$ for $i \leq m-1$.
(2) $\operatorname{vec}\left(r^{0}, \ldots, r^{m}\right)=\operatorname{vec}\left(r^{0}, A r^{0}, \ldots, A^{m} r^{0}\right)$.
(3) $\operatorname{vec}\left(p^{0}, \ldots, p^{m}\right)=\operatorname{vec}\left(r^{0}, A r^{0}, \ldots, A^{m} r^{0}\right)$.
(4) $\left(p^{m}, A p^{i}\right)=0$ for $i \leq m-1$.
(5) $\left(r^{m}, r^{i}\right)=0$ for $i \leq m-1$.

Definition Krylov space $\mathcal{K}_{m}=\operatorname{vec}\left(r^{0}, A r^{0}, \ldots, A^{m-1} r^{0}\right)$.

Other properties

Choose $p^{0}=r^{0}$. Then $\forall m \geq 1$, if $r^{i} \neq 0$ for $i<m$.
(1) $\left(r^{m}, p^{i}\right)=0$ for $i \leq m-1$.
(2) $\operatorname{vec}\left(r^{0}, \ldots, r^{m}\right)=\operatorname{vec}\left(r^{0}, A r^{0}, \ldots, A^{m} r^{0}\right)$.
(3) $\operatorname{vec}\left(p^{0}, \ldots, p^{m}\right)=\operatorname{vec}\left(r^{0}, A r^{0}, \ldots, A^{m} r^{0}\right)$.
(4) $\left(p^{m}, A p^{i}\right)=0$ for $i \leq m-1$.
(5) $\left(r^{m}, r^{i}\right)=0$ for $i \leq m-1$.

Definition Krylov space $\mathcal{K}_{m}=\operatorname{vec}\left(r^{0}, A r^{0}, \ldots, A^{m-1} r^{0}\right)$.

Other properties

Choose $p^{0}=r^{0}$. Then $\forall m \geq 1$, if $r^{i} \neq 0$ for $i<m$.
(1) $\left(r^{m}, p^{i}\right)=0$ for $i \leq m-1$.
(2) $\operatorname{vec}\left(r^{0}, \ldots, r^{m}\right)=\operatorname{vec}\left(r^{0}, A r^{0}, \ldots, A^{m} r^{0}\right)$.
(3) $\operatorname{vec}\left(p^{0}, \ldots, p^{m}\right)=\operatorname{vec}\left(r^{0}, A r^{0}, \ldots, A^{m} r^{0}\right)$.
(9) $\left(p^{m}, A p^{i}\right)=0$ for $i \leq m-1$.
(5) $\left(r^{m}, r^{i}\right)=0$ for $i \leq m-1$.

Definition Krylov space $\mathcal{K}_{m}=\operatorname{vec}\left(r^{0}, A r^{0}, \ldots, A^{m-1} r^{0}\right)$.
Theorem (optimality of CG) A symétrique définie positive,

$$
\left\|x^{m}-x\right\|_{A}=\inf _{y \in x^{0}+\mathcal{K}_{m}}\|y-x\|_{A}, \quad\|x\|_{A}=\sqrt{x^{T} A x} .
$$

Final properties

Convergence in at most N steps (size of the matrix)
Theorem $\left\|x^{m}\right\|_{A} \leq 2 \frac{\sqrt{\kappa(A)}-1}{\sqrt{\kappa(A)}+1}\left\|x^{m-1}\right\|_{A}$

The algorithm

$$
X^{0} \text { chosen, } \quad p^{0}=r^{0}=b-A X^{0} .
$$

While $m<$ Niter or $\left\|r^{m}\right\| \geq$ tol, do

$$
\begin{aligned}
\alpha_{m} & =\frac{\left\|r^{m}\right\|^{2}}{\left(A p^{m}, p^{m}\right)}, \\
X^{m+1} & =X^{m}+\alpha_{m} p^{m}, \\
r^{m+1} & =r^{m}-\alpha_{m} A p^{m} \\
\beta_{m+1} & =\frac{\left\|r^{m+1}\right\|^{2}}{\left\|r^{m}\right\|^{2}} \\
p^{m+1} & =r^{m+1}-\beta_{m+1} p^{m} .
\end{aligned}
$$

1-D Poisson problem

Poisson equation $-u^{\prime \prime}=f$ on $(0,1)$,
Dirichlet boundary conditions $u(0)=g_{g}, u(1)=g_{d}$.
Second order finite difference stencil.

$$
\begin{gathered}
(0,1)=\cup\left(x_{j}, x_{j+1}\right), \quad x_{j+1}-x_{j}=h=\frac{1}{n+1}, \quad j=0, \ldots, n . \\
-\frac{u\left(x_{i+1}\right)-2 u\left(x_{i}\right)+u\left(x_{i-1}\right)}{h^{2}} \sim f\left(x_{i}\right), \quad i=1, \ldots n \\
u_{0}=g_{g}, \quad u_{n+1}=g_{d} . \\
\left|u_{i}-u\left(x_{i}\right)\right| \leq h^{2} \frac{\sup _{x \in[a, b]}\left|u^{(4)}(x)\right|}{12}
\end{gathered}
$$

1-D Poisson problem

Discrete unknowns $U={ }^{t}\left(u_{1}, \ldots, u_{n}\right)$.

$$
A=\frac{1}{h^{2}}\left(\begin{array}{cccccc}
2 & -1 & & & \\
-1 & 2 & -1 & & 0 & \\
& \ddots & \ddots & \ddots & \\
& 0 & & -1 & 2 & -1 \\
& & & -1 & 2
\end{array}\right) \quad b=\left(\begin{array}{c}
f_{1}-\frac{g_{g}}{h^{2}} \\
f_{2} \\
\vdots \\
f_{n-1} \\
f_{n}-\frac{g_{d}}{h^{2}}
\end{array}\right)
$$

The matrix A is symmetric definite positive.
Discrete problem to be solved is

$$
A X=b
$$

Condition number and error

$$
A X=b, \quad A \hat{X}=\hat{b}
$$

Define $\kappa(A)=\|A\|_{2}\left\|A^{-1}\right\|_{2}$. If A is symmetric $>0, \kappa(A)=\frac{\max \lambda_{i}}{\min \lambda_{i}}$.
Theorem

$$
\frac{\|\hat{X}-X\|_{2}}{\|X\|_{2}} \leq \kappa(A) \frac{\|\hat{b}-b\|_{2}}{\|b\|_{2}}
$$

and there is a b such that it is equal.
Eigenvalues of $A(h \times(n+1)=1)$.

$$
\begin{gathered}
\lambda_{k}=\frac{2}{h^{2}}\left(1-\cos \frac{k \pi}{n+1}\right)=\frac{4}{h^{2}} \sin ^{2} \frac{k \pi h}{2}, \quad V_{k}=\left(\sin \frac{j k \pi}{n+1}\right)_{1 \leq i \leq n}, \\
\kappa(A)=\frac{\sin ^{2} \frac{n \pi h}{2}}{\sin ^{2} \frac{\pi h}{2}}=\frac{\cos ^{2} \frac{\pi h}{2}}{\sin ^{2} \frac{\pi h}{2}} \sim \frac{4}{\pi^{2} h^{2}}
\end{gathered}
$$

Comparison of the iterative methods

Algorithm	spectral radius $\rho(R)$	$n=5$	$n=30$
Jacobi	$\cos \pi h$	0.81	0.99
Gauss-Seidel	$(\rho(J))^{2}=\cos ^{2} \pi h$	0.65	0.98
SOR	$\frac{1-\sin \pi h}{1+\sin \pi h}$	0.26	0.74
steepest descent	$\frac{K(A)-1}{K(A)+1}$	0.81	0.99
conjugate gradient	$\frac{\sqrt{K(A)}-1}{\sqrt{K(A)}+1}$	0.51	0.86

Reduction factor for one digit $M \sim-\frac{1}{\log _{10} \rho(R)}$:

n	Jacobi	Gauss-Seidel	SOR	St Des	CG
10	56	28	4	56	8
100	4759	2380	37	4759	74

Asymptotic behavior

Algorithm	spectral radius
Jacobi	$1-\frac{\pi^{2}}{2} h^{2}$,
Gauss-Seidel	$1-\pi^{2} h^{2}$,
SOR	$1-2 \pi h$
gradient	$1-\pi h$,
conjugate gradient	$1-\frac{\pi h}{2}$.

Convergence history

Number of elementary operations

Gauss elimination	n^{2}
optimal overrelaxation	$n^{3 / 2}$
FFT	$n \ln _{2}(n)$
conjugate gradient	$n^{5 / 4}$
multigrid	n

Asymptotic order of the number of elementary operations needed to solve the $1-D$ problem as a function of the number of grid points

Outline

(1) Direct methods

(2) Stationary iterative methods
(3) Non-Stationary iterative methods
4) Preconditioning
(5) Krylov methods for non symmetric matrices

Preconditioning : purpose

Take the system $A X=b$, with A symmetric definite positive, and the conjugate gradient algorithm. The speed of convergence of the algorithm deteriorates when $\kappa(A)$ increases. The purpose is to replace the problem by another system, better conditioned. Let M be a symmetric regular matrix. Multiply the system on the left by M^{-1}.

$$
A X=b \Longleftrightarrow M^{-1} A X=M^{-1} b \Longleftrightarrow\left(M^{-1} A M^{-1}\right) M X=M^{-1} b
$$

Define

$$
\tilde{A}=M^{-1} A M^{-1}, \quad \tilde{X}=M X, \quad \tilde{b}=M^{-1} b
$$

and the new problem to solve $\tilde{A} \tilde{X}=\tilde{b}$. Since M is symmetric, \tilde{A} is symmetric definite positive. Write the conjugate gradient algorithm for this "tilde" problem.

The algorithm for \tilde{A}

$$
\tilde{X}^{0} \text { given, } \quad \tilde{p}^{0}=\tilde{r}^{0}=\tilde{b}-\tilde{A} \tilde{X}^{0} .
$$

While $m<$ Niter or $\left\|\tilde{r}^{m}\right\| \geq$ tol, do

$$
\begin{aligned}
\alpha_{m} & =\frac{\left\|\tilde{r}^{m}\right\|^{2}}{\left(\tilde{A} \tilde{p}^{m}, \tilde{p}^{m}\right)}, \\
\tilde{X}^{m+1} & =\tilde{X}^{m}+\alpha_{m} \tilde{p}^{m}, \\
\tilde{r}^{m+1} & =\tilde{r}^{m}-\alpha_{m} \tilde{A}^{m}, \\
\beta_{m+1} & =\frac{\left\|\tilde{r}^{m+1}\right\|^{2}}{\left\|\tilde{r}^{m}\right\|^{2}}, \\
\tilde{p}^{m+1} & =\tilde{r}^{m+1}-\beta_{m+1} \tilde{p}^{m} .
\end{aligned}
$$

Now define

$$
p^{m}=M^{-1} \tilde{p}^{m}, \quad X^{m}=M^{-1} \tilde{X}^{m}, \quad r^{m}=M \tilde{r}^{m}
$$

and replace in the algorithme above.

The algorithm for A

$$
\begin{gathered}
M p^{0}=M^{-1} r^{0}=M^{-1} b-M^{-1} A M^{-1} M X^{0} \Longleftrightarrow\left\{\begin{array}{l}
p^{0}=M^{-2} r^{0}, \\
r^{0}=b-A X^{0} .
\end{array}\right. \\
\qquad\left\|\tilde{r}^{m}\right\|^{2}=\left(M^{-1} r^{m}, M^{-1} r^{m}\right)=\left(M^{-2} r^{m}, r^{m}\right) \\
\text { Define } z^{m}=M^{-2} r^{m} . \text { Then } \beta_{m+1}=\frac{\left(z^{m+1}, r^{m+1}\right)}{\left(z^{m}, r^{m}\right)} . \\
\left(\tilde{A} \tilde{p}^{m}, \tilde{p}^{m}\right)=\left(M^{-1} A M^{-1} M p^{m}, M p^{m}\right)=\left(A p^{m}, p^{m}\right) \\
\Rightarrow \alpha_{m}=\frac{\left(z^{m}, r^{m}\right)}{\left(A p^{m}, p^{m}\right)} .
\end{gathered}
$$

$$
\begin{gathered}
M X^{m+1}=M X^{m}+\alpha_{m} M p^{m} \Longleftrightarrow X^{m+1}=X^{m}+\alpha_{m} p^{m} . \\
M^{-1} r^{m+1}=M^{-1} r^{m}-\alpha_{m} M^{-1} A M^{-1} M p^{m} \Longleftrightarrow r^{m+1}=r^{m}-\alpha_{m} A p^{m} . \\
M p^{m+1}=M^{-1} r^{m+1}-\beta_{m+1} M p^{m} \Longleftrightarrow p^{m+1}=z^{m+1}-\beta_{m+1} p^{m} .
\end{gathered}
$$

The algorithm for A

Define $C=M^{2}$.
X^{0} given, $\quad r^{0}=b-A X^{0}, \quad$ solve $C z^{0}=r^{0}, \quad p^{0}=z^{0}$.
While $m<$ Niter or $\left\|r^{m}\right\| \geq$ tol, do

$$
\begin{aligned}
\alpha_{m} & =\frac{\left(z^{m}, r^{m}\right)}{\left(A p^{m}, p^{m}\right)} \\
X^{m+1} & =X^{m}+\alpha_{m} p^{m} \\
r^{m+1} & =r^{m}-\alpha_{m} A p^{m} \\
\text { solve } C z^{m+1} & =r^{m+1}, \\
\beta_{m+1} & =\frac{\left(z^{m+1}, r^{m+1}\right)}{\left(z^{m}, r^{m}\right)}, \\
p^{m+1} & =z^{m+1}-\beta_{m+1} p^{m} .
\end{aligned}
$$

How to choose C

C must be chosen such that
(1) \tilde{A} is better conditioned than A,
(2) C is easy to invert.

Use an iterative method such that $A=C-N$ with symmetric C. For instance it can be a symmetrized version of SOR, named SSOR, defined for $\omega \in(0,2)$ by

$$
C=\frac{1}{\omega(2-\omega)}(D-\omega E) D^{-1}(D-\omega F) .
$$

Notice that if A is symmetric definite positive, so is D and its coefficients are positive, then its square root \sqrt{D} is defined naturally as the diagonal matrix of the square roots of the coefficients. Then C can be rewritten as

$$
C=S S^{T}, \quad \text { with } S=\frac{1}{\sqrt{\omega(2-\omega)}}(D-\omega E) D^{-1 / 2}
$$

yielding a natural Cholewski decomposition of C.
Another possibility is to use an incomplete Cholewski

Example : Matrix of finite differences in a square

Poisson equation

$$
\begin{array}{r}
-\left(\Delta_{h} u\right)_{i, j}=-\frac{1}{h^{2}}\left(u_{i+1, j}-2 u_{i, j}+u_{i-1, j}\right)-\frac{1}{h^{2}}\left(u_{i, j+1}-2 u_{i, j}+u_{i, j-1}\right)=f_{i, j}, \\
1 \leq i \leq M, 1 \leq j \leq M
\end{array}
$$

Numbering by line
The point $\left(x_{i}, y_{j}\right)$ has for number $i+(j-1) M$. A vector of all unknowns X is created :

$$
Z=\left(u_{1,1}, u_{2,1}, u_{M, 1}\right),\left(u_{1,2}, u_{2,2}, u_{M, 2}\right), \cdots\left(u_{1, M}, u_{2, M}, u_{M, M}\right)
$$

Example : Matrix of finite differences in a square

If the equations are numbered the same way (equation $\# k$ is the equation at point k), the matrix is block-diagonal :

$$
\begin{gather*}
A=\frac{1}{h^{2}}\left(\begin{array}{ccccc}
B & -C & & 0_{M} & \\
-C & B & -C & & \\
& \ddots & \ddots & \ddots & \\
& & -C & B & -C \\
& 0_{M} & & -C & B
\end{array}\right) \tag{1}\\
C=I_{M}, \quad B=\left(\begin{array}{ccccc}
4 & -1 & & 0 & \\
-1 & 4 & -1 & & \\
& \ddots & \ddots & \ddots & \\
& & -1 & 4 & -1 \\
& 0 & & -1 & 4
\end{array}\right)
\end{gather*}
$$

The righthand side is $b_{i+(j-1) * M}=f_{i, j}$, and the system takes the form $A Z=b$.

Cholewski decomposition of A

The block-Cholewski decomposition of $A, A=R R^{T}$, is block-bidiagonale, but the blocks are not tridiagonale as before, as the spy command of matlab can show, in the case where $M=15$.

Cholewski decomposition of A, continue

However, if we look closely to the values of R between the main diagonales where A was non zero, we see that where the coefficients of A are zero, the coefficients of R are small. Therefore the incomplete Cholewski preconditioning computes only the values of R where the coefficient of A is not zero, and gain a lot of time.

Cholewski

```
Ch=tril (A);
for \(k=1: n n\)
    \(\operatorname{Ch}(k, k)=\operatorname{sqrt}(\operatorname{Ch}(k, k))\);
    \(\operatorname{Ch}(\mathrm{k}+1: \mathrm{nn}, \mathrm{k})=\mathrm{Ch}(\mathrm{k}+1: \mathrm{nn}, \mathrm{k}) / \mathrm{Ch}(\mathrm{k}, \mathrm{k})\);
    for \(j=k+1: n n\)
        \(\operatorname{Ch}(j: n n, j)=\operatorname{Ch}(j: n n, j)-\operatorname{Ch}(j: n n, k) * \operatorname{Ch}(j, k) ;\)
    end
end
```


Incomplete Cholewski

```
ChI=tril(A);
for \(k=1: n n\)
    \(\operatorname{ChI}(\mathrm{k}, \mathrm{k})=\operatorname{sqrt}(\operatorname{ChI}(\mathrm{k}, \mathrm{k}))\);
    for \(j=k+1: n n\)
        if \(\operatorname{ChI}(j, k) \sim=0\)
                \(\operatorname{ChI}(j, k)=\operatorname{ChI}(j, k) / \operatorname{ChI}(k, k) ;\)
        end
    end
    for \(j=k+1: n n\)
        for \(i=j: n\)
        if \(\operatorname{ChI}(i, j) \sim=0\)
                \(\operatorname{ChI}(i, j)=\operatorname{ChI}(i, j)-\operatorname{ChI}(i, k) * \operatorname{ChI}(j, k) ;\)
            end
        end
    end
end
```


Comparison

For the 2-D finite differences matrix and $n=25$ internal points in each direction, we compare the convergence of the conjugate gradient and various preconditioning : Gauss-Seidel, SSOR with optimal parameter, and incomplete Cholewski. The gain even with $\omega=1$ is striking. Furthermore Gauss-Seidel is comparable with Incomplete Cholewski.

Outline

(1) Direct methods

(2) Stationary iterative methods
(3) Non-Stationary iterative methods
4) Preconditioning
(5) Krylov methods for non symmetric matrices

The return of CG

$$
X^{0} \text { chosen, } \quad p^{0}=r^{0}=b-A X^{0} .
$$

While $m<$ Niter or $\left\|r^{m}\right\| \geq$ tol, do

$$
\begin{aligned}
\alpha_{m} & =\frac{\left\|r^{m}\right\|^{2}}{\left(A p^{m}, p^{m}\right)}, \\
X^{m+1} & =X^{m}+\alpha_{m} p^{m}, \\
r^{m+1} & =r^{m}-\alpha_{m} A p^{m} \\
\beta_{m+1} & =\frac{\left\|r^{m+1}\right\|^{2}}{\left\|r^{m}\right\|^{2}} \\
p^{m+1} & =r^{m+1}-\beta_{m+1} p^{m} .
\end{aligned}
$$

The return of CG

$$
A \operatorname{sdp} \quad A x=b \quad \Longleftrightarrow x=\operatorname{Argmin} \frac{1}{2}\|A y-b\|_{2}^{2}
$$

Definition Krylov space $\mathcal{K}_{m}\left(A, r_{0}\right)=\operatorname{vec}\left(r^{0}, A r^{0}, \ldots, A^{m-1} r^{0}\right)$.

$$
\begin{gathered}
\left\|x^{m}-x\right\|_{A}=\inf _{y \in x^{0}+\mathcal{K}_{m}}\|y-x\|_{A}, \\
\|x\|_{A}=\sqrt{x^{T} A x}=\sqrt{(A x, x)} . \\
\left(r_{i}, r_{j}\right)=0 \quad \text { and } \quad\left(A p_{i}, p_{j}\right)=0 \text { for } i \neq j
\end{gathered}
$$

Extension to non symmetric matrices

$$
A \operatorname{sdp} \quad A x=b \quad \Longleftrightarrow x=\operatorname{Argmin} \frac{1}{2}\|A y-b\|_{2}^{2}
$$

$$
\mathrm{rq}: x_{0}=0 \Rightarrow r_{0}=-b .
$$

$$
A \text { non sdp } \quad x \approx x_{m}
$$

$$
\mathcal{K}_{m}\left(A, r_{0}\right)=\operatorname{vec}\left(r^{0}, A r^{0}, \ldots, A^{m-1} r^{0}\right) .
$$

$$
r^{m}=A x^{m}-b, \quad\left\|r^{m}\right\|=\inf _{r \in \mathcal{K}_{m}}\|r\| .
$$

We start with the determination of an orthogonal basis for \mathcal{K}_{m}.

Arnoldi algorithm

Let v_{1} with $\left\|v_{1}\right\|=1$.
for $\mathrm{j}=1: \mathrm{m}$ do
$h(i, j)=(A * v(j,:), v(i,:)), i=1: j$
w(j,:)=A*v(j,:)-sum(h(i,j)v(i,:)
$h(j+1, j)=\operatorname{norm}(w(j,:), 2)$
If $h(j+1, j)==0$ stop
$v(j+1,:)=w(j,:) / h(j+1, j)$
Theorem If the algorithm goes through m, then $\left(w_{1}, \ldots, w_{m}\right)$ is an orthonormal basis of $\mathcal{K}_{m}=\mathcal{L}\left(v_{1}, \ldots, v_{m}\right)$.
The proof goes by recursion.

Arnoldi algorithm, continue

Define $V_{m}=\left[v_{1}, \ldots, v_{m}\right]$ (matrix with column j equal to v_{j}),

$$
\widetilde{H_{m}}=\left(\begin{array}{ccccc}
h_{11} & & \cdots & & h_{1 m} \\
h_{21} & h_{22} & & \cdots & h_{2 m} \\
0 & h_{32} & \ddots & 0 & 0 \\
\vdots & 0 & \ddots & \ddots & 0 \\
0 & 0 & 0 & h_{m m-1} & h_{m m} \\
0 & 0 & 0 & 0 & h_{m+1 m}
\end{array}\right)
$$

H_{m} is the $m \times m$ matrix obtained from the $(m+1) \times m$ matrix $\widetilde{H_{m}}$ by deleting the last row.
Proposition

$$
A V_{m}=V_{m+1} \widetilde{H_{m}}=V_{m} H_{m}+w_{m} e_{m}^{T}, \quad V_{m}^{T} A V_{m}=H_{M}
$$

Solving $A x=b$, full orthogonalization method or FOM

Search for an approximate solution in $x_{0}+\mathcal{K}_{m}\left(A, r_{0}\right)$ in the form $x_{m}=x_{0}+V_{m} y$, and impose $r_{m} \perp \mathcal{K}_{m}\left(A, r_{0}\right)$. This is equivalent to $V_{m}^{T} r_{m}=0$, which is written as

$$
V_{m}^{T} A V_{m} y=V_{m}^{T} r_{0} \text { or } H_{m} y=\left\|r_{0}\right\| e_{1} .
$$

The small system can be solved at each step using a direct method

FOM algorithm

```
function [X,R,H,Q]=FOM(A,b,x0);
% FOM full orthogonalization method
% [X,R,H,Q]=FOM(A,b,x0) computes the decomposition A=QHQ?, Q orthogonal
% and H upper Hessenberg, Q(:,1)=r/norm(r), using Arnoldi in order to
% solve the system Ax=b with the full orthogonalization method. X contains
% the iterates and R the residuals
n=length(A); X=x0;
r=b-A*xO; R=r; rOnorm=norm(r);
Q(:,1)=r/r0norm;
for k=1:n
    v =A*Q(:,k);
    for j=1:k
        H(j,k)=Q(:,j)'*v; v=v-H(j,k)*Q(:,j);
    end
    e0=zeros(k,1); e0(1)=r0norm; % solve system
    y=H\e0; x= x0+Q*y;
    X=[\begin{array}{ll}{\textrm{X}}\end{array}];
    R=[R b-A*x];
    if k<n
        H(k+1,k)=norm(v); Q(:,k+1)=v/H(k+1,k);
    end
end
```


GMRES algorithm

Here we don't expect to find r_{m} orthogonal to $\mathcal{K}_{m}\left(A, r_{0}\right)$, but we minimize the residual in $\mathcal{K}_{m}\left(A, r_{0}\right)$, which is equivalent to the minimization of $J(y)=\left\|b-A\left(x_{0}+V_{m} y\right)\right\|_{2}$ for y in \mathbb{R}^{m}, with $v_{1}=r_{0} /\left\|r_{0}\right\|$. Use the Proposition to write
$b-A\left(x_{0}+V_{m} y\right)=r_{0}-A V_{m} y=\left\|r_{0}\right\| v_{1}-V_{m+1} \widetilde{H_{m}} y=V_{m+1}\left(\left\|r_{0}\right\| e_{1}-\widetilde{H_{m}} y\right)$
Since V_{m+1} is orthogonale, then

$$
\left\|b-A\left(x_{0}+V_{m} y\right)\right\|=\| \| r_{0}\left\|e_{1}-\widetilde{H_{m}} y\right\| .
$$

This small minimization problem can be solved by the Givens reflection method.
Theorem Let $A \in \mathbb{R}^{n} \times \mathbb{R}^{n}$ be invertible, $b \in \mathbb{R}^{n}$ and m be the degree of the minimal polynomial of A. Then GMRES applied to the linear system $A x=b$ converges to the exact solution in at most m iterations.

Restarted GMRES

For reasons of storage cost, the GMRES algorithm is mostly used by restarting every M steps :
Compute x_{1}, \cdots, x_{M}.
If r_{M} is small enough, stop, else restart with $x_{0}=x_{M}$.

