HO CHI MINH <y

USN-HCMV PARIS 13

JOINT MASTER 2

High Performance Computing

Pr. Laurence Halpern and Juliette Ryan

with support of Drs. Ong Thanh Hai, and NguyenTanTrung classe 2008

Purpose : This is all about solving Ax = b, where A is a square matrix
and b is a given righthand side, or a family of given righthand sides.

November 2016

Table des matiéres

1 Classical methods 5
1.1 Direct methods, 5)
1.1.1 Gaussmethod L. 5
1.1.2 Codes e 7
1.1.3 Theoretical results 7
1.1.4 Symmetric definite matrices : Cholewski decomposition 8
1.1.5 Elimination with Givens rotations 8
1.1.6 QR Decomposition 9
1.2 Sparse and banded matriceso 10
1.3 Stationary iterative methods 15
1.3.1 Classical methods 16
1.3.2 Fundamentals tools 16

1.4 Non-Stationary iterative methods. Symmetric definite positive
matrices L L 18
1.4.1 Definition of the iterative methods 19
1.4.2 Comparison of the iterative methods 21
1.4.3 Condition number and error 21
1.5 Preconditioningo 25
1.6 Krylov methods for non symmetric matrices, Arnoldi algorithm 29
1.6.1 Gram-Schmidt orthogonalization and Q)R decomposition 29
1.6.2 Arnoldi algorithm 30
1.6.3 Full orthogonalization method or FOM 31
1.6.4 GMRES algorithm 32
2 Multigrid methods 39
2.1 The V-cycle process o 39
2.1.1 The Smoother 40
2.1.2 Projection on the coarse grid 40
2.1.3 Coarse resolution, 41
2.1.4 Projection on the fine grid 41
2.1.5 Result of the coarse walk 41
2.1.6 Postsmoothing, 43
2.1.7 Spectral analysis L 43
2.1.8 Number of elementary operations 46
2.2 The finite elements multigrid algorithm 46
2.2.1 Preliminaries 46
222 Discretenormo 48

2.2.3 Definition of the multigrid algorithm
2.2.4 Convergence property of the multigrid algorithm
2.3 Multigrid Preconditioner

Fast methods using Fast Fourier Transform

3.1 Presentation of the method
3.2 Discrete and Fast Fourier Transform
3.3 Thealgorithm o

Substructuring methods

4.1 The Schur Complement method

4.2 Direct method for the resolution of the interface problem . . .

4.3 The conjugate gradient algorithm

4.4 The Dirichlet Neumann algorithm
4.4.1 Presentation of the algorithm
4.4.2 Convergence analysis in one dimension

4.5 Appendix : matlab scriptsin 1-D

50
93

55
95
99
63

Chapitre 1

Classical methods

Contents

1.1 Direct methods 5
1.1.1 Gauss method 5
1.1.2 Codes 7
1.1.3 Theoretical results 7

1.1.4 Symmetric definite matrices : Cholewski decompo-
sition Lo 8
1.1.5 Elimination with Givens rotations 8
1.1.6 QR Decomposition 9
1.2 Sparse and banded matrices 10
1.3 Stationary iterative methods. 15
1.3.1 Classical methods. 16
1.3.2 Fundamentals tools 16

1.4 Non-Stationary iterative methods. Symmetric de-
finite positive matrices 18
1.4.1 Definition of the iterative methods 19
1.4.2 Comparison of the iterative methods 21
1.4.3 Condition number and error 21
1.5 Preconditioning 000 25

1.6 Krylov methods for non symmetric matrices, Ar-

noldi algorithm 29

1.6.1 Gram-Schmidt orthogonalization and QR decom-
position L. 29
1.6.2 Arnoldi algorithm 30
1.6.3 Full orthogonalization method or FOM 31
1.6.4 GMRES algorithm 32

1.1 Direct methods

1.1.1 Gauss method

Example

1 3 1 9 9

1 1 -1 1 = 1

3 11 6 36 36

~ ~ —_——— \T_/
Take the 3 x 4 matrix A = [A|b]. Define

1 00
Ml = —1 1 0
-3 0 1

and multiply on the left by M; to put zeros under the diagonal in the first
column :

1 3 19
MiAlb]= 0 —2 —2|-8
0 2 319

Multiply now on the left by M; to put zeros under the diagonal in the second
column :

1 00
My=1 01 0
011

13 119

My Mi[Alb]=| 0 -2 —2| -8

0 0 1|1

Define M = M,M,. Then the column j of M is the column j of M; :

1 00
M= -1 10
-3 11

MI[A|b]=[MA|Mb].
Ar=b <= MAx = Mb: M is a preconditioner.

The matrix U = M A is upper triangular, and solving Ux = Mb is simpler
than solving Az = b. Define L = M~!. In the column j, the entries below
the diagonal are those of M with a change of signe.

1 0 0
L=M‘'=|1 1 0
3 —1 1

Ly =
U=MA < A=LU Az =b <= LUrx=b <= {Uy b
=1y

Solving Ax = b is then equivalent to performing the LU decomposition, and
solving two triangular systems. Counting of operations :

1. LU decomposition O(%) elementary operations.

2. Solve Ly =b O(n?) elementary operations.

3. Solve Uz =y O(n?) elementary operations.

For P values of the righthand side, N,, ~ % + P x 2n?.

6

1.1.2 Codes

function x=BackSubstitution(U,b)

% BACKSUBSTITUTION solves by backsubstitution a linear system
s x=BackSubstitution(U,b) solves Ux=b, U upper triangular by
% backsubstitution

n=length(b);

for k=n:—1:1

s=b(k);

for j=k+1l:n

s=s—U(k,j)*x(]);

end

x(k)=s/U(k,k);

end

x=x(:);

\O

function x=Elimination(A,b)

s ELIMINATION solves a linear system by Gaussian elimination
x=Elimination(A,b) solves the linear system Ax=b using Gaussian
Elimination with partial pivoting. Uses the function

% BackSubstitution

n=length(b);

norma=norm(A,1);

A=[A,b]; % augmented matrix

for i=1:n

[maximum, kmax]=max(abs(A(i:n,i))); % look for Pivot A(kmax,i)
kmax=kmax+i—1;

if maximum < le—14*norma; % only small pivots

error('matrix is singular')

o°® o°

o°

end

if i ~= kmax % interchange rows
h=A(kmax, :); A(kmax,:)=A(i,:); A(i,:)=h;
end

A(i+l:n,i)=A(i+1l:n,i)/A(i,1); % elimination step
A(i+l:n,i+l:n+1)=A(i+1l:n,i+1l:n+1)—A(i+1l:n,i)*A(1i,i+1l:n+l);
end

x=BackSubstitution(A,A(:,n+1));

1.1.3 Theoretical results

Theorem 1.1 (Regular case) Let A be an invertible matriz, with all prin-
cipal minors # 0. Then there exists a unique matrix L lower triangular with
l;; =1 for all i, and a unique matriz U upper triangular, such that A = LU.
Furthermore det (A) = T, ;.

Theorem 1.2 (Partial pivoting) Let A be an invertible matriz. There exist
a permutation matrix P, a matriz L lower triangular with l;; = 1 for all i,
and a matriz U upper triangular, such that

PA=LU

1.1.4 Symmetric definite matrices : Cholewski decom-
position
Theorem 1.3 If A is symmetric definite positive, there exists a unique lower

triangular matriz R with positive entries on the diagonal, such that A = RR”.

1.1.5 Elimination with Givens rotations

This is meant to avoid pivoting. It is used often in connection with the
resolution of least-square problems. In the i step of the Gauss algorithm, we
need to eliminate x; in equations i 4+ 1 to n of the reduced system :

(1) 0 auyr; +-0 A+ AT, = b
(l{?) api%; +-+ + QppTp, = bk’

(1) 1 auxi +-0 A+ paTn = by

If ay; = 0, nothing needs to be done. If ay; # 0, we multiply equation(i) with
sin @ and equation (k) with cosa and add. This leads to replacing equation
(k) by the linear combination

(K)new = — sina - (i) + cosa - (k).
The idea is to choose « such that the first coefficient in the line vanishes, i.e.
—sina - a; +cosa - ag; = 0.

Since ay; # 0, this defines cotgay;, that is ay; modulo 7. For stability reasons,
line (7) is also modified, end we end up with

(D)pew = cosa - (i) +sina - (k)
(K)pew = —sina - (i) +cosa - (k)

From which the sine and cosine of «a4; are obtained through well-known tri-
gonometric formulas

sinay; =1 1 4 cotg?ay;, €OSy; = Sin ag; COtEa;.
)

A

k;.j new

COS Qg - Aij —|—sinaki . Alcj
— sinag,; - Aij +cosay - Ay

) new

function x=BackSubstitutionSAXPY(U,b)

% BACKSUBSTITUTIONSAXPY solves linear system by backsubstitution
% x=BackSubstitutionSAXPY(U,b) solves Ux=b by backsubstitution by
% modifying the right hand side (SAXPY variant)n=length(b);
n=length(b);

for i=n:-1:1

x(1)=b(i)/U(i,1);

b(1l:i—1)=b(1:i—1)}x(i)*U(1l:i—1,1i);

end

x=x(1);

function x=EliminationGivens(A,b);

% ELIMINATIONGIVENS solves a linear system using Givens—rotations
% x=EliminationGivens(A,b) solves Ax=b using Givens—rotations. Uses
% the function BackSubstitutionSAXPY.
n=length(A);

for i= 1:n

for k=i+l:n

if A(k,1)~=0

cot=A(i,1i)/A(k,1i); % rotation angle
si=1/sqrt(1l+cot”2); co=sixcot;
A(i,i)=A(i,1i)*co+A(k,i)*si; % rotate rows
h=A(1i,i+1:n)*co+A(k,i+1l:n)x*si;
A(k,i+l:n)=—A(i,i+1l:n)*si+A(k,i+1l:n)x*co;
A(i,i+1l:n)=h;

h=b(i)*co+b(k)*si; % rotate right hand side
b(k)=b(i)*si+b(k)*co; b(i)=h;

end

end;

if A(i,1)==0

error('Matrix is singular');

end;

end

x=BackSubstitutionSAXPY(A,b);

1.1.6 QR Decomposition

Note G which differs from identity only on the rows i and k where
Gii = Gkk = COSQ, Gik, = — gk = SN

Example for n = 5,

1 0 0 0 0
0 cosa 0 sina O
G*=10 0 1 0 0
0 —sina 0 cosa O
0 0 0 0 1

Multipliying a vector b by G** changes only the components i and k,

b; cosa - b; +sina - b

by, —sina - b; 4cosa - by

G*e; = cosae; — sin « ey, G"*e, = sinae; + cos a e.

G represents the rotation of angle o in the plane generated by e; and
er. (G*())* = G*(—a), (G*(a))*G*(a) = I. Thus it is an orthogonal
matrix. By applying successively Gy, ..., G, whereever a;; is not zero, we
put zeros under the diagonal in the first column. We continue the process
until the triangular matrix R is obtained. Then there are orthogonal matrices
G4, -+, Gy such that Then

Q"=Gn...G1, QA=R.
Q is an orthogonal matrix,
QQ=Gy...GG]...Gy=1.

then
A=QR,

we have reached the QR decomposition of the matrix A.

1.2 Sparse and banded matrices

The first encounter of this name seems to be due to Wilkinson in 69 : any
matrix with enough zeros that it pays to take advantage of them.

Example : a banded matrix, with upper bandwidth p = 3 and lower
bandwidth ¢ = 2, in total p + ¢ + 1 nonzero diagonals.

p=3
(2 10 -1 0 0 0\
i 4 2 3 0 06 0 0
0 —1273 1 2 o 0
0 0 24 -7 0 g
0 0 -4 0 5. 1 4
\ 0 0 0 0 0 -8 -Q /

FIGURE 1.1 — A bandmatrix

10

Then L is lowerbanded with ¢ = 2, and Uis upperbanded with p = 3.

(i 0 0 0 0 0)

2 1.0 0 0 0 0

0 -3 1.0 0 0 0

L=l 0 0 -2 1 0 0 0
0 0 =3328 0 0

0 0 0 0 -3 1 0

L0 0 0 0 0 -931)

F1GURE 1.2 — LU decomposition

It is not the case anymore, when pivoting is used :

1 0 0 0 0 0 0
0 1 0 0 0 0 O
0 0 1 0 0 0 0
L= 0 0 0.6 1 0 0 0
0 0 0 0 1 0 0
0 0 0 0 0 1 0
—0.5 —0.17 —0.05 —0.21 0.025 0.0027 1
-4 2 3 0 0 0 0
0 —-12 3 1 2 0 0
0 0 —-400 5 1 4
U= 0 0 0 4-10-06 —24
0 0 0 0-60 6 -—23
0 0 0 0 0 =84 0
0 0 0 0 O 0 0.275

Here the permutation matrix is

11

T

I
_ o O O O oo
(e R en B an B en Bl e B an N
[=lelelololl S
SO O = O oo
[ool all)
OO = OO oo
o= O O O oo

In the Cholewsky decomposition, there is no need of permutation, unless
some parameters are very small. Then if A is banded, R is banded with the
same lower bandwidth, but it may be less sparse, in the sense that it can
have more zeros. Consider as an example the 36 x 36 sparse matrix of 2 — D
finite differences in a square. With the command spy de matlab, the nonzero
terms appear in blue :

5 10 15 20 25 30 35 5 10 15 20 25 a0 35
nz=156 nz=221

A bandmatrix sparse matrix Corresponding Cholewski

Even though R has the same bandwidth as A, nonzero diagonals appear.

EXERCISE Write the Gauss and Givens algorithms for a tridiagonal matrix
A = diag(c,—1) + diag(d,0) + diag(e, 1).

LU factorization : verify that

ek =l ugs dey1 =l fro + g1, ex = fi
then it is not necessary to compute fj, and only recursively

Ck = lpug, Uppr = dgrr — e

n=length(d);

for k=1:n—1 % LU—decomposition with no pivoting
c(k)=c(k)/d(k);
d(k+1)=d(k+1)—c(k)=*e(k);

end

for k=2:n % forward substitution
b(k)=b(k)—c(k—1)*b(k—1);

end

b(n)=b(n)/d(n); % backward substitution

12

for k=n—1:—1:1
b(k)=(b(k)—e(k)*b(k+1))/d(Kk);
end

Givens : verify that the process inserts an extra updiagonal.

n=length(d);

e(n)=0;

for i=1: n—1 % elimination
if c(i)~=0

d(i)/c(i); si=1/sqrt(1l+txt); co=t*si;

i)=d(i)*co+c(i)*si; h=e(i);

i)=h*xco+d(i+1)*si; d(i+1)=—hx*si+d(i+1)x*co;

i)=e(i+l)*si; e(i+l)=e(i+1)x*co;

b(i); b(i)=hxco+b(i+1)x*si;

i+

t=
d
e
C
h
b 1)=—hx*si+b(i+1)=*co;

(
(
(
(1

end;
end;
b(n)=b(n)/d(n); % backsubstitution
b(n—1)=(b(n—1)—e(n—1)*b(n))/d(n—1);
for i=n—2:—1:1,
b(i)=(b(i)—e(i)*b(i+1l)—c(i)=*b(i+2))/d(1);
end;

Creation and manipulation of sparse matrices in matlab

>>S=sparse([2 3 1 2],[1 12 3],[24 1 3]

g =
3,1 4
(1,2) 1
(2,3) 3

>>S=speye(2,3)

g =
(1,1 1
(2,2) 1

>>n=4;

>>e=ones(n,1)

e =

1
1

13

>>A=spdiags([e -2*e e],-1:1,n,n)
A:

(1,1 -2
(2,1) 1
(1,2) 1
(2,2) -2
(3,2) 1
(2,3) 1
(3,3) -2
(4,3) 1
(3,4) 1
(4,4) -2
>>full(A)
ans =
-2 1 0
1 -2 1 0
0 1 -2 1
0 0 1 -2

>>S=sparse([2 3 1 2],[1 12 3],[24 1 3])
S=

(2,1)
(3,1)
(1,2)
(2,3)

W~ N

>>S=speye(2,3)

S =

Y

(1,1)
(2,2)

[

>>n=4;
>>e=ones(n,1)
e:

14

>>A=spdiags([e -2%e e],-1:1,n,n)

A =
(1,1 -2
(2,1) 1
(1,2) 1
(2,2) -2
(3,2) 1
(2,3) 1
(3,3) -2
(4,3) 1
(3,4) 1
(4,4) -2
>>full (A)
ans =
-2 1 0 0
1 -2 1 0
0 1 -2 1
0 0 1 -2

The direct methods first transform the original system into a triangular
matrix, and then solve the simpler triangular system. Therefore a direct
method leads, modulo truncation errors, to the exact solution, after a number
of operations which is a function of the size of the matrix. Thereby, when
the matrix is sparse, the machine performs a large number of redundant
operations due to the large number of multiplication by zero it performs.

The iterative methods rely on a product matrix vector, therefore are easier
to perform in a sparse way. They have gain a lot of popularity for sparse
matrix, in conjunction with preconditioning and and domain decomposition.
However their success relies on the convergence speed of the algorithm.

1.3 Stationary iterative methods

For any splitting A = M — N, write Mz = Nx + b,
Define the sequence Mz™tt = Nax™ + b.

15

Max™t = Nzg™m+b <= Mx™' = (M- A)z"+0b

— "= (T - M 1tA)z™+ M~

e g™t =™ — M tAx™ + M1

<= fixed point algorithm to solve x — M 'Azx + M~'b =2
fixed point algorithm to solve M ~'Ax = M~'b.

!

Again, M is a preconditioner.

o ¢ :=ux — ™ is the error at step m.
o 1" :=b— Ax™ = Ae™ is the residual at step m.
e R=M"N=1—M"1A is the iteration matriz.

Then the sequence of the errors satisfies
Me™t = Ne™, ™t = MINe™

[l

Stopping criterion Usually, one stops if ”;T|H <e.

1.3.1 Classical methods
UseA =D — F — F.

Jacobi M =D R=J=1-D14A

Relaxed Jacobi M = %D R=I1I—-wD1'A

Gauss-Seidel M=D-F R=L,=1-D"1A

SOR M = %D—E, R:=L,=(D—-wE)((1-w)D +wF)
Richardson M = /l)] R=1-pA

The relaxed methods are obtained as follows : define 2™ as an application
of Jacobi or Gauss-Seidel, then take the centroid of 2™ and 2™ as 2™ =
wi™ 4 (1 — w)z™.

For symmetric positive definite matrices A, RIchardson is a gradient method
with fixed parameter. There is an optimal value for this parameter, given by
Popt = ﬁ where the \; are the eigenvaues of A.

1.3.2 Fundamentals tools

Define the sequence
e™ ™ = Re™, R= M"'N.
Then e™ = R™eq, and for any norm

le™ < IIRNMe™, lle™l < [I=R™ e

16

p(R) = max{|\|, A eigenvalue of R} is the spectral radius of R.

o pn(R) = |R™||*/™ is the mean convergence factor of R.
o poo(R) = limy,_o0 ||[R™||V™ is the asymplotic convergence factor of
R.
Theorem 1.4

e For any matriz R, for any norm, for any m, p,(R) > p(R). The
sequence py,(R) has a limit, called the asymptotic convergence factor
of R and denoted by pso(R).

o The sequence x™ is convergent for any 2" if and only if p(R) < 1.

To reduce the initial error by a factor €, we need m iterations, defined by

le™

€]l

< (pm(R))™ ~ e

loge
log pm (R)
. Then to obtain another decimal digit in the solution, one needs
In(10)
In(p(R))’

The asymptotic convergence rate is F' = —In(p(R)).

Som ~ . It is easier to use the asymptotic value relation, m ~

log e
10g poo(R)

to choose ¢ = 107!, then m ~ —

Diagonally dominant matrices

Theorem 1.5
o [f A is a matriz, either strictly diagonally dominant, or irreducible and
strongly diagonally dominant, then the Jacobi algorithm converges.
o [f A is a matriz, either strictly diagonally dominant, or irreducible and
strongly diagonally dominant, then for 0 < w <1, the SOR algorithm
converges.

M- matrices

A € R™™ is a M-matrix if
a; >0 fori=1,...,n,
a;; <0 fori#j,1,5=1,...,n,
A is invertible,
A7t >0.

e v o~

Theorem 1.6 If A is a M-matrix and A = M — N is a reqular splitting
(M is invertible and both M~ and N are nonnegative), then the stationary
method converges.

Symmetric positive definite matrices

17

Theorem 1.7 (Householder-John) Suppose A is positive. If M+ MT — A
is positive definite, then p(R) < 1.

Corollary 1.1 1. If D+ E+F s positive definite, then Jacobi converges.
2. If w e (0,2), then SOR converges.

Tridiagonale matrices

Theorem 1.8 1. p(Ly) = (p(J)))? : Jacobi Gauss-Seidel converge or di-
verge simultaneously. If convergent, Gauss-Seidel is twice as fast.

2. Suppose the eigenvalues of J are real. Then Jacobi and SOR converge
or diverge simultaneously for w €]0, 2[.

3. Same assumptions, SOR has an optimal parameter w* =

1+ /I= ()

and then p(L) = w* — 1.

FIGURE 1.3 — Variations of p(L,) as a fonction of w

1.4 Non-Stationary iterative methods. Symme-
tric definite positive matrices

Descent methods

18

1.4.1 Definition of the iterative methods

Suppose the descent directions p,, are given beforehand. Define

xm+1 = ™M 4 Oémpm, 6m+1 =M — Oémpm, 7am+1 =M _ OzmApm

Define the A norm : | ||y||4 = (Ay,y).

Theorem 1.9 z is the solution of Ar = b <= it minimizes over RY the
functional J(y) = 5(Ay,y) — (b,y).
1 1

This is equivalent to minimizing G(y) = 3(A(y — z),y — x) = 5|ly — z[/%.
At step m, «,, is defined such as to minimize J in the direction of p,,. Define
the quadratic function of «

1
() = J@™ + ap™) = J(@™) = (™ p") + S0} (A" 7).

Minimizing ¢,, leads to

Mmoo 1M

(p ,7’) (m m+1):O

Oy = 3 y T
(Ap™, p™)

(Tm’pm)Q
A/glpm7 pm)(Afle, rm)

G(@™) = G@™) (1 = pim), pim = (

m

e Steepest descent (gradient a pas optimal) p™ = r™.

B = g™, e = e ™, = (1 a A
rm 2
e (AHr—m “rm)a (r™, ™) =0
7

et =66 (1~ i o)< (1) o0

e Conjugate gradient

" = 2™ o™, = %’ (™, p™) = 0.
Search p™ as p™ = 1™ + Bp™ !
G(az™Y) = G(a™)(1 — fim)
(o) 1

Hm = (Apm, pm)(A=Trm pm) — (Apm, pm)(A-Lpm pm)

19

Maximize ft,,, or minimize

(Ap™,p™) = B2 (Ap™ 1, p™ 1) + 2B (Ap™ ™) + (Ar™, ™)

(Ap™trm) me1 _m
Bm:_(Apm—l pm—l) :>(Ap 17p):0
™2
("t =0, Bp= .
P

Properties of the conjugate gradient Choose p° = 7°. Then Vm > 1,
if rt # 0 for 1 < m.

(r™ p') =0for i <m—1.
vec(r®, ..., r™) = vec(r® Ar® ... A™r0).
vec(p?, ..., p™) = vec(r® Ar® ... A™r0).

. (p™, Apt) =0 for i <m — 1.

(rmrt)y=0fori<m-—1.

A e

Krylov space K,,, = vec(r®, Ar®, ... A= 1p0).

Theorem 1.10 (optimality of CG) A symétrique définie positive,

2" —zlla= inf |y —ala, [fla=VaTAz.
yexV+Kp,

Theorem 1.11 Convergence in at most N steps (size of the matriz). Fur-
thermore

o (VED Y
G(z)§4<m> G(z™)

The conjugate gradient algorithm
2%chosen, p° =10 =0b— Az°.

while m < Niter or ||r™|| > tol, do

N

" (Apm, pm)’
xm+1 — xm +ampm7
rmtl = pm—q,, Ap™,

||7,,m+1||2

b = Lo

mr =
Pt = T = Bap™,

end.

20

1.4.2 Comparison of the iterative methods

Basic example :. 1-D Poisson equation —u” = f on (0, 1), with Dirichlet
boundary conditions u(0) = g,, u(1) = g4. Introduce the second order finite
difference stencil.

1 :
(O,I)ZU(I]‘,ZE]‘+1), l’j+1—l'j:h:n+1,]:0,...,7’L.
w(winr) — 2u(x;) + u(x;_q))
_ulzi) h2) (~ flx;), i=1,...n
Uo = Yg, Un4+1 = Gd
(4)
SUP,crap |0 (2
e e <t S 0)
12
The vector of discrete unknowns is u = (uyq, ..., uy,)
2 -1 fi—
1 12 -1 0 £
0 1 2 -1 £

The matrix A is symmetric definite positive.

The discrete problem to be solved is

Au=>

1.4.3 Condition number and error

Az =b, Ai=1D
Define k(A) = ||A||o||A7Y|2. If A is symmetric > 0, k(A) = B2

min \; °

Theorem 1.12 X
16— D]l

1 — [l
161l

]l

r(A)

and there is a b such that it is equal.

21

Eigenvectors of A, n=2 4=16

0.8

0.6

0.4

0.21

-0.2

-0.4

-0.6

-0.8

FIGURE 1.4 — Eigenvectors of A

Eigenvalues and eigenvectors of A (h x (n+1) =1).

For any iterative method, the eigenfunctions of the iteration matrix are equal

to those of A.

4 kmh ik
M = _gSin2 Sl ;oW = (sin JET))
h 2 n+1 1<j<n
(4) = sin? %h B cos? W—Qh 4
" ©osin?T™ gin? % m2h?

Algorithm Eigenvalues of the iteration matrix R
Jacobi Ae(J)=1— %uk = cos(kmh)
Gauss-Seidel Me(L1) = (M(J))? = cos®(kmh)
SOR n = (L) solution of (n+w —1)* = nw(A,(J))2

TABLE 1.1 — Eigenvalues of the iteration matrix

22

Algorithm Convergence factor n= n=30|n=60
Jacobi cosh 0.81 0.99 | 0.9987
Gauss-Seidel cos? h 0.65 | 0.981 | 0.9973
1 —sinzh
SOR T 0.26 | 0.74 | 0.9021
1+sinwh
K(A) -1
steepest descent KEA—;—i-l = cos7h 0.81 0.99 | 0.9987
K(A) -1 h —sinmh
conjugate gradient (4) =1 _cosmh—sinmh | 1 | 086 | 0.9020
VE(A)+1 cosTh+sinmh

TABLE 1.2 — Convergence factor

Algorithm convergence factor p,, | convergence rate F
Jacobi 1— % %
Gauss-Seidel 1—¢£? g2
SOR 1—2¢ 2e
Steepest descent 1—¢g? 12
conjugate gradient 1—2¢ 2¢

TABLE 1.3 — Asymptotic behavior in function of ¢ = 7h

n | Jacobi and steepest descent | Gauss-Seidel | SOR | conjugate gradient
10 56 28 4 1
100 4760 2380 38 37

TABLE 1.4 — Reduction factor for one digit M ~ __ln(;O)

23

Gauss elimination n?
optimal overrelaxation | n%/?
FFT nlng(n)
conjugate gradient nd/4
multigrid n

TABLE 1.5 — Asymptotic order of the number of elementary operations nee-
ded to solve the 1 — D problem as a function of the number of grid points

regidual

rezidual

finite differences, n=5

T T T T T
— Jacobi
Gauss Seidel
—S50R

Richardzon
conjugate gradient

I I
&0 100 120 140 160 150 200

iteration

— Convergence history, n =5

finite diff ererices, n=100

T T T T T
— Jacobi
Gauss Seidel
—S50R

Richardzon
conjugate gradient

0.2

0.4

0.6

0.8 1 1.2 14 1.6 1.5 2
iteration w10

FIGURE 1.6 — Convergence history, n = 100

Not only the conjugate gradient is better, but the convergence rate being O(hl/ 2), the
number of iterations necessary to increases the precision of one digit is multiplied by /10
when the mesh size is divided by 10, whereas for the Jacobi or Gauss-Seidel it is divided

24

by 100. The miracle of multigrids, is that the convergence rate is independent of the mesh
size.

1.5 Preconditioning

Preconditioning : purpose

Take the system AX = b, with A symmetric definite positive, and the conjugate
gradient algorithm. The speed of convergence of the algorithm deteriorates when x(A)
increases. The purpose is to replace the problem by another system, better conditioned.
Let M be a symmetric regular matrix. Multiply the system on the left by M 1.

AX =b <= M 'AX =M <= (M 'AM YMX =M""'b

Define R ~ ~
A=M1TAM™', X=MX, b=M1'b,

and the new problem to solve AX = b. Since M is symmetric, A s symmetric definite
positive. Write the conjugate gradient algorithm for this “tilde* problem.
The algorithm for A

X0 given, p°=7"= b— AXO.

While m < Niter or ||7™]| > tol, do

e

m - T~ ~, b

N (Ap™,p™)

Xm+1 — Xm-l-()ém?m,

Frtl =, AT,
||7:m+1||2

Byl = T

o i G

pm+ = Fmt _5m+1pm_

Now define 3
pm _]\471]3777,7 Xm —]\/[71)(’”7‘7 M=]\4,’:;77’7,7

and replace in the algorithme above.
The algorithm for A

0 — Af—240
Mp° = M0 = M0 - M AM T MX® = {p "

0 =p— AXO.

HmeQ — (M_l’I“m,M_lrm) —_ (M_Q’I“m,Tm)
m—+1 ,.m-+1
Define |27 = 4 27| Then | ey = o™) |
(2, 7m)

(Ap™,p™) = (M~ TAM ' Mp™, Mp™) = (Ap™,p™)

(z",r™)

= |y = (Apm77pm) .

MX™ = MX™ 4 a Mp™ = | X™ = X" + a,p™ |,

M= tmH = M=y g, MTYAM T Mp™ = ‘rmﬂ =7r" — a,, Ap™ ‘

Mp™*t = M~ — B Mp™ = ’pmH = 2" — B ™ ‘

The algorithm for A

25

Define C' = M?2.
X given, 7" =0b—AX", solve Cz° =70, p°=20.

While m < Niter or ||r"™]|| > tol, do

(zm,r™)
Qm = T,
(Ap™, p™)
Xm+1 = Xm + ampm’
rmtt = m—a, Ap™,
solve Czmtl = pmtl
(Zerl, T,m+1)
Bmt+1 = Ty
pmtt o= 2t g ™

How to choose C
C must be chosen such that

1. A is better conditioned than A,
2. C is easy to invert.

Use an iterative method such that A = C' — N with symmetric C. For instance it can
be a symmetrized version of SOR, named SSOR, defined for w € (0,2) by

1
C=————(D-wE)D (D —wF).
S (P~ wE)DT (D —wF)
Notice that if A is symmetric definite positive, so is D and its coefficients are positive,
then its square root v/D is defined naturally as the diagonal matrix of the square roots of
the coefficients. Then C' can be rewritten as

C =587, with S = ;(D —wE)D™Y/2,
w(2—w)

yielding a natural Cholewski decomposition of C.

Another possibility is to use an incomplete Cholewski decomposition of A. Even if A
is sparse, that is has many zeros, the process of LU or Cholewski decomposition is very
expensive, since it creates non zero values.

Example : Matrix of finite differences in a square

Poisson equation
1 1
—(Anw)ij = =75 (Uit = 2uij +uiz1) = 55 (W1 = 2uig + uij-1) = fij,
I1<i<M1<j<M

9 10 11 12
5 6 7 8
1 2 3 4

FIGURE 1.7 — Numbering by line

26

The point (z;,y;) has for number ¢+ (j —1)M. A vector of all unknowns X is created :

Z = (u1,1,u2,1,unr,1), (W12, U2,2, Unr,2), - - - (Wi, a0, U2, 015 Whd, M)

with Zi—i—(j—l)*l% = Uqj,j-
If the equations are numbered the same way (equation #k is the equation at point k), the
matrix is block-tridiagonal :

B -C Oar
) -C B -C
-C B -C
Onr -C B
4 -1 0
-1 4 -1
C=1Iy, B=
-1 4 -1
0 -1 4

The righthand side is b1 (j—1)«a = fi,j, and the system takes the form AZ = b.

Cholewski decomposition of A

The block-Cholewski decomposition of A, A = RR”, is block-bidiagonale, but the
blocks are not tridiagonale as in A, as the spy command of matlab can show, in the case
where M = 15.

100 100

120 120

140 140

160 160

20 40 60 a0 00 120 140 160 20 a0 60 80 100 120 140 160
nz=793 nz=2209

spy(A) spy(R)

However, if we look closely to the values of R between the main diagonales where A
was non zero, we see that where the coefficients of A are zero, the coefficients of R are
small. Therefore the incomplete Cholewski preconditioning computes only the values of R
where the coefficient of A is not zero, and gains a lot of computational time.

1
0

27

— h7 A(80,60:100)
35 h®R(80,60:100)

FIGURE 1.8 — Variation of the coeflicients of Cholewski in the line 80 for
M =15

The matlab codes are as follows ([3])

Ch=tril(A);

for k=1l:nn
Ch(k,k)=sqrt(Ch(k,k));
Ch(k+1:nn,k)=Ch(k+1l:nn,k)/Ch(k,

k);

Cholewski for j)=k+1:nn

Ch(j:nn,j)=Ch(j:nn,j)—Ch(j:
nn,k)*Ch(j,k);

end
end
ChI=tril(A);
for k=1:nn
ChI(k,k)=sqrt(ChI(k,k));
for j=k+1l:nn
if ChI(j,k) ~= 0
ChI(j,k)=ChI(j,k)/ChI(k
K);
end
end
Incomplete Cholewskil for j=k+l:nn
for i=j:n
if ChI(i,j) ~=0
ChI(i,j)=ChI(i,j)—
ChI(i,k)=*ChI(j,k
)
end
end
end
end

Then use C = R« RT.

Comparison For the 2-D finite differences matrix and n = 25 internal points in each
direction, we compare the convergence of the conjugate gradient and various preconditio-
ning : Gauss-Seidel, SSOR with optimal parameter, and incomplete Cholewski. The gain
even with w = 1 is striking. Furthermore Gauss-Seidel is comparable with Incomplete
Cholewski.

28

finite diff erences 20, n=25

T T
conjugate gradient
— preconditione d conjugate gradient Gauss-Seidel

preconditioned conjugat e gradient SS0R
preconditioned conjugate gradient IC

FIGURE 1.9 — Convergence history, influence of preconditioning

1.6 Krylov methods for non symmetric matrices,
Arnoldi algorithm

1.6.1 Gram-Schmidt orthogonalization and ()R decom-

position
Starting with a free family (vy,- -+, v, -+) in a vector space E, the process builds an
orthonormal family (wq,- - , Wy, -) recursively.
U1
e. Define wy = .
[[v1]
. Note 712 = (v, w1), and define ug = vo — r1 2w;y. By construction us is orthogonal to
u
ws. It only remains to make it of norm 1 by defining ro o = |luz||, we = -2
2,2
e. Suppose we have built (w1, -- ,w;) orthonormal. Define 7; j 11 = (vj41,w;) for 1 <1 <
j, and
j i
Wit =01 — Y T, T = [ugpal, wip = ——.
i=1 Tj+1,5+1
Then (w1, -+ ,w;) is orthonormal. Furthermore, we can rewrite the previous equality as

j
Ujt1l = Tj41,j+1W541 + E T4, j+1Wi,
=1

which gives for each j;

J
7/‘]’ = Z rj_.j’ll,r'j . (12)
1=1

Define the matrix K whose columns are the v;, the matrix) whose columns are the wy,
and the upper triangular matrix R whose coeflicients are r; ; for i < j, and 0 otherwise.
Then (1.2) takes the matrix form

K=QR (1.3)

The matrix @ is orthogonal, so this is exactly the so-called QR decomposition of the
matrix K. Note that the matrix K DOES NOT NEED TO BE SQUARE, nor the matrix
@, but the matrix R has size m x m.

29

1.6.2 Arnoldi algorithm

The purpose is to build recursively a orthonormal basis of the Krylov space IC,, =

vect(r, Ar,- -+, A~ 1r). We will take advantage of the special form of the generating family
to proceed a slight modification of Gram Schmidt.
e. Define ¢; = T

(7]

e. Now we must orthogonalize ¢; and Ar, or equivalently ¢; and Aq; :

u
hig=(Aq,q1), us=Aq —hi1q1, hop=llu|, ¢ = h72
2.1

s

Then g2 € Vec(q1, Agq1) = Vece(r, Ar) = Ko and (g1, ¢2) is an orthonormal basis. All this
can be rewritten as

Agqi = h11q1 + ho1g0.

Then K3 = Vec(qr, gz, A’r) = Vec(qi, o, Agz). Therefore, instead of orthonormalizing
with the new vector A%r, we can do it with the new vector Ags. Define

U
usz = A(J2—h1,2(J1—h2,2Q27 h2,2 = (AQQ,(]2), h1,2 = (AQ2aQ1), h3,2 = ||u3||7 q3 = h73
3,2

)

This generalizes in building an orthonormal basis of Xj1 by

Uj+1
hjt,

i
w1 = Ag; = hijai . hig=(Ag,ai), hipa = llualls g =
1=1

Theorem 1.13 If the algorithm goes through m, then (qi,...,qm) is a basis of ICp,.

Below is the matlab script

for j=1:m do
h(i,j)=(Axv(j,:),v(i,:)) , i=l:i
w(j,:)=A*v(j,:)—sum(h(i,j)v(i,:)
h(j+1,j)=norm(w(j,:),2)
If h(j+1,j) == 0 stop
v(j+1,:)= w(j,:)/h(j+1,])

The definition of the g; above can be rewritten as
Jj+1

Agy = hijai (1.4)
=1

Define the Hessenberg matrix I;Tm as the matrix of the h; ; for ¢ < j 41, and 0 otherwise.
H,, is a matrix of size (m + 1) x m.

hi 1 e hi,m
hai hoo e ham
ffm _ 0 hspe
0
0 0 0 hm,mfl hm7m
0 0 0 0 hoiim
Define V,,, = [q1, - - , qm]- Hm is the m X m matrix obtained from the (m 4+ 1) x m matrix

f[m by deleting the last row.

30

Proposition 1.1

Avm — 7n+lﬁm~, Avm, - m+lﬁm — Vm[[m + herl,m(bn#»lez;r KIAVNL — [Im,-
(1.5)

The first identity is just rewriting (1.4). As for the second one, rewrite the first
one in blocks as

Hp,

Vm-‘rle = [Vma Qm-i-l] |: hm+l meT

:| - VmHm + hm-&-LQO-ﬁ-leZ@-

Use this now in the first equality to obtain
AV, = Vi Hypy + hm+1,m‘]m+1e%;-

Multiply on the left by V.. Since V;,, is orthogonal, and V.2 ¢, 1 = [(q1, @ms1)s -+ (G @ms1)]T =
0, we obtain
VIAV,, = H,,.

1.6.3 Full orthogonalization method or FOM

Search for an approximate solution in z¢ 4 K, (4, 7o) in the form x,, = x¢ + V,,y, and
impose 7., LKC,, (A, 7). This is equivalent to V.17, = 0, which by

Tm =b— A(xg + Viny) =10 — AViy
can be written by (1.5) as
VEAV,.y = V.Erg or Hpy = ||roller.

The small Hessenberg system
Hmy - HTUH(?] (16)

can be solved at each step using a direct method : suppose all the principal minors of H,,
are nonzero. Due to the special structure of H,,, the LU factorization of H,, has the form

1 e 0 u11 e Uim

I 1 o 0 0 wuo T Ugm
L= 0 I , U= 0 0

0 " " : : 0

0 0 0 Ul,—1 1 0 0 0 0 Umm

The following matlab code gives the LU factorization

u(l,:)=h(1,:);
for i=1:m-1
1(i)=h(i+1,i)/u(i,i);
for j=i+l:n
u(i+1,3j)=h(i+1,3j)-1(i)*u(i,j)
end
end

u(l,:)=h(1,:);

for i=1:m—1

1(i)=h(i+1,1)/u(i,i);
for j=i+l:n
u(i+l,j)=h(i+1,j)—1(i)*u(i,j)
end

end

31

The computational cost is m? + 2m — 1 operations.

Theorem 1.14 At each step m, 1., is parallel to ¢p41.

Tm =T0 — Ame =To — (VmHm + hm+1,m¢]m+le£)y =710 — VinHpny — hm+1,mmem+1-

But H,,y = ||rolle1, therefore ro — Vi, Hyy = 1o — ||rol||Viner = 7o — ||70]lg1 = 0. Therefore
Tm = —lm41,mYmm+1 is parallel to gmy1.
|

function [X,R,H,Q]=FOM(A,b,x0);
s FOM full orthogonalization method
[X,R,H,Q]=FOM(A,b,x0) computes the decomposition A=QHQ?, Q
orthogonal
and H upper Hessenberg, Q(:,1)=r/norm(r), using Arnoldi in order to
solve the system Ax=b with the full orthogonalization method. X
contains

% the iterates and R the residuals
n=length(A); X=x0;
r=b—A*x0; R=r; rOnorm=norm(r);
Q(:,1)=r/rGnorm;
for k=1:n

v =AxQ(:,k);

for j=1:k

H(j,k)=Q(:,3) "*v; v=v—H(j, k)*Q(:,]);

end

e0=zeros(k,1); e0(1l)=rOnorm; % solve system

y=H\e0; x= x0+Qx*y;

X=[X x];

R=[R b—Axx];

if k<n

H(k+1,k)=norm(v); Q(:,k+1)=v/H(k+1,k);
end

o

o°

o°

o®

end

1.6.4 GMRES algorithm

Here we minimize at each step the residual 7, in KC,,(A,rg), which is equivalent to
the minimization of J(y) = |10 — AVipy||2 for y in R™, Use the Proposition to write

ro — AViy = [rollar — Vins 1 Himy = Vinr1(Iroller — Huy).
Since V41 is orthogonal, then
lro = AVinyll = [lllroller — Hmyl-

So in FOM we solve EXACTLY the square system H,,y = ||ro|le1, while in GMRES we
solve the LEAST SQUARE problem inf ||||7g||e1 — Hmy/||. This small minimization problem
has a special form with a upper Hessenberg form, and is best solved by the Givens reflection

method. Let us consider the case of m =3 (o9 = ||70]|)-
h1,1 h1,2 h1,3 m 00
_ 7 | h21 hop hags 0
z = Hzy — oge1 = 0 hae has y2 | — 0
0 0 hyg & 0

32

Multiply successively by the three (m + 1) x (m + 1) Givens matrices

cac s1 00 1 0 0 0 10 0 O
| =51 a 0 0 1 0 e s2 0 101 0 O
@=L 0 0o 10| P2T|0 sm om0 BTl0o0 & s
0 0 01 0 0 0 1 0 0 —s3 c3
to make the system triangular, and even better

ill,l ZL1,2 }:11,3 n C1

0 A h c

Q3Q2Q12 = 22 o2 v |- 2

0 0 hsgs Ya 3

0 0 0 C4

Therefore
121> = [|Q3Q2Q12]1* = | Ry — ¢"||* + (ca)®

where R is the upperblock of the matrix, and ¢! the upperblock of the vector. Now we
have a regular system, and y is THE solution of

Ry =,

which is now an upper triangular system.

function [x,iter,resvec] = GMRES(A,b,restart,tol,maxit)

%GMRES Generalized Minimum Residual Method for Schwarz methods

% [x,iter]=GMRES(A,b,RESTART, TOL,MAXIT) uses gmres to solve a
system

% Ax=b where A is defined as the procedure 'A'.

% This is an adapted copy of Matlabs GMRES.

n = length(b);

n2b = norm(b); % Norm of rhs vector, b

\O

5 X0=rand(n,1);
x0 = ones(n,1);
1

o°

[+

=1; % all frequencies to initialize
x0 = sin((1l:n/2)'/(n/2+1)xpixf); x0=[x0; x0];
for f=2:n/2,

X0 = x0+[sin((1l:n/2)'/(n/2+1)xpixf); sin((1l:n/2)'/(n/2+1)*pixf)];
end;

—

X = X0;

% Set up for the method

flag = 1;

xmin = X; % Iterate which has minimal residual
so far

imin = 0; % Outer iteration at which xmin was
computed

jmin = 0; % Inner iteration at which xmin was
computed

tolb = tol * n2b; % Relative tolerance

if tolb==0,

33

tolb=tol;

o°

solution
end;
r=>b— feval(A,x); %
normr = norm(r); %

o°

if normr <= tolb
solution
flag = 0;
relres
iter =
resvec = normr;
0s sprintf(['The initial guess
" which is within\
' so GMRES returne
relres,tol);

= normr / n2b;
0;

disp(os);
return;
end
resvec = zeros(restartsmaxit+1,1);
residuals
resvec(l) = normr;
normrmin = normr;
rho = 1;
stag = 0;

% loop over maxit outer iterations

for i = 1 : maxit
V = zeros(n,restart+l);
h = zeros(restart+l,1);
QT = zeros(restart+l, restart+l);
R = zeros(restart,restart);
*R
f = zeros(restart,1);
W = zeros(n,restart);
j=0;
vh = r;
h(1) = norm(vh);
V(:,1) = vh / h(1);
QT(1,1) = 1;
phibar = h(1);
for j =1 : restart

]
MapU(x,sqrt(n),sqrt(n));

use absolute error to find zero
Zero—th residual
Norm of residual

Initial gquess is a good enough

has relative residual %0.2g'
nthe desired tolerance %0.2g'
d it without iterating.'],

\0

Preallocate vector for norm of

o

o°

resvec(1l) norm(b—Ax*xx0)
Norm of residual from xmin

o°

[
©

stagnation of the method

(unless convergence or failure)

o°

Arnoldi vectors
upper Hessenberg st AxV = VxH

\0

o

orthogonal factor st QT+H = R
upper triangular factor st H = Q

y = R\f => x
W Vxinv (R)
inner iteration counter

X0 + Vxy

34

u = feval(A,V(:,7)); % matrix multiply
for k=1 : j
h(k) = V(:,k)' * u;
u=u-— h(k) * V(:,k);
end
h(j+1) = norm(u);
V(:,j+1) u/ h(j+l1);
R(1:3,3) =QT(1:3,1:3) * h(1:3);
rt = R(J'J);

% find cos(theta) and sin(theta) of Givens rotation

if h(j+1) ==
c=1.0; % theta = 0
s =0.0;

elseif abs(h(j+1)) > abs(rt)
temp = rt / h(j+1);
s =1.0 / sqrt(l1.0 + temp™2); % pi/4 < theta < 3pi/4
c =— temp * s;
else
temp = h(j+1) / rt;
c =1.0 / sqrt(1.0 + temp™2); % —pi/4 <= theta < 0 < theta <=
pi/4
s = — temp * C;
end

R(j,j) = c *xrt — s x h(j+l);
% zero =5 * rt + c x h(j+l);

q = 0QT(j,1:3);
QT(j,1:3) = c * q;
QT(j+1,1:j) = s * q;
QT(j,j+1) = —s;
QT(j+1,j+1) = ¢c;
f(j) = ¢ * phibar;
phibar = s * phibar;

if j < restart
if f(j) == % stagnation of the method
stag = 1;
end
W(:,3) = (V(:,3) — W(:,1:5-1) » R(1:3—-1,3))/ R(3,3);
% Check for stagnation of the method
if stag ==
stagtest = zeros(n,1);
ind = (x ~= 0);
if ~(i==1 & j==1)
stagtest(ind) = W(ind,j) ./ x(ind);
stagtest(~ind & W(:,j) ~= 0) = Inf;
if abs(f(j))*norm(stagtest,inf) < eps

35

stag = 1;

end
end
end
X =x+ T(j) *« W(:,3); % form the new inner iterate
else % j == restart

vrf = V(:,1:3)%(R(1:3,1:3)\F(1:3));
% Check for stagnation of the method

if stag ==
stagtest = zeros(n,1);
ind = (x0 ~= 0);
stagtest(ind) = vrf(ind) ./ x0(ind);
stagtest(~ind & vrf ~= 0) = Inf;
if norm(stagtest,inf) < eps

stag = 1;
end
end
X = x0 + vrf; % form the new outer iterate

end
normr = norm(b—feval(A,x));
resvec((i—1)xrestart+j+1) = normr;

if normr <= tolb % check for convergence
if j < restart
y = R(1:3,1:3) \ f(1:3);
X =x0 + V(:,1:5) *x vy; % more accurate computation of Xxj
r=>b— feval(A,x);
normr = norm(r);
resvec((i—1)xrestart+j+1) = normr;
end
if normr <= tolb % check using more accurate xj
flag = 0;
iter = [1 j];
break;
end
end

if stag ==
flag = 3;
break;
end

if normr < normrmin % update minimal norm quantities
normrmin = normr;
xmin = Xx;
imin = i;
jmin = j;
end
end % for j = 1 : restart

36

if flag ==

X0 = Xx; % save for the next outer
iteration
r=>b— feval(A,x0);
else
break;
end
end % for i =1 : maxit

% returned solution is that with minimum residual

if n2b==0,
n2b=1; % here we solved for the zero solution and thus show
end; % the absolute residual !
if flag == 0
relres = normr / n2b;
else
X = Xmin;

iter = [imin jmin];
relres = normrmin / n2b;
end

% truncate the zeros from resvec
if flag <= 1 | flag ==
resvec = resvec(l:(i—1)xrestart+j+1);

else
if j ==
resvec = resvec(l:(i—1)xrestart+l);
else
resvec = resvec(l:(i—1)xrestart+j);
end
end

o

% only display a message if the output flag is not used
switch(flag)
case 0,

0s

sprintf (['GMRES(%d) converged at iteration %d(%d) to a'

solution with relative residual %0.2g'],
restart,iter(1),iter(2),relres);

case 1,
0s = sprintf(['GMRES(%d) stopped after the maximum %d
iterations'
" without converging to the desired tolerance
%0.29"
‘\n The iterate returned (number %d(%d))'

37

' has relative residual %0.2g'],
restart,maxit,tol,iter(1),iter(2),relres);

case 2,
0s = sprintf(['GMRES(%d) stopped at iteration %d(%d)'
" without converging to the desired tolerance

%0.2¢g"
"\n because the system involving the'
' preconditioner was ill conditioned.'
"\n The iterate returned (number %d(%d))

' has relative residual %0.2g'],
restart,i,j,tol,iter(1),iter(2),relres);

case 3,
0s = sprintf(['GMRES(%d) stopped at iteration %d(%d)'
' without converging to the\n desired'’
' tolerance %0.2g because the method stagnated.'
"\n The iterate returned (number %d(%d))
' has relative residual %0.2g'],
restart,i,j,tol,iter(1),iter(2),relres);
end % switch(flag)
if flag ==
disp(os);
else
warning(os);
end

semilogy(0:length(resvec)—1,resvec);

Remark If A is symmetric, H,, is tridiagonale.

Restarted GMRES For reasons of storage cost, the GMRES algorithm is mostly
used by restarting every M steps :

Compute x1,- - , 2.

If rj; is small enough, stop,

else restart with zg = z .

38

