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Purpose

Solve AX = b.

A is a squared matrix,

b is a given righthand side,

or a family of given righthand sides
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Description




1 3 1
1 1 −1
3 11 6




︸ ︷︷ ︸
A




9
1

36




︸ ︷︷ ︸
X

=




9
1

36




︸ ︷︷ ︸
b




1 3 1 9
1 1 −1 1
3 11 6 36


→




1 3 1 9
0 −2 −2 −8
0 2 3 9


→




1 3 1 9
0 −2 −2 −8
0 0 1 1







1 0 0
−1 1 0
−3 1 1




︸ ︷︷ ︸
M




1 3 1 9
1 1 −1 1
3 11 6 36




︸ ︷︷ ︸
(A|b)

=




1 3 1 9
0 −2 −2 −8
0 0 1 1




︸ ︷︷ ︸
(U|Mb)
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Ax = b ⇐⇒ Ux : MAx = Mb

M is a preconditioner

M =




1 0 0
−1 1 0
−3 1 1


 −→ L := M−1 =




1 0 0
1 1 0
3 −1 1




U = MA ⇐⇒ A = LU,Ax = b ⇐⇒ LUx = b

1 LU decomposition O( 2n3

3 ) elementary operations.

2 Solve Ly = b O(n2) elementary operations.

3 Solve Ux = y O(n2) elementary operations.
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M =


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
 −→ L := M−1 =




1 0 0
1 1 0
3 −1 1




U = MA ⇐⇒ A = LU,Ax = b ⇐⇒ LUx = b

1 LU decomposition O( 2n3

3 ) elementary operations.

2 Solve Ly = b O(n2) elementary operations.

3 Solve Ux = y O(n2) elementary operations.

For P values of the righthand side, Nop ∼ 2n3

3 + P × 2n2.
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Theoretical results

Theorem 1 Let A be an invertible matrix, with principal minors
6= 0. Then there exists a unique matrix L lower triangular with
lii = 1 for all i , and a unique matrix U upper triangular, such that
A = LU. Furthermore det (A) =

∏n
i=1 uii .

Theorem 2 Let A be an invertible matrix. There exist a
permutation matrix P, a matrix L lower triangular with lii = 1 for
all i , and a matrix U upper triangular, such that

PA = LU
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Sparse and banded matrices

Wilkinson 69’ : any matrix with enough zeros that it pays to take
advantage of them.

A banded matrix, upper bandwidth p = 3 and lower bandwidth
q = 2, in total p + q + 1 nonzero diagonals.
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Sparse and banded matrices

L lowerbanded q = 2, and U upperbanded p = 3. 9 / 63
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Manipulating sparse matrices in matlab

>>S=sparse([2 3 1 2],[1 1 2 3],[2 4 1 3])

S =

(2,1) 2

(3,1) 4

(1,2) 1

(2,3) 3

>>S=speye(2,3)

S =

(1,1) 1

(2,2) 1

>>n=4;

>>e=ones(n,1)

e =

1

1

1

1

>>A=spdiags([e -2*e e],-1:1,n,n)

A =

(1,1) -2

(2,1) 1

(1,2) 1

(2,2) -2

(3,2) 1

(2,3) 1

(3,3) -2

(4,3) 1

(3,4) 1

(4,4) -2

>>full(A)

ans =

-2 1 0 0

1 -2 1 0

0 1 -2 1

0 0 1 -2
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Manipulating sparse matrices in matlab

>>B = repmat((1:n)’,1,3)

B =

1 1 1

2 2 2

3 3 3

4 4 4

>>A=spdiags(B,[-2 0 1],n,n)

A =

(1,1) 1

(3,1) 1

(1,2) 2

(2,2) 2

(4,2) 2

(2,3) 3

(3,3) 3

(3,4) 4

(4,4) 4

>>full(A)

ans =

1 2 0 0

0 2 3 0

1 0 3 4

0 2 0 4
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Sparse and banded matrices with pivoting

L =



1 0 0 0 0 0 0
0 1 0 0 0 0 0
0 0 1 0 0 0 0
0 0 0.6 1 0 0 0
0 0 0 0 1 0 0
0 0 0 0 0 1 0

−0.5 −0.17 −0.05 −0.21 0.025 0.0027 1



U =



−4 2 3 0 0 0 0
0 −12 3 1 2 0 0
0 0 −40 0 5 1 4
0 0 0 4 −10 −0.6 −2.4
0 0 0 0 −60 6 −23
0 0 0 0 0 −84 0
0 0 0 0 0 0 0.275


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The permutation matrix

P =




0 1 0 0 0 0 0
0 0 1 0 0 0 0
0 0 0 0 1 0 0
0 0 0 1 0 0 0
0 0 0 0 0 1 0
0 0 0 0 0 0 1
1 0 0 0 0 0 0



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Cholewski

36× 36 sparse matrix of 2− D finite differences in a square.
With the command spy de matlab

A bandmatrix sparse matrix Corresponding Cholewski
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Summary

Direct methods for small full systems

Iterative methods → matrix vector product → sparse systems.
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Stationary iterative methods

AX = b ; A = M − N ; MX = NX + b,

MXm+1 = NXm + b.

Use A = D - E - F.

1 Jacobi : M = D diagonal part of A.

2 Gauss-Seidel : M = D − E lower part of A.

3 Relaxation :

M =
1

ω
D − E , N = F +

1− ω
ω

D

4 Richardson algorithm

Xm+1 = Xm − ρrm = Xm − ρ(AXm − b)
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4 Richardson algorithm

Xm+1 = Xm − ρrm = Xm − ρ(AXm − b)

M = 1
ρ I ρopt = 2

λ1+λn

17 / 63



Direct methods Stationary iterative methods Non-Stationary iterative methods Preconditioning Krylov methods for non symmetric matrices

Stationary methods, continue

MXm+1 = NXm + b ⇐⇒ MXm+1 = (M − A)Xm + b
⇐⇒ Xm+1 = (I −M−1A)Xm + M−1b
⇐⇒ fixed point algorithm to solve M−1AX = M−1b

18 / 63
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Stationary methods, continue

MXm+1 = NXm + b ⇐⇒ MXm+1 = (M − A)Xm + b
⇐⇒ Xm+1 = (I −M−1A)Xm + M−1b
⇐⇒ fixed point algorithm to solve M−1AX = M−1b

Preconditioning

AX = b ⇐⇒ M−1AX = M−1b
⇐⇒ X = (I −M−1A)X + M−1b

18 / 63



Direct methods Stationary iterative methods Non-Stationary iterative methods Preconditioning Krylov methods for non symmetric matrices

Stationary methods, continue

Error em := X − Xm,
Residual rm := b − AXm = AX − AXm = Aem.

MXm+1 = NXm + b

MX = NX + b

Mem+1 = Nem

em+1 = M−1Nem

R = M−1N is the iteration matrix

Useful alternative formula R = I −M−1A.
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Fundamentals tools

Xm+1 = RXm + b̃, em+1 = Rem, R = M−1N.

Theorem The sequence is convergent for any initial guess X 0 if
and only if ρ(R) < 1.
ρ(R) = max{|λ|, λ eigenvalue of A} : convergence factor.

‖em+1‖
‖em‖ . ρ(R)

Convergence rate C = − ln10 ρ(R). ‖em+1‖ ∼ 10−C‖em‖.
C digits per iteration.
To reduce the initial error by a factor ε, we need

‖em‖
‖e0‖ . (ρ(R))m ∼ ε

So we have M ∼ ln ε

ln ρ(R)
.
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M-matrices

Definition : A ∈ Rn×n is a M-matrix if

1 aii > 0 for i = 1, . . . , n,

2 aij ≤ 0 for i 6= j , i , j = 1, . . . , n,

3 A is invertible,

4 A−1 ≥ 0.

Theorem If A is a M-matrix and A = M − N is a regular splitting
(M is invertible and both M−1 and N are nonnegative), then the
stationary method converges.
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Symmetric positive definite matrices

Householder-John theorem : Suppose A is positive. If
M + MT − A is positive definite, then ρ(R) < 1.

Corollary

1 If D + E + F is positive definite, then Jacobi converges.

2 If ω ∈ (0, 2), then SOR converges.

22 / 63
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Tridiagonale matrices

1 ρ(L1) = (ρ(J))2 : Jacobi Gauss-Seidel converge or diverge
simultaneously. If convergent, Gauss-Seidel is twice as fast.

2 Suppose the eigenvalues of J are real. Then Jacobi and SOR
converge or diverge simultaneously for ω ∈]0, 2[.

3 Same assumptions, SOR has an optimal parameter

ω∗ =
2

1 +
√

1− (ρ(J))2
, ρ(Lω∗) = ω∗ − 1.

|ρ(Lω)|

ω1

1

2ω∗

ω∗ − 1

1
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Descent methods. A sdp

The descent directions pm are given. Define

Xm+1 = Xm+αmp
m, em+1 = em−αmp

m, rm+1 = rm−αmAp
m.

Theorem X is the solution of AX = b ⇐⇒ it minimizes over RN

the functional J(y) = 1
2 (Ay , y)− (b, y).

Equivalent to minimizing
G (y) = 1

2 (A(y − X ), y − X ) = 1
2‖y − X‖2

A.
At step m, minimize J in the direction of pm

αm =
(pm, rm)

(Apm, pm)
, (pm, rm+1) = 0

G (xm+1) = G (xm)(1− µm), µm =
(rm, pm)2

(Apm, pm)(A−1rm, rm)

25 / 63
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Steepest descent (gradient à pas optimal)

pm = rm.

Xm+1 = Xm+αmr
m, em+1 = em−αmr

m, rm+1 = (I−αmA)pm.

αm =
‖rm‖2

(Arm, rm)
, (rm, rm+1) = 0

G (xm+1) = G (xm)

(
1− ‖rm‖4

(Arm, rm)(A−1rm, rm)

)
≤
(
κ(A)− 1

κ(A) + 1

)2

G (xm)
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Conjugate gradient

Xm+1 = Xm + αmp
m, αm =

(pm, rm)

(Apm, pm)
, (rm, pm−1) = 0.

Search pm as pm = rm + βmp
m−1

G (xm+1) = G (xm)(1− µm)

µm =
(rm, pm)2

(Apm, pm)(A−1rm, rm)
=

‖rm‖4

(Apm, pm)(A−1rm, rm)

Maximize µm, or minimize

(Apm, pm) = β2
m(Apm−1, pm−1) + 2βm(Apm−1, rm) + (Arm, rm)

βm = − (Apm−1, rm)

(Apm−1, pm−1)
⇒ (Apm−1, pm) = 0

(rm, rm+1) = 0, βm =
‖rm‖2

‖rm−1‖2
.
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Other properties

Choose p0 = r0. Then ∀m ≥ 1, if r i 6= 0 for i < m.

1 (rm, pi ) = 0 for i ≤ m − 1.

2 vec(r0, . . . , rm) = vec(r0,Ar0, . . . ,Amr0).

3 vec(p0, . . . , pm) = vec(r0,Ar0, . . . ,Amr0).

4 (pm,Api ) = 0 for i ≤ m − 1.

5 (rm, r i ) = 0 for i ≤ m − 1.

Definition Krylov space Km = vec(r0,Ar0, . . . ,Am−1r0).
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Other properties

Choose p0 = r0. Then ∀m ≥ 1, if r i 6= 0 for i < m.

1 (rm, pi ) = 0 for i ≤ m − 1.

2 vec(r0, . . . , rm) = vec(r0,Ar0, . . . ,Amr0).

3 vec(p0, . . . , pm) = vec(r0,Ar0, . . . ,Amr0).

4 (pm,Api ) = 0 for i ≤ m − 1.

5 (rm, r i ) = 0 for i ≤ m − 1.

Definition Krylov space Km = vec(r0,Ar0, . . . ,Am−1r0).

Theorem (optimality of CG) A symétrique définie positive,

‖xm − x‖A = inf
y∈x0+Km

‖y − x‖A, ‖x‖A =
√
xTAx .
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Final properties

Theorem Convergence in at most N steps (size of the matrix)

Theorem ‖xm‖A ≤ 2

√
κ(A)− 1√
κ(A) + 1

‖xm−1‖A

Method Steepest descent Conjugate gradient

Convergence factor ρ
κ(A)− 1

κ(A) + 1

√
κ(A)− 1√
κ(A) + 1

ρ(h = 0.1) 0.98 0.82

Nit(h = 0.1) to 10−2 error 230 23

Comparison
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The algorithm

X 0chosen, p0 = r0 = b − AX 0.

While m < Niter or ‖rm‖ ≥ tol , do

αm =
‖rm‖2

(Apm, pm)
,

Xm+1 = Xm + αmp
m,

rm+1 = rm − αmAp
m,

βm+1 =
‖rm+1‖2

‖rm‖2
,

pm+1 = rm+1 − βm+1p
m.
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1-D Poisson problem
Poisson equation −u′′ = f on (0, 1),
Dirichlet boundary conditions u(0) = gg , u(1) = gd .
Second order finite difference stencil.

(0, 1) = ∪(xj , xj+1), xj+1 − xj = h =
1

n + 1
, j = 0, . . . , n.

−u(xi+1)− 2u(xi ) + u(xi−1)

h2
∼ f (xi ), i = 1, . . . n

u0 = gg , un+1 = gd .

|ui − u(xi )| ≤ h2
supx∈[a,b] |u(4)(x)|

12
.
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1-D Poisson problem

Discrete unknowns U =t (u1, . . . , un).

A =
1

h2




2 −1
−1 2 −1 0

. . .
. . .

. . .

0 −1 2 −1
−1 2




b =




f1 − gg
h2

f2
...

fn−1

fn − gd
h2




The matrix A is symmetric definite positive.

Discrete problem to be solved is

AX = b
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Condition number and error

AX = b, AX̂ = b̂

Define κ(A) = ‖A‖2‖A−1‖2. If A is symmetric > 0, κ(A) = maxλi
minλi

.

Theorem
‖X̂ − X‖2

‖X‖2
≤ κ(A)

‖b̂ − b‖2

‖b‖2

and there is a b such that it is equal.

Eigenvalues of A (h × (n + 1) = 1).

λk =
2

h2
(1− cos

kπ

n + 1
) =

4

h2
sin2 kπh

2
, Vk = (sin

jkπ

n + 1
)1≤i≤n,

κ(A) =
sin2 nπh

2

sin2 πh
2

=
cos2 πh

2

sin2 πh
2

∼ 4

π2h2
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Comparison of the iterative methods

Algorithm spectral radius ρ(R) n = 5 n = 30

Jacobi cosπh 0.866 0.995

Gauss-Seidel (ρ(J))2 = cos2 πh 0.750 0.990

SOR
1− sinπh

1 + sinπh
0.333 0.816

steepest descent
K(A)− 1

K(A) + 1
0.866 0.995

conjugate gradient

√
K(A)− 1√
K(A) + 1

0.577 0.903

Reduction factor for one digit M ∼ − 1

Log10ρ(R)
:

n Jacobi Gauss-Seidel SOR St Des CG

5 16 8 2 16 4

30 448 224 11 448 23
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Asymptotic behavior

Algorithm spectral radius

Jacobi 1− π2

2 h2,
Gauss-Seidel 1− π2h2,

SOR 1− 2πh
gradient 1− πh,

conjugate gradient 1− πh

2
.
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Convergence history
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Number of elementary operations

Gauss elimination n2

optimal overrelaxation n3/2

FFT n ln2(n)

conjugate gradient n5/4

multigrid n

Asymptotic order of the number of elementary operations needed
to solve the 1− D problem as a function of the number of grid
points
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Outline

1 Direct methods

2 Stationary iterative methods

3 Non-Stationary iterative methods

4 Preconditioning

5 Krylov methods for non symmetric matrices
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Preconditioning : purpose

Take the system AX = b, with A symmetric definite positive, and
the conjugate gradient algorithm. The speed of convergence of the
algorithm deteriorates when κ(A) increases. The purpose is to
replace the problem by another system, better conditioned. Let M
be a symmetric regular matrix. Multiply the system on the left by
M−1.

AX = b ⇐⇒ M−1AX = M−1b ⇐⇒ (M−1AM−1)MX = M−1b

Define
Ã = M−1AM−1, X̃ = MX , b̃ = M−1b,

and the new problem to solve ÃX̃ = b̃. Since M is symmetric, Ã is
symmetric definite positive. Write the conjugate gradient algorithm
for this “tilde“ problem.
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The algorithm for Ã

X̃ 0 given, p̃0 = r̃0 = b̃ − ÃX̃ 0.

While m < Niter or ‖r̃m‖ ≥ tol , do

αm =
‖r̃m‖2

(Ãp̃m, p̃m)
,

X̃m+1 = X̃m + αmp̃
m,

r̃m+1 = r̃m − αmÃp̃
m,

βm+1 =
‖r̃m+1‖2

‖r̃m‖2
,

p̃m+1 = r̃m+1 − βm+1p̃
m.

Now define

pm = M−1p̃m, Xm = M−1X̃m, rm = Mr̃m,

and replace in the algorithme above.
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The algorithm for A

Mp0 = M−1r0 = M−1b−M−1AM−1MX 0 ⇐⇒
{
p0 = M−2r0,

r0 = b − AX 0.

‖r̃m‖2 = (M−1rm,M−1rm) = (M−2rm, rm)

Define zm = M−2rm . Then βm+1 =
(zm+1, rm+1)

(zm, rm)
.

(Ãp̃m, p̃m) = (M−1AM−1Mpm,Mpm) = (Apm, pm)

⇒ αm =
(zm, rm)

(Apm, pm)
.

MXm+1 = MXm + αmMpm ⇐⇒ Xm+1 = Xm + αmp
m .

M−1rm+1 = M−1rm−αmM
−1AM−1Mpm ⇐⇒ rm+1 = rm − αmAp

m .

Mpm+1 = M−1rm+1−βm+1Mpm ⇐⇒ pm+1 = zm+1 − βm+1p
m . 41 / 63
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The algorithm for A

Define C = M2.
Initialization. given X 0 , r0 = b − AX 0, solve Cz0 = r0, p0 = z0.

While m < Niter or ‖rm‖ ≥ tol , do

αm =
(zm, rm)

(Apm, pm)
,

Xm+1 = Xm + αmp
m,

rm+1 = rm − αmAp
m,

solve Czm+1 = rm+1,

βm+1 =
(zm+1, rm+1)

(zm, rm)
,

pm+1 = zm+1 − βm+1p
m.

Now forget about M.
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How to choose C

C must be chosen such that
1 Ã is better conditioned than A to lessen the convergence

factor,
2 C is easy to invert to solve Czm+1 = rm+1.

Use an iterative method such that A = C − N with symmetric C .
For instance it can be a symmetrized version of SOR, named
SSOR, defined for ω ∈ (0, 2) by

C =
1

ω(2− ω)
(D − ωE )D−1(D − ωF ).

If A is symmetric definite positive, so is D and its coefficients are
positive, then its square root

√
D is defined naturally as the

diagonal matrix of the square roots of the coefficients. Then

C = SST , with S =
1√

ω(2− ω)
(D − ωE )D−1/2,

yielding a natural Cholewski decomposition of C .
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How to choose C

C must be chosen such that

1 Ã is better conditioned than A to lessen the convergence
factor,

2 C is easy to invert to solve Czm+1 = rm+1.

Use an iterative method such that A = C −N with symmetric C .

C = SST , with S =
1√

ω(2− ω)
(D − ωE )D−1/2,

Another possibility is to use an incomplete Cholewski
decomposition of A. Even if A is sparse, that is has many zeros,
the process of LU or Cholewski decomposition is very expensive,
since it creates non zero values.
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Example : Matrix of finite differences in a rectangle

Poisson equation

−(∆hu)i,j := − 1

h2
(ui+1,j − 2ui,j + ui−1,j)−

1

h2
(ui,j+1 − 2ui,j + ui,j−1) = fi,j ,

1 ≤ i ≤ M, 1 ≤ j ≤ N

1� 2� 3� 4�

5� 6� 7� 8�

9� 10� 11� 12�
= (x1, y3)

(xi, yj) ! i + (j � 1)M

Numbering by line, M = 4, N = 3.

(xi , yj)→ i + (j − 1)M. A vector of all unknowns X is created :

X = ((u1,1, u1,2, u1,N), (u2,1, u2,2, u2,N), · · · (uM,1, uM,2, uM,N))

with Xi+(j−1)∗M = ui ,j . 44 / 63
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Example : Matrix of finite differences in a square

If the equations are numbered the same way (equation #k is the
equation at point k), the matrix is block-diagonal :

A =
1

h2




B −C 0M
−C B −C

. . .
. . .

. . .

−C B −C
0M −C B




(1)

C = IM , B =




4 −1 0
−1 4 −1

. . .
. . .

. . .

−1 4 −1
0 −1 4




The righthand side is bi+(j−1)∗M = fi ,j , and the system takes the
form AZ = b.
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Cholewski decomposition of A

The block-Cholewski decomposition of A, A = RRT , is
block-bidiagonal, but the blocks are not tridiagonal as before, as
the spy command of matlab can show, in the case where M = 15.

spy(A) spy(R)
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Cholewski decomposition of A, zoom

0 5 10 15 20 25

nz = 924

5

10

15

20

0 5 10 15

nz = 2757

5

10

15

20

25

spy(A) zoom spy(R) zoom
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Cholewski decomposition of A, continue

However, if we look closely to the values of R between the main
diagonales where A was non zero, we see that where the
coefficients of A are zero, the coefficients of R are small. Therefore
the incomplete Cholewski preconditioning computes only the values
of R where the coefficient of A is not zero, and gain a lot of time.
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Cholewski

A = RRT ;

0
BBBBBB@

A11 ⇥ ⇥ · · · ⇥
A21 A22 ⇥ ⇥
Ak1

... Akk ⇥
...

... Ak+1,k

...
An1 An,k Ann

1
CCCCCCA

0
BBBBBB@

R11 0 · · · · · · 0
R21 R22 0 · · · 0
Rk1 Rk2 Rkk 0 · · ·

...
...

...
...

Rn1 Rn2

... Rnn�1 Rnn

1
CCCCCCA

0
BBBBB@

R11 RT
12 · · · · · · RT

1n

0 R22

0 0 Rkk · · · · · ·
...

...
...

...
0 0 0 0 Rnn

1
CCCCCA
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Cholewski

Column 1
A11 = R2

11

A21 = R21R11
...

An1 = Rn1R11

Column 2

Column 3
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Cholewski

Column 1
A11 = R11

2

A21 = R21R11
...

An1 = Rn1R11

Column 2

Column 3
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Cholewski

Column 1

Column 2
A22 = R2

21 + R2
22

A32 = R31R21 + R32R22
...

An2 = Rn1R21 + Rn2R22

Column 3
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Cholewski

Column 1

Column 2
A22 = R2

21 + R22
2

A32 = R31R21 + R32R22
...

An2 = Rn1R21 + Rn2R22

Column 3
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Cholewski

Column 1

Column 2
A22 = R2

21 + R22
2

A32 = R31R21 + R32R22
...

An2 = Rn1R21 + Rn2R22

Column 3
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Cholewski

Column 1

Column 2

Column 3

Akk = R2
k1 + R2

k2 + · · ·+ R2
k−1k−1 +R2

kk

Ak+1k = Rk+11Rk1 + Rk+12Rk2 + · · ·+ Rk+1k−1Rkk−1 +Rk+1kRkk
...

Ank = Rn1Rk1 + Rn2Rk2 + · · ·+ Rnk−1Rkk−1 +RnkRkk
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Cholewski

Column 1

Column 2

Column 3

Akk = R2
k1 + R2

k2 + · · ·+ R2
k−1k−1 +R2

kk

Ak+1k = Rk+11Rk1 + Rk+12Rk2 + · · ·+ Rk+1k−1Rkk−1 +Rk+1kRkk
...

Ank = Rn1Rk1 + Rn2Rk2 + · · ·+ Rnk−1Rkk−1 +RnkRkk
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Cholewski

Column 1

Column 2

Column 3

Akk = R2
k1 + R2

k2 + · · ·+ R2
k−1k−1 +R2

kk

Ak+1k = Rk+11Rk1 + Rk+12Rk2 + · · ·+ Rk+1k−1Rkk−1 +Rk+1kRkk
...

Ank = Rn1Rk1 + Rn2Rk2 + · · ·+ Rnk−1Rkk−1 +RnkRkk
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Cholewski , matlab script

RRT = A;

R=tril(A);

for k=1:nn

R(k,k)=sqrt(R(k,k));

R(k+1:nn,k)=R(k+1:nn,k)/R(k,k);

for j=k+1:nn

R(j:nn,j)=R(j:nn,j)-R(j:nn,k)*R(j,k);

end

end
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Incomplete Cholewski

RI=tril(A);

for k=1:nn

RI(k,k)=sqrt(RI(k,k));

for j=k+1:nn

if RI(j,k) ~= 0

RI(j,k)=RI(j,k)/RI(k,k);

end

end

for j=k+1:nn

for i=j:n

if RI(i,j) ~= 0

RI(i,j)=RI(i,j)-RI(i,k)*RI(j,k);

end

end

end

end

Then use C = R ∗ RT .
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Comparison

For the 2-D finite differences matrix and n = 25 internal points in
each direction, we compare the convergence of the conjugate
gradient and various preconditioning : Gauss-Seidel, SSOR with
optimal parameter, and incomplete Cholewski. The gain even with
ω = 1 is striking. Furthermore Gauss-Seidel is comparable with
Incomplete Cholewski.
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Outline

1 Direct methods

2 Stationary iterative methods

3 Non-Stationary iterative methods

4 Preconditioning

5 Krylov methods for non symmetric matrices
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The return of CG

X 0chosen, p0 = r0 = b − AX 0.

While m < Niter or ‖rm‖ ≥ tol , do

αm =
‖rm‖2

(Apm, pm)
,

Xm+1 = Xm + αmp
m,

rm+1 = rm − αmAp
m,

βm+1 =
‖rm+1‖2

‖rm‖2
,

pm+1 = rm+1 − βm+1p
m.
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The return of CG

A sdp Ax = b ⇐⇒ x = Argmin
1

2
‖Ay − b‖2

2

Definition Krylov space Km(A, r0) = vec(r0,Ar0, . . . ,Am−1r0).

‖xm − x‖A = inf
y∈x0+Km

‖y − x‖A,

‖x‖A =
√
xTAx =

√
(Ax , x).

(ri , rj) = 0 and (Api , pj) = 0 fori 6= j
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Extension to non symmetric matrices

A sdp Ax = b ⇐⇒ x = Argmin
1

2
‖Ay − b‖2

2

rq : x0 = 0⇒ r0 = −b.

A non sdp x ≈ xm

Km(A, r0) = vec(r0,Ar0, . . . ,Am−1r0).

rm = Axm − b, ‖rm‖ = inf
r∈Km

‖r‖.

We start with the determination of an orthogonal basis for Km.
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Arnoldi algorithm

Let v1 with ‖v1‖ = 1.

for j=1:m do

h(i,j)=(A*v(j,:),v(i,:)) , i=1:j

w(j,:)=A*v(j,:)-sum(h(i,j)v(i,:)

h(j+1,j)=norm(w(j,:),2)

If h(j+1,j) == 0 stop

v(j+1,:)= w(j,:)/h(j+1,j)

Theorem If the algorithm goes through m, then (w1, . . . ,wm) is
an orthonormal basis of Km = L(v1, . . . , vm).
The proof goes by recursion.
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Arnoldi algorithm, continue

Define Vm = [v1, . . . , vm] (matrix with column j equal to vj),

H̃m =




h11 · · · h1m

h21 h22 · · · h2m

0 h32
. . . 0 0

... 0
. . .

. . . 0
0 0 0 hmm−1 hmm

0 0 0 0 hm+1m




Hm is the m×m matrix obtained from the (m + 1)×m matrix H̃m

by deleting the last row.
Proposition

AVm = Vm+1H̃m = VmHm + wme
T
m , V T

m AVm = HM
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Solving Ax = b, full orthogonalization method or FOM

Search for an approximate solution in x0 +Km(A, r0) in the form
xm = x0 + Vmy , and impose rm⊥Km(A, r0). This is equivalent to
V T
m rm = 0, which is written as

V T
m AVmy = V T

m r0 or Hmy = ‖r0‖e1.

The small system can be solved at each step using a direct method
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FOM algorithm

function [X,R,H,Q]=FOM(A,b,x0);

% FOM full orthogonalization method

% [X,R,H,Q]=FOM(A,b,x0) computes the decomposition A=QHQ?, Q orthogonal

% and H upper Hessenberg, Q(:,1)=r/norm(r), using Arnoldi in order to

% solve the system Ax=b with the full orthogonalization method. X contains

% the iterates and R the residuals

n=length(A); X=x0;

r=b-A*x0; R=r; r0norm=norm(r);

Q(:,1)=r/r0norm;

for k=1:n

v =A*Q(:,k);

for j=1:k

H(j,k)=Q(:,j)’*v; v=v-H(j,k)*Q(:,j);

end

e0=zeros(k,1); e0(1)=r0norm; % solve system

y=H\e0; x= x0+Q*y;

X=[X x];

R=[R b-A*x];

if k<n

H(k+1,k)=norm(v); Q(:,k+1)=v/H(k+1,k);

end

end
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GMRES algorithm

Here we don’t expect to find rm orthogonal to Km(A, r0), but we
minimize the residual in Km(A, r0), which is equivalent to the
minimization of J(y) = ‖b − A(x0 + Vmy)‖2 for y in Rm, with
v1 = r0/‖r0‖. Use the Proposition to write

b−A(x0+Vmy) = r0−AVmy = ‖r0‖v1−Vm+1H̃my = Vm+1(‖r0‖e1−H̃my).

Since Vm+1 is orthogonal, then

‖b − A(x0 + Vmy)‖ = ‖‖r0‖e1 − H̃my‖.

This small minimization problem can be solved by the Givens
reflection method.
Theorem Let A ∈ Rn × Rn be invertible, b ∈ Rn and m be the
degree of the minimal polynomial of A. Then GMRES applied to
the linear system Ax = b converges to the exact solution in at
most m iterations.
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Restarted GMRES

For reasons of storage cost, the GMRES algorithm is mostly used
by restarting every M steps :
Compute x1, · · · , xM .
If rM is small enough, stop,
else restart with x0 = xM .
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