

USN-HCMV

Paris 13

JOINT MASTER 2

High Performance Computing

Pr. Laurence Halpern and Juliette Ryan

with support of Drs. Ong Thanh Hai, and NguyenTanTrung classe 2008

Purpose: This is all about solving Ax = b, where A is a square matrix and b is a given righthand side, or a family of given righthand sides.

Table des matières

1	Cla	ssical	methods	5
	1.1	Direct	t methods	5
		1.1.1	Gauss method	5
		1.1.2	Codes	7
		1.1.3	Theoretical results	7
		1.1.4	Symmetric definite matrices: Cholewski decomposition	8
		1.1.5	Elimination with Givens rotations	8
		1.1.6	QR Decomposition	9
	1.2	Sparse	e and banded matrices	10
	1.3	Statio	onary iterative methods	15
		1.3.1	Classical methods	16
		1.3.2	Fundamentals tools	16
	1.4		Stationary iterative methods. Symmetric definite positive	
		matri	ces	18
		1.4.1	Definition of the iterative methods	19
		1.4.2	Comparison of the iterative methods	21
		1.4.3	Condition number and error	21
	1.5		nditioning	25
	1.6	~	v methods for non symmetric matrices, Arnoldi algorithm	29
		1.6.1	Gram-Schmidt orthogonalization and QR decomposition	
		1.6.2	Arnoldi algorithm	30
		1.6.3	Full orthogonalization method or FOM	31
		1.6.4	GMRES algorithm	32
2	M11	ltigrid	methods	39
-	2.1	_	/- cycle process	39
		2.1.1		40
		2.1.2	Projection on the coarse grid	40
		2.1.3	Coarse resolution	41
		2.1.4	Projection on the fine grid	41
		2.1.5	Result of the coarse walk	41
		2.1.6	Postsmoothing	43
		2.1.7	Spectral analysis	43
		2.1.8	Number of elementary operations	46
	2.2	The fi	inite elements multigrid algorithm	46
		2.2.1	Preliminaries	46
		2.2.2	Discrete norm	48

	2.2	2.2.4 Convergence property of the multigrid algorithm	50
	0.2		
	2.5	Multigrid Preconditioner	53
3	Fast	t methods using Fast Fourier Transform	55
	3.1	Presentation of the method	55
	3.2	Discrete and Fast Fourier Transform	59
	3.3	The algorithm	63
4	Sub	ostructuring methods	67
	4.1	The Schur Complement method	67
	4.2	Direct method for the resolution of the interface problem	70
	4.3	The conjugate gradient algorithm	71
	4.4	The Dirichlet Neumann algorithm	72
		4.4.1 Progentation of the algorithm	79
		4.4.1 Presentation of the algorithm	13
		4.4.1 Presentation of the algorithm 4.4.2 Convergence analysis in one dimension	
±	4.1 4.2	The Schur Complement method	blem

Chapitre 1

Classical methods

Contents			
1.1	Dire	ct methods	5
	1.1.1	Gauss method	5
	1.1.2	Codes	7
	1.1.3	Theoretical results	7
	1.1.4	Symmetric definite matrices : Cholewski decompo-	
		sition	8
	1.1.5	Elimination with Givens rotations	8
	1.1.6	QR Decomposition	9
1.2	Spar	ese and banded matrices	10
1.3	Stat	ionary iterative methods	15
	1.3.1	Classical methods	16
	1.3.2	Fundamentals tools	16
1.4	Non	-Stationary iterative methods. Symmetric de-	
	finit	e positive matrices	18
	1.4.1	Definition of the iterative methods	19
	1.4.2	Comparison of the iterative methods	21
	1.4.3	Condition number and error	21
1.5	Prec	conditioning	25
1.6	Kryl	lov methods for non symmetric matrices, Ar-	
	\mathbf{nold}	i algorithm	29
	1.6.1	Gram-Schmidt orthogonalization and QR decom-	
		position	29
	1.6.2	Arnoldi algorithm	30
	1.6.3	Full orthogonalization method or FOM	31
	1.6.4	GMRES algorithm	32

1.1 Direct methods

1.1.1 Gauss method

Example

$$\underbrace{\begin{pmatrix} 1 & 3 & 1 \\ 1 & 1 & -1 \\ 3 & 11 & 6 \end{pmatrix}}_{A} \underbrace{\begin{pmatrix} 9 \\ 1 \\ 36 \end{pmatrix}}_{x} = \underbrace{\begin{pmatrix} 9 \\ 1 \\ 36 \end{pmatrix}}_{b}$$

Take the 3×4 matrix $\bar{A} = [A \mid b]$. Define

$$M_1 = \left(\begin{array}{rrr} 1 & 0 & 0 \\ -1 & 1 & 0 \\ -3 & 0 & 1 \end{array}\right)$$

and multiply on the left by M_1 to put zeros under the diagonal in the first column :

$$M_1[A \mid b] = \begin{pmatrix} 1 & 3 & 1 & 9 \\ 0 & -2 & -2 & -8 \\ 0 & 2 & 3 & 9 \end{pmatrix}.$$

Multiply now on the left by M_2 to put zeros under the diagonal in the second column :

$$M_2 = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 1 & 1 \end{pmatrix}$$

$$M_2 M_1[A \mid b] = \begin{pmatrix} 1 & 3 & 1 \mid 9 \\ 0 & -2 & -2 \mid -8 \\ 0 & 0 & 1 \mid 1 \end{pmatrix}$$

Define $M = M_2 M_1$. Then the column j of M is the column j of M_j :

$$M = \left(\begin{array}{rrr} 1 & 0 & 0 \\ -1 & 1 & 0 \\ -3 & 1 & 1 \end{array}\right).$$

$$M[A \mid b] = [MA \mid Mb].$$

$$Ax = b \iff MAx = Mb : M \text{ is a preconditioner.}$$

The matrix U = MA is upper triangular, and solving Ux = Mb is simpler than solving Ax = b. Define $L = M^{-1}$. In the column j, the entries below the diagonal are those of M with a change of signe.

$$L := M^{-1} = \left(\begin{array}{ccc} 1 & 0 & 0 \\ 1 & 1 & 0 \\ 3 & -1 & 1 \end{array}\right).$$

$$U = MA \iff A = LU, Ax = b \iff LUx = b \iff \begin{cases} Ly = b \\ Ux = y \end{cases}$$

Solving Ax = b is then equivalent to performing the LU decomposition, and solving two triangular systems. Counting of operations:

- 1. LU decomposition $\mathcal{O}(\frac{2n^3}{3})$ elementary operations.
- 2. Solve Ly = b $\mathcal{O}(n^2)$ elementary operations.
- 3. Solve Ux = y $\mathcal{O}(n^2)$ elementary operations.

For P values of the righthand side, $N_{op} \sim \frac{2n^3}{3} + P \times 2n^2$.

1.1.2 Codes

```
function x=BackSubstitution(U,b)
  |% BACKSUBSTITUTION solves by backsubstitution a linear system
3 % x=BackSubstitution(U,b) solves Ux=b, U upper triangular by
   % backsubstitution
5
  n=length(b);
6 | for k=n:-1:1
   s=b(k);
   for j=k+1:n
9
   s=s-U(k,j)*x(j);
10
   end
11
   x(k)=s/U(k,k);
12
   end
13 | x=x(:);
1
  function x=Elimination(A,b)
   % ELIMINATION solves a linear system by Gaussian elimination
   |% x=Elimination(A,b) solves the linear system Ax=b using Gaussian
   % Elimination with partial pivoting. Uses the function
5
  % BackSubstitution
6 n=length(b);
   norma=norm(A,1);
   A=[A,b]; % augmented matrix
   for i=1:n
10 | [maximum,kmax]=max(abs(A(i:n,i))); % look for Pivot A(kmax,i)
   kmax=kmax+i-1;
   if maximum < 1e-14*norma; % only small pivots
13
   error('matrix is singular')
14
   if i ~= kmax % interchange rows
16
  h=A(kmax,:); A(kmax,:)=A(i,:); A(i,:)=h;
17
   A(i+1:n,i)=A(i+1:n,i)/A(i,i); % elimination step
   A(i+1:n,i+1:n+1)=A(i+1:n,i+1:n+1)-A(i+1:n,i)*A(i,i+1:n+1);
19
20
   x=BackSubstitution(A,A(:,n+1));
```

1.1.3 Theoretical results

Theorem 1.1 (Regular case) Let A be an invertible matrix, with all principal minors $\neq 0$. Then there exists a unique matrix L lower triangular with $l_{ii} = 1$ for all i, and a unique matrix U upper triangular, such that A = LU. Furthermore $det(A) = \prod_{i=1}^{n} u_{ii}$.

Theorem 1.2 (Partial pivoting) Let A be an invertible matrix. There exist a permutation matrix P, a matrix L lower triangular with $l_{ii} = 1$ for all i, and a matrix U upper triangular, such that

$$PA = LU$$

1.1.4 Symmetric definite matrices : Cholewski decomposition

Theorem 1.3 If A is symmetric definite positive, there exists a unique lower triangular matrix R with positive entries on the diagonal, such that $A = RR^T$.

1.1.5 Elimination with Givens rotations

This is meant to avoid pivoting. It is used often in connection with the resolution of least-square problems. In the i step of the Gauss algorithm, we need to eliminate x_i in equations i+1 to n of the reduced system :

$$(i): a_{ii}x_i + \cdots + a_{in}x_n = b_i$$

$$\vdots \qquad \vdots$$

$$(k): a_{ki}x_i + \cdots + a_{kn}x_n = b_k$$

$$\vdots \qquad \vdots$$

$$(i): a_{ni}x_i + \cdots + a_{nn}x_n = b_n$$

If $a_{ki} = 0$, nothing needs to be done. If $a_{ki} \neq 0$, we multiply equation(i) with $\sin \alpha$ and equation (k) with $\cos \alpha$ and add. This leads to replacing equation (k) by the linear combination

$$(k)_{new} = -\sin\alpha \cdot (i) + \cos\alpha \cdot (k).$$

The idea is to choose α such that the first coefficient in the line vanishes, *i.e.*

$$-\sin\alpha \cdot a_{ii} + \cos\alpha \cdot a_{ki} = 0.$$

Since $a_{ki} \neq 0$, this defines $\cot \alpha_{ki}$, that is α_{ki} modulo π . For stability reasons, line (i) is also modified, end we end up with

$$(i)_{new} = \cos \alpha \cdot (i) + \sin \alpha \cdot (k)$$

 $(k)_{new} = -\sin \alpha \cdot (i) + \cos \alpha \cdot (k)$

From which the sine and cosine of α_{ki} are obtained through well-known trigonometric formulas

$$\sin \alpha_{ki} = 1/\sqrt{1 + \cot^2 \alpha_{ki}}, \quad \cos \alpha_{ki} = \sin \alpha_{ki} \cot \alpha_{ki}.$$

$$A_{ij_{new}} = \cos \alpha_{ki} \cdot A_{ij} + \sin \alpha_{ki} \cdot A_{kj}$$

$$A_{kj_{new}} = -\sin \alpha_{ki} \cdot A_{ij} + \cos \alpha_{ki} \cdot A_{kj}$$

```
function x=BackSubstitutionSAXPY(U,b)

8 BACKSUBSTITUTIONSAXPY solves linear system by backsubstitution
8 x=BackSubstitutionSAXPY(U,b) solves Ux=b by backsubstitution by
9 modifying the right hand side (SAXPY variant)n=length(b);
10 n=length(b);
11 for i=n:-1:1
12 x(i)=b(i)/U(i,i);
13 b(1:i-1)=b(1:i-1)-x(i)*U(1:i-1,i);
14 end
15 end
16 x=x(:);
```

```
1 | function x=EliminationGivens(A,b);
2 |% ELIMINATIONGIVENS solves a linear system using Givens—rotations
3 |% x=EliminationGivens(A,b) solves Ax=b using Givens—rotations. Uses
4 % the function BackSubstitutionSAXPY.
5 | n=length(A);
6 | for i= 1:n
7 | for k=i+1:n
8 | if A(k,i) \sim = 0
9 cot=A(i,i)/A(k,i); % rotation angle
10 | si=1/sqrt(1+cot^2); co=si*cot;
11 A(i,i)=A(i,i)*co+A(k,i)*si; % rotate rows
12 \mid h=A(i,i+1:n)*co+A(k,i+1:n)*si;
13 A(k,i+1:n)=-A(i,i+1:n)*si+A(k,i+1:n)*co;
14 | A(i,i+1:n)=h;
15 | h=b(i)*co+b(k)*si; % rotate right hand side
   b(k)=-b(i)*si+b(k)*co; b(i)=h;
17
   end
   end:
   if A(i,i)==0
20 | error('Matrix is singular');
21
   end;
22
   end
   x=BackSubstitutionSAXPY(A,b);
```

1.1.6 QR Decomposition

Note G^{ik} which differs from identity only on the rows i and k where

$$g_{ii} = g_{kk} = \cos \alpha, \quad g_{ik} = -g_{ki} = \sin \alpha$$

Example for n = 5,

$$G^{24} = \begin{pmatrix} 1 & 0 & 0 & 0 & 0 \\ 0 & \cos \alpha & 0 & \sin \alpha & 0 \\ 0 & 0 & 1 & 0 & 0 \\ 0 & -\sin \alpha & 0 & \cos \alpha & 0 \\ 0 & 0 & 0 & 0 & 1 \end{pmatrix}$$

Multipliying a vector b by G^{ik} changes only the components i and k,

$$G^{ik} \begin{pmatrix} \vdots \\ b_i \\ \vdots \\ b_k \\ \vdots \end{pmatrix} = \begin{pmatrix} \vdots \\ \cos \alpha \cdot b_i + \sin \alpha \cdot b_k \\ \vdots \\ -\sin \alpha \cdot b_i + \cos \alpha \cdot b_k \\ \vdots \end{pmatrix}$$

$$G^{ik}e_i = \cos\alpha e_i - \sin\alpha e_k$$
, $G^{ik}e_k = \sin\alpha e_i + \cos\alpha e_k$.

 G^{ik} represents the rotation of angle α in the plane generated by e_i and e_k . $(G^{ik}(\alpha))^* = G^{ik}(-\alpha)$, $(G^{ik}(\alpha))^*G^{ik}(\alpha) = I$. Thus it is an orthogonal matrix. By applying successively G_{21}, \ldots, G_{n1} whereever a_{k1} is not zero, we put zeros under the diagonal in the first column. We continue the process until the triangular matrix R is obtained. Then there are orthogonal matrices G_1, \cdots, G_N such that Then

$$Q^* = G_N \dots G_1, \quad QA = R.$$

Q is an orthogonal matrix,

$$Q^*Q = G_N \dots G_1 G_1^* \dots G_N^* = I.$$

then

$$A = QR$$

we have reached the QR decomposition of the matrix A.

1.2 Sparse and banded matrices

The first encounter of this name seems to be due to Wilkinson in 69: any matrix with enough zeros that it pays to take advantage of them.

Example: a banded matrix, with upper bandwidth p=3 and lower bandwidth q=2, in total p+q+1 nonzero diagonals.

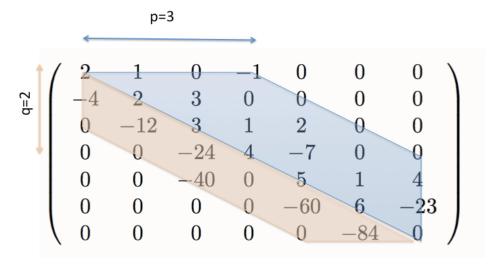


FIGURE 1.1 – A bandmatrix

Then L is lowerbanded with q=2, and U is upperbanded with p=3.

$$U = \begin{pmatrix} 2 & 1 & 0 & -1 & 0 & 0 & 0 \\ 0 & 4 & 3 & -2 & 0 & 0 & 0 \\ 0 & 0 & 12 & -5 & 2 & 0 & 0 \\ 0 & 0 & 0 & -6 & -3 & 0 & 0 \\ 0 & 0 & 0 & 0 & 20 & 1 & 4 \\ 0 & 0 & 0 & 0 & 0 & 9 & -11 \\ 0 & 0 & 0 & 0 & 0 & 0 & -102.7 \end{pmatrix}$$

$$L = \begin{pmatrix} 1 & 0 & 0 & 0 & 0 & 0 & 0 \\ -2 & 1 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & -3 & 1 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & -2 & 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & -3.3 & 2.81 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & -3 & 1 & 0 \\ 0 & 0 & 0 & 0 & 0 & -9.3 & 1 \end{pmatrix}$$

FIGURE 1.2 – LU decomposition

It is not the case anymore, when pivoting is used:

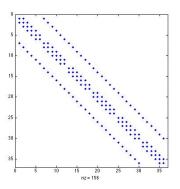
$$L = \left(\begin{array}{ccccccccc} 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0.6 & 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 \\ -0.5 & -0.17 & -0.05 & -0.21 & 0.025 & 0.0027 & 1 \end{array}\right)$$

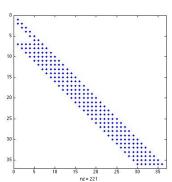
$$U = \begin{pmatrix} -4 & 2 & 3 & 0 & 0 & 0 & 0 \\ 0 & -12 & 3 & 1 & 2 & 0 & 0 \\ 0 & 0 & -40 & 0 & 5 & 1 & 4 \\ 0 & 0 & 0 & 4 & -10 & -0.6 & -2.4 \\ 0 & 0 & 0 & 0 & 0 & -60 & 6 & -23 \\ 0 & 0 & 0 & 0 & 0 & 0 & -84 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0.275 \end{pmatrix}$$

Here the permutation matrix is

$$P = \begin{pmatrix} 0 & 1 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 1 \\ 1 & 0 & 0 & 0 & 0 & 0 & 0 \end{pmatrix}$$

In the Cholewsky decomposition, there is no need of permutation, unless some parameters are very small. Then if A is banded, R is banded with the same lower bandwidth, but it may be less sparse, in the sense that it can have more zeros. Consider as an example the 36×36 sparse matrix of 2-D finite differences in a square. With the command spy de matlab, the nonzero terms appear in blue:





A bandmatrix sparse matrix

Corresponding Cholewski

Even though R has the same bandwidth as A, nonzero diagonals appear.

EXERCISE Write the Gauss and Givens algorithms for a tridiagonal matrix A = diag(c, -1) + diag(d, 0) + diag(e, 1).

LU factorization: verify that

$$c_k = l_k u_k, \ d_{k+1} = l_k f_k + u_{k+1}, \ e_k = f_k.$$

then it is not necessary to compute f_k , and only recursively

$$c_k = l_k u_k, \quad u_{k+1} = d_{k+1} - l_k e_k.$$

```
10 | for k=n-1:-1:1
11 | b(k)=(b(k)-e(k)*b(k+1))/d(k);
12 | end
```

Givens: verify that the process inserts an extra updiagonal.

```
n=length(d);
 2
   e(n)=0;
   for i=1: n—1 % elimination
 3
 4
            if c(i) \sim = 0
 5
                    t=d(i)/c(i); si=1/sqrt(1+t*t); co=t*si;
 6
                    d(i)=d(i)*co+c(i)*si; h=e(i);
 7
                    e(i)=h*co+d(i+1)*si; d(i+1)=-h*si+d(i+1)*co;
 8
                    c(i)=e(i+1)*si; e(i+1)=e(i+1)*co;
 9
                    h=b(i); b(i)=h*co+b(i+1)*si;
10
                    b(i+1)=-h*si+b(i+1)*co;
11
            end;
12
   end;
13
   b(n)=b(n)/d(n); % backsubstitution
14
   b(n-1)=(b(n-1)-e(n-1)*b(n))/d(n-1);
15
   for i=n-2:-1:1,
16
            b(i)=(b(i)-e(i)*b(i+1)-c(i)*b(i+2))/d(i);
17
   end;
```

Creation and manipulation of sparse matrices in matlab

```
>>S=sparse([2 3 1 2],[1 1 2 3],[2 4 1 3])
 S =
   (2,1)
                 2
   (3,1)
                 4
   (1,2)
   (2,3)
                 3
>>S=speye(2,3)
S =
   (1,1)
   (2,2)
>>n=4;
>> e=ones(n,1)
e =
     1
     1
```

1

>>A=spdiags([e -2*e e],-1:1,n,n)

A =

(1,1) -2

(2,1) 1

(1,2) 1

(2,2) -2

(3,2) 1

(2,3) 1

(3,3) -2

(4,3) 1

(3,4) 1

(4,4) -2

>>full(A)

ans =

-2 1 0 0

1 -2 1 0

0 1 -2 1

0 0 1 -2

>>S=sparse([2 3 1 2],[1 1 2 3],[2 4 1 3])

S =

(2,1) 2

(3,1) 4

(1,2) 1

(2,3) 3

>>S=speye(2,3)

S =

(1,1) 1

(2,2) 1

>>n=4;

>> e=ones(n,1)

e =

1

```
1
      1
      1
>>A=spdiags([e -2*e e],-1:1,n,n)
   (1,1)
                  -2
   (2,1)
                   1
   (1,2)
                   1
   (2,2)
                  -2
   (3,2)
                   1
   (2,3)
                   1
   (3,3)
                  -2
   (4,3)
                   1
   (3,4)
                  1
   (4,4)
                  -2
>>full(A)
ans =
    -2
             1
     1
            -2
                    1
      0
             1
                   -2
                           1
      0
             0
                    1
                          -2
```

The direct methods first transform the original system into a triangular matrix, and then solve the simpler triangular system. Therefore a direct method leads, modulo truncation errors, to the exact solution, after a number of operations which is a function of the size of the matrix. Thereby, when the matrix is sparse, the machine performs a large number of redundant operations due to the large number of multiplication by zero it performs.

The iterative methods rely on a product matrix vector, therefore are easier to perform in a *sparse* way. They have gain a lot of popularity for sparse matrix, in conjunction with preconditioning and and domain decomposition. However their success relies on the convergence speed of the algorithm.

1.3 Stationary iterative methods

For any splitting
$$A = M - N$$
, write $Mx = Nx + b$,
Define the sequence $Mx^{m+1} = Nx^m + b$.

$$\begin{array}{ll} Mx^{m+1} = Nx^m + b & \iff Mx^{m+1} = (M-A)x^m + b \\ & \iff x^{m+1} = (I-M^{-1}A)x^m + M^{-1}b \\ & \iff x^{m+1} = x^m - M^{-1}Ax^m + M^{-1}b \\ & \iff \text{fixed point algorithm to solve } x - M^{-1}Ax + M^{-1}b = x \\ & \iff \text{fixed point algorithm to solve } M^{-1}Ax = M^{-1}b. \end{array}$$

Again, M is a preconditioner.

Definition 1.1

- $e^m := x x^m$ is the error at step m.
- $r^m := b Ax^m = Ae^m$ is the residual at step m.
- $R = M^{-1}N = I M^{-1}A$ is the iteration matrix.

Then the sequence of the errors satisfies

$$Me^{m+1} = Ne^m$$
, $e^{m+1} = M^{-1}Ne^m$

Stopping criterion Usually, one stops if $\frac{\|r^m\|}{\|b\|} < \varepsilon$.

1.3.1 Classical methods

Use
$$A = D - E - F$$
.

$$\begin{array}{lll} \text{Jacobi} & M=D & R:=J=I-D^{-1}A \\ \text{Relaxed Jacobi} & M=\frac{1}{\omega}D & R=I-\omega D^{-1}A \\ \text{Gauss-Seidel} & M=D-E & R:=\mathcal{L}_1=I-D^{-1}A \\ \text{SOR} & M=\frac{1}{\omega}D-E, & R:=\mathcal{L}_{\omega}=(D-\omega E)^{-1}((1-\omega)D+\omega F) \\ \text{Richardson} & M=\frac{1}{\rho}I & R=I-\rho A \end{array}$$

The relaxed methods are obtained as follows: define \hat{x}^m as an application of Jacobi or Gauss-Seidel, then take the centroid of \hat{x}^m and x^m as $x^{m+1} = \omega \hat{x}^m + (1-\omega)x^m$.

For symmetric positive definite matrices A, RIchardson is a gradient method with fixed parameter. There is an optimal value for this parameter, given by $\rho_{opt} = \frac{2}{\lambda_1 + \lambda_n}$ where the λ_j are the eigenvalues of A.

1.3.2 Fundamentals tools

Define the sequence

$$e^{m+1} = Re^m, \ R = M^{-1}N.$$

Then $e^m = R^m e_0$, and for any norm

$$||e^{m+1}|| \le ||R|| ||e^m||, \quad ||e^m|| \le ||R^m|| ||e^0||.$$

Definition 1.2

- $\rho(R) = \max\{|\lambda|, \lambda \text{ eigenvalue of } R\}$ is the spectral radius of R.
- $\rho_m(R) = ||R^m||^{1/m}$ is the mean convergence factor of R.
- $\rho_{\infty}(R) = \lim_{m \to \infty} ||R^m||^{1/m}$ is the asymptotic convergence factor of R.

Theorem 1.4

- For any matrix R, for any norm, for any m, $\rho_m(R) \geq \rho(R)$. The sequence $\rho_m(R)$ has a limit, called the asymptotic convergence factor of R and denoted by $\rho_{\infty}(R)$.
- The sequence x^m is convergent for any x^0 if and only if $\rho(R) < 1$.

To reduce the initial error by a factor ε , we need m iterations, defined by

$$\frac{\|e^m\|}{\|e^0\|} \le (\rho_m(R))^m \sim \varepsilon.$$

So $m \sim \frac{\log \varepsilon}{\log \rho_m(R)}$. It is easier to use the asymptotic value relation, $m \sim \frac{\log \varepsilon}{\log \rho_\infty(R)}$. Then to obtain another decimal digit in the solution, one needs to choose $\varepsilon = 10^{-1}$, then $\bar{m} \sim -\frac{\ln(10)}{\ln(\rho(R))}$.

Definition 1.3 The asymptotic convergence rate is $F = -\ln(\rho(R))$.

Diagonally dominant matrices

Theorem 1.5

- If A is a matrix, either strictly diagonally dominant, or irreducible and strongly diagonally dominant, then the Jacobi algorithm converges.
- If A is a matrix, either strictly diagonally dominant, or irreducible and strongly diagonally dominant, then for $0 < \omega \le 1$, the SOR algorithm converges.

M- matrices

Definition 1.4 $A \in \mathbb{R}^{n \times n}$ is a M-matrix if

- 1. $a_{ii} > 0$ for $i = 1, \ldots, n$,
- 2. $a_{ij} \leq 0 \text{ for } i \neq j, i, j = 1, ..., n,$
- 3. A is invertible,
- 4. $A^{-1} \ge 0$.

Theorem 1.6 If A is a M-matrix and A = M - N is a regular splitting (M is invertible and both M^{-1} and N are nonnegative), then the stationary method converges.

Symmetric positive definite matrices

Theorem 1.7 (Householder-John) Suppose A is positive. If $M + M^T - A$ is positive definite, then $\rho(R) < 1$.

Corollary 1.1 1. If D+E+F is positive definite, then Jacobi converges.

2. If $\omega \in (0,2)$, then SOR converges.

Tridiagonale matrices

Theorem 1.8 1. $\rho(\mathcal{L}_1) = (\rho(J))^2$: Jacobi Gauss-Seidel converge or diverge simultaneously. If convergent, Gauss-Seidel is twice as fast.

- 2. Suppose the eigenvalues of J are real. Then Jacobi and SOR converge or diverge simultaneously for $\omega \in]0,2[$.
- 3. Same assumptions, SOR has an optimal parameter $\omega^* = \frac{2}{1 + \sqrt{1 (\rho(J))^2}}$, and then $\rho(\mathcal{L}_{\omega^*}) = \omega^* 1$.

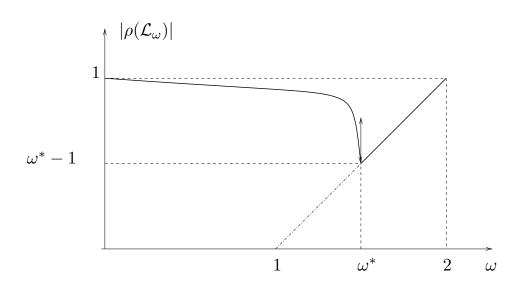


FIGURE 1.3 – Variations of $\rho(\mathcal{L}_{\omega})$ as a function of ω

1.4 Non-Stationary iterative methods. Symmetric definite positive matrices

Descent methods

1.4.1 Definition of the iterative methods

Suppose the descent directions p_m are given beforehand. Define

$$x^{m+1} = x^m + \alpha_m p^m, \quad e^{m+1} = e^m - \alpha_m p^m, \quad r^{m+1} = r^m - \alpha_m A p^m.$$

Define the A norm : $||y||_A^2 = (Ay, y)$.

Theorem 1.9 x is the solution of $Ax = b \iff it minimizes over <math>\mathbb{R}^N$ the functional $J(y) = \frac{1}{2}(Ay, y) - (b, y)$.

This is equivalent to minimizing $G(y) = \frac{1}{2}(A(y-x), y-x) = \frac{1}{2}||y-x||_A^2$. At step m, α_m is defined such as to minimize J in the direction of p_m . Define the quadratic function of α

$$\varphi_m(\alpha) = J(x^m + \alpha p^m) = J(x^m) - \alpha(r^m, p^m) + \frac{1}{2}\alpha^2(Ap^m, p^m).$$

Minimizing φ_m leads to

$$\alpha_m = \frac{(p^m, r^m)}{(Ap^m, p^m)}, \quad (p^m, r^{m+1}) = 0$$

$$G(x^{m+1}) = G(x^m)(1 - \mu_m), \quad \mu_m = \frac{(r^m, p^m)^2}{(Ap^m, p^m)(A^{-1}r^m, r^m)}$$

• Steepest descent (gradient à pas optimal) $p^m = r^m$.

$$x^{m+1} = x^m + \alpha_m r^m$$
, $e^{m+1} = e^m - \alpha_m r^m$, $r^{m+1} = (I - \alpha_m A)p^m$.

$$\alpha_m = \frac{\|r^m\|^2}{(Ar^m, r^m)}, \quad (r^m, r^{m+1}) = 0$$

$$G(x^{m+1}) = G(x^m) \left(1 - \frac{\|r^m\|^4}{(Ar^m, r^m)(A^{-1}r^m, r^m)} \right) \le \left(\frac{\kappa(A) - 1}{\kappa(A) + 1} \right)^2 G(x^m)$$

• Conjugate gradient

$$x^{m+1} = x^m + \alpha_m p^m, \quad \alpha_m = \frac{(p^m, r^m)}{(Ap^m, p^m)}, \quad (r^m, p^{m-1}) = 0.$$

Search p^m as $p^m = r^m + \beta_m p^{m-1}$

$$G(x^{m+1}) = G(x^m)(1 - \mu_m)$$

$$\mu_m = \frac{(r^m, p^m)^2}{(Ap^m, p^m)(A^{-1}r^m, r^m)} = \frac{\|r^m\|^4}{(Ap^m, p^m)(A^{-1}r^m, r^m)}$$

Maximize μ_m , or minimize

$$(Ap^{m}, p^{m}) = \beta_{m}^{2}(Ap^{m-1}, p^{m-1}) + 2\beta_{m}(Ap^{m-1}, r^{m}) + (Ar^{m}, r^{m})$$
$$\beta_{m} = -\frac{(Ap^{m-1}, r^{m})}{(Ap^{m-1}, p^{m-1})} \quad \Rightarrow (Ap^{m-1}, p^{m}) = 0$$
$$(r^{m}, r^{m+1}) = 0, \quad \beta_{m} = \frac{\|r^{m}\|^{2}}{\|r^{m-1}\|^{2}}.$$

Properties of the conjugate gradient Choose $p^0 = r^0$. Then $\forall m \geq 1$, if $r^i \neq 0$ for i < m.

- 1. $(r^m, p^i) = 0$ for $i \le m 1$.
- 2. $\operatorname{vec}(r^0, \dots, r^m) = \operatorname{vec}(r^0, Ar^0, \dots, A^m r^0).$
- 3. $\operatorname{vec}(p^0, \dots, p^m) = \operatorname{vec}(r^0, Ar^0, \dots, A^m r^0).$
- 4. $(p^m, Ap^i) = 0$ for i < m 1.
- 5. $(r^m, r^i) = 0$ for $i \le m 1$.

Definition 1.5 Krylov space $\mathcal{K}_m = vec(r^0, Ar^0, \dots, A^{m-1}r^0)$.

Theorem 1.10 (optimality of CG) A symétrique définie positive,

$$||x^m - x||_A = \inf_{y \in x^0 + \mathcal{K}_m} ||y - x||_A, \quad ||x||_A = \sqrt{x^T A x}.$$

Theorem 1.11 Convergence in at most N steps (size of the matrix). Furthermore

$$G(x^m) \le 4\left(\frac{\sqrt{\kappa(A)} - 1}{\sqrt{\kappa(A)} + 1}\right)^2 G(x^{m-1})$$

The conjugate gradient algorithm

$$x^0$$
 chosen, $p^0 = r^0 = b - Ax^0$.

while m < Niter or $||r^m|| \ge tol$, do

$$\alpha_{m} = \frac{\|r^{m}\|^{2}}{(Ap^{m}, p^{m})},$$

$$x^{m+1} = x^{m} + \alpha_{m}p^{m},$$

$$r^{m+1} = r^{m} - \alpha_{m}Ap^{m},$$

$$\beta_{m+1} = \frac{\|r^{m+1}\|^{2}}{\|r^{m}\|^{2}},$$

$$p^{m+1} = r^{m+1} - \beta_{m+1}p^{m}.$$

end.

1.4.2 Comparison of the iterative methods

Basic example : 1-D Poisson equation -u'' = f on (0, 1), with Dirichlet boundary conditions $u(0) = g_g$, $u(1) = g_d$. Introduce the second order finite difference stencil.

$$(0,1) = \bigcup (x_j, x_{j+1}), \quad x_{j+1} - x_j = h = \frac{1}{n+1}, \quad j = 0, \dots, n.$$

$$-\frac{u(x_{i+1}) - 2u(x_i) + u(x_{i-1})}{h^2} \sim f(x_i), \quad i = 1, \dots n$$

$$u_0 = g_g, \quad u_{n+1} = g_d.$$

$$|u_i - u(x_i)| \le h^2 \frac{\sup_{x \in [a,b]} |u^{(4)}(x)|}{12}$$

The vector of discrete unknowns is $u = (u_1, \ldots, u_n)$.

$$A = \frac{1}{h^2} \begin{pmatrix} 2 & -1 & & & \\ -1 & 2 & -1 & & 0 & \\ & \ddots & \ddots & \ddots & \\ 0 & & -1 & 2 & -1 \\ & & & -1 & 2 \end{pmatrix} \quad b = \begin{pmatrix} f_1 - \frac{g_g}{h^2} \\ f_2 \\ \vdots \\ f_{n-1} \\ f_n - \frac{g_d}{h^2} \end{pmatrix}$$

The matrix A is symmetric definite positive.

The discrete problem to be solved is

$$Au = b$$

1.4.3 Condition number and error

$$Ax = b$$
, $A\hat{x} = \hat{b}$

Define $\kappa(A) = ||A||_2 ||A^{-1}||_2$. If A is symmetric > 0, $\kappa(A) = \frac{\max \lambda_i}{\min \lambda_i}$.

Theorem 1.12

$$\frac{\|\hat{x} - x\|_2}{\|x\|_2} \le \kappa(A) \frac{\|\hat{b} - b\|_2}{\|b\|_2}$$

and there is a b such that it is equal.

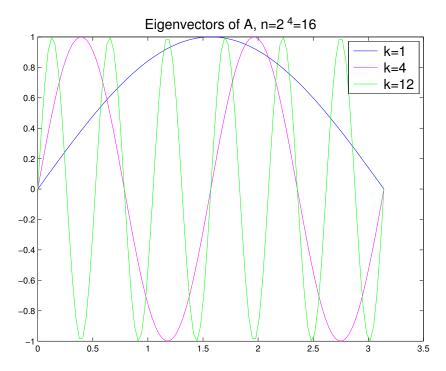


FIGURE 1.4 – Eigenvectors of A

Eigenvalues and eigenvectors of A $(h \times (n+1) = 1)$.

$$\mu_k = \frac{4}{h^2} \sin^2 \frac{k\pi h}{2}, \quad \Phi^{(k)} = \left(\sin \frac{jk\pi}{n+1}\right)_{1 \le j \le n},$$

$$\kappa(A) = \frac{\sin^2 \frac{n\pi h}{2}}{\sin^2 \frac{\pi h}{2}} = \frac{\cos^2 \frac{\pi h}{2}}{\sin^2 \frac{\pi h}{2}} \sim \frac{4}{\pi^2 h^2}$$

For any iterative method, the eigenfunctions of the iteration matrix are equal to those of A.

Algorithm		
Jacobi $\lambda_k(J) = 1 - \frac{h^2}{2}\mu_k = \cos(k\pi h)$		
Gauss-Seidel	$\lambda_k(\mathcal{L}_1) = (\lambda_k(J))^2 = \cos^2(k\pi h)$	
SOR	$\eta = \lambda_k(\mathcal{L}_{\omega})$ solution of $(\eta + \omega - 1)^2 = \eta \omega(\lambda_k(J))^2$.	

Table 1.1 – Eigenvalues of the iteration matrix

Algorithm	Convergence factor	n=5	n = 30	n = 60
Jacobi	$\cos \pi h$	0.81	0.99	0.9987
Gauss-Seidel	$\cos^2 \pi h$	0.65	0.981	0.9973
SOR	$\frac{1-\sin\pi h}{1+\sin\pi h}$	0.26	0.74	0.9021
steepest descent	$\frac{K(A) - 1}{K(A) + 1} = \cos \pi h$	0.81	0.99	0.9987
conjugate gradient	$\frac{\sqrt{K(A)} - 1}{\sqrt{K(A)} + 1} = \frac{\cos \pi h - \sin \pi h}{\cos \pi h + \sin \pi h}$	0.51	0.86	0.9020

Table 1.2 – Convergence factor

Algorithm	convergence factor ρ_{∞}	convergence rate F
Jacobi	$1-\frac{\varepsilon^2}{2}$	$\frac{\varepsilon^2}{2}$
Gauss-Seidel	$1-\bar{\varepsilon^2}$	$arepsilon^2$
SOR	$1-2\varepsilon$	2arepsilon
Steepest descent	$1-\varepsilon^2$	$1\varepsilon^2$
conjugate gradient	$1-2\varepsilon$	2arepsilon

Table 1.3 – Asymptotic behavior in function of $\varepsilon=\pi h$

	n	Jacobi and steepest descent	Gauss-Seidel	SOR	conjugate gradient
	10	56	28	4	4
ĺ	100	4760	2380	38	37

Table 1.4 – Reduction factor for one digit
$$M \sim -\frac{\ln(10)}{F}$$

Gauss elimination	n^2
optimal overrelaxation	$n^{3/2}$
FFT	$n \ln_2(n)$
conjugate gradient	$n^{5/4}$
multigrid	n

Table 1.5 – Asymptotic order of the number of elementary operations needed to solve the 1-D problem as a function of the number of grid points

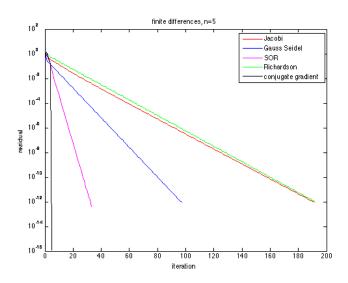


Figure 1.5 – Convergence history, n = 5

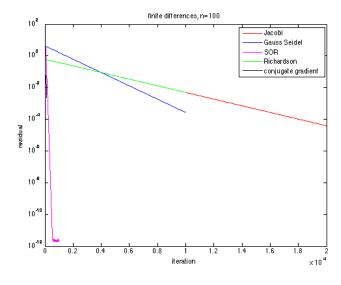


Figure 1.6 – Convergence history, n = 100

Not only the conjugate gradient is better, but the convergence rate being $\mathcal{O}(h^{1/2})$, the number of iterations necessary to increases the precision of one digit is multiplied by $\sqrt{10}$ when the mesh size is divided by 10, whereas for the Jacobi or Gauss-Seidel it is divided

by 100. The miracle of multigrids, is that the convergence rate is independent of the mesh size.

1.5 Preconditioning

Preconditioning: purpose

Take the system AX = b, with A symmetric definite positive, and the conjugate gradient algorithm. The speed of convergence of the algorithm deteriorates when $\kappa(A)$ increases. The purpose is to replace the problem by another system, better conditioned. Let M be a symmetric regular matrix. Multiply the system on the left by M^{-1} .

$$AX = b \iff M^{-1}AX = M^{-1}b \iff (M^{-1}AM^{-1})MX = M^{-1}b$$

Define

$$\tilde{A} = M^{-1}AM^{-1}, \quad \tilde{X} = MX, \quad \tilde{b} = M^{-1}b,$$

and the new problem to solve $\tilde{A}\tilde{X}=\tilde{b}$. Since M is symmetric, \tilde{A} is symmetric definite positive. Write the conjugate gradient algorithm for this "tilde" problem.

The algorithm for \tilde{A}

$$\tilde{X}^0$$
 given, $\tilde{p}^0 = \tilde{r}^0 = \tilde{b} - \tilde{A}\tilde{X}^0$.

While m < Niter or $\|\tilde{r}^m\| \ge tol$, do

$$\begin{array}{rcl} \alpha_m & = & \frac{\|\tilde{r}^m\|^2}{\left(\tilde{A}\tilde{p}^m, \tilde{p}^m\right)}, \\ \tilde{X}^{m+1} & = & \tilde{X}^m + \alpha_m \tilde{p}^m, \\ \tilde{r}^{m+1} & = & \tilde{r}^m - \alpha_m \tilde{A}\tilde{p}^m, \\ \beta_{m+1} & = & \frac{\|\tilde{r}^{m+1}\|^2}{\|\tilde{r}^m\|^2}, \\ \tilde{p}^{m+1} & = & \tilde{r}^{m+1} - \beta_{m+1}\tilde{p}^m. \end{array}$$

Now define

$$p^{m} = M^{-1}\tilde{p}^{m}, \quad X^{m} = M^{-1}\tilde{X}^{m}, \quad r^{m} = M\tilde{r}^{m},$$

and replace in the algorithme above.

The algorithm for A

$$Mp^0 = M^{-1}r^0 = M^{-1}b - M^{-1}AM^{-1}MX^0 \iff \begin{cases} p^0 = M^{-2}r^0, \\ r^0 = b - AX^0. \end{cases}$$

Define
$$z^m = M^{-2}r^m$$
. Then $\beta_{m+1} = \frac{(z^{m+1}, r^{m+1})}{(z^m, r^m)}$.

$$(\tilde{A}\tilde{p}^{m}, \tilde{p}^{m}) = (M^{-1}AM^{-1}Mp^{m}, Mp^{m}) = (Ap^{m}, p^{m})$$

$$\Rightarrow \boxed{\alpha_m = \frac{(z^m, r^m)}{(Ap^m, p^m)}}.$$

$$MX^{m+1} = MX^m + \alpha_m Mp^m \iff X^{m+1} = X^m + \alpha_m p^m$$

$$M^{-1}r^{m+1} = M^{-1}r^m - \alpha_m M^{-1}AM^{-1}Mp^m \iff \boxed{r^{m+1} = r^m - \alpha_m Ap^m}$$

$$Mp^{m+1} = M^{-1}r^{m+1} - \beta_{m+1}Mp^m \iff p^{m+1} = z^{m+1} - \beta_{m+1}p^m$$

The algorithm for A

Define $C = M^2$.

$$X^{0}$$
 given, $r^{0} = b - AX^{0}$, solve $Cz^{0} = r^{0}$, $p^{0} = z^{0}$.

While m < Niter or $||r^m|| \ge tol$, do

$$\alpha_{m} = \frac{(z^{m}, r^{m})}{(Ap^{m}, p^{m})},$$

$$X^{m+1} = X^{m} + \alpha_{m}p^{m},$$

$$r^{m+1} = r^{m} - \alpha_{m}Ap^{m},$$
solve $Cz^{m+1} = r^{m+1},$

$$\beta_{m+1} = \frac{(z^{m+1}, r^{m+1})}{(z^{m}, r^{m})},$$

$$p^{m+1} = z^{m+1} - \beta_{m+1}p^{m}.$$

How to choose C

C must be chosen such that

- 1. \tilde{A} is better conditioned than A,
- 2. C is easy to invert.

Use an iterative method such that A = C - N with symmetric C. For instance it can be a symmetrized version of SOR, named SSOR, defined for $\omega \in (0,2)$ by

$$C = \frac{1}{\omega(2-\omega)}(D-\omega E)D^{-1}(D-\omega F).$$

Notice that if A is symmetric definite positive, so is D and its coefficients are positive, then its square root \sqrt{D} is defined naturally as the diagonal matrix of the square roots of the coefficients. Then C can be rewritten as

$$C = SS^T$$
, with $S = \frac{1}{\sqrt{\omega(2-\omega)}}(D-\omega E)D^{-1/2}$,

yielding a natural Cholewski decomposition of C.

Another possibility is to use an incomplete Cholewski decomposition of A. Even if A is sparse, that is has many zeros, the process of LU or Cholewski decomposition is very expensive, since it creates non zero values.

Example: Matrix of finite differences in a square

Poisson equation

$$-(\Delta_h u)_{i,j} = -\frac{1}{h^2} (u_{i+1,j} - 2u_{i,j} + u_{i-1,j}) - \frac{1}{h^2} (u_{i,j+1} - 2u_{i,j} + u_{i,j-1}) = f_{i,j},$$

$$1 \le i \le M, 1 \le j \le M$$

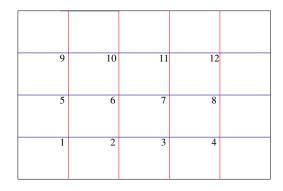


FIGURE 1.7 – Numbering by line

The point (x_i, y_j) has for number i + (j-1)M. A vector of all unknowns X is created:

$$Z = (u_{1,1}, u_{2,1}, u_{M,1}), (u_{1,2}, u_{2,2}, u_{M,2}), \cdots (u_{1,M}, u_{2,M}, u_{M,M})$$

with $Z_{i+(j-1)*M} = u_{i,j}$.

If the equations are numbered the same way (equation #k is the equation at point k), the matrix is block-tridiagonal:

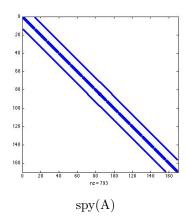
$$A = \frac{1}{h^2} \begin{pmatrix} B & -C & 0_M \\ -C & B & -C \\ & \ddots & \ddots & \ddots \\ & & -C & B & -C \\ & 0_M & & -C & B \end{pmatrix}$$
 (1.1)

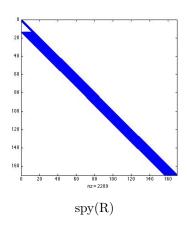
$$C = I_M, \quad B = \left(\begin{array}{cccc} 4 & -1 & & 0 \\ -1 & 4 & -1 & & \\ & \ddots & \ddots & \ddots & \\ & & -1 & 4 & -1 \\ & 0 & & -1 & 4 \end{array} \right)$$

The righthand side is $b_{i+(j-1)*M} = f_{i,j}$, and the system takes the form AZ = b.

Cholewski decomposition of A

The block-Cholewski decomposition of A, $A = RR^T$, is block-bidiagonale, but the blocks are not tridiagonale as in A, as the spy command of matlab can show, in the case where M = 15.





However, if we look closely to the values of R between the main diagonales where A was non zero, we see that where the coefficients of A are zero, the coefficients of R are small. Therefore the incomplete Cholewski preconditioning computes only the values of R where the coefficient of A is not zero, and gains a lot of computational time.

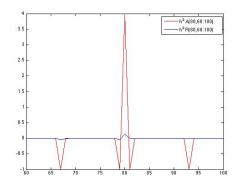


FIGURE 1.8 – Variation of the coefficients of Cholewski in the line 80 for M=15

The matlab codes are as follows ([3])

```
Ch=tril(A);
       2
           for k=1:nn
       3
               Ch(k,k)=sqrt(Ch(k,k));
        4
               Ch(k+1:nn,k)=Ch(k+1:nn,k)/Ch(k,
                   k);
Cholewski
               for j=k+1:nn
                   Ch(j:nn,j)=Ch(j:nn,j)-Ch(j:
        6
                       nn,k)*Ch(j,k);
        7
               end
           end
```

```
ChI=tril(A);
                     2
                        for k=1:nn
                     3
                             ChI(k,k)=sqrt(ChI(k,k));
                     4
                             for j=k+1:nn
                     5
                                 if ChI(j,k) \sim 0
                                     ChI(j,k)=ChI(j,k)/ChI(k
                     6
                                          ,k);
                     7
                                 end
                     8
                             end
                             for j=k+1:nn
Incomplete Cholewski
                                 for i=j:n
                                      if ChI(i,j) \sim = 0
                    11
                    12
                                          ChI(i,j)=ChI(i,j)-
                                              ChI(i,k)*ChI(j,k
                                              );
                    13
                                      end
                                 end
                    14
                    15
                             end
                    16
                        end
```

Then use $C = R * R^T$.

Comparison For the 2-D finite differences matrix and n=25 internal points in each direction, we compare the convergence of the conjugate gradient and various preconditioning: Gauss-Seidel, SSOR with optimal parameter, and incomplete Cholewski. The gain even with $\omega=1$ is striking. Furthermore Gauss-Seidel is comparable with Incomplete Cholewski.

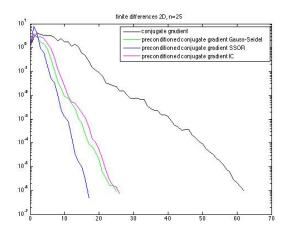


FIGURE 1.9 – Convergence history, influence of preconditioning

Krylov methods for non symmetric matrices, 1.6 Arnoldi algorithm

Gram-Schmidt orthogonalization and QR decom-1.6.1position

Starting with a free family (v_1, \dots, v_m, \dots) in a vector space E, the process builds an orthonormal family $(w_1, \cdots, w_m, \cdots)$ recursively. •. Define $w_1 = \frac{v_1}{\|v_1\|}$.

- •. Note $r_{1,2} = (v_2, w_1)$, and define $u_2 = v_2 r_{1,2}w_1$. By construction u_2 is orthogonal to w_1 . It only remains to make it of norm 1 by defining $r_{2,2} = ||u_2||$, $w_2 = \frac{u_2}{r_{2,2}}$.
- •. Suppose we have built (w_1, \dots, w_j) orthonormal. Define $r_{i,j+1} = (v_{j+1}, w_i)$ for $1 \le i \le j$ j, and

$$u_{j+1} = v_{j+1} - \sum_{i=1}^{j} r_{i,j+1} w_i, \quad r_{j+1,j+1} = ||u_{j+1}||, \quad w_{j+1} = \frac{u_{j+1}}{r_{j+1,j+1}}.$$

Then (w_1, \dots, w_j) is orthonormal. Furthermore, we can rewrite the previous equality as

$$v_{j+1} = r_{j+1,j+1}w_{j+1} + \sum_{i=1}^{j} r_{i,j+1}w_i,$$

which gives for each j;

$$v_j = \sum_{i=1}^{j} r_{i,j} w_i \,. \tag{1.2}$$

Define the matrix K whose columns are the v_i , the matrix Q whose columns are the w_i , and the upper triangular matrix R whose coefficients are $r_{i,j}$ for $i \leq j$, and 0 otherwise. Then (1.2) takes the matrix form

$$K = QR \tag{1.3}$$

The matrix Q is orthogonal, so this is exactly the so-called QR decomposition of the M matrix K. Note that the matrix K DOES NOT NEED TO BE SQUARE, nor the matrix Q, but the matrix R has size $m \times m$.

1.6.2 Arnoldi algorithm

The purpose is to build recursively a orthonormal basis of the Krylov space $\mathcal{K}_m = vect(r, Ar, \cdots, A^{m-1}r)$. We will take advantage of the special form of the generating family to proceed a slight modification of Gram Schmidt.

- $\bullet. \text{ Define } q_1 = \frac{\tau}{\|r\|}.$
- •. Now we must orthogonalize q_1 and Ar, or equivalently q_1 and Aq_1 :

$$h_{1,1} = (Aq_1, q_1), \quad u_2 = Aq_1 - h_{1,1}q_1, \quad h_{2,1} = ||u_2||, \quad q_2 = \frac{u_2}{h_{2,1}}.$$

Then $q_2 \in Vec(q_1, Aq_1) = Vec(r, Ar) = \mathcal{K}_2$ and (q_1, q_2) is an orthonormal basis. All this can be rewritten as

$$Aq_1 = h_{1,1}q_1 + h_{2,1}q_2.$$

Then $K_3 = Vec(q_1, q_2, A^2r) = Vec(q_1, q_2, Aq_2)$. Therefore, instead of orthonormalizing with the new vector A^2r , we can do it with the new vector Aq_2 . Define

$$u_3 = Aq_2 - h_{1,2}q_1 - h_{2,2}q_2, \quad h_{2,2} = (Aq_2, q_2), \quad h_{1,2} = (Aq_2, q_1), \quad h_{3,2} = ||u_3||, \ q_3 = \frac{u_3}{h_{3,2}}.$$

This generalizes in building an orthonormal basis of \mathcal{K}_{j+1} by

$$u_{j+1} = Aq_j - \sum_{i=1}^{j} h_{i,j}q_i$$
, $h_{i,j} = (Aq_j, q_i)$, $h_{j+1,j} = ||u_{j+1}||$, $q_{j+1} = \frac{u_{j+1}}{h_{j+1,j}}$.

Theorem 1.13 If the algorithm goes through m, then (q_1, \ldots, q_m) is a basis of \mathcal{K}_m .

Below is the matlab script

```
for j=1:m do

h(i,j)=(A*v(j,:),v(i,:)) , i=1:i

w(j,:)=A*v(j,:)-sum(h(i,j)v(i,:)

h(j+1,j)=norm(w(j,:),2)

If h(j+1,j) == 0 stop
v(j+1,:)= w(j,:)/h(j+1,j)
```

The definition of the q_j above can be rewritten as

$$Aq_j = \sum_{i=1}^{j+1} h_{i,j} q_i \tag{1.4}$$

Define the Hessenberg matrix \widetilde{H}_m as the matrix of the $h_{i,j}$ for $i \leq j+1$, and 0 otherwise. \widetilde{H}_m is a matrix of size $(m+1) \times m$.

$$\widetilde{H}_{m} = \begin{pmatrix} h_{1,1} & \cdots & h_{1,m} \\ h_{2,1} & h_{2,2} & \cdots & h_{2,m} \\ 0 & h_{3,2} & \ddots & \ddots & \vdots \\ \vdots & 0 & \ddots & \ddots & \vdots \\ 0 & 0 & 0 & h_{m,m-1} & h_{m,m} \\ 0 & 0 & 0 & 0 & h_{m+1,m} \end{pmatrix}$$

Define $V_m = [q_1, \dots, q_m]$. H_m is the $m \times m$ matrix obtained from the $(m+1) \times m$ matrix \widetilde{H}_m by deleting the last row.

Proposition 1.1

$$AV_{m} = V_{m+1}\widetilde{H}_{m}, \quad AV_{m} = V_{m+1}\widetilde{H}_{m} = V_{m}H_{m} + h_{m+1,m}q_{m+1}e_{m}^{T}, \quad V_{m}^{T}AV_{m} = H_{m}.$$
(1.5)

Proof The first identity is just rewriting (1.4). As for the second one, rewrite the first one in blocks as

$$V_{m+1} \widetilde{H}_m = [V_m, q_{m+1}] \left[\begin{array}{c} H_m \\ h_{m+1,m} e_m^T \end{array} \right] = V_m H_m + h_{m+1,m} q_{m+1} e_m^T.$$

Use this now in the first equality to obtain

$$AV_m = V_m H_m + h_{m+1,m} q_{m+1} e_m^T$$
.

Multiply on the left by V_m^T . Since V_m is orthogonal, and $V_m^T q_{m+1} = [(q_1, q_{m+1}), \cdots, (q_m, q_{m+1})]^T = 0$, we obtain

 $V_m^T A V_m = H_m.$

1.6.3 Full orthogonalization method or FOM

Search for an approximate solution in $x_0 + \mathcal{K}_m(A, r_0)$ in the form $x_m = x_0 + V_m y$, and impose $r_m \perp \mathcal{K}_m(A, r_0)$. This is equivalent to $V_m^T r_m = 0$, which by

$$r_m = b - A(x_0 + V_m y) = r_0 - AV_m y$$

can be written by (1.5) as

$$V_m^T A V_m y = V_m^T r_0 \text{ or } H_m y = ||r_0|| e_1.$$

The small Hessenberg system

$$H_m y = ||r_0|| e_1 \tag{1.6}$$

can be solved at each step using a direct method: suppose all the principal minors of H_m are nonzero. Due to the special structure of H_m , the LU factorization of H_m has the form

$$L = \begin{pmatrix} 1 & \cdots & 0 \\ l_1 & 1 & \cdots & 0 \\ 0 & l_2 & \ddots & \ddots & \vdots \\ \vdots & 0 & \ddots & \ddots & \vdots \\ 0 & 0 & 0 & l_{m-1} & 1 \end{pmatrix}, \quad U = \begin{pmatrix} u_{11} & \cdots & u_{1m} \\ 0 & u_{22} & \cdots & u_{2m} \\ 0 & 0 & \ddots & \ddots & \vdots \\ \vdots & 0 & \ddots & \ddots & \vdots \\ 0 & 0 & 0 & 0 & u_{mm} \end{pmatrix}$$

The following matlab code gives the LU factorization

```
u(1,:)=h(1,:);
for i=1:m-1
l(i)=h(i+1,i)/u(i,i);
  for j=i+1:n
u(i+1,j)=h(i+1,j)-l(i)*u(i,j)
end
end
```

The computational cost is $m^2 + 2m - 1$ operations.

Theorem 1.14 At each step m, r_m is parallel to q_{m+1} .

Proof

```
r_m = r_0 - AV_m y = r_0 - (V_m H_m + h_{m+1,m} q_{m+1} e_m^T) y = r_0 - V_m H_m y - h_{m+1,m} y_m q_{m+1}. But H_m y = ||r_0||e_1, therefore r_0 - V_m H_m y = r_0 - ||r_0||V_m e_1 = r_0 - ||r_0||q_1 = 0. Therefore r_m = -h_{m+1,m} y_m q_{m+1} is parallel to q_{m+1}.
```

```
function [X,R,H,Q]=FOM(A,b,x0);
 1
   % FOM full orthogonalization method
   % [X,R,H,Q] = FOM(A,b,x0) computes the decomposition A=QHQ?, Q
       orthogonal
   % and H upper Hessenberg, Q(:,1)=r/norm(r), using Arnoldi in order to
4
   % solve the system Ax=b with the full orthogonalization method. X
       contains
6
   % the iterates and R the residuals
   n=length(A); X=x0;
    r=b—A*x0; R=r; r0norm=norm(r);
9
   Q(:,1)=r/r0norm;
   for k=1:n
11
        v = A*Q(:,k);
12
        for j=1:k
            H(j,k)=Q(:,j)'*v; v=v-H(j,k)*Q(:,j);
13
14
        end
15
        e0=zeros(k,1); e0(1)=r0norm; % solve system
16
        y=H\equiv x= x0+Q*y;
17
        X=[X \times];
18
        R=[R b-A*x];
19
        if k<n
20
            H(k+1,k)=norm(v); Q(:,k+1)=v/H(k+1,k);
21
        end
22
   end
```

1.6.4 GMRES algorithm

Here we minimize at each step the residual r_m in $\mathcal{K}_m(A, r_0)$, which is equivalent to the minimization of $J(y) = ||r_0 - AV_m y||_2$ for y in \mathbb{R}^m , Use the Proposition to write

$$r_0 - AV_m y = ||r_0|| q_1 - V_{m+1} \widetilde{H}_m y = V_{m+1} (||r_0|| e_1 - \widetilde{H}_m y).$$

Since V_{m+1} is orthogonal, then

$$||r_0 - AV_m y|| = |||r_0||e_1 - \widetilde{H}_m y||.$$

So in FOM we solve EXACTLY the square system $H_m y = ||r_0|| e_1$, while in GMRES we solve the LEAST SQUARE problem inf $||||r_0|| e_1 - \widetilde{H}_m y||$. This small minimization problem has a special form with a upper Hessenberg form, and is best solved by the Givens reflection method. Let us consider the case of m = 3 ($\sigma_0 = ||r_0||$).

$$z = \widetilde{H}_3 y - \sigma_0 e_1 = \begin{pmatrix} h_{1,1} & h_{1,2} & h_{1,3} \\ h_{2,1} & h_{2,2} & h_{2,3} \\ 0 & h_{3,2} & h_{3,3} \\ 0 & 0 & h_{4,3} \end{pmatrix} \begin{pmatrix} y_1 \\ y_2 \\ y_3 \end{pmatrix} - \begin{pmatrix} \sigma_0 \\ 0 \\ 0 \\ 0 \end{pmatrix}$$

Multiply successively by the three $(m+1) \times (m+1)$ Givens matrices

$$Q_1 = \left(\begin{array}{cccc} c_1 & s_1 & 0 & 0 \\ -s_1 & c_1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{array} \right), \quad Q_2 = \left(\begin{array}{cccc} 1 & 0 & 0 & 0 \\ 0 & c_2 & s_2 & 0 \\ 0 & -s_2 & c_2 & 0 \\ 0 & 0 & 0 & 1 \end{array} \right), \quad Q_3 = \left(\begin{array}{cccc} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & c_3 & s_3 \\ 0 & 0 & -s_3 & c_3 \end{array} \right),$$

to make the system triangular, and even better

$$Q_3 Q_2 Q_1 z = \begin{pmatrix} \tilde{h}_{1,1} & \tilde{h}_{1,2} & \tilde{h}_{1,3} \\ 0 & \tilde{h}_{2,2} & \tilde{h}_{2,3} \\ 0 & 0 & \tilde{h}_{3,3} \\ \hline 0 & 0 & 0 \end{pmatrix} \begin{pmatrix} y_1 \\ y_2 \\ y_3 \end{pmatrix} - \begin{pmatrix} c_1 \\ c_2 \\ c_3 \\ \hline c_4 \end{pmatrix}$$

Therefore

$$||z||^2 = ||Q_3Q_2Q_1z||^2 = ||Ry - c^I||^2 + (c_4)^2$$

where R is the upper block of the matrix, and c^{I} the upperblock of the vector. Now we have a regular system, and y is THE solution of

$$Ry = c^I$$
,

which is now an upper triangular system.

```
function [x,iter,resvec] = GMRES(A,b,restart,tol,maxit)
 1
   %GMRES Generalized Minimum Residual Method for Schwarz methods
2
3
       [x,iter]=GMRES(A,b,RESTART,TOL,MAXIT) uses gmres to solve a
4
       Ax=b where A is defined as the procedure 'A'.
5
       This is an adapted copy of Matlabs GMRES.
6
7
   n = length(b);
9
                                    % Norm of rhs vector, b
   n2b = norm(b);
10
   % x0=rand(n,1);
11
12
   % x0 = ones(n,1);
                                     % all frequencies to initialize
   x0 = \sin((1:n/2)'/(n/2+1)*pi*f); x0=[x0; x0];
15
   for f=2:n/2,
16
     x0 = x0+[\sin((1:n/2)'/(n/2+1)*pi*f); \sin((1:n/2)'/(n/2+1)*pi*f)];
17
   end;
18
   x = x0;
19
20
   % Set up for the method
22
   flag = 1;
23
                                     % Iterate which has minimal residual
   xmin = x;
       so far
   imin = 0;
                                     % Outer iteration at which xmin was
       computed
                                     % Inner iteration at which xmin was
25
   jmin = 0;
       computed
26
   tolb = tol * n2b;
                                     % Relative tolerance
27 | if tolb==0,
```

```
28
     tolb=tol:
                                   % use absolute error to find zero
         solution
29 | end;
30 \mid r = b - feval(A,x);
                                   % Zero—th residual
31 \mid normr = norm(r);
                                   % Norm of residual
32
33 | if normr <= tolb
                                  % Initial guess is a good enough
       solution
34
     flag = 0;
35
     relres = normr / n2b;
36
     iter = 0;
37
     resvec = normr;
     os = sprintf(['The initial guess has relative residual %0.2g' ...
38
39
                    ' which is within\nthe desired tolerance %0.2g' ...
40
                    ' so GMRES returned it without iterating.'], ...
41
                    relres, tol);
42
     disp(os);
43
     return;
44 end
45
46
47 | resvec = zeros(restart*maxit+1,1); % Preallocate vector for norm of
       residuals
48 \mid resvec(1) = normr;
                                      % resvec(1) = norm(b-A*x0)
                                      % Norm of residual from xmin
49
   normrmin = normr;
50 | \text{rho} = 1;
51 \mid stag = 0;
                                       % stagnation of the method
52
53 % loop over maxit outer iterations (unless convergence or failure)
54
55 for i = 1 : maxit
56
     V = zeros(n,restart+1);
     h = zeros(restart+1,1);
                                     % Arnoldi vectors
                                     % upper Hessenberg st A*V = V*H
57
         . . .
58
     QT = zeros(restart+1, restart+1); % orthogonal factor st QT*H = R
59
     R = zeros(restart, restart); % upper triangular factor st H = Q
         *R
60
     f = zeros(restart,1);
                                      % y = R \  = x0 + V * y
61
                                      % W = V*inv(R)
     W = zeros(n,restart);
62
     j = 0;
                                      % inner iteration counter
63
64
     vh = r;
65
     h(1) = norm(vh);
66
     V(:,1) = vh / h(1);
67
     QT(1,1) = 1;
68
     phibar = h(1);
69
70
    for j = 1 : restart
71
       j
72 | % MapU(x,sqrt(n),sqrt(n));
```

```
73
 74
         u = feval(A,V(:,j));
                                      % matrix multiply
 75
         for k = 1 : j
 76
           h(k) = V(:,k)' * u;
 77
           u = u - h(k) * V(:,k);
 78
         end
 79
         h(j+1) = norm(u);
 80
         V(:,j+1) = u / h(j+1);
 81
         R(1:j,j) = QT(1:j,1:j) * h(1:j);
 82
         rt = R(j,j);
 83
 84
     % find cos(theta) and sin(theta) of Givens rotation
 85
         if h(j+1) == 0
 86
           c = 1.0;
                                           % theta = 0
 87
           s = 0.0;
 88
         elseif abs(h(j+1)) > abs(rt)
 89
           temp = rt / h(j+1);
 90
           s = 1.0 / sqrt(1.0 + temp^2); % pi/4 < theta < 3pi/4
 91
           c = - temp * s;
 92
         else
 93
           temp = h(j+1) / rt;
 94
           c = 1.0 / sqrt(1.0 + temp^2); % -pi/4 <= theta < 0 < theta <=
               pi/4
95
           s = - temp * c;
 96
         end
97
98
         R(j,j) = c * rt - s * h(j+1);
99
         zero = s * rt + c * h(j+1);
100
101
         q = QT(j,1:j);
102
         QT(j,1:j) = c * q;
103
         QT(j+1,1:j) = s * q;
104
         QT(j,j+1) = -s;
105
         QT(j+1,j+1) = c;
106
         f(j) = c * phibar;
107
         phibar = s * phibar;
108
109
         if j < restart</pre>
110
           if f(j) == 0
                                         % stagnation of the method
111
             stag = 1;
112
           end
113
           W(:,j) = (V(:,j) - W(:,1:j-1) * R(1:j-1,j)) / R(j,j);
114
     % Check for stagnation of the method
115
           if stag == 0
116
             stagtest = zeros(n,1);
117
             ind = (x \sim = 0);
118
             if \sim (i==1 \& j==1)
119
               stagtest(ind) = W(ind,j) ./ x(ind);
120
               stagtest(\simind & W(:,j) \sim= 0) = Inf;
121
               if abs(f(j))*norm(stagtest,inf) < eps</pre>
```

```
122
                  stag = 1;
123
               end
124
             end
125
           end
126
                                      % form the new inner iterate
           x = x + f(j) * W(:,j);
127
         else % j == restart
128
           vrf = V(:,1:j)*(R(1:j,1:j)\backslash f(1:j));
129
    % Check for stagnation of the method
130
           if stag == 0
131
             stagtest = zeros(n,1);
132
             ind = (x0 \sim = 0);
133
             stagtest(ind) = vrf(ind) ./ x0(ind);
134
             stagtest(~ind & vrf ~= 0) = Inf;
135
             if norm(stagtest,inf) < eps</pre>
136
               stag = 1;
137
             end
138
           end
139
           x = x0 + vrf;
                                          % form the new outer iterate
140
         end
141
         normr = norm(b-feval(A,x));
142
         resvec((i-1)*restart+j+1) = normr;
143
144
         if normr <= tolb</pre>
                                           % check for convergence
145
           if j < restart</pre>
146
             y = R(1:j,1:j) \setminus f(1:j);
147
             x = x0 + V(:,1:j) * y;
                                           % more accurate computation of xj
148
             r = b - feval(A,x);
149
             normr = norm(r);
150
             resvec((i-1)*restart+j+1) = normr;
151
152
           if normr <= tolb</pre>
                                           % check using more accurate xj
153
             flag = 0;
154
             iter = [i j];
155
             break;
156
           end
157
         end
158
         if stag == 1
159
160
           flag = 3;
161
           break;
162
         end
163
164
         if normr < normrmin</pre>
                                           % update minimal norm quantities
165
           normrmin = normr;
166
           xmin = x;
167
           imin = i;
168
           jmin = j;
169
         end
170
                                           % for j = 1: restart
       end
171
```

```
172
      if flag == 1
173
                                        % save for the next outer
        x0 = x;
            iteration
174
        r = b - feval(A, x0);
175
      else
176
        break;
177
      end
178
179
    end
                                        % for i = 1 : maxit
180
    % returned solution is that with minimum residual
181
182
183
    if n2b==0,
184
      n2b=1;
                     % here we solved for the zero solution and thus show
185
    end;
                      % the absolute residual!
186
187
    if flag == 0
188
      relres = normr / n2b;
189
    else
190
      x = xmin;
191
      iter = [imin jmin];
192
      relres = normrmin / n2b;
193
    end
194
    % truncate the zeros from resvec
195
196 | if flag <= 1 | flag == 3
197
      resvec = resvec(1:(i-1)*restart+j+1);
198
    else
199
      if j == 0
200
        resvec = resvec(1:(i-1)*restart+1);
201
202
        resvec = resvec(1:(i-1)*restart+j);
203
      end
204
    end
205
206
207
    % only display a message if the output flag is not used
208
    switch(flag)
209
        case 0,
           os = sprintf(['GMRES(%d) converged at iteration %d(%d) to a'
210
211
                         ' solution with relative residual %0.2g'], ...
212
                         restart,iter(1),iter(2),relres);
213
214
        case 1,
215
           os = sprintf(['GMRES(%d) stopped after the maximum %d
              iterations' ...
                         ' without converging to the desired tolerance
216
                            %0.2g' ...
217
                                    The iterate returned (number %d(%d))'
```

```
218
                         ' has relative residual %0.2g'], ...
219
                         restart, maxit, tol, iter(1), iter(2), relres);
220
221
         case 2,
222
          os = sprintf(['GMRES(%d) stopped at iteration %d(%d)' ...
223
                          ' without converging to the desired tolerance
                             %0.2g' ...
224
                                     because the system involving the' ...
225
                          ' preconditioner was ill conditioned.' ...
226
                          '\n
                                     The iterate returned (number %d(%d))'
227
                          ' has relative residual %0.2g'], ...
228
                         restart,i,j,tol,iter(1),iter(2),relres);
229
230
        case 3,
231
          os = sprintf(['GMRES(%d) stopped at iteration %d(%d)' ...
232
                          ' without converging to the\n
                                                                 desired'
233
                          ' tolerance %0.2g because the method stagnated.'
                         '\n
234
                                     The iterate returned (number %d(%d))'
235
                          ' has relative residual %0.2g'], ...
236
                         restart,i,j,tol,iter(1),iter(2),relres);
237
238
    end
                                       % switch(flag)
239
    if flag == 0
240
      disp(os);
241
    else
242
      warning(os);
243
    end
244
245
    semilogy(0:length(resvec)-1,resvec);
```

Remark If A is symmetric, H_m is tridiagonale.

Restarted GMRES For reasons of storage cost, the GMRES algorithm is mostly used by restarting every M steps :

Compute x_1, \dots, x_M . If r_M is small enough, stop, else restart with $x_0 = x_M$.