HO CHI MINH <y

b e & i
: ml I

= % 4‘:,.4

USN-HCMV PARIS 13

JOINT MASTER 2

High Performance Computing

Pr. Laurence Halpern and Juliette Ryan

Purpose : This is all about solving Az = b, where A is a square matrix
and b is a given righthand side, or a family of given righthand sides, and the
size of the system is huge.

December 2017

Table des matiéres

1 Classical methods 5
1.1 Direct methods 5
1.2 Stationary iterative methods 10
1.3 Sparse and banded matrices 14

2 Nonstationary methods 25
2.1 Non-Stationary iterative methods. Symmetric definite positive

matrices 25

2.2 Krylov methods for non symmetric matrices, Arnoldi algorithm 31

3 Preconditioning 43
3.1 Introduction 43
3.2 Deflation method for GMRES 47
3.3 Fast methods using Fast Fourier Transform 50
4 Multigrid methods 63
4.1 Geometric multigrid 0oL 63
4.2 Algebraic Multigrid AMG 78
5 Parallelism 79
5.1 Substructuring methods 0. 79
5.2 Schwarz Algorithms, 94

Chapitre 1

Classical methods

Contents

1.1 Direct methods 5
1.1.1 Gaussmethod. 5
1.1.2 Codes 7
1.1.3 Theoretical results 7

1.1.4 Symmetric definite matrices : Cholewski decompo-
sition e 8
1.1.5 Elimination with Givens rotations 8
1.1.6 QR Decomposition 9
1.2 Stationary iterative methods. 10
1.2.1 Classical methods. 11
1.2.2 Fundamentals tools 11
1.3 Sparse and banded matrices 14
1.3.1 Direct methods 14
1.3.2 TIterative methods 19
1.3.3 Implementation issues 19

1.1 Direct methods

1.1.1 Gauss method

Example

1 3 1 T 9
1 1 -1 Ty | = 1
3 11 6 T3 36
. X N hl;—/

and multiply on the left by M; to put zeros under the diagonal in the first
column :

1 3 1 9
MAlb]=] 0 —2 —2]|-8
0 2 3 9

Multiply now on the left by M; to put zeros under the diagonal in the second
column :

1 00 100
M= -110]|, My=[010
—30 1 011
1 3 11]09
My My[Alb] = 0 —2 —2|-8
0 0 1|1

MI[A|b] = [MA|Mb].
Axr =b <= MAx = Mb: M is a preconditioner.
The matrix U = M A is upper triangular, and solving Ux = Mb is simpler
than solving Ax = b.
Ly=1>

U=MA <= A=LU Az =b <= LUxr=b < {U
=1y

Define L; = M j_l. In the column j, the entries below the diagonal are those
of M; with a change of sign.

100 1 0 0
Li=(1 10|, Le=[0 1 0
301 0 —1 1

1 0 0

L=M"'=MM))'=M'"M;'=LiL,[1 1 0

3 -1 1

Solving Az = b is then equivalent to performing the LU decomposition,
and solving two triangular systems. Counting of operations :

1. LU decomposition (’)(%) elementary operations.
2. Solve Ly =b O(n?) elementary operations.
3. Solve Uz =y O(n?) elementary operations.

For P values of the righthand side, N,, ~ % + P x 2n?.

1.1.2 Codes

function x=BackSubstitution(U,b)

% BACKSUBSTITUTION solves by backsubstitution a linear system
s x=BackSubstitution(U,b) solves Ux=b, U upper triangular by
% backsubstitution

n=length(b);

for k=n:—1:1

s=b(k);

for j=k+1l:n

s=s—U(k,j)*x(]);

end

x(k)=s/U(k,k);

end

x=x(:);

\O

function x=Elimination(A,b)

s ELIMINATION solves a linear system by Gaussian elimination
x=Elimination(A,b) solves the linear system Ax=b using Gaussian
Elimination with partial pivoting. Uses the function

% BackSubstitution

n=length(b);

norma=norm(A,1);

A=[A,b]; % augmented matrix

for i=1:n

[maximum, kmax]=max(abs(A(i:n,i))); % look for Pivot A(kmax,i)
kmax=kmax+i—1;

if maximum < le—14*norma; % only small pivots

error('matrix is singular')

o°® o°

o°

end

if i ~= kmax % interchange rows
h=A(kmax, :); A(kmax,:)=A(i,:); A(i,:)=h;
end

A(i+l:n,i)=A(i+1l:n,i)/A(i,1); % elimination step
A(i+l:n,i+l:n+1)=A(i+1l:n,i+1l:n+1)—A(i+1l:n,i)*A(1i,i+1l:n+l);
end

x=BackSubstitution(A,A(:,n+1));

1.1.3 Theoretical results

Theorem 1.1 (Regular case) Let A be an invertible matriz, with all prin-
cipal minors # 0. Then there exists a unique matrix L lower triangular with
l;; =1 for all i, and a unique matriz U upper triangular, such that A = LU.
Furthermore det (A) = T, ;.

Theorem 1.2 (Partial pivoting) Let A be an invertible matriz. There exist
a permutation matrix P, a matriz L lower triangular with l;; = 1 for all i,
and a matriz U upper triangular, such that

PA=LU

1.1.4 Symmetric definite matrices : Cholewski decom-
position
Theorem 1.3 If A is symmetric definite positive, there exists a unique lower

triangular matriz R with positive entries on the diagonal, such that A = RR”.

1.1.5 Elimination with Givens rotations

This is meant to avoid pivoting. It is used often in connection with the
resolution of least-square problems. In the i step of the Gauss algorithm, we
need to eliminate x; in equations i 4+ 1 to n of the reduced system :

(1) 0 auyr; +-0 A+ AT, = b
(l{?) api%; +-+ + QppTp, = bk’

(1) 1 auxi +-0 A+ paTn = by

If ay; = 0, nothing needs to be done. If ay; # 0, we multiply equation(i) with
sin @ and equation (k) with cosa and add. This leads to replacing equation
(k) by the linear combination

(K)new = — sina - (i) + cosa - (k).
The idea is to choose « such that the first coefficient in the line vanishes, i.e.
—sina - a; +cosa - ag; = 0.

Since ay; # 0, this defines cotgay;, that is ay; modulo 7. For stability reasons,
line (7) is also modified, end we end up with

(D)pew = cosa - (i) +sina - (k)
(K)pew = —sina - (i) +cosa - (k)

From which the sine and cosine of «a4; are obtained through well-known tri-
gonometric formulas

sinay; =1 1 4 cotg?ay;, €OSy; = Sin ag; COtEa;.
)

A

k;.j new

COS Qg - Aij —|—sinaki . Alcj
— sinag,; - Aij +cosay - Ay

) new

function x=BackSubstitutionSAXPY(U,b)

% BACKSUBSTITUTIONSAXPY solves linear system by backsubstitution
% x=BackSubstitutionSAXPY(U,b) solves Ux=b by backsubstitution by
% modifying the right hand side (SAXPY variant)n=length(b);
n=length(b);

for i=n:-1:1

x(1)=b(i)/U(i,1);

b(1l:i—1)=b(1:i—1)}x(i)*U(1l:i—1,1i);

end

x=x(1);

function x=EliminationGivens(A,b);

% ELIMINATIONGIVENS solves a linear system using Givens—rotations
% x=EliminationGivens(A,b) solves Ax=b using Givens—rotations. Uses
% the function BackSubstitutionSAXPY.
n=length(A);

for i= 1:n

for k=i+l:n

if A(k,1)~=0

cot=A(i,1i)/A(k,1i); % rotation angle
si=1/sqrt(1l+cot”2); co=sixcot;
A(i,i)=A(i,1i)*co+A(k,i)*si; % rotate rows
h=A(1i,i+1:n)*co+A(k,i+1l:n)x*si;
A(k,i+l:n)=—A(i,i+1l:n)*si+A(k,i+1l:n)x*co;
A(i,i+1l:n)=h;

h=b(i)*co+b(k)*si; % rotate right hand side
b(k)=b(i)*si+b(k)*co; b(i)=h;

end

end;

if A(i,1)==0

error('Matrix is singular');

end;

end

x=BackSubstitutionSAXPY(A,b);

1.1.6 QR Decomposition

Note G which differs from identity only on the rows i and k where
Gii = Gkk = COSQ, Gik, = — gk = SN

Example for n = 5,

1 0 0 0 0
0 cosa 0 sina O
G*=10 0 1 0 0
0 —sina 0 cosa O
0 0 0 0 1

Multipliying a vector b by G** changes only the components i and k,

b; cosa - b; +sina - b

by —sina - b; 4cosa - by

G*e;, = cosae; —sinae,, G*e,=sinae; + cosaey.

G’ represents the rotation of angle o in the plane generated by e; and
er. (G*())* = G*(—a), (G*(a))*G*(a) = I. Thus it is an orthogonal
matrix. By applying successively Gy, ..., G, whereever a;; is not zero, we
put zeros under the diagonal in the first column. We continue the process
until the triangular matrix R is obtained. Then there are orthogonal matrices
G4, -+, Gy such that Then

Q is an orthogonal matrix,

then
A=QR,

we have reached the QR decomposition of the matrix A.

1.2 Stationary iterative methods

For any splitting A = M — N, write Mz = Nx + b,
Define the sequence Ma™ = Nz™ 4 b.
Mx™t = Nzg™m+b <= Mz™' = (M- A)z"+0b
— "= (I - M1TA)z™ + M
e g™t =™ - M tAx™ + M1
<= fixed point algorithm to solve x — M *Az + M~'b =2
<= fixed point algorithm to solve Mt Az = M~!b.

Again, M is a preconditioner.

o ¢ :=ux —a™ is the error at step m.
o 1" :=b— Ax™ = Ae™ is the residual at step m.
e R=M"N=1—M1A is the iteration matriz.

Then the sequence of the errors satisfies
Me™ ™ = Ne™, ™ = M~ 'Ne™

[l

Stopping criterion Usually, one stops if H+IL|H < €.

10

1.2.1 Classical methods
Use A =D — F — F.

Jacobi M=D R:=J=I1-D7"14

Relaxed Jacobi M = éD R=1—-wD1'A

Gauss-Seidel M=D-FE R:=L,=1I—-D1A

SOR M=1D-E R:=~L,=(D-wE)™((1-w)D+wF)
Richardson M = %I R=1-pA

The relaxed methods are obtained as follows : define 2" as an application
of Jacobi or Gauss-Seidel, then take the centroid of 2™ and 2™ as ™! =
wz™ 4+ (1 — w)x™.

For symmetric positive definite matrices A, Rlchardson is a gradient method
with fixed parameter. There is an optimal value for this parameter, given by
Popt = ﬁ where the \; are the eigenvaues of A.

1.2.2 Fundamentals tools

Define the sequence
e" = Re™, R= M"'N.
Then ™ = R™ey, and for any norm

le™ < IRBIHle™ [, lle™ [< =™]l]le]).

p(R) = max{|\|, A eigenvalue of R} is the spectral radius of R.
o pm(R) = ||R™||*™ is the mean convergence factor of R.
o poo(R) = limy,_o0 ||[R™||V™ is the asymplotic convergence factor of

R.

Theorem 1.4
e For any matriz R, for any norm, for any m, p,(R) > p(R). The
sequence py,(R) has a limit, called the asymptotic convergence factor
of R and denoted by pso(R).

o The sequence x™ is convergent for any x° if and only if p(R) < 1.

To reduce the initial error by a factor €, we need m iterations, defined by

il

ol < on(R)" ~

loge
log p(R)
. Then to obtain another decimal digit in the solution, one needs
In(10)
In(p(R))

11

So m ~ . It is easier to use the asymptotic value relation, m ~

log e
l0g poo(R)

to choose ¢ = 107!, then m ~ —

The asymptotic convergence rate is F' = —In(p(R)).

Diagonally dominant matrices

Theorem 1.5

e [f Ais a matriz, either strictly diagonally dominant, or irreducible and
strongly diagonally dominant, then the Jacobi algorithm converges.

o [f A is a matriz, either strictly diagonally dominant, or irreducible and
strongly diagonally dominant, then for 0 < w < 1, the SOR algorithm
converges.

M- matrices

A € R™™ 4s a M-matrix if
1. a; >0 fori=1,...,n,
2.a;5; <0 fori#j,1,7=1,...,n,
3. A is invertible,
4. A1 >0.
Theorem 1.6 If A is a M-matrix and A = M — N is a regular splitting

(M is invertible and both M~ and N are nonnegative), then the stationary
method converges.

Symmetric positive definite matrices

Theorem 1.7 (Householder-John) Suppose A is positive. If M+ MT — A
is positive definite, then p(R) < 1.

Corollary 1.1 1. If D+ E+F is positive definite, then Jacobi converges.
2. If w € (0,2), then SOR converges.

Tridiagonale matrices

Theorem 1.8 1. p(Ly) = (p(J)))?* : Jacobi Gauss-Seidel converge or di-
verge simultaneously. If convergent, Gauss-Seidel is twice as fast.

2. Suppose the eigenvalues of J are real. Then Jacobi and SOR converge
or diverge simultaneously for w €]0, 2.

3. Same assumptions, SOR has an optimal parameter w* = ,
1+ /1= (p(]))?
and then p(L+) = w* — 1.

12

FIGURE 1.1 — Variations of p(L,) as a fonction of w

13

1.3 Sparse and banded matrices

1.3.1 Direct methods

The first encounter of this name seems to be due to Wilkinson in 69 : any
matriz with enough zeros that it pays to take advantage of them.

Example : a banded matrix, with upper bandwidth p = 3 and lower
bandwidth ¢ = 2, in total p 4+ ¢ 4+ 1 nonzero diagonals.

p=3
(k=01 0 0 0)
T -4 23 0 6.0 0
0. —12 QR EEEOREG 0
0 0 -40 0 5_ 1 4
10 o~ —a 6 -
\ O 0 0 0 0 -8 0)

FIGURE 1.2 — A bandmatrix

Then L is lowerbanded with ¢ = 2, and Uis upperbanded with p = 3.

(i 0 0 0 0 0 0)

2 1.0 0 0 0 0

0 -3 1.0 0 0 0

L=l 0 0 -2 1t 0 0 0
0 0 =33 281 0 0

00 0 0 -3 1 0

\0 0 0 0 0 -931)

FIGURE 1.3 — LU decomposition

14

It is not the case anymore, when pivoting is used :

1

0

0

L= 0
0

0

—0.

5 —0.17 —0.05 —0.21 0.025 0.0027

-4 2
0 —12
0 O
0 O
0 0
0 0
0 O

OO OO O

0.6

Here the permutation matrix is

_ o O O O O O

OO OO oo

0

1

0
0

OO O oo+ o

o= O OO

0

o O oo

0

o O o oo

0
0
0
0
0
1 0
1

0 0 0
2 0 0
) 1 4
—-10 —0.6 —24
—-60 6 —23
0 -84 0
0 0 0.275
0 00
0 00
100
0 0 O
0 1 0
0 0 1
0 00

OO O H O OO

In the Cholewsky decomposition, there is no need of permutation, unless
some parameters are very small. Then if A is banded, R is banded with the
same lower bandwidth, but it may be less sparse, in the sense that it can
have more zeros. Consider as an example the 36 x 36 sparse matrix of 2 — D
finite differences in a square. With the command spy de matlab, the nonzero
terms appear in blue :

.
30

P
35

5

10

15

20
nz=158

E

A bandmatrix sparse matrix

Corresponding Cholewski

Even though R has the same bandwidth as A, nonzero diagonals appear.

15

EXERCISE Write the Gauss and Givens algorithms for a tridiagonal matrix
A = diag(c,—1) + diag(d,0) + diag(e, 1).

LU factorization : verify that

ek = U, diy1 = U fro + W1, ex = fr

then it is not necessary to compute fi, and only recursively

Ce = lpup, Upy1 = dpgr — i eg.

n=length(d);

for k=1:n—1 % LU—decomposition with no pivoting
c(k)=c(k)/d(k);
d(k+1)=d(k+1)—c(k)=*e(k);

end

for k=2:n % forward substitution
b(k)=b(k)—c(k—1)*b(k—1);

end

b(n)=b(n)/d(n); % backward substitution

for k=n—1:-1:1
b(k)=(b(k)—e(k)*b(k+1))/d(k);

end

Givens : verify that the process inserts an extra updiagonal.

n=1length(d);
e(n)=0;
for i=1: n—1 % elimination
if c(i)~=0
t=d(i)/c(i); si=1l/sqrt(1l+txt); co=txsi;
d(i)=d(i)*co+c(i)x*si; h=e(i);
e(i)=h*xco+d(i+1)*si; d(i+1l)=—hx*si+d(i+1)=*co;
c(i)=e(i+1)xsi; e(i+1)=e(i+1)*co;
h=b(i); b(i)=h*xco+b(i+1)x*si;
b(i+1l)=—hx*xsi+b(i+1)*co;
end;
end;
b(n)=b(n)/d(n); % backsubstitution
b(n—1)=(b(n—=1)—e(n—1)*b(n))/d(n—1);
for i=n—2:—1:1,
b(i)=(b(i)—e(i)*b(i+1l)—c(i)=*b(i+2))/d(1);
end;

Creation and manipulation of sparse matrices in matlab

>>8=sparse([2 3 1 2],[1123],[2413]
S =

16

(2,1)
(3,1)
(1,2)
(2,3)

W~ >N

>>S=speye(2,3)

S:

[y

(1,1)
(2,2)

[EE

>>n=4;
>>e=ones(n, 1)
e=

)

>>A=spdiags([e -2%e e],-1:1,n,n)
A =

(1,1) -2
(2,1) 1
(1,2) 1
(2,2) -2
(3,2) 1
(2,3) 1
(3,3) -2
(4,3) 1
(3,4) 1
(4,4) -2
>>full (A)
ans =
-2 1 0 0
1 -2 1 0
0 1 -2 1
0 0 1 -2

>>S=sparse([2 3 1 2],[1 12 3],[2 41 3])

17

(2,1)
(3,1)
(1,2)
(2,3)

W~ >N

>>S=speye(2,3)

S:

[

(1,1)
(2,2)

—

>>n=4;
>>e=ones(n,1)
e:

o e

>>A=spdiags([e -2*%e e],-1:1,n,n)

A =
(1,1) -2
(2,1 1
(1,2) 1
(2,2) -2
(3,2) 1
(2,3) 1
(3,3) -2
(4,3) 1
(3,4) 1
(4,4) -2
>>full(A)
ans =
-2 1 0 0
1 -2 1 0
0 1 -2 1
0 0 1 -2

The direct methods first transform the original system into a triangular

18

matrix, and then solve the simpler triangular system. Therefore a direct
method leads, modulo truncation errors, to the exact solution, after a number
of operations which is a function of the size of the matrix. Thereby, when
the matrix is sparse, the machine performs a large number of redundant
operations due to the large number of multiplication by zero it performs.

1.3.2 Iterative methods

The iterative methods rely on a product matrix vector, therefore are easier
to perform in a sparse way. They have gain a lot of popularity for sparse
matrix, in conjunction with preconditioning and and domain decomposition.
However their success relies on the convergence speed of the algorithm.

1.3.3 Implementation issues

To minimize computing costs and storage of a sparse matrix, it can be
useful to renumber the matrix coefficients. There are (for the moment) no
absolute ideal renumbering algorithms but one of the most efficient is the
Reverse Cuthill Mackee algorithm.

It is also called the bandwidth reduction problem, also known in the field
of sparse matrix applications as the bandwidth minimization problem (or
BMP in short) :

For a given symmetric sparse matrix, A(nxn), the problem is to reduce its
bandwidth B by permuting rows and columns so as to move all the non-zero
elements of A in a band as close as possible to the diagonal.

In other words, the problem consists in transforming through successive
row and column permutations as for example matrix Al (8x8 input matrix)
into A2 :

1 00 0 1 0 0 0 1 1 0 0 0 0 0 0
01 1 0 0 1 0 1 1 1 0 0 0 0 0 0
0O 1 1 0 1 0 0 0 o o0 1 1 1 0 0 0
O 0 o 1 0 0 1 0 o o0 1 1 1 0 0 0
1 ¢ 1 01 0 0 0 o o0 1 1 1 1 0 0
o1 0 0 0 1 01 o 0 0 0 1 1 1 0
O 0 o 1 0 0 1 0 o 0 0 0 0 1 1 1
01 0 001 01 O 0 0 0 0 0 1 1

=
>
DO

Notions of Graph
The graph G(A) corresponding to the matrix A we will have n nodes labelled
i= 1,2, ... ,n. For each non-zero element aij, i < j of A there will be an edge
connecting nodes i and j. From the graph of A we can determine the position
of all off-diagonal non-zero elements of A.

Two nodes of G(A) are said to be adjacent if they are connected by an
edge.

19

Two nodes of G(A) are said to be connected if there is a sequence of edges
joining them such that consecutive edges have a common end point. A graph
is said to be connected if every pair of nodes of the graph are connected. If
G(A) is connected, the corresponding matrix is irreducible.

A component of a graph is a connected subgraph which is not contained
in a larger connected subgraph.

The degree of a node i of G(A) is the number of edges meeting at i. For
the corresponding matrix, this is the number of non-zero off diagonal ele-
ments in row i.

For example, the corresponding graphs of A1 and A2 are

Graph(A2)

The two graph structures are identical, the only thing that is different is
the node (vertex) labelling. In other words the bandwidth reduction problem
can also be viewed as a graph labelling problem :

Find the node labelling that minimizes the bandwidth B of the adjacency
matrix of the graph G(A) , where we can formally define : B=max|Li-Lj|,
i,j=1..n and Li is the label of node i, Lj is the label of node j and nodes i and
j are adjacent.

20

The Reverse Cuthill Mackee algorithm (RCM)

This algorithm was presented by E. Cuthill and J. McKee in 1969 in
REDUCING THE BANDWIDTH OF SPARSE SYMMETRIC MATRICES
and improved by A. George

Algorithm RCM

Step 0 : Prepare an empty queue QQ and an empty result array R. ;

Step 1 : Select the node in G(A) with the lowest degree (ties are
broken arbitrarily) that hasn’t previously been inserted in the result
array. Let us name it P (for Parent). ;

Step 2 : Add P in the first free position of R. ;

Step 3 : Add to the queue all the nodes adjacent with P in the
increasing order of their degree. ;

Step 4.1 : Extract the first node from the queue and examine it. Let
us name it C (for Child). ;

Step 4.2 : If C hasn’t previously been inserted in R, add it in the first
free position and add to Q all the neighbours of C that are not in R
in the increasing order of their degree. ;

Step 5 : If Q is not empty repeat from Step 4.1 . ;

Step 6 : If there are unexplored nodes (the graph is not connected)
repeat from Step 1 . ;

Step 7 : Reverse the order of the elements in R. Element R]i] is
swaped with element R[n+1-i|. ;

The result array will be interpreted like this : R|L] = i means that the new
label of node i (the one that had the initial label of i) will be L.

Nodes are explored in the increasing order of their degree. Step 7 is not man-
datory, it is the modification introduced by George to the initial algorithm
(it has the purpose of further reducing the profile of a matrix).

Such a renumbering is also a good technique to reduce computing costs
and storage space.

Storage schemes

The main goal is to represent only the non zero elements, and to be
able to perform the common matrix operations. In the following, N denotes
the total number of non zero elements. Only the most popular schemes are
covered here.

— Compressed Sparse Row (CSR)

A real array AA that contains the real non zero values a;; stored row
by row, from row 1 to n. The length of AA is N

An integer array JA that contains the column indices of elements a;;
as stored in AA. The length of JA is N.

An integer array A that contains the pointers to the beginning of
each row in the arrays AA and JA. IA(1) = 0, IA(2) = number of

21

non zero elements in row 1, IA(ii+1)= IA(ii) + number of non zero
elements in row ii. The length of TA is n+1, and IA(n+1) = Ny

— Compressed Sparse Column (CSC)
A variation of CSR but based on storing columns instead of rows.

For example , matrix

L. 0. 0. 2. 0.

(3. 4. 0. 5 0. \
A=16. 0. 7. & O
0. 0. 10. 11. 0.

0. 0. 0. 0. 12,

FIGURE 1.4 — Matrix A

will be stored as follows/

JA- |1 4 1 2 4 1 3 4 5 3 4 5

IA 1 3 6 10 12 13

FIGURE 1.5 — Sparse Matrix A storage

The case of a CSR storage leads to an efficient matrix vector product.
The following Fortran 90 segment shows the main loop of the matrix-by-
vector operation for matrices stored in the Compressed Sparse Row stored
format.

DO I=1, N

K1 = TA(CI)

K2 TA(I+1)-1

Y(I) = DOTPRODUCT(A(K1:K2) ,X(JA(K1:K2)))
ENDDO

FIGURE 1.6 — Sparse Matrix vector product

Notice that each iteration of the loop computes a different component of
the resulting vector. This is advantageous because each of these components
can be computed independently.

22

Solving a lower or upper triangular system is another important kernel in
sparse matrix computations. The following segment of code shows a simple
and parallel routine for solving LX =Y for the CSR storage format.

X(1) = Y(1)
DO I =2, N
K1 = IAL(I)

K2 = IAL(I+1)-1
X(I)=Y(I)-DOTPRODUCT (AL(K1:K2) ,X(JAL(K1:K2)))
ENDDO

F1GURE 1.7 — Computing LX =Y

23

24

Chapitre 2

Nonstationary methods

Contents
2.1 Non-Stationary iterative methods. Symmetric de-
finite positive matrices 25
2.1.1 Definition of the iterative methods 25
2.1.2 Comparison of the iterative methods 27
2.1.3 Condition number and error 28
2.2 Krylov methods for non symmetric matrices, Ar-

noldi algorithm 31
2.2.1 Gram-Schmidt orthogonalization and QR decom-

position o 31

2.2.2 Arnoldi algorithm 32

2.2.3 Full orthogonalization method or FOM 33

2.2.4 GMRES algorithm 35

2.1 Non-Stationary iterative methods. Symme-

tric definite positive matrices

Descent methods

2.1.1 Definition of the iterative methods

Suppose the descent directions p,, are given beforehand. Define

m—+1

m+1 m+1

x ="+ a,p", e =e" —a,p", T =r" — a,, Ap™.

Define the A norm : | ||y||% = (Ay,v).

Theorem 2.1 z is the solution of Ax = b <= it minimizes over RY the

functional J(y) = 3(Ay,y) — (b, y).

25

This is equivalent to minimizing G(y) = 2(A(y — z),y — z) = 3|y — z|)%.
At step m, a,, is defined such as to minimize .J in the direction of p,,. Define
the quadratic function of «

1
om(a) = J(@™ 4+ ap™) = J(z™) — a(r™, p™) + §a2(Apm,pm)'

Minimizing ¢,, leads to

m .M

(p T) m m+1\ __
(Ap™, pm)’ ") =0

oy =

(Tm’pm)Q
Apm’ p'ffl)(A—lrm, Tm)

G = G (1~). o =

m

e Steepest descent (gradient a pas optimal) p™ = r™.

xm—&-l — " 4 am,r,m’ em—i—l — ™ am,r,m’ Tm+1 — ([— amA)pm
rm 2
O = i, (71 =0
)

e Conjugate gradient

")

xm+1 — l,m 4 Oémpm, Ay = (p , T :
(Ap™,p™)
Search p™ as p™ = r™ + B,,p™ !

G(a™) = G(a™)(1 = pim)

(o)

Hm = (Apm,pm)(A—lrm, Tm) (Apm,pm)<A_1’l“m, rm)

Maximize ft,,, or minimize

(Ap™,p™) = B (Ap™H p™ 1) + 2B, (Ap™ ™) + (Ar™, ™)

Apm—lﬂﬁm . .
P = —(ipml pm)l) = (A =0
™2
(rm,rm+1) =0, fBn=——"7"-.
[[rm=t]]?

Properties of the conjugate gradient Choose p® = 7°. Then VYm > 1,
if i £ 0 for i < m.

26

(rm™,p') =0 fori <m — 1.
vec(r®, ... r™) = vec(r®, Ar0 ... A™rY).
vec(p?, ..., p™) = vec(r®, Ar® ... A™r0).

(p™, Ap") =0 for i < m — 1.

(r™ r"y =0 fori <m — 1.

AR ol B

Krylov space K = vec(r®, Ar”, .., A™~1s0).

Theorem 2.2 (optimality of CG) A symétrique définie positive,

2" —zlla= inf ly—=la, [z]a=VaTAz.
yex+Knm,

Theorem 2.3 Convergence in at most N steps (size of the matriz). Fur-

thermore
G(z™) < 4 < wA) - 1) G(z™ 1)

VE(A) +1
The conjugate gradient algorithm
a'chosen, p° =7"=b— Az°

while m < Niter or ||r™|| > tol, do

N
" (Ap™,pm)
ZL‘erl = m _’_ampm’
rmtl = ™ — o, Ap™,
||7,,m+1||2
BWL+1 = HTmHQ 3
prtt = = ™,

end.

2.1.2 Comparison of the iterative methods

Basic example :. 1-D Poisson equation —u” = f on (0, 1), with Dirichlet
boundary conditions u(0) = g,4, u(1) = g4. Introduce the second order finite
difference stencil.

1
n+1’

(0,1) :U([Ej,ZL‘j+1), J]j+1—5(]j:h: j:O,,n

_u(l’7;+1) - QU}EQIZ) + u(@i1) ~ flz;), i=1,...n

27

Uy = Gg, Un4+1 = 9d-

(4)
SUDeqp |W (T
|Uz‘—u($i>|<h2 Pre| ’b]| (@)

12
The vector of discrete unknowns is u =" (uq, ..., uy,).
> -1 i
A 0 £
A= 73 . . b= :
0 1 2 -1 £y
—1 2 fn - i_g

The matrix A is symmetric definite positive.

The discrete problem to be solved is

Au=0>

2.1.3 Condition number and error

Define k(A) = [|A||a]|A7Y|2. If A is symmetric > 0, k(A) = 2axd

min \; °

Theorem 2.4
|2 — x|z

]l

and there is a b such that it is equal.

1o — bl
181l

r(A)

Eigenvalues and eigenvectors of A (h x (n+1) = 1).

4 kmh k
W = — sin? L, o) = (sin SO > ,
1<j<n

h? 2 n+1
) sin? ”%h cos? %h 4
Kj oy pr— ~Y
sin? %h sin? %h m2h?

For any iterative method, the eigenfunctions of the iteration matrix are equal
to those of A.

28

Eigenvectors of A, n=24=16

-0.2 1
—04f \ / \ / .

\ / \ /
-06f \ / \ / 1

\\ //J \ /
—08f \\ / \ /]

/ \ /

1 L L \/ L L { \/ I

0 0.5 1 1.5 2 25 3 35
FIGURE 2.1 — Eigenvectors of A
Algorithm Eigenvalues of the iteration matrix R
. 2
Jacobi Me(J) =1 =2y, = cos(kmh)

Gauss-Seidel

M(L1) = ()2 = cos?(krh)

SOR n = \.(L,,) solution of (n+w — 1)? = nw(Ax(J))>
TABLE 2.1 — Eigenvalues of the iteration matrix
Algorithm Convergence factor n= n=230|n=060
Jacobi cosTh 0.81 0.99 | 0.9987
Gauss-Seidel cos? h 0.65 | 0.981 | 0.9973
1 —sin7h
SOR T 0.26 | 0.74 | 0.9021
1+sinwh
K(A)—1
steepest descent # = cos7h 0.81 0.99 | 0.9987
K(A)—1 h —sinh
conjugate gradient (A) =1 _ cosmh—sinmh | o0 | o856 | 0.0020
VEK(A)+1 cosmh+sinmh

TABLE 2.2 — Convergence factor

29

Algorithm convergence factor p,, | convergence rate F'
Jacobi 1— % %
Gauss-Seidel 1—¢&? g2
SOR 1—2¢ 2e
Steepest descent 1—¢? 1e?
conjugate gradient 1-—2¢ 2e

TABLE 2.3 — Asymptotic behavior in function of € = 7wh

n | Jacobi and steepest descent | Gauss-Seidel | SOR | conjugate gradient
10 56 28 4 4
100 4760 2380 38 37
In(1
TABLE 2.4 — Reduction factor for one digit M ~ — n(FO)

finite differences, n=5
T

rezidual

—S0R

T
Jacobi
Gauss Seidel

Richardzon
conjugate gradient

I I
100 120

iteration

:11] &0

FI1GURE 2.2 — Convergence history, n =5

30

Gauss elimination n?
optimal overrelaxation | n?%/?
FFT nlng(n)
conjugate gradient no/4
multigrid n

TABLE 2.5 — Asymptotic order of the number of elementary operations nee-
ded to solve the 1 — D problem as a function of the number of grid points

finite differences, n=100

T T
— Jacobi
Gauss Seidel

10" ——S0R
Richardson

conjugate gradient

10* \ |
10 \

regidual

10”7 L L L L L L L L L
0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8

iteration win?

FIGURE 2.3 — Convergence history, n = 100

Not only the conjugate gradient is better, but the convergence rate being (9(/11/2)7 the
number of iterations necessary to increases the precision of one digit is multiplied by v/10
when the mesh size is divided by 10, whereas for the Jacobi or Gauss-Seidel it is divided
by 100. The miracle of multigrids, is that the convergence rate is independent of the mesh
size.

2.2 Krylov methods for non symmetric matrices,
Arnoldi algorithm

2.2.1 Gram-Schmidt orthogonalization and ()R decom-

position
Starting with a free family (v1,- -« , v, -+) in a vector space E with a scalar product
(+,-), the process builds an orthonormal family (wy,- -« , Wy, -) recursively.
v
e. Define w; = .
[[o1]

. Note 71,2 = (v, w1), and define ug = vo — r1 2w;y. By construction us is orthogonal to
u

wy. It only remains to make it of norm 1 by defining rg o = |luz||, we = —2
2,2

e. Suppose we have built (w1, --- ,w;_1) an orthonormal basis of L(v1,--- ,v;_1). Take v;

31

and define r; ; = (v;,w;) for 1 <4 < j—1, and

j—1
L]
wj =05 = rigwi, 1=l w; =
T5,3
i=1 >
Then (wn,--- ,w;) is orthonormal. Furthermore, we can rewrite the previous equality as
j—1
vj = T Y rigwi,
i=1

which gives for each j;

J

Uj = Z”'i,jwi . (21)

i=1
Define the matrix K whose columns are the v;, the matrix () whose columns are the wj,

and the upper triangular matrix R whose coeflicients are r; ; for 7 < j, and 0 otherwise.
Then (2.1) takes the matrix form

i
Kij=) mijQri K=QR (2.2)
i=1

The matrix @ is orthogonal, so this is exactly the so-called QR decomposition of the
matrix K. Note that the matrix K DOES NOT NEED TO BE SQUARE, nor the matrix
@, but the matrix R has size m x m.

2.2.2 Arnoldi algorithm

Let A a N x N matrix. The purpose is to build recursively a orthonormal basis of
the Krylov space K,,, = vect(r, Ar,--- , Am~1r) for r € RV, We will take advantage of the
special form of the generating family to proceed a slight modification of Gram Schmidt.

e
Il . |
e. Now we must orthogonalize ¢; and Ar, or equivalently ¢; and Aq; :

e. Define ¢; =

Uz
hii=(Aq,q1), ue=Aq —hi1qi, ho1=usl, ¢= o

s

Then ¢y € Vec(qr, Aqr) = Vec(r, Ar) = Ky and (¢1, g2) is an orthonormal basis of K. All
this can be rewritten as

Agqr = h11q1 + ho1go.
Then K3 = Vec(qr, gz, A’r) = Vec(qi, g2, Agz). Therefore, instead of orthonormalizing
with the new vector A%r, we can do it with the new vector Ags. Define

us
ug = Aga—h12q1 —h22q2, h22 = (Aq2,q2), hi2=(Agq2,q1), h32=|lusl, 3= o
3,2

)

This generalizes in building an orthonormal basis of Xj;1 by

Uj+1

J
ujp1 = Agj — Zhi,j(b’ o hig=(Ag5.4), hjy1j = llujalls g1 = o
1=1 J »J

Theorem 2.5 If the algorithm goes through m, then (qi,...,qm) s a basis of Kp,.

Below is the matlab script

32

for j=1:m do
h(i,j)=(Axv(j,:),v(i,:)) , i=1:i
w(j,:)=Axv(j,:)—sum(h(i,j)v(i,:)
h(j+1,j)=norm(w(j,:),2)
If h(j+1,j) == 0 stop
v(j+1,:)=w(j,:)/h(j+1,7)

The definition of the g; above can be rewritten as

j+1
Agj = th‘qz . (2.3)
i=1
r hia hi,m T
ha1 hao e ham
0 h :
[Aqla"' aAQWL] = [QIa"' 7Qm7Q’m+1] . 3,2
: 0
0 0 0 hm,m—l hmﬂ’n
00 0 0 hmpim |
Hessenberg matrix H,,
Define V,,, = [q1,** ,Gm] € Mnm(R) . Hy, is the m x m matrix obtained from the

(m+ 1) x m matrix H,, by deleting the last row.

Proposition 2.1
Avtm = erIHm = ‘/mHm + h’m+l,m(Jm+IE;{1,a Vr;IlA‘/m - Hm~ (24>

The first identity is just rewriting (2.3). As for the second one, rewrite the first
one in blocks as

H,
b m T :| - VmHm + hm-&-l,QO-ﬁ-leﬁ-
m+1,mem

Vm+1ﬁm - [Vmaqm-i-l] |:

Use this now in the first equality to obtain
AVm =V Hpy + hm-‘,—l,QO-{-leZ;L-

Multiply on the left by V,I'. Since V,,, is orthogonal, and V.2 ¢, 1 = [(q1, @m+1), > (@ms Gma1)]T =
0, we obtain
VI AV, = H,,.

2.2.3 Full orthogonalization method or FOM

Search for an approximate solution in o+ K, (4, r¢) in the form x,, = x¢ + V,,y, and
impose 7., LKC,, (A, ro). This is equivalent to V.17, = 0, which by

Tm =b— A(xo + Viny) = ro — AVipy
can be written by (2.4) as

VEAV,.y = V.Erg or Hpy = ||roller.
The small Hessenberg system

Hmy = HI}()HGI (25)

33

can be solved at each step using a direct method : suppose all the principal minors of H,,
are nonzero. Due to the special structure of H,,, the LU factorization of H,, has the form

1 S 0 U11 S Ut

L 1 - 0 0w S Um
L= 0 1, - >~ |, v=| 0o o

S0 . T 0

0 0 0 Ipq 1 0 0 0 0 Upnm

The following matlab code gives the LU factorization

u(1,:)=h(1,:);

for i=1:m-1
1(i)=h(i+1,i)/u(i,i);

for j=i+l:n
u(i+1,j)=h(i+1,j)-1(i)*u(i,j)
end
end

u(l,:)=h(1,:);
for i=1:m—1
1(i)=h(i+1,1)/u(i,i);
for j=i+l:n
u(i+l,j)=h(i+1,j)—1(i)=u(i,j)
end
end

The computational cost is m? + 2m — 1 operations.

Theorem 2.6 At each step m, 1., is parallel to qm1.-

Tm =T0 — Ame =To — (VmHm + hm+1,QO+1e£)y =To — VmHmy - hm+1,mmem+1'

But H,,y = ||rolle1, therefore ro — Vi Hyy = 1o — ||ro||Viner = 70 — ||70ll¢a = 0. Therefore
T'm = —hm41mYm@Gm+1 1 parallel to gm1.

function [X,R,H,Q]=FOM(A,b,x0);
s FOM full orthogonalization method
[X,R,H,Q]=FOM(A,b,x0) computes the decomposition A=QHQ?, Q
orthogonal
and H upper Hessenberg, Q(:,1)=r/norm(r), using Arnoldi in order to
solve the system Ax=b with the full orthogonalization method. X
contains
% the iterates and R the residuals
n=length(A); X=x0;
r=b—A*x0; R=r; rOnorm=norm(r);
Q(:,1)=r/rOnorm;
for k=1:n
v =AxQ(:,k);
for j=1:k
H(j,k)=Q(:,j) "*xv; v=vH(]j,k)*Q(:,]);

o

o°

o°

o°

end

34

end

e@=zeros(k,1); e0(l)=rOnorm; % solve system
y=H\e0; x= x0+Qxy;
X=[X x];
R=[R b—Axx];
if k<n

H(k+1,k)=norm(v); Q(:,k+1)=v/H(k+1,k);
end

2.2.4 GMRES algorithm

Here we minimize at each step the residual r,, in K,,(A,rg), which is equivalent to

the minimization of J(y) = ||ro — AVipyll2 for y in R™, Use the Proposition to write

10 — AViy = |Irollgr — Vins 1 Himy = Vi1 (Iroller — Hmy).

Since V41 is orthogonal, then

So in FOM we solve EXACTLY the square system H,,y = ||ro|le1, while in GMRES we
solve the LEAST SQUARE problem inf ||||7g|le1 — Hny/||. This small minimization problem
has a special form with a upper Hessenberg form, and is best solved by the Givens reflection

method. Let us consider the case of m =3 (g9 = ||70]|)-
hii hiz hig ”
~ h h h
z = Hzy —ope1 = PO Yo
0 hs2 hss
0 0 has Ys

Iro = AVinyll = [lllroller = Hmy|l-

C1 S1 0 0 1 0 0 0

. —S81 C1 0 0 o 0 C2 S92 0
Q1= 0 0 10| L= —s9 ¢ 0 |

0 0 0 1 0 0 0 1

i1 EL1,2 his ”
h h
Q3Q20Q12 = 0 22 223 Y2
0 0 hgs "
0 0 0

Therefore

where R is the upperblock of the matrix, and ¢! the upperblock of the vector. Now we

o

(=)

0
0
0

Multiply successively by the three (m + 1) x (m + 1) Givens matrices

Qs =

o O o

l2ll* = 1QsQ2Q12]* = || Ry — || + (ca)?

have a regular system, and y is THE solution of

Ry = ¢!,

which is now an upper triangular system.

OO = O

C3
—53

83
€3

function [x,iter,resvec] = GMRES(A,b,restart,tol,maxit)
%GMRES Generalized Minimum Residual Method for Schwarz methods
[x,iter]=GMRES(A,b,RESTART,TOL,MAXIT) uses gmres to solve a

[
“©

system

35

o°

Ax=b where A is defined as the procedure 'A'.
% This is an adapted copy of Matlabs GMRES.

n = length(b);
n2b = norm(b); % Norm of rhs vector, b

% x0=rand(n,1);
% X0 = ones(n,1);

f=1; % all frequencies to initialize
X0 = sin((1:n/2)"'/(n/2+1)*xpixf); x0=[x0; x0];
for f=2:n/2,

X0 = x0+[sin((1:n/2)'/(n/2+41)*pixf); sin((1:n/2)"'/(n/2+1)*xpixf)];
end;

X = x0;

% Set up for the method

flag = 1;
xmin = X; % Iterate which has minimal residual
so far
imin = 0; % Outer iteration at which xmin was
computed
jmin = 0; % Inner iteration at which xmin was
computed
tolb = tol * n2b; % Relative tolerance
if tolb==0,
tolb=tol; % use absolute error to find zero
solution
end;
r =>b— feval(A,x); % Zero—th residual
normr = norm(r); % Norm of residual
if normr <= tolb % Initial guess is a good enough
solution
flag = 0;
relres = normr / n2b;
iter = 0;

resvec = normr;

0os = sprintf(['The initial guess has relative residual %0.2g'
" which is within\nthe desired tolerance %0.2g'
' so GMRES returned it without iterating.'],
relres,tol);

disp(os);

return;

end

resvec = zeros(restartxmaxit+1l,1); % Preallocate vector for norm of
residuals

36

resvec(l) = normr; % resvec(l) = norm(b—Axx0)

normrmin = normr; % Norm of residual from xmin
rho = 1;
stag = 0; % stagnation of the method

% loop over maxit outer iterations (unless convergence or failure)
for i =1 : maxit
V = zeros(n,restart+1); % Arnoldi vectors

h = zeros(restart+1,1); % upper Hessenberg st AxV = VxH

QT = zeros(restart+l,restart+l); % orthogonal factor st QT+*H = R

R = zeros(restart, restart); % upper triangular factor st H = Q
*R
f = zeros(restart,1); % y = R\f => x = x0 + Vxy
W = zeros(n,restart); % W = Vxinv(R)
j =0; % inner iteration counter
vh = r;
h(1) = norm(vh);
V(:,1) = vh / h(1);
QT(1,1) = 1;
phibar = h(1);
for j =1 : restart
j
% MapU(x,sqrt(n),sqrt(n));
u= feval(A,V(:,7)); % matrix multiply

for k=1 : j
h(k) = V(:,k)' % u;
u=u-— h(k) * V(:,k);
end
h(j+1) = norm(u);
V(:,j+1) = u / h(j+1);
R(1:3,3) =QT(1:3,1:3) * h(1:3);
rt = R(j,j);

% find cos(theta) and sin(theta) of Givens rotation

if h(j+1) ==
c=1.0; % theta = 0
s =0.0;

elseif abs(h(j+1)) > abs(rt)
temp = rt / h(j+1);
s =1.0 / sqrt(1.0 + temp™2); % pi/4 < theta < 3pi/4
c = — temp * s;
else
temp = h(j+1) / rt;
c=1.0 / sqrt(1.0 + temp™2); % —pi/4 <= theta < 0 < theta <=
pi/4

37

s = — temp * c;
end

R(j,j) = ¢ * rt — s x h(j+1);
% zero = s x rt + ¢ * h(j+1);

q=QT(j,1:3);
QT(j,1:j) = c * q;
QT(j+1,1:j) = s * q;
QT(j,j+1) = —s;
QT(j+1,j+1) = c;
f(j) = ¢ * phibar;
phibar = s x phibar;

if j < restart
if f(j) == % stagnation of the method
stag = 1;
end
W(:,j) = (V(:,3) —W(:,1:5-1) * R(1:3-1,3))/ R(3,3);
% Check for stagnation of the method
if stag == 0
stagtest = zeros(n,1);
ind = (x ~= 0);
if ~(i==1 & j==1)
stagtest(ind) = W(ind,j) ./ x(ind);
stagtest(~ind & W(:,j) ~= 0) = Inf;
if abs(f(j))*norm(stagtest,inf) < eps
stag = 1;
end
end
end
x =x+ f(j) * W(:,3); % form the new inner iterate
else % j == restart
vrf = V(:,1:5)*(R(1:3,1:3)\F(1:3));
% Check for stagnation of the method
if stag ==
stagtest = zeros(n,1);
ind = (x0 ~= 0);
stagtest(ind) = vrf(ind) ./ x0(ind);
stagtest(~ind & vrf ~= 0) = Inf;
if norm(stagtest,inf) < eps

stag = 1;
end
end
X = x0 + vrf; % form the new outer iterate
end

normr = norm(b—feval(A,x));
resvec((i—1)*xrestart+j+1) = normr;

if normr <= tolb % check for convergence

38

if j < restart

y = R(1:3,1:3) \ f(1:3);
X =x0 + V(:,1:3) * vy; % more accurate computation of xj
r =>b— feval(A,x);

normr = norm(r);
resvec((i—1l)*restart+j+1) = normr;

end

if normr <= tolb % check using more accurate xj
flag = 0;
iter = [1 j1;
break;

end

end

if stag ==
flag = 3;
break;
end

o

if normr < normrmin
normrmin = normr;

s update minimal norm quantities

Xmin = X;
imin = 1i;
jmin = j;
end
end % for j = 1 : restart
if flag == 1
X0 = X; % save for the next outer
iteration
r=>b— feval(A,x0);
else
break;
end
end % for i =1 : maxit

% returned solution is that with minimum residual

if n2b==0,
n2b=1; % here we solved for the zero solution and thus show
end; % the absolute residual !
if flag == 0
relres = normr / n2b;
else
X = xmin;

iter = [imin jmin];
relres = normrmin / n2b;
end

39

% truncate the zeros from resvec
if flag <= 1 | flag ==
resvec = resvec(l:(i—1)*restart+j+1);

else
if j ==
resvec = resvec(l:(i—1)*xrestart+l);
else
resvec = resvec(l:(i—1)xrestart+j);
end
end

[}

% only display a message if the output flag is not used
switch(flag)
case 0,

0os = sprintf(['GMRES(%d) converged at iteration %d(%d) to a'

" solution with relative residual %0.29'],
restart,iter(1),iter(2),relres);

case 1,
os = sprintf(['GMRES(%d) stopped after the maximum S%d
iterations'
" without converging to the desired tolerance
%0.2¢g"
"\n The iterate returned (number %d(%d))'

' has relative residual %0.2g'],
restart,maxit,tol,iter(1),iter(2),relres);

case 2,
os = sprintf(['GMRES(%d) stopped at iteration %d(%d)"
" without converging to the desired tolerance

%0.2¢g"
"\n because the system involving the'
' preconditioner was ill conditioned.'
"\n The iterate returned (number %d(%d))'

' has relative residual %0.2g9'],
restart,i,j,tol,iter(1),iter(2),relres);

case 3,
os = sprintf(['GMRES(%d) stopped at iteration %d(%d) '
' without converging to the\n desired'

' tolerance %0.2g because the method stagnated.'

"\n The iterate returned (number %d(%d))'

40

' has relative residual %0.2g'],
restart,i,j,tol,iter(1l),iter(2),relres);

end % switch(flag)
if flag ==
disp(os);
else
warning(os);
end

semilogy(0:length(resvec)—1,resvec);

Remark If A is symmetric, H,, is tridiagonale.

Restarted GMRES For reasons of storage cost, the GMRES algorithm is mostly
used by restarting every M steps :

Compute x1, -+ ,xp.

If rjs is small enough, stop,

else restart with xg = xp.

41

42

Chapitre 3

Preconditioning

Contents
3.1 Introduction0 ... 43
3.2 Deflation method for GMRES 47
3.2.1 Building the preconditioner 48
3.2.2 Computing the invariant subspace 48
3.2.3 Numerical results 49
3.3 Fast methods using Fast Fourier Transform 50
3.3.1 Presentation of the method 51
3.3.2 Discrete and Fast Fourier Transform 99
3.3.3 The algorithm 59

3.1 Introduction

Preconditioning : purpose

Take the system AX = b, with A symmetric definite positive, and the conjugate
gradient algorithm. The speed of convergence of the algorithm deteriorates when x(A)
increases. The purpose is to replace the problem by another system, better conditioned.
Let M be a symmetric regular matrix. Multiply the system on the left by M ~!.

AX =b <= M 'AX =M1 <= (M 'AMYMX =M""b

Define : B ~
A=M"T1TAM™Y, X=MX, b=M""b,

and the new problem to solve AX = b. Since M is symmetric, A is symmetric definite
positive. Write the conjugate gradient algorithm for this “tilde* problem.
The algorithm for A

X0 given, p°=7"= b— AXO.

While m < Niter or ||7™]| > tol, do

N B H7:7n||2
m - T~ ~, b
N (Ap™,p™)
Xm+1 — Xm-l-Oszm,
Pl = o, AP,
||7:m+1||2
5 +1 = =0
" [Fmf>
P = B

43

Now define

pm — M_lﬁm, Xm — M_le, rm o= Mfm,
and replace in the algorithme above.

The algorithm for A

0 1.0 1 1 1 0 P’ = M0,
Mp"=M"r"=M"b—-M "AM "MX° +—
¥ =b— AXO.
||,i;m||2 _ (M_le,M_lT‘m) — (M_Q’I"m,’l“m)

(Zm—i-l7 rm—i—l)

6m+1 = (varm)

Define [= %" | Then

(Aﬁm,ﬁm) _ (M_lAM_lMpm,Mpm) — (Apm7pm)

(", ™)

= —_—— |
(Apm,pm)

Qg =

MXm+1 — MX™ 4 Othpm ‘X'm—&-l —xm 4 ampm ‘

M=yt = pr=tem o, MY AM T MY = ‘rm"'l =r™ — a, Ap™ ‘

Mp™tt =M~ — B Mp™ = ‘pm“ = 2" — B ap™ ‘

The algorithm for A
Define C' = M?2.

0

solve C2% = 70, 0

X0 given, " =b-—AX", p° =20

While m < Niter or ||r™]|| > tol, do

e
3 (Apm, pm)’
Xm+1 = X"+ Oémpma
rmtl = pm g Ap™,
solve Czmtl = pmtl
B » _ (Zm,—i—l),rm-&-l)
- = ¥ 7/
+1 (flm’rm))
prTt = 2T = Bap™.

How to choose C
C' must be chosen such that

1. A is better conditioned than A,
2. C is easy to invert.

Use an iterative method such that A = C'— N with symmetric C. For instance it can
be a symmetrized version of SOR, named SSOR, defined for w € (0,2) by

1

C=z-w

(D —wEYD YD — wF).

Notice that if A is symmetric definite positive, so is D and its coefficients are positive,
then its square root v/ D is defined naturally as the diagonal matrix of the square roots of
the coefficients. Then C' can be rewritten as

1

- (D—wE)D™ /2,
w(2—w)()

C=5858", with § =

yielding a natural Cholewski decomposition of C.

44

Another possibility is to use an incomplete Cholewski decomposition of A. Even if A
is sparse, that is has many zeros, the process of LU or Cholewski decomposition is very
expensive, since it creates non zero values.

Example : Matrix of finite differences in a square

Poisson equation

1
—(Bru)ig = =55 (Wit = 2uig + vim1g) = 55 (i1 = 2uij +uig-1) = fig,

1<i<M1<j<M

9 10 11 12
5 6 7 8
1 2 3 4

FIGURE 3.1 — Numbering by line

The point (z;,y;) has for number i+ (j —1)M. A vector of all unknowns X is created :

Z = (u1,1,u2,1,un,1), (U1,2,U2,2,Unr,2), - - - (Wi, 01, U, A, UnE, M)

with Zi—i—(j—l)*]\/[= Uj5-
If the equations are numbered the same way (equation #k is the equation at point k), the
matrix is block-tridiagonal :

B -C Ons
) -C B -C
-¢ B -C
O -C B
4 -1 0
-1 4 -1
C = [1\47 = '..
-1 4 -1
0 -1 4

The righthand side is bj4(j_1)«a = fi,j, and the system takes the form AZ = b.

Cholewski decomposition of A

The block-Cholewski decomposition of A, A = RRT, is block-bidiagonale, but the
blocks are not tridiagonale as in A, as the spy command of matlab can show, in the case
where M = 15.

45

100

120

140

160

spy(A)

20 40 [1] 80 100 120 140 160
nz= 2209

spy(R)

However, if we look closely to the values of R between the main diagonales where A
was non zero, we see that where the coefficients of A are zero, the coefficients of R are
small. Therefore the incomplete Cholewski preconditioning computes only the values of R
where the coefficient of A is not zero, and gains a lot of computational time.

¥ ALa0,50:100)
—— h?A(80,ED: 100]

FIGURE 3.2 — Variation
M =15

of the coefficients of Cholewski in the line 80 for

The matlab codes are as follows (|3])

for k=1:nn

Cholewski

end
end

Ch=tril(A);

Ch(k,k)=sqrt(Ch(k,k));

Ch(k+1:nn,k)=Ch(k+1:nn,k)/Ch(k,
Kk);

for j=k+1l:nn
Ch(j:nn,j)=Ch(j:nn,j)—Ch(j:

nn,k)*Ch(j,k);

46

ChI=tril(A);

for k=1:nn
ChI(k,k)=sqrt(ChI(k,k));
for j=k+1l:nn

if ChI(j,k) ~=0
ChI(j,k)=ChI(j,k)/ChI(k
K);
end
end
for j=k+1:nn
for i=j:n
if ChI(i,j) ~=0
ChI(i,j)=ChI(i,j)—
ChI(i,k)*ChI(j,k
);

Incomplete Cholewski

end
end
end
end

Then use C = R+ RT.

Comparison For the 2-D finite differences matrix and n = 25 internal points in each
direction, we compare the convergence of the conjugate gradient and various preconditio-
ning : Gauss-Seidel, SSOR with optimal parameter, and incomplete Cholewski. The gain

even with w = 1 is striking. Furthermore Gauss-Seidel is comparable with Incomplete
Cholewski.

finite diff erences 20, n=25

T T
conjugate gradient
— preconditioned conjugat e gradient Gauss-Seidel
preconditioned conjugate gradient SS0R
preconditioned conjugate gradient IC

FIGURE 3.3 — Convergence history, influence of preconditioning

3.2 Deflation method for GMRES

Contents
3.1 Imtroduction, 43
3.2 Deflation method for GMRES 47
3.2.1 Building the preconditioner 48
3.2.2 Computing the invariant subspace 48
3.2.3 Numerical results 49

3.3 Fast methods using Fast Fourier Transform 50

3.3.1 Presentation of the method 51
3.3.2 Discrete and Fast Fourier Transform 55
3.3.3 The algorithm 59

Recall the restarted GMRES algorithm to solve Az = b :

Algorithm GMRES(m)

Choose g ;

1. To = b—A{EO 5 ﬂ = HT()H, v = To/ﬂ ;

2. Generate the Arnoldi basis applied to A and the associated Hessenberg matrix

H,, starting with vy;

3. Compute y,,, which minimises ||Se; — ffmyH and T, = 2o + VinYm ;

4. If convergence Stop, else set g = x,, and Go To 1 ;

Here we choose a right preconditioning M in order to garantee a non increasing resi-
dual. This would not be true with a left preconditioner since the residual is multiplied by
M-1
This preconditioner can change at each restart. The algorithm becomes

Algorithm PRECGMRES(m)

Choose g ;

Choose M ;

l.ro=b—Axo, B =|roll, v1 :=710/8 ;

2. Generate the Arnoldi basis applied to AM ~! and the associated Hessenberg

matrix .Ffm starting with vq;

3. Compute y,,, which minimises ||8e; — Hpy|| and 2, = zo + M~ Vi ;

4. If convergence Stop, else set zo = z,, update M and Go To 1 ;

The objective of deflation is to remove the smallest eigenvalues of A which slow down
the GMRES convergence. With a restarted GMRES, information on these eigenvalues is
lost which explains why restarted GMRES can be quite slow and even fail to converge.
Deflation aims to replace them by real positive eigenvalues equal to the largest modulus
of the eigenvalues.

3.2.1 Building the preconditioner

In the following we assume that A is diagonalizable in C with eigenvalues |A\1| < |Ag| <
[An -
Let P be an invariant subspace of dimension r corresponding to the r smallest eigenvalues
of A and U an orthonormal basis of P. The deflating preconditioner is based on the idea
that the linear system is solved exactly in space P.

Theorem 3.1 if T = UT AU and M = I,,+U(1/|\o|T—1,)UT then M is non singular and
M=t =L, +U(M|T7t = I,)UT and the eigenvalues of AM ™1 are i1, Aryas ooy Ary [Al
and |A\,| is an eigenvalue of multiplicity at least r.

Note : If only a close approximation P is known , an improved convergence rate is
still to be obtained.

3.2.2 Computing the invariant subspace

The GMRES algorithm provides the Hesssenberg matrix Hy, = VkTAVk, which is the
restriction of A onto the Krylov subspace K (k, A,1q). The eigenvalues of Hj are called
Ritz values. Let H;, = SRS”T be the Schur canonical form of Hj with the eigenvalues
ordered by increasing values. Then vectors U = V.S approximate the Schur vectors of

48

A. The largest Ritz value approximates the largest eigenvalue of A thus providing a first
approximation of M.

After each restart new Ritz values can be estimated approximating eigenvalues of
AM Y also approximating remaining eigenvalues of A. By increasing the invariant sub-
space at each restart , a more powerful preconditioner is thus built.

To avoid loss of orthogonality , these vectors are orthogonalized against the previous basis
U.

Note : In some sense this algorithm recovers the superlinear convergence of the full
GMRES version which behaves as if the smallest eigenvalues were removed. The precondi-
tioner keeps the information on the smallest Ritz values which would be lost by restarting.

Algorithm DEFLGMRES(m)

Choose zj ;
M=1,;
U=

Lorg=b—Axg, B =|rol, vi:=10/B;
2. Generate the Arnoldi basis applied to AM ~! and the associated Hessenberg
matrix ffm starting with vy;
3. Compute y,,, which minimises ||Se; — Eny|| and T, = 20 + M " Vym ;
4. If convergence Stop, else set ;
To =T ;
Compute 1 Schur vectors of H,, noted .5; ;
Compute the approximation of |A,| ;
Orthogonalize V,,,S; against U ;
Increase U with V,,,.5; ;
T=UTAU ;
M t=1L+U(M|T = L)UT
GoTo1;

3.2.3 Numerical results

Results on two matrices of dimension 100 are given . A has the form A = SDS~! with
S = (1,8) an upper bidiagonal matrix.
Case 1: 4=0.9 and D = diag(1,2, ...,100)
Case 2 : =0.9 and D = diag(1, 100, 200, ..., 10000)

DEFLGMRES(10,1) is compared with GMRES(10) and full GMRES . Tolerance is
set to 1078

49

Residual

1 1 1 A
0 20 40 60 80 100 120
Iteration Number

FIGURE 3.4 — Convergence history, Case 1

Residual

DEFLGMRES(10,1)

10 1 b 1 i 1 i i A1 L
0 2 40 680 80 100 120 140 160 180 200

Iteration Number

FIGURE 3.5 — Case 2

3.3 Fast methods using Fast Fourier Transform

Contents
3.1 Introduction 0., 43
3.2 Deflation method for GMRES 47
3.2.1 Building the preconditioner 48
3.2.2 Computing the invariant subspace 48
3.2.3 Numerical results 49

3.3 Fast methods using Fast Fourier Transform 50

20

3.3.1 Presentation of the method 51
3.3.2 Discrete and Fast Fourier Transform 55
3.3.3 The algorithm 59

3.3.1 Presentation of the method

We’ll work with the finite difference approximation of the Laplace equation in dimen-

sion 2.
J (n+1)h, =a
b
o
O)—()—(=) "
5 6 7 8 = B C
I Sl
hy 1 2 3 4 \E/ 0o C
1

hy
N=i+(—-1)n

FIGURE 3.6 — Pavage de [0,a] x [0,b], n = 4
and m = 3

o1

Qo

(n+1)h, =a
© |
>
) =
/N
>/ —
(D)
A o/ S
Yy
)
h a
X
N=i+(—1)n
FIGURE 3.7 — Pavage de [0,a] x [0,b], n =4 and m = 3
242 : 0 0 ! 0 0 0 0 0 0 0
h hy hi h2
2 2 1 1
= w'm & 0 0 7z 0 0 0 0 0 0
1 2 2 1 1
0 i omtE R 0 0 72 0 0 0 0 0
1 2 2 ' 1
0 0 A 0 0 0 7z 0 0 0 0
I 72 I I
7z 0 0 0 Ete i 0 0 2 0 0 0
' 1 12 2 1 ' 1
L T "R wtR e O A T 0
0 oy = 0 0 L 2,2 ! 0 oy = 0
n2 2o on2n2 h2 n2
1 1 2 2 1
0 0 0 —= 0 0 =5 i 0 0 0 —
Y T x) Yy 9 > I y
0 0 0 0 iz 0 0 0 Ete R 0 0
1 1 2 2 1
0 0 0 0 0 7z 0 0 ot 3 0
' 1 1" 2 2 1
0 0 0 0 0 0 — 0 0 = mtm om
0 0 0 0 0 0 oy 1 0 0 1= 2,
h2 2 R h
B C 0
A= C B C
0 C B

2 2 1
17 2 T 1 ;
R2 R2 TR R 2
B= 1 2 T2 1 [=AU,
" TR BmTE TR y
0 0 22
\ 2R)
1
(ﬁ 0 0 0)
a
0 55 0 0)
0 0 — 0 y
hy
1
0

YR

Consider now the general problem Ax = b, where A is a nm X nm symmetric matrix
A, block tridiagonal in the form

B C 0
cC B C
A= A(B,C) = (3.2)
cC B C
0 C B

Each block is a n x n matrix. The vectors b and « can be split by block of size n as well,
27 is the sought solution on the ligne j.

b! x!
b = 5 xr =
bTTL mm
The system can be rewritten as
B C 0 ! b'
cC B C x? b’
¢ B C ||z bt

0 C B ™ b

which is a system of m systems of dimension n :

Bx! + Cz? = b
Cx'~! + Bz’ + Czxit! = b
Cz™ '+ Bz™ = b"

Suppose B and C are symmetric, and diagonalise in the same orthonormal basis
(g',...,q"). This is the case for our previous example. Denote by @ the corresponding

orthogonal matrix Q = [g',...,q"]. There exist two diagonal matrices D' and D? such

that
B=QD'QY, C=QD*Q".
Take for example the first equation
Bz!' 4+ Ca? =b'
and replace B and C' :
QDlQTCBl + QDZQTCEZ — bl

Multiply by Q7 :
DlQTwl +D2QTCB2 — QTbl

Denote by (¢!, y?) the coordinates of (b’, z?) in the new basis :

QTv' =¢', QTa'=vy', 1<i<m.
Then the problem takes the form
Dlyl +D2y2 — cl
D2yi=1 4+ Dlyi + D2yit1 -
D2ym—1 + Dlym = cm

These are all diagonal systems. Take the component number j in each block of the
previous system, for 1 < j <n:

1,1 2,2 1
Djyj JrDjyj = ¢
2, 1—1 1, 2, i+1]
Djyj —&-Djy;-i-Djyj = c

2 m—1 1
Djyj —l—Djy;” = CE"

which is written in matrix form as

o4

1 2 1 1
D; Dy 0 Yj ¢
2 1 2 2 2
Dy Dj Dj Yj ¢
D2 Dl D2 m—1 Cm—l
e Y i
o 0 oi) \up o

For each j, 1 < j < n, define the tridiagonal m x m matrix

Djl- DJQ- 0
2 1 2
Dj Dj Dj
T, =
2 1 2
Dy Dj Dj
2 1
0 Dj DJ
and 2 vectors in R™
¢ vj
d’ = , 2=
c;»” '

We have now n tridiagonal systems of size m,
Tjzl =d’, 1<j<n.

which can be solved in parallel with a LU decomposition for instance. For the 2D Laplace
equation with equidistant grid, the computation of the ¢/ and the reconstruction of can
be done by Fast Fourier transform.

We have to compute for each j, / = Qy’. The matrice C is —— I,,, the matrix B is

1
h3
Aq(hy) + h%ln. The eigenvalues of B are those of A7 + h%, which are h% + }% sin

)

2 kmhg
2

the eigenvectors of B and C' are those of Ay, given by (after orthonormalisation)

® _ | 2 . gk .
¢j = mslnm,].S]Sn,
Define the matrix @ as the matrix of eigenvectors
Q=[eW, ... ")

By
Qu = Z v @)

k=1

2 - . kjm
(Qu); = (QTv); = “nJrl ;vk sin =

Note that the sum can be extended to £ = 0 and £ = n + 1 since the sinus vanishes.

(Qv); = (QTv); = 4/ — ’fv sin T (3.3)
J J n+1 — k n+1" '

The next section is occupied with the FFT, we’ll come back to the algorithm later.

we obtain

3.3.2 Discrete and Fast Fourier Transform

Let n’ = n + 1. The Discrete Fourier Transform of length n’ is defined by

n/
_ggkin
w; = E vpe 2w j=1,---,n.
k=1

95

Define r = ¢?'77 the basic root of unity, then we rewrite the formula above as

wp =Y wer M =1, n (3.4)
k=1

Lemma 3.1 (Inverse DFT) If w = (w;)i<j<n’ 1S the discrete Fourier transform of
v = (vj)i<j<ns from (3.4), then the inverse discrete Fourier transform is given by

1 & .
/szgzwkrkja .7:17"'an/' (35)
k=1

Just replace

’
n

/
n
1 Y
E — E wprkp rki
n/
p=1

k=1

I
3\‘ —
3
i [M]=
LN
S
3
ol
I M{
N
5
=
=
d

Since z = P77 is a n’— root of unity,

3\

for z # 1, 2k =0,
k=1
n/
forz=1, > zF=n'
k=1
Therefore))
L3 0,3
p=1 k=1
and the lemma is proven. |
We now suppose that n’ = 2p. We need to specify more r, that we call r,,. Note for
further use that 7/, = 1 and r”, = —1. Split the sum above into even (k = 2(,{ =1 : p)

and odd terms (k=2{—1,£=1:p). For j=1,---,2p,

TL/ ki
_ —RJ
wj =) VkT,
k=1
P . P .
_ —20j —(20-1)j
wj = Y Ve, A Y VT,
=1 =1
p . p .
—2 j 2
= Ywvary A Y vaeary,
/=1 (=1

Defining for j =1,---,2p,

p p
_ —2¢j _ —2¢j
uj = E v, T, tj = E V21T, -
=1 =1

Then
I
w; = uj + 1,15,
We verify that for each j, uj1p, = u; and tj4, =t; :
Ep: ¢(j+p)
—20(j+p —2¢
Uj4p = V24 Ty =T, pU,j = Uj.
=1

This implies that we only need to compute (u;,%;) for 1 < j < p. Furthermore

. Jtpy . 00 P 2 g
Wjtp = Wjgp + 1/ i = Uj + 175,785 = uy — 1yt

o6

To compute u; and t; note that

P P

.y Py
E vogr,,) = E vae (ri)™
/=1 =1

_ 2ix _ 2inm
But 7"%' — (6 2p)2 =e »p 7‘%, =Tp- Therefore
P P
iy —Lj
uj = E vaery, Y,y = E :U%—l% 7.
/=1 (=1

The sums above are similar sums as that defining w;, but with p = n'/2. This is the
starting point for a dyadic computation of the w; : the Fast Fourier Transform.

To obtain {w;}1<;<2p from {v;}1<j<2p, do
Compute 77, J=1-.p

P p
—0j .y .
Compute u; = g V2T, Tt = E V21T Tog=1p
=1 =1

_ J _ J -
Compute wj; =u; +7r,tj, Wjtp =uj —1)t; j=1--,p.

”/
5 T — g .
r=eXw Jw; = E ver M, j=1,---,n.
c=1

n' =2, r = —1, initialization w; = —v; + vy, Wy = vy + Va.

function w=myFFT(v)
% MYFFT fast Fourier transform
% w=myFFT(v); computes recursively the Fourier tranform of
% the vector v whose length must be a power of 2.
n=length(v);
if n==2,

w=[—v(1)+v(2);v(1)+v(2)];

else
rp=exp(2ixpi/n*(1:n/2)"');
t=myFFT(v(1l:2:n-1));
u=myFFT(v(2:2:n));
w=[u+rp.*t; u—rp.x*t];
end;

57

n/
21 %, —ki . ,
7‘:612"”/711)]': g VT /s,]’]:1,"‘,71.
k=1

n' = 2, r = —1, initialization w; = —v; + vy, wo = vy + va.

function w=myFFT(v)
% MYFFT fast Fourier transform
% w=myFFT(v); computes recursively the Fourier tranform of
% the vector v whose length must be a power of 2.
n=length(v);
if n==2,

w=[—v(1)+v(2);v(1)+v(2)];

else
rp=exp(2ixpi/n*(1l:n/2)"');
t=myFFT(v(1:2:n-1));
u=myFFT(v(2:2:n));
w=[u+rp.*xt; u—rp.*xt];
end;

;| P (25\ 24 2i
; 2
’"py 2 — 2i

() \

N

4

FIGURE 3.8 - FFT for n' =4

It is easy to count the number of operations in the algorithm to be O(nlog,(n)), which
is much better than blockLU.

o8

3.3.3 The algorithm

We now show how to obtain the computation of Qu in (3.3) with FFT.

veR” n=n+1EVEN

Qv = %_HzER", zj=kasinkg,” 1<j<n,
k=1
o =[v;0] e R,
! kjm
DFT (%) = w € R", wj = Y O e 2 <j<n
k=1
n/ k
Note first that z; =) o sin “L% as well. Consider first the even indices 22, -+, 2p,—1 :
k=1
nl
. 2km n—1
Zog = U sin —— = —Imw,, (=1, .
n 2
k=1
Consider now the odd indices, z1,--- , 2,

noo_ _ik@(-Dnx n’ _ ikm. _oském
Zo0o1 = —Im > fpe = —Im Y (Gpetn e 2w

k=1 k=1

L ikm
= —Im(DFT({oge'"" }i))e, €=1,---, ”'2"1.

Resuming with matlab notations

QFFT
To = €i%
(Qu)ae = —\/727 Im(FFT(®)),, ¢=1,-- 551
QU)o = — %H Im(FFT (o - *ro(lzn')'))e’ (=1,... 2
Summarizing the solution of
B C 0 2! b
C B C x? b2
C B C mm,—l bmfl

Step 1 : FFT Compute ¢/ = Q7b’ by (3.6) for 1 < j < m.

Step 2 : Sort {c!,---,e™} The righthand side has been build by rows in the mesh :
b’ is the vector of the values of the forcing term on the line y = j h,,.

29

| L L] ’ | []
ﬂ[\h&/ n @ (5 (b) ——()—— b3
N 2T

7y h b ——(0)——(b5)——0) b
T]

N=i+(j—-1)n by

FIGURE 3.9 — Numbering

€2 €1
c3 cy
ci c3
4 CRr Y
c3 e g gl cs
c3 \c}l 3) c3
3 c3
s ci
s ci

FI1GURE 3.10 — Renumbering

The total vector o is numbered from 1 to nm, with N = i+ (j — 1) *n. The matrix
C is built as follows

o(l:n) —=C(,1) for j=1:m

on+1:2n) —C(:2) C(:,3)=sig((j—1)*n+1:j*n)
end

o((m—-1n+1:mn) — C(;,m)
and then instead of reading the columns, we read the rows.

Step 3 : Solving the n tridiagonal systems of size m,
szj:dj, 1<75<n.

60

with d’ = C(j,:), and

1 2
D! D? 0
2 1 2
Di Dj Dj
T, = :
2 1 2
Di Dj Dj
0 p? D!
1 2 4 jmh
D)=—-—— D= 4 "~ gn? 21—
T TR T TRt)

Step 4 : Reordering the 2/ into y’

Step 5 : Recovering 7 = Qy’ by (3.6).

For this method, we talk about FFT preconditioning, since the system Au = b is
premultiplied by the block-diagonal matrix

QT
QT 0
Q =
0 QT
That is we write
QAQT Qu = Qb.

61

62

Chapitre 4

Multigrid methods

Contents
4.1 Geometric multigrid 0000 63
4.1.1 The V-cycle process 63
4.1.2 The finite elements multigrid algorithm 70
4.2 Algebraic Multigrid AMG 78

Multigrid methods are a prime source of important advances in algorithmic efficiency
, finding a rapidly increasing number of users. Unlike other known methods, multigrid
offers the possibility of solving problems with N unknowns with O(N) work and storage,
not just for special cases, but for large classes of problems. It relies on the use of several
nested grids.

4.1 Geometric multigrid

For the modal presentation of the method, we refer to [7],[2], [5]. For the finite element
part, we refer to [1].

4.1.1 The V- cycle process

One cycle of the multigrid method is given as follows. Suppose we want to solve
ARUR = b, We take an initial guess U”, and define MG(A" b, U") to be

63

Step 1 : smoothing N, iterations of the smoother, with initial guess U”.
Uhl = Sh(A" b, U™ Ny), el =0 —-Uhl,

The residual is ! = b — APUMT = Ahell,
It is projected on the coarse grid

5)
7,Jl, _ P}%/l,r/),jl

Step 2 : Coarse resolution The system A2 72" = 2" is solved approximately
by p iterations of the multigrid solver on the coarse grid

(]2}2.7’ _ ﬂr[G(AZh, ,,2/1" (]2}2.7’71% []2/1.() _ () 1 S r S p.
It is projected on the fine grid
U}).Q _ Lrh.l + P;z] UQ})J‘ eh,? _ €h’1 _ PZthQh,T
2h ’ -
Step 3 : Smoothing again N, iterations of the smoother

Drh,?} _ Sh'(flh./ bh) LT}L’Z, :\YZ)

We will describe the process in the simple case where the coarse problem is solved
exactly, i.e.

Uh’2 _ Uh’l o PthUQh

Define D f2(p) the p x p matrix of 1 — D finite differences on a grid of mesh 1 :

Dfalp) = . (DREP)U); = ~Uj—1 +2U; ~ Uy

Then A" = 5D fo(n — 1) and A*" = 3D f>(2n — 1).

The Smoother

If S is the iteration matrix of the smoother, the result of the smoothing is

(’,/I"l _ SA\W()/O’ rh,,l _ A4h€h.l. (41)

Projection on the coarse grid

k k
The fine grid is (2—) for 1 < k < 2n — 1. The coarse grid is (=) for 1 < k <n — 1.
n n
Define h = 1/2n.

2h 2n— n— 2h) 1 h or7h Th
P R o gl (PEUY)J-:i(Uéj,l+Zbéj+62}jH).

64

The matrix of P}%h is

1 1 1
i 2 1 00
11 1
oo i+ 1 1 0 o0
pth=10 0o o o % I 1
1 1 1
0 0 7 3 1
Define now
T'Zh — ,?h’l‘h _ P}%}lAh(’/h”l.

Coarse resolution

Suppose the coarse grid problem is solved exactly.

AQ/}, 1:72/1, _ 7,21!,

Projection on the fine grid

We define the projection operator as :

Oh 2h __J72h
(IQ}I,U)2\7' - Uj

chh . Rnfl N RZ?L*l" . ; .)
(P, UM)2j1 = 5 (U + UZY)

The matrix is

1.0 0 0
1 0 0 0 0
i1 0 0 0
01 0 0 0
PL=|0 3 5 0 0
00 1 0 0
0 0 0o 1

Result of the coarse walk

61}’“’2 _ ([o Péz},l(AQh)fl P}?llAh,)eh,ﬁl

Lemma 4.1
Ker PP AM ={V e R Vp; =0, j=1---,n—1},
Ker P?h Ah & ImPl, = R?" -1,
vV € Rzn_l,Vj, (AhPthV)QjJrl =0,
P,?LhAhPth = A%k,

65

—~ o~ o~
e
T =~ W N
—_ — — —

It is easy to compute

=

(PP AMU); = ((A"U)2j-1 + 2(AMU)25 — (AMU)2541)
= g (—Usjo+2Usj 1 — Uyj + 2(—Usj 1 + 2Us;j — Uzji1) — Usj + 2Uzj11 — Usjya)
= z(—Usja +2Uz; — Usji2)
U,
—_ Azh
U2n72
Denoting by U¢ the vector of the even coordinates of U, we have proved that for any

vector U € R?"~1,
P2 AN = U".

Therefore the kernel of P2" A" is equal to the space of U such that U¢ = 0, which proves
(4.2).
Now by the rank theorem,

dim Ker P2 + dim ZTmP?" = 2n — 1.
Since A" is an isomorphism in R?"~!, dim KerP,fh = dim KerP,%hAh. Then
dim Ker P AP + rg PP = 2n — 1.
Since P2 = 1(PJ)T, they have the same rank, and therefore
dim Ker P2" A" 4 vgP), = 2n — 1.

Furthermore, any U in ICerP}thh N ImPth is equal to chhw, and vy; = 0. Since
(Pl w)a; = w;, this proves that w = 0. Hence (4.3) is proved.
We now can prove in the same way, first that for V in R?~!,

(A"PJ,V)2j41 =0, (A"PJV)y, —vj1 + 205 — vj41) = 2(A%);.

1
= one

Then
(P AP V) = (A%);.

Lemma 4.2
eh,l —_ dh +P2hh€2h,

with

h2

?(h’l)

h h h h,1 2h __
d2j = 07 d2j+1 = A'e)2j+1a e, =e

J 2j

By (4.3), we can expand e™! as
ehl = gh 4 ph eh,
with d" € KerP" Ah. By (4.2), d’Q’j =0, and
eh;t = (Pye™)o; = €3,

which determines the components of €2”. Compute now the odd components,

1 1
h,1 h h 2k h 2h | _2h h 1,k
€giy = dyjyq + (Pope™")2j41 = dgjyq + 5(63' +eit1) =dyjp + 5(623‘ +e9j42)

66

Therefore
1 h1 _ h h?

h h,1 h_h,
dajiq = 5(2e2j+1 €y — €3j42) = E(A e 1)21'+1~

|
Apply the lemma to compute e/2.

Pth(A2h)71P]3hAh€h’l — PZhh(A2h)71P3hAh<dh+P2hh€2h) — chh(A2h)71 P]%hAhPth €2h _ P2hh€2h.
—_——
A2h,

Therefore
eh,,? _ eh,l _ P2hh62h _ dh7

which implies the elegant formula

h,2 h,2 h? Ahehl h? i
€y =0, eyiiq = ?(€)2j41 = o "2j+1

the even components have disappeared.
Postsmoothing

o3 — N2 h2.

h2
ehd = SNQI_Io?AhSNleh

Spectral analysis

The smoothing matrix S has eigenvalues Ay, and eigenvectors ®*). For relaxed Jacobi
or the Gauss-Seidel algorithm, the eigenvalues are

kmh
Mw) = 1—2wsin2(%) for1<k<2n-1,
)\ES = cos?knh for 1 <k <2n-—1,

Figure 4.1 shows the eigenvalues as a function of k£ for n = 16.

Eigenvalue)\k as a fonction of k

-041 — relaxed Jacobi w=1
relaxed Jacobi w=1/3
relaxed Jacobi w=1/2
-08H —relaxed Jacobi w=2/3
Gauss—Seidel

0 é 1‘0 1‘5 20 25 30 35

FIGURE 4.1 — Eigenvalues of the relaxed Jacobi iteration matrix as a function
of k for several values of w together with Gauss-Seidel

67

k2 2h2
* For small k, A\ (w) ~ 1 —w 7; .

xForw=2/3,n<k<2n-1= [N(w) < 1/3
—

smoothing factor

4
* For other modes. [\ (w)| € (1/3,1 — gsinQ(ﬂ-?h))

When using Gauss-Seidel as a smoother, one can observe that the eigenvalues are small
when k ~n: A\ <1/2 for n/2 <k <3n/2..
For an initial error e = ®*), the error and residual after N; iterations is

el — /\i\/l @(k), il = p,k)\;cvl‘l)(k).

From
h2
h,2 0 h2 v hil
€aj » o €41 = 9 T25+1
we obtain
ha B N1 gk
e :?,ukAkl(DQjJ,-l'

If the same smoother is applied in postprocessing,

h,3 _ N2 _h,2
e = N\ 7e"”,

and finally,

h2
h,3 _ O7 h,3 Mk)\éVI+N2¢k

€5 = €o54+1 = 9 2j+1-

We can see now that even the low frequencies are damped. Choose relaxed Jacobi with
w=2/3. For n <k < 2n — 1, we have, with N = N; + No,

2
h,3 k
|e2j+1‘ < (g)N|q)2j+1‘»

and for 1 <k <n-—1,

1 N "
h,3 Ny &k k
cl< 1— 5. | < oy
il < s (20—l < s () 196l
For three iterations of the smoother (N=3), the low frequencies have been
damped by a factor 0.1582, and the high frequencies by a factor 0.2963!! The
figures below show the result of one cycle of the above described algorithm, compared to
three iterations of relaxed Jacobi, or Gauss-Seidel, for several inital guesses. n = 10.

frequency 1
! T

T
initial guess
one V-cycle
0.9 3 iterations relaxed Jacobi| |
3 iterations Jacobi

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

FIGURE 4.2 — Comparison of the iterative methods. Initial guess sin mx

68

frequency 9

1 0 T L

/ \ initial guess

— I
08 3 iterations relaxed Jacobi| |

) 3 iterations Jacobi

06 | [\ / \ | |
04| \ / \ | \ &
ozl ‘a | x | | | ‘: s H

FIGURE 4.3 — Comparison of the iterative methods. Initial guess sin(n—1)mrz

frequency 19
7

!] T I T
I —— initial guess
one V-cycle
08l 3 terations relaxed Jacobil |
3 iterations Jacobi
A \

osf- I [I [M I .
oat A /T o Y EY B 1

02+ L e e e E

FIGURE 4.4 — Comparison of the iterative methods. Initial guess sin(2n —
1)me.

S : ”‘\H\m, I H}””””\ = .
. ’ \ sl IR " “
: - ‘hw‘” mwwH‘”wa” “mm\” Sl |

.
y WMH MMU” ‘\UW HHW

: N (i
Al -

Initial guess sin 7z Initial guess sin(n — 1)z Initial guess sin(2n — 1

TABLE 4.1 — The effect of one V-cycle on one single mode for n = 100.

69

e,

The Ny last smoothing steps helps to reduce the high frequencies by a factor (%

Number of elementary operations

method number of operations
Gauss elimination n?

optimal overrelaxation n3/?
preconditionned conjugate gradient no/4

FFT nlng(n)
multigrid n

TABLE 4.2 — Asymptotic order of the number of elementary operations as
a function of the number of grid points in one dimension for the Laplace
equation (sparse matrix)

4.1.2 The finite elements multigrid algorithm

Details on finite elements can be found in [4][6] and.[1].
We consider here an elliptic problem in V = H}(Q), where € is a convex polygone. If
aq S %7 S Qo a.ce. in Q, s

2
a(u,v) = Z /Q(aij(x)Vu(:c)Vv(:L‘) + ao(z)u(z)v(z)) dx

is an elliptic bilinear form. It therefore defines a norm, which is equivalent to the H'!
norme, that we call the energy norm

o]z = Va(v,v)
The variational problem is, to find u € V' such that
Yo € V,a(u,v) = (f,v) (4.6)
We know that there is a unique solution in V' which, furthermore, belongs to H?(Q).and

llull g2y < Cllfllz2()-

Preliminaries

Let T be a sequence of triangulations of €. hy is the longest measure of the side of
the triangles in 7. T is obtaind from 7T _; by dividing each triangle into four triangles.

Let (NT,NE N) be the number of triangles outside the boundary of €, edges and
vertices respectively. There is a recursion relation :

NI, =4NT, Nyp1 = Np + NP, NE,, =2NF + 3NT

which provides the total number of each, starting with the triangulation 77 in Figure 4.5 :
(NT,NEvN) = (N17N13N1 + 1)

N, =28Ny, Nyyq =287128 —1)Ny, NE, =28 1(2F2 — 1)\

We have asymptotically
Ni ~ 2271V (4.7)

70

FIGURE 4.5 — Recursive triangulation

For each k, the diameter of the triangulation Ay, is the largest length of edge, therefore
hi+1 = hi/2. Then the triangulation is quasi-uniform (cf [1]), in the sense that there exists
p > 0 such that

inf diamBr > ph
Ao dismBr > phy

where Br is the largest ball contained in T'. Its diameter is given by % with [T]: =

area(T) = %(AB)(AC) sin(ﬁ‘l\C)7 and length(T) is the perimeter of T

A

FIGURE 4.6 — triangle

It is easy to see that, after a refinement, the diameter is divided by 2, and so is h,
therefore it suffices to define p = h% infrer, diamBr.

Vi ={vevncQ),VT € Tr,v|r € P}

This defines a sequence of finite-dimensional spaces, of dimension Ny, with Vi, C Vii1.
We define the variational problem in Vi, to find u; € Vi such that

Yo € Vi, a(ug,v) = (f,v) (4.8)

Classical finite element results assert that this problem has a unique solution, and the
following error estimate holds :

|lu — ukHHl(Q) < Chy, |’U‘H‘2(g2)
We denote by Py the projection operator on Vi, defined for any w in V by
Yo € Vi, a(Prw,v) = a(w, v) (4.9)

For w in V', we introduce the solution z of problem (4.6), and zj the solution of the discrete
problem (4.8), both with data w — Pyw. Elementary algebra shows that

|lw — Pkw||%2(m =a(w — Pyw, z — z)

71

It follows that there exists a constant independent of hj such that

Yw € V,Hw—PkaLz(Q) < Cthw—Pka}p(Q) (4.10)

We obtain the estimate on the error in L?(Q2) by using the same argument (duality
argument), replacing w — Pyw by u — uy.

||71, - UkHL?(Q) < Ch;lel - Uk,HHl(Q) < Chi‘u|H2(S'2)
We will need the

Theorem 4.1 (Inverse estimate)
C
Vo € Vi, [[oflar < }THUHL2
k
For a proof see [6], [1].

The goal of the multigrid method is to compute an approximate
value U}, of uy in O(Ny) operations, and such that

HUk—UAHLQ < ChQ‘U‘HQ

Discrete norm

Note globally Sy, -- -, Sn, the vertices. Define a scalar product on Vj by
Ny,
(v, w), = h3 > v(Si)w(Sy) (4.11)
i=1

Theorem 4.2 It is equivalent to the L? scalar product on V.

Use the exact integration formula in dimension 2 : denoting by M, the mid-points
of the edge in the triangle, we have for any v € Py,

3
IT|
HU”%Z(T) Z

Now since v is affine, the values at point M, are the half-sum of values at points S,,.

3 1 3
2
- (Mp)
2 M) = 2))
But
@+y)?+y+2)>+z+a) =2+ + 22+ (2 +y+2)?
therefore
3 3 3
D (0(Ma)? <> (0(Mp) + v(M,))* <4y (v
a=1 a=1 a=1
3 3
T T
7 Z) < JollZa(ry < ? Z
and the result follows by summing over all the triangles. |

72

We define the operator Ay by
Yo, w € Vi, (Apv,w) = a(v, w) (4.12)

and fr € Vi by (fx,v) = (f,v)x for all v in V. Ay is the operator whose matrix in the
basis of hat functions ¢; is the stiffness matrix K.

oy

FIGURE 4.7 — Hat basis function ¢; associated to vertex S; in two dimensions

Solve the discrete problem amounts to solving the Nidimensional system of equations
Apug = f

The operator Ay, is obviously symmetric positive definite wih respect to (-,-);. We define
mesh-dependent norms as

ollls.r =/ (Ajv, 0)
Theorem 4.2 asserts that ||| - |||o.x is equivalent to the L? norm in Vj. As to the norm for

s = 1, it coincides with the energy norm thanks to (4.12). We now estimate the spectral
radius of Ay :

Lemma 4.3

C

p(Ax) <
h

Let A be a (positive) eigenvalue, with eigenvector v.

a(v,v) = Al[[vlll3

s <ol ¢
=TIl 2

by the inverse inequality in Theorem 4.1. |

73

(a) @51 for ;e TH-1 (b) ®F for S; e TH1 (c) ®F for S € TF\ TH!

FIGURE 4.8 — Hat basis functions

Definition of the multigrid algorithm

In order to pass from one grid to the finer or coarser grid, we need to define transfer
operators, which are mutually dual

Ty Vik—1 — Vi,
Yo € Vi1, Typv: = v;
(4.13)
Ri: Vie = Vi—1,

Yw € Vi1, (Riv, w)g—1 := (Zpw, v)r, = (w,v)k;

For any k and initial guess zg € Vj, and right-hand side g € Vi, the k—th level iteration
is an approximate solution MG (A*, zy, g) in V}, of

Arz=g (4.14)

defined as follows :

For k=1, there is only one grid to deal with, and MG(A*, zg, g) is obtained by a direct
method.

For k > 1, z is obtained in three steps

1 Presmoothing on the fine grid : m; steps of a gradient algorithm
zir =2 — p(Apz — g), 0<1<my —1
2 Error correction on the coarse grid The residual g — Ay 2, is transferred on

the grid Tr_1,
G = Rk(g — A}gzml). (4.15)

Now we compute an approximate solution of the residual equation
Ax_1q=G (4.16)
by performing p steps of the multigrid algorithm on 7j_1 :
0 =0q=MGA" 1 q_1,G), 1<I<p
Then we project on the fine grid again
Zma+1 = Zmy + Ly

3 Smoothing on the fine grid we perform again a few steps of the gradient algo-
rithm
zip1 = 2 — p(Agz — g), mi+1 <1< my+mo

MG(ka 20, g) = Zmi+mo

74

my and my are positive integers, p=1 is a V-cycle, p=2 is a W-cycle. Usually one uses
my =3 and mo = 1.
The full-multigrid algorithm to solve Ay f = fi is therefore

Ul = A1_1f17
Uk: = MG(Ak, ZkUk—1, fr)

Convergence property of the multigrid algorithm

We suppose here for simplicity that there is no postsmoothing, i.e. ms = 0, we note
m := mq, and we consider a W-cycle, i.e. p = 2.

Theorem 4.3 If the relaxation coefficient ui satisfies
1
P < — < o5 (4.17)

the one-sided W-cycle is convergent, and the following estimate holds :
U — urlle < Chilul g2
The total error is

up — U = upy, — MG(Ak, TuUi—1, [r)

First, for z in Vj solution of (4.14), we must estimate z — MG(AF, 2y, g). It is equal to
Zm, + Zrq2. We rewrite the error as :

z— (2my +Iiq2) = 2 — (2m, +Ziq) + Ii(q — q2)-
We start with the estimate of the first part :

Lemma 4.4 Let g € Vi_1 the solution of (4.16), then ¢ = Py_1(z — zm).
We should show that for any v € Vj,_1,
a(q,v) = a(z — zp,v)
We have successively

a(q,v) = (Ak—1q,v)k—1 by definition of Ag_q in (4.12)
(G,v)k—1 by definition of ¢ in (4.16)

(Ri(g — Akzm),v)p—1by definition of G in (4.15)
(9 — Akzm,, V)i by definition of Ry in (4.13)
(Ak(z = 2zm,), v)r by definition of z in (4.14)

a(z — zm, ,v) by definition of Ay in (4.12)

[|
‘We can now write
2= (zmy + @) =2 = z2m; — Poc1(2 = 2m,) = (I = Pe1) (2 — 2y)-
Since
z—2zm = — pdlr)™(z — 20)
SO
2= (zm+Zrq) = (I — Po—1)({ — prAg)" (2 — 20). (4.18)

We have to estimate the projection first :

5

Lemma 4.5
Yv € Vy, ||U — Pk,ﬂ)”E < CthAkU”k

|lv = Py_1v||% = a(v — Py_1v,v) by the definition of Pj_1,
= (v — I Pr—1v, Agv)k, by definition of Ay in (4.12)
< v = ZePe—rvllkl[Axvll,
< Cllv — Pe—1v| 2 (o) | Axv|x by the equivalence of norms,
< Cllv = Pe—1vll 2o [[Arvllk
< Chygllv — Pkfl’UHHl(Q)HAk;'UHk by (4.10)
< Chy|lv — Pyr—1v||g||Axv||x by the equivalence of norms.

We now study the relaxation operator

Sk =1 — ppAy

Lemma 4.6 For any v in Vy,
1Skvllz < [vlle

Furthermore, there exists C' > 0 such that, for any k, for any v in Vi,
[AeST ||k < Chi'm ™2 (|v]| g1 (-

we expand v on the orthonormal eigenfunctions (with respect to the sca-
lar product ();) of the positive definite operator Ay, called (¢1,--- , %y,) associated to

()\13"'7)\Nk)7v: ;'Vzklvjwj'

N N N
a(v,v) = (Apv,v) = (Z Ajvi;, Zvjzpj)k = Z)\jvjz-
j=1 j=1 j=1

N
Spv = Z(l — kA)V,
j=1
Ny,
a(Skv, Spv) = Z)\j(l — pk)\j)Q’U?
j=1

by the assumptions on py, we have 0 < upA; <1, and

a(Skv, Spv) < a(v,v)

Ny,
IARSTvlle =D X (1 = peds)> ™03

j=1
1 i

< — sup (z(1—2))) o?
Mk 2€(0,1) ; ’
1 1

< Lol
i 2m

1 2 1 2 1 2
< Cm—h%Hka < CmHU”LZ(Q) < CW||”||H1(Q)'

We return to the error in (4.18)
12 = (zm + T a1 () < Chul|ArSi™ (2 = 20) [l

< C ez
<7 ollH1(0)

76

Lemma 4.7 For any v, 0 <y < 1, we can choose m such that
Vk > 1,2 = MG(A*, 20,9) |5 <7z — 20lls

The convergence rate in W-cycle is independent of the mesh size hy
The proof goes by recursion.
For k=1, 2 = MG(A*, 2y, g).
Suppose for any j < k, ||z — MG(A7,20,9)||lg < Y|lz — 20||p with A7z = g. we now
have 2 — MG(A*, 2z9,9) = 2z — (2m + Trq) + Ti(q — g2). By the recursion relation

lg — a2lle < VPllalle <Nz — zmlle
<A™ (z = 20) |l &
<Yz - 2le

and o
|z — MG(k,z0,9)||E < (ﬁ +79)lz = 20lle

Choosing m > (ﬂ/_c,y2)2, we get the result. |
We can now conclude the proof of the theorem :
lur — Uklle < lluk — Uk-1llE
< v(lur —up—1llg + [[ur—1 — Ur—1|E)
<A(C(hg + h—1)lul 20y + luk—1 — Uk-1]l)
< Y@BChg|ul g2y + uk-1 — Ug-1llE)

Since the error at step 1 vanishes, we see by recursion that

k—2
lur — Uklle < 3Cy|ulmzi) Y ¥ hi—;

=2

Now we can choose v < 1/2, and we obtain

3C~
lur — Uklle < hi T 27|U‘H2(Q)

which concludes the proof of the theorem. |

Proposition 4.1 For a number of cycles p < 4, the work involved in the full multigrid
method is O(Ny,).

*x We call d the maximum number of neighbours of a vertex (d ~ 15 for a general
construction). Then the matrix A* has at most d non zero elements in each line.
The average number of elementary operations (+, —, X, :) to make the product
of A* by a vector is 2d x Nj. The number of operations involved in one step of
the gradient is (2d 4+ 3) x Ng. All smoothings therefore require

(2d + 3)(m1 + ma) x Nj elementary operations.
x As for the projection of the residual, G is defined by
_ 1
G(Si ™ =7 > rm(S7)
neighbours of S; in T

where S¥ are the vertices in 7. Therefore the number of operations in the pro-
jection step is also
d x N} elementary operations.

7

Let us call nj the number of operations needed to run one cycle of the multigrid
algorithm. We have the recursion relation

ng = (2d+ 3) X N 4+ pni_1

and ny can be estimated asymptotically

i~ pF g+ (2d 4 3N Y k- 2 (Q)j

; 4
Jj=1
and if p < 4, we can write
ni 4oy
ng~ (—+ —)N
o~ G+ 5N
x For the full multigrid, the number of operations 75, can also be estimated recursi-

vely by
N = Ng + N1

which we solve as
k
nE ~ny+ E nj,
Jj=2

which altogether produces the result in the Proposition.

4.2 Algebraic Multigrid AMG

Two of the drawbacks of the geometric multigrid are 1) for complex geometries, it is
not always easy to extract coarse levels, and 2) linear interpolations do not work well when
confronted with nearly discontinuous coefficients (see [?]).

Algebraic multigrid (see [?]) is a method for solving linear systems based on multigrid
principles, but requires no explicit knowledge of the problem geometry. AMG determines
coarse grids, intergrid transfer operators, and coarse-grid equations based solely on the
matrix entries. Since the method’s introduction, researchers have developed numerous
AMG algorithms with different robustness and efficiency properties that target a variety
of problem classes.

The key points are the following :

— The smoother : in AMG, the smoother is generally fixed to be a simple pointwise
method such as Gauss-Seidel. An error not eliminated by the smoother is called a
smooth error, and must be handled by coarse-grid correction.

— The Coarse Grid : in AMG, the coarse grid is a subset of the fine grid. The
algorithm chooses points such that the grid is coarsened in directions of strong
matrix connections.

— Defining Interpolation :smooth error e is characterized by small residuals. To derive
interpolation in AMG, it is taken to its extreme and it is assumed that r; =
(Ae); = 0. By rewritting this equation in terms of the coefficients of A, keeping
only coarse coefficients and connected fine coefficients , an interpolation operator
can be defined (for full details see [?])

78

Chapitre 5

Parallelism

5.1 Substructuring methods

Contents

5.1 Substructuring methods 79
5.1.1 The Schur Complement method 80

5.1.2 Direct method for the resolution of the interface
problem 85
5.1.3 The conjugate gradient algorithm 86
5.1.4 Interest of subtructuring 87
5.1.5 The Dirichlet Neumann algorithm 88
5.1.6 Appendix : matlab scriptsin 1-D 90
5.2 Schwarz Algorithms 94
5.2.1 Introduction and a brief historical review 94
5.2.2 A very simple 1D example 96

5.2.3 A 2D, 3D tool : the Fourier transform. Optimal
transmission condition 98
5.2.4 Approximation 100
5.2.5 A convergence proof for L=0. 101
5.2.6 Notions on transmission conditions 102
5.2.7 Identification of the interface problem 105
5.2.8 Substructuring method revisited 108

Principle

— Split the domain into sub-domains,
— solve iteratively a "condensed interface problem" : at each iteration , solve indepen-
dantly local problems in the subdomains (using a direct or an iterative method).
Advantages :
These methods are :
e More robust than classical iterative ones and cheaper than direct methods.
e Better adapted to distributed parallel computing with message passing programming :
— one sub-domain per processor
— interface data update by message passing .
e Use of sequential legacy codes for local problems, modular approach to parallelism.

79

5.1.1 The Schur Complement method

Consider the problem

—Au = f dansQ, n>0
u = 0 surdf)

We write a variational formulation in V = H{(Q) :

YoeV, a(u,v)=(fv)
with a(u,v) = [, VuVudz

We introduce a triangulation 7, = UK with vertices S;, 1 <i < N,
Vi ={v e V,VK € Tp,up|x € P1}.

where PP, is the space of polynomials of degree lower than n in two variables. ; is the basis
function associated to S;, as described in Figure ?7. We write the linear system KU = F.
The entries of the matrix K are the

a(gai,cpj):/QVgoiV% dx.

The components of U are the degrees of freedom, U; = u(S;), and F; = (f, ¢;)..

FIGURE 5.1 — Mesh, D;, support of the basis function ¢; associated to vertex
S;.

a(pi, p5) = / VpiV;dz.
D,;ND;

The domain 2 is split into two nonoverlapping subdomains 21 and 29, and I" is the
common boundary.

80

FIGURE 5.2 — Domain Decomposition

un =" un(Sy)e;+ Y un(S)e;+ Y un(S))e;

SjEQl SJGQQ SjEF

alds, &) = / Vou(2) - Vo, (x) da

D,ND;

FIGURE 5.3 — Supports

a(un, 1) = Y un(Sy)ales,) + Y un(Spales, o) + > un(S)ales, @)

Sjeﬂl SjEQQ SjeF
S1 €, S5 €02 = alpj;, 1) =0 = second sum vanishes

S €Qy, S; € = alyj, 1) = 0= first sum vanishes

For S; € T, all sums contribute, but for the last one, the support of .S is split according
to Figure 5.4.

81

FIGURE 5.4 — Decomposition of the interface nodes

If Sy € I" and S; € I are neighbours,

/ Vi -V, dr = / V; -V, d +/ Vo; -V dx
DlﬂD]' DlﬁDjﬂﬂl DlﬁDjﬂQQ

and the same for the computation of (f, ;). The unknown U is split into three blocks :
U, is the block of the unknowns in the open domain 4, Us is the block of the unknowns
in the open domain €, Us is the block of the unknowns on the boundary I". The matrix
K is split according to the previous formula. We shall write

Ky 0 K3 Uy £y
0 Ky Ko U, | = | F» (5.1)
K3 Kz Kzs Us F3

with K33 = Ki; + K3, and F5 = F} + F3. We rewrite as a system of three systems.

KU, +Kq3Us = Fy
KoUs +Ka3Us = Fy (5.2)
K31Ur +K3Us +K33Us = F3

K11 = [a(ws, 05)]s:.5,€0,

K71 is the matrix of the Laplace problem in 2; with homogeneous Dirichlet boundary
conditions on 92y, and is therefore invertible. Solving the first equation in (5.2) amounts
to solving the Laplace equation in 2; with homogeneous Dirichlet boundary conditions on
001\ T, and Dirichlet data Us on I'. Same for the second equation. The first two problems
can be solved in Uy, Us knowing Us as

Uy = (K1) N(FL = Ki3Us), Uz = (Ka2) ' (F2 — Ka3Us)
Carrying these values into the first equation gives

K31 (K1) Y Fy — K13U3) + Kso(Kog) ™ (Fy — Ko3Us) + K33Us = Fs.

K31 (K1) HFy — K13Us) + Kso(Ko2) ™ H(Fy — Ko3Us) + K33Us = Fi.

82

SUs = (K33 — K31 K" K13 — K3 Koy Ko3)Us = G
with G3 = F3 - KglKl_llFl - K32K2_21F2

The matriz S = K33 — K31K1_11K13 — K32K2_21K23 is the Schur Comple-
ment matriz.

Theorem 5.1 The matriz S est symmetric, positive, definite.

It will be computed in parallel as
S=95'452

with
St = Ki,— K3 K;;'Ki3

Then the interface problem will be solved with direct or parallel methods.
The first two equations in (5.2) is the resolution of Laplace equations. But what is the
third one?

83

K31Uy + K35Us + K33U3 — F3 =0 (53)

Suppose w is a “regular” solution of —Aw = f in Q;. By the Green formula we have for

any v in HY/2(T),

< a—w,v >a0= (Vw, Vv) + (Aw,v) = a1 (w,v) — (f,v)1

(’9n1
We apply this to w = (u1)n, and v = ¢;, with S; € T, and obtain

<%k o >r = au((wn @) = (F 001
= D (w)n(Sparlpy) + > (w)a(Syar(ws, i) = (frpn
Sje S;er

d
< (ul)h,% >r] = K3 Uy + KUz — Fy = S'Us — Fy, with K1,U, + K13Us = F).

[8711

Now we have in (5.3)

KU+ Ki3Us = Fy
Koo Uy + Ko3Us = Fy
0 0
SUz — F3 = K31Uy + K3Us + K33U3 — F3 = [< (1) + (u2)n
8”1 a’n,2

i >r] =0

The full substructuring method can now be understood as the finite element discretization
of : find g defined on the interface I' such that, defining u; and wuy as the solutions of

7A’U,j:fiIle,
u; = 0on 0Q; — T,
u; =gonl

then 5 5
2 _gonT.

87711 8n2

The resolution of the interface problem can be solved either by a direct method, or by a

Krylov method.

84

5.1.2 Direct method for the resolution of the interface

problem

We work on system (5.1), and write a block-LU decomposition of K as follows

Ki1| 0 | K3 Ly | O 0 Ui| 0 |Uss
0 | Koo | Koz | = 0 | Ly | O 0 Uz | U
K31 | K32 | K33 L3y | L3a | L33 0 0 | Uss

We identify
Ky = LUy, Kz = L1 Uiz,

Koo = LogUse; Koz = LaoUss,
K31 = L31Un1; K3z = L3aUszz; K3z = L31Uiz + L3aUazz + L3zUss

(5.4)

Notice that LdzUlg = KJZKLZleda therefore K33 - L31U13 - L32U23 = S, and S = L33U33

The computations are made in parallel on the processors :

PROCESSOR ()

Computation and storage of K;;, K;3,
Computation of F* and F}

Decomposition L;;U;; de Ky,
Computation of U3, Ls;,
Computation of S* = K45 — L3;Uis

ASSEMBLING

Computation of S = S' + 5% and F3 = Fi + F3,
Decomposition L33Uss of S.

We then solve the triangular problems

L11 0 0 Zl F1 Ull 0 U13 Xl
0 Loo 0 Z = I3) 0 Usz | Uas Xo =
L31 L32 L33 Z3 I3 0 0 UBS X3

PROCESSEUR (i)
Liiz = F;, G = F§ — L3, Z;
ASSEMBLING
L3375 = Gé + G%
Uss X3 = Z3
PROCESSOR (i)
UiXi = Z; — Ui X3

85

Z
Za
Z3

5.1.3 The conjugate gradient algorithm

SUs := K33Us — K31 K11' K13Us — K32 K5y Ko3Us = G
with Gg = F3 — K31K1_11F1 - K32K2_21F2

S is a symmetric positive definite matrix. The conjugate gradient algorithm reduces
to a descent method,defined by the initial guess UY the initial descent direction d° = 70 =
SUY — G3. Let r* be the residual a step k. The next step will be

ok = S,
E_ 7
kpl = WFdR)
U3+ :U?l)e_pkdk
E+1 _ k41 o " 1E gk
A" =" 4 Ted

All the products have to be made in parallel. Let us go into details.
For the initialization choose U = 0, thus '’ = —G3 = —F3+ K31 K[, Fi + K32 K55 Fy.

We define a special box for the product SX :

Product SX
PROCESSOR (1) PROCESSOR (2)
solve K11U; = K13X, solve KooUsy = Koz X,
S'X = Kk — Kz1Uy 82X = K3y — K3Us
ASSEMBLING
SX =S8'X 4+ 52X

Initialization
PROCESSOR (1) PROCESSOR (2)
solve KHUl = Fl, G}; = Fdl - K31U1 solve K22U2 = FQ, Gg = F:? - KBQUQ
solve K11U1 = I(137’07 solve K22U2 = I(237’07
S0 = K33 — KU S2r0 = Ky — KaUs

\/

ASSEMBLING

' =-GL-G%,d" ="
00 = S1d° + S2q°

STORAGE (DISTRIBUTED MEMORY)

PROCESSOR (1) PROCESSOR (2)
K117K317K§3a F17F315G%, K227 K327K323,F2a F??7G§

86

ITERATION

vk = SdF
ko 7% 12
(vk, dk)

Uyt = U5 - ptd"

rhHl =k phyk
k+1)12
dF 1 = phtl [l

N gk
(%112

Note that the scalar products can also be done partly in parallel.

5.1.4 Interest of subtructuring

e The interface problem has n unknowns when the full problem has n? unknowns.
It can be proved that the interface problem is much better conditioned than the
full problem.

Therefore the conjugate gradient algorithm converges rapidly.

Futhermore most part of computation part can be made in parallel.

87

5.1.5 The Dirichlet Neumann algorithm

The purpose of the algorithm is to solve the coupling problem

Lu = f on €,
u =0 on 9N

by splitting 2 into two subdomains with interface I', and solving iteratively with an initial
guess go,

Presentation of the algorithm
Luf = fin Qy,

u? =00on OQUQy, u} =g" onl.

Luf = fin Qo,
n = Ouy Ouf ‘
uy =0 on 0N U Qq, 2 = o on I'.

g
where — in {25 is the normal derivative, with v the exterior normal to .

v
g™t =0uz + (1 0)g".

The choice of the parameter is crucial and unfortunately depends on the position of
the interface. If the subdomains and the problems are symmetric, the choice 6 = % is

optimal.

Convergence analysis in one dimension Let £ =17 —d2, Q = (a,b). Take

0 d
¢ in (a,b). Then we have — = —-on the interface at point c.
x

Define the error in the subdomain, e} = u? — u, and A" = g" — u(c). The algorithm
for the error is
Le =0in Qy,

ef =00ondQUQy, el =h"onl.

EGS =0in QQ,
— Oel de
7 =0o0n 90U, 2="TonT.
ey on 9 ED 5 on

R = el (c) 4+ (1 — 0)h™.
This can be solved as

sh(y/n(z —a))
sh(y/n(c—a))’

The coefficient 5" is determined by the transmission condition d,ef(c) = d e} (c), that
gives

_ ch(y/n(c—a))

sh(y/n(c—a))

esh(\/ﬁ(b —¢))ch(y/n(c

sh(y/n(c — a))ch(y/n(b

Convergence factor p

n_ n
el =h

¢5 = B"sh(y/i(b -).

—B"ch(y/n(b—c)

3

hn+1 _ (_

—a)) n
—y A

88

If the geometry is symmetric, that is if b — ¢ = ¢ — a, then the convergence factor
reduces to
p=1-20,

that is smaller than 1 for 6 € (0,1), and vanishes for § = 1/2. Suppose now that (¢ —a) =
(b—a)/5. Then defining x = ,/1/5, then

tanh(4y)

tanh() +1)

p=1-06(

It is a linear function of 8, with a slope a = —(tfar;hh((%) +1) e (-5,-2).

Slope of the corvergence fackor

wod,

Therefore p is an decreasing function of 6, and it is equal to 1 for 6§ = 6y, with

2 2
b = g 5 € (501
anh(4x) 5’
tanh(x) +1

Then the algorithm is convergent if and only if § < 6.

89

5.1.6 Appendix : matlab scripts in 1-D

function u=SolveDD(f,eta,a,b,ga,gb)

SOLVEDD solves eta—Delta in 1d using finite differences
u=SolveDD(f,eta,a,b,ga,gb,n) solves the one dimensional equation
(eta—Delta)u=f on the domain Omega=(a,b) with Dirichlet boundary
conditions u=ga at x=a and u=gb at x=b using a finite
difference approximation with length(f) interior grid points

o® o° o° o°

o°

J=length(f);

h=(b—a)/(J+1);

% construct 1d finite difference operator

e=ones(J,1);

A=spdiags([—e/h"2 (eta+2/h"2)xe —e/h™2],[—-1 0 11,3,3);

f(1l)=f(1)+ga/h"2; % add boundary conditions into rhs
f(end)=f(end)+gb/h"2;

u=A\f;

u=[ga;u;gbl; % add boundary values to solution

function u=SolveND(f,eta,a,b,ga,gb)

SOLVEND solves eta—Delta in 1d using finite differences
u=SolveND(f,eta,a,b,ga,gb) solves the one dimensional equation
(eta—Delta)u=f on the domain Omega=(a,b) with Neumann boundary
condition u'=ga at x=a and Dirichlet boundary
condition u=gb at x=b using a finite
difference approximation.
note the second order appproximation of the derivative

o® o° o° o° o° o°

o°

J=length(f);

h=(b—a)/J;

% construct 1d finite difference operator

e=ones(J,1);

A=spdiags([—e/h"2 (eta+2/h"2)xe —e/h”™2],[—1 0 11,3,]);
A(1,2)=2xA(1,2); %% Neumann boundary condition

[}

% construct 1d finite difference operator

f(1)=f(1)—2*ga/h; % add boundary conditions into rhs
f(end)=f(end)+gb/h"2;

u=A\f;

u=[u;gbl; % add boundary value to solution on the right

90

function [g,ul,u2]=algoDN(f,eta,a,b,step,ga,gb,gl,Nc,Imax,t)
% algoDN solves the Laplace equation by the Dirichlet—Neumann algorithm
%[g,ul,u2]=algoDN(f,eta,a,b,step,ga,gb,g,Nc,Imax,t)
%solves the Laplace equation eta u —Delta u = f in (a,b)
by the Dirichlet—Neumann algorithm on (a+Ncxstep) and (Ncxstep,c)
% note the second order reconstruction of u_1'(c)
g=zeros(1,Imax);
g(1)=gl;
c=a+Ncx*step;
x=(a:step:b);x1l=(a:step:c); x2=(c:step:b);
y= SolveDD(f',eta,a,b,ga,gb);
for j=1:Imax—1
% Dirichlet on (a,c)
fl=f(1:Nc—1);
ul=SolveDD((fl)',eta,a,c,ga,qg(j));
sextraction de u_1'(c) : second order
upl= (—ul(end—1)+(1l+etaxstep”™2/2)*ul(end))/step—step*f(Nc)/2;
% Neumann on (c,b) with u_2'(c)=u_1"'(c)
f2=f(Nc:end);
u2=SolveND((f2)',eta,c,b,upl,gb);
g(j+1)=(1-t)=*g(j)+t*xu2(1);
h=figure
plot(x1l,ul,'b',x2,u2,'m',x,y, " 'r"',c,linspace(ul(end),u2(1),100),'k");
legend('u_1','u_2',"'solution discrete')
title({['Algorithme de Dirichlet—Neumann',' c=',num2str(c), '\theta=",
num2str(t)];...
['Iteration number ',int2str(j)1})
filename = ['figDNpos' int2str(Nc) 'relax' num2str(t) 'iter' int2str
(j) '.eps'l
print(h, '—depsc',filename)

o°

pause% (1)
end

91

function u=algoSchur(f,eta,a,b,h,ga,gb,Nc)

% algoSchur solves the Laplace equation by the Schur method
%[g,ul,u2]=algoSchur(f,eta,a,b,step,ga,gb,Nc)

%solves the Laplace equation eta u —Delta u = f in (a,b)
% by the Schur method m on (a+Ncxh) and (Ncxh,c)
J=length(f);

e=ones(J,1);

A=spdiags([—e/h"2 (eta+2/h"2)xe —e/h"™2],[—1 0 11,3,]);
% decomposition of A

A11=A(1:Nc—1,1:Nc—1);

A22=A(Nc+1l:end,Nc+1l:end);

Alg=A(1:Nc—1,Nc);

Agl=A(Nc,1:Nc—1);

A2g=A(Nc+1:end,Nc);

Ag2=A(Nc,Nc+1:end);

Agg=A(Nc,Nc);

%sdecomposition of f

fl=f(1:Nc—1);

f2=f(Nc+1l:end);

fg=f(Nc);

% Construction of the Schur problem

funS=@(x) Agg*x—Agl=*(A11\ (Alg=*x))—Ag2*(A22\ (A2g*X));
fS=fg—Aglx(A11\f1)—Ag2x(A22\f2);

ug=pcg(funsS, fS)

%sreconstruct ul and u2

ul=A11\(f1l-Alg*ug)

u2=A22\ (f2—A2g*ug)

sreconstruct u

u=[ga; ul ; ug ; u2 ; gbl;

92

clear all;close all;
% Validation of the Dirichlet and Neumann codes
a=0;
b=1;
Step=(b—a)*0.1./10.7(0:2);
for j=1:length(Step)
step=Step(j);
x=(a:step:b);
y=sin(pixx);
eta=1;
f=(eta+pi™2)*y(2:end—1);
ga=0;gb=0;
sol=SolveDD(f',eta,a,b,ga,gb);
X=a:step/100:b;
Y=sin(pix*X);
figure(1l)
plot(x,sol,'b',X,Y,"'r");
hold on

eld(j)=max(abs(sol—y'));
f=(eta+pi”2)*y(l:end—1);

ga=pi;
soll=SolveND(f',eta,a,b,ga,gb);
plot(x,soll,'b',X,Y,'r");

eln(j)=max(abs(soll—y'));
figure(2)
plot(x,soll—y');
pause
end

figure(3)

loglog(Step,eld, 'm«")

hold on

loglog(Step,eln, 'bo—")

hold on

loglog(Step,Step.”™2,'r")
legend('Dirichlet', 'Neumann', 'slope 2')

% Algorithme de Dirichlet Neumann sur (a,c), (c,b)
clear all; close all;

a=0;

b=1;

J=9;

h=(b—a)/(J+1);

x=(a:h:b);

% eta=1;

% y=X."3;

% f=—6xx(2:end—1)+etaxy(2:end—1);
% ga=0;gb=1;

eta=1;

y=sin(pixx);
f=(eta+pi™2)*xy(2:end—1);
ga=0;gb=0;

93

sol=SolveDD(f',eta,a,b,ga,gb);

% position de 1 interface
Nc=floor(length(x)/2);

Nc=2;

c=a+Ncxh;

% nombre d'iterations

Imax=10;

%parametre de relaxation

t=0.5;

% initialisation avec la valeur exacte
gl=y(Nc+1);

% ou initialisation avec 0

g1=0;
[g,ul,u2]=algoDN(f,eta,a,b,h,ga,gb,gl,Nc,Imax,t)
% algorithme

figure(99)

plot(g)

title('Interface value')
xlabel('Iteration number")

% Methode de Schur
u=algoSchur(f',eta,a,b,h,ga,gb,Nc);
splot(x,y,'r',x,yd,'g',x,u,'b")
figure(55)

plot(x,sol,'qg',x,u,'b")

N=10;

chi=linspace(0,N,Nx100)
Y=tanh(4*chi)./tanh(chi)+1;
plot(chi,Y,'b")

xlabel('\chi")

ylabel('\alpha')

title('Slope of the convergence factor')

5.2 Schwarz Algorithms

5.2.1 Introduction and a brief historical review

Schwarz method was brought about by H.A.Schwarz around 1870 to prove the exis-
tence of harmonic functions in open sets that were not disks or rectangles (as those cases
had been dealt with analytically), or obtained from those above by conformal transforma-
tion. Schwarz’s typical problem is the following (in the following, £ can be any elliptic
operator , bus mostly our favorite —A).

L(u) = 0, x €N
u(z) = g(z), =€

(5.5)

in domain €2 defined in figure 5.5.
The classical Schwarz iteration consists in solving one after the other the problem in
each sub-domain Q; and €25 defined in figure 5.6

94

o0

FIGURE 5.5 — The initial Schwarz domain

0 Ty T Qs

o0

FIGURE 5.6 — Schwarz Decomposition

95

LY = f(z), =xe
vt z) = g(x), x€0NN (5.6)
v z) = w'(z), xely

L) = f(x), z €€
wtl(z) = g(2), r€INNQy (5.7)
w'tl(z) = v"THz), zeT,
Schwarz showed that the sequence (v™,w™) converged using the maximum principle. The
converged value is thus a solution u of (5.5). In 1988, this method was modified by P.L.

Lions in a series of papers presented at Domain Decomposition Conferences in order to
make it parallel in the following way :

L") = f(z), zeh
v Hl(z) = g(z), x€dQNQ (5.8)
v"H(z) = w'(z), zel;
Lw"t) = f(x), x€Q
w'tl(z) = g(x), 2€dQNQ (5.9)
wt(z) = v'(z), x €T,

He also put it in a hilbertian frame more adapted to using numerical methods. It
was then extended to general geometrical configurations , with an arbitrary number of
sub-domains, and to more general equations. He also suggested modifying transmission
conditions between sub-domains, using Robin type or even boundary elements operators.

The principle of this approach is thus :

— an iterative method,

— N sub-domains,

— non zero overlapping between sub-domains,

— well posed problems in each sub-domain,

— convergence of the algorithm (as a function of the overlapping),

— easy to implement
Today, for most problems, solution existence and unicity in known in the initial domain.
If a Domain Decomposition method is used, it is mainly for reasons of data storage and
use of fast local solvers.

In the sequel, we will refer to (5.6,5.7) as alternate Schwarz, and (5.8,5.9) as parallel
Schwarz.

5.2.2 A very simple 1D example

Lets us consider the following problem

du
_ R
g = hoTek (5.10)

u— 0asx— £oo

where f is a "nice" function. For example if f belongs to L?(R), it is well known that
there exists a unique variational solution in H'(R) which furthermore belongs to H?(R) .
Let us look at the Schwarz parallel algorithm with two sub-domains (see figure 5.7) :)

96

overlap

FIGURE 5.7 — 1D decomposition in 2 sub-domains with overlap

To initialize the iterative process, (v°,w®) is given, then at iteration n is solved

d2 n
v"—#:f, x €] — o0, L]
v - 0as T — —00 (5.11)

oM (L) = wH(D),

d2 n
w'— == = f, @ €]l 4o
w" = 0as T — 400 (5-12>

w™(0) = v"~1(0),

Theorem 5.2 The algorithm is well defined in H'(—oo, L) x H'(0,+00).
Exercice 5.1 Proof is left as an exercise.

The error in each sub-domain is now defined V" = v" —u € H'(—oco,L), W" =
w® —u € H*(0,+00). V™ (resp. W™) is solution to an homogeneous problem, that is for
f =0. It is solution to an homogeneous differential equation and goes to 0 at —oo (resp.
at +00). It can thus be easily expressed up to a multiplicative constant :

V" =ane®, W" =bye " (5.13)

with the recurrence relation on the coefficients

ane =b,_1e7t, by =an_1 (5.14)
thus
asy, = (e=2E)*aq dpsr = (e2L)F+1p, .15
bar = (e=2L)kbg bor+1 = (e72)kaq

The L? norm of the error can be computed. For example

0% — u||p2(—co,Lp = (€75)* |10 — ul| 22— 00,1 (5.16)

Theorem 5.3 The Domain Decomposition algorithm with Dirichlet transmission condi-

tions converges linearly with a linear coefficient equal to e,

97

Alas this means that the smaller the overlap, the slower the convergence will
be.

If Dirichlet conditions are replaced by Neumann conditions or a combination of both,
the same analysis is made.

How can one make convergence independant of the overlap ?

Let us try a Robin condition :

— 4w, =1L
dy (5.17)

(
(= —Bu" = (= —fh z=0.

Let us start the analysis again.

Theorem 5.4 For any a and (B strictly positive, for L > 0, the algorithm associated to
the (5.17) transmission conditions is well defined in H'(—oo, L) x H(0,+00).

Exercice 5.2 Prove the theorem by writing the variational formulation.

Back to (5.13). We now have

—_

ﬁ_
+

a—1 o
— b n— 1
por s Gp—1 (5.18)

ap = n—1, bn =

sy
—_

Theorem 5.5 For any a and [strictly positive, for any overlap L > 0, the algorithm
associated to the (5.17) transmission conditions converges linearly. It converges in two
iterations if and only ifa =06 =1 .

Exercice 5.3 Prove the theorem using the proof of 5.5.

These transmission conditions are said to be exact. This is because the solution v to the
left hand problem satisfies the transmission condition which is imposed on the right hand
side.

This approach will now be generalized to higher dimensions.

5.2.3 A 2D, 3D tool : the Fourier transform. Optimal
transmission condition

The following notes are 2 dimensional but are easily extendable to 3D and more. Let u
be a function of two variables x and y. Variable y lives on the whole real axis. The partial
Fourier transform with respect to y is defined as :

N 1 i
w(z, k) = ﬁ/ﬂku(z,y)e Y dy

If wis in L2, then @ is in L?, the inverse formula and the Plancherel theorem can be used.
Derivation formulae are obtained :

Tyl’(x’k) = (ik)Pu(x, k)

Let us consider the 2D operator —A + I. For f in L?(R?) , the solution u of
u—Au=f, xcR? (5.19)

and let the Domain Decomposition be given by figure 5.8.
Let us once again look at the parallel Schwarz algorithm with Dirichlet boundary
conditions. A y Fourier transform is carried out. The errors are denoted V™ in Q; and

98

0,

(o5

Y

FIGURE 5.8 — 2D decomposition in 2 sub-domains with overlap

W™ in Q5. Their Fourier transform are solution to the ordinary differential equation with
variable x and k appears as a parameter.

ozt K24+ 1)U =0 (5.20)
leading to
V= an(k)eVFHE W = b, (ke VE L (5.21)

with the recurrence relation on the coefficients

any1(k) = by (k)e 2VF L b (k) = an(k) (5.22)
thus

agy(k) = (e2VF) Pag | agpi (k) = (e72VE)b

(5.23)
bop(k) = (e 2VEFNPhy | bapia (k) = (e 2VFHIE)Pgq

Exercice 5.4 Show that the parallel Schwarz algorithm with overlap converges linearly.

By analogy with the one dimensional case , it is to be noticed that V" and W™ satisfy the
following equations

8{;; —Vk2+1V"=0in (—o0, L)

(5.24)

ag; +VE24+1W" =0 in (0,400)

and the following theorem

Theorem 5.6 The 2D Domain Decomposition algorithm converges in two iterations if
transmission conditions in Fourier variables can be written as

rn—41 R irn R
a‘gx +\/k2+1V”+1:%+\/k2+1W”, r=1L

(5.25)

Tn+1 R 20 R
oW VE2+1 W = —a(;; ~VE2H1V™, =0

or
It remains to find a meaning to these transmission conditions which are expressed as square
roots of operators, which are not easily dealt with. An approximation will be performed.

99

5.2.4 Approximation

Let us go back to the two sub-domain case with overlap in 5.10. The exact transmission
conditions are given by (5.25). These conditions will be "approximated" in such a way to
fit a differential operator. Let us consider the Schwarz algorithm with the following general
transmission conditions

awn+l 1 oo™
— ik = — — o = L
5, ¢k @ il
(5.26)
opntL i1 Ow” n
I + (k) 0 *%Jrl/)(k)wy z=0
Let us continue the Fourier analysis from (5.13).
~VEZ 11 T —VEE 1
nor(k) = L=V L orvimny g g gy = PR ZVREEEL 0 507
(k) +VvE2+1 ok) +VEk2+1
The convergence factor over a double swap is defined as :
p(k, L) = (k) — VK2 +1 o(k) — VE* +1 o 2LVETFT (5.28)
’ V() +VEZ+1 p(k) +VEZ+1
and we have
ant1(k) = p(k, L)an—1(k), bns1(k) = p(k, L)bp—1(k) (5.29)

The convergence factor vanishes for the exact transmission conditions. The conver-
gence rate expression induces the following remark : for k large, convergence rate is high,
while for small values of k, overlap has little influence. Thus only for small values of k, is
it necessary to approximate v/ k2 + 1. Thus the following transmission conditions

Owntl 41 Ov"
Tl = T —L
Ox v ar 0 °
(5.30)
vl 1 Ow”
n — n — 0
Oz tv Ox Twh @
For these transmission conditions, the convergence factor is
1—-vVEZ+1 2
p(k, L) = (7+ e—LV’“Z“) . (5.31)
1+VE2+1

Theorem 5.7 The algorithm associated to transmission conditions (5.30) is well defined
in H' (1) x H'(Qy).

Exercice 5.5 Prove the theorem by writing a variational formulation in each H'($;).

Another idea is to perform a 2nd order Taylor development of k2 + 1 :

2

NEe gL

2

Effective transmission conditions are obtained by inverse Fourier transform. For example

k2 /1\821)
1+ 5= 0 220
(+2)v v 292

Transmission conditions are written with respect to the physical variables :

100

Own ! a1 N 182wn+1 _ 8Ln g 1821)"7 —
or 2 Oy? ox 2 Oy?
(5.32)
ovmtt L 10%m T Quwn . 10%wm
= " S,z =0
ox 2 Oy? ox 2 0y?
The convergence factor is obtained by using (k) = ¢(k) = 1+ k%/2 :
1+ k?/2-VE2+1))2
plk,L) = (- ——) . (5.33)
1+ k2/24+VE2+1

Theorem 5.8 The algorithm associated to transmission conditions (5.30) is well defined
in Hi(Q1) x Hi () where

H{(Q) ={ve H' (Q),ve H ()}
Exercice 5.6 Prove the theorem by writing a variational formulation in each H*(§);).

Theorem 5.9 For any L > 0, for any initial guess (u®,v°) belonging to H*(Q1) x H(Q2)
(resp.Hi(Q1) x H{(Qw)) , the algorithm associated to the transmission conditions(5.30)
(resp. (5.32)) converges in

HY(Qq) x HY(Q2) (resp.HL(Q1) x H{(Q2)). If L > 0, the convergence is linear.

We estimate the Fourier transforms

v = (p(k, L))" V°

For any L > 0, the sequence V2" converges a.e. in 21, and is bounded by V° in L2(Q;).
By the Lebesgue theorem, it converges in L?(£2;). The same holds for the gradients. If
L > 0, we have

V" |2 (@) < sup [p(k,)P [V L2 o)
kER
which shows the linear convergence, since

sup |p(k, L)|? < e 2 < 1,
keR

|
Therefore these methods converge at least as fast as the original parallel Schwarz
method. For general domains, the convergence proof will not be valid anymore, and we
shall use an energy approach.
Another fruitful approach is to approximate v/1 + k2 for a large range of frequencies
by an 2nd order even polynomial in k with coefficient optimization.

5.2.5 A convergence proof for L =0

Let us go back to the algorithm associated to conditions (5.30), and denote by T" the
common interface. The error (V", W™) satisfies

_AWTL+1 + Wn+1 =0

n+1 n
OW™ aW — Wn+1 = LV — Vn onI
——+W"onT ox O

_AYnTL Lyl

avn-l—l
Vn—',—l _
ox + Ox

(5.34)

101

Let us multiply equations on the inner points by V"*! and W"*+! integrate over the
domain and use Green’s formula.

gynti
n+1112 _ n+1 _
V"l @) /rV 9z
own+t
n+1(|2 n+1 —
[R
By denotes operator - —|— 1 and By operator — 1. We now have

AV, + ﬂ&WMW=/%W”W

MW+WNM+AWNW“W:

[Bz(Wn+1)]2

=7

Let us use the boundary conditions

AV, +

5~

B = [B W")]2
r

4‘|Wn+1||H1(Q) + Bl Wn+1 / 82 Vn
T r

Add these two equations

AV F) + VR o) +/F([32(V”“)]2+ [By(W)]?) =

lAquvwﬁ%mewmn%

This implies that the series with general term ||V"| @11(91) +||W™n| |%Il(92) is convergent
thus its general term goes to 0 when n goes to infinity. The error goes to 0 in H' norm in
each of the sub-domains. Notice that the limit (v, w) satisfies , the meaning of which is to
be specified, the transmission conditions

ov 1o}
—+v = —4wonl
iy x
o _ ow on T (5.35)
ox)
Thus

ov ow
— = —onl
ox ox (5.36)
v = wonl

which are transmission conditions for u. The algorithm limit is therefore wu.

5.2.6 Notions on transmission conditions

Let us consider the problem in €2 described in figure 5.9.

This problem (see Analysis course) has a unique solution in H!(Q2). Furthermore, if
is sufficiently regular, u belongs to H?(Q2). Consider a partition of Q , Q = Q; U Qy and
I'=0;NQ. On T, there are two unit normals at each point : 7; is the outgoing normal
to Q1 and 7o is the outgoing normal to 2o with the relation n; + ns = 0. Let us denote

n = nq thus 7o = —n. The problem is now equivalent to the coupling problem defined in
figure 5.10, where u; is the restriction of w to ; and wus is the restriction of u to 29
Conditions
uy =ug on I
Ou _ Ouy o (5.37)
on On on

102

FIGURE 5.9 — Original problem

FIGURE 5.10 — Two sub-domain decomposition with no overlap.

103

are transmission conditions for u.
Let us now identify the transparent condition in Q9. Let g in Hz(T'). The following
problem is now considered :

Lu=01in Qy
u=0on Ty (5.38)
u=gonl

This problem has a unique solution. The trace of the normal derivative can now be

0
defined on T, 87“ We now define Iy by
2

such that any solution to the boundary value problem in 2,

Lu =0 in QQ
(5.40)
u=0onTI5
satisfies identically the equation on I’
ou
— —Kou=0 5.41
8n2 2 ()

Remark 5.1 Let us define for any (u,v) in H'(Qy),

az(u,v) = (u,v) g1(Q,) = /Q [Vu - Vv + wldz dy

Using the variational formulation for any couple (g,h) in H%(F),

< Kag, h >= as(u,v)

where u is the solution to 5.38 and v is the result of any lifting operator on g in
HY(Qs). As a consequence , Ko is a self-adjoint coercive operator on H%(F),

In the same manner, operator K; is introduced : Let g be in H %(F). Let us consider
the following problem

EU:OiDQQ
u=0onI" (5.42)
u=gonl

This problem has a unique solution. The trace of the normal derivative can now be

defined on T, % K1 is defined by
5711

such that any solution to the boundary value problem in €

u=0onTI

satisfies identically the equation on I’

104

—— —Kwu=0 (5.45)

For any (u,v) in H(£2;), let us define

ar(u,v) = (u,v) g1(q,) = / [Vu - Vo +wldz dy
[951

Using the variational formulation, for any couple (g, h) in H 3 (T,
< K1g,h >= a;1(u,v)

where u is solution to (5.42) and v is the result of any lifting operator on g in H*($y).
K1 is thus a self-adjoint coercive operator on Hz (T').

Equations
Autt oul
Ul _ }Czugb-‘rl _ ﬂ _ ,Czug,
aTLQ 8TL2 (5 46)
Aul Tt ou”? ’
2 _ KlunJrl _ 1 K:lun
anl 2 5‘n1 1
constitute the exact transmission conditions.
Operators
0
BlT = 76 - Ky
52 (5.47)
Bl =_— K
2 87?,1 !

are exact transmission operators, or transparent operators.

Exercice 5.7 Show that the Domain Decomposition algorithm with conditions (5.46)
converges in two iterations. Generalize to N sub-domains with no overlap.

Exercice 5.8 Recover exact transmission conditions (5.24).

Going through the Schwarz algorithm step by step, we shall now see how it can be
be seen as a Jacobi algorithm on a problem set on the interface. This will allow to apply
more performant solvers.

5.2.7 ldentification of the interface problem

Problem with no overlap

The Domain Decomposition algorithm with no overlap is now studied in a general
form.

Lu™ = f iny
n+1

Lg =0onIy (5.48)
n

Blu?‘H =Biuy on T

Luft = f inQy
n+1

Ouy
on

BguZH = Byu} on T’

=0onTy (5.49)

Let us now define an algorithm on the interface in the following way.
For any A defined on I', and f defined on 2, M7 and Ms are defined as

105

‘Cul = f7 € Ql
M : (N, f) = uy solution of % =0on Iy (5.50)
n
Biuy=AonT
Luy = f, € Qy
Ms : (N, f) — us solution of % =0on Ty (5.51)
n
BQUQ =Aonl
Notice that M;(\, f) = M;(0, f) + M;(X,0).
Suppose that (A}, A}) are defined by par
AP = Bjuf
But in Qy,
Lu? = f, €4
ouy
an =0on F]
Bju} = Bju} on I
thus

ul = M;(A7, f) (5.52)

We now have the following equalities

N = Bt = BuMs (A,) = Bi[Ma(0g,0) + M2 0, f)]
AL = Boul = By My (AT, f) = Bo[My (A7, 0) + My (0, f)]

Thus the interface system

ATT = Bi M5 (A3, 0) + Bi Mo (0, f)
AT = By My (AT, 0) + B My (0, f)

) - 0 By Ms(.,0) M
P B (,0) 0 Ao

This can be written as

(5.53)

Or , setting

An+1 — JA" + BlM2(07 f)
B2M1(07f)

which corresponds to the Jacobi algorithm applied to matrix

(I _BiMa(.,0))
A=
—ByMy(.,0) I

b (BM(0,))
By M (0, f)

106

and the system

1D example with overlap

Let us consider the example of a parallel Schwarz method with overlap and Neumann

transmission conditions i.e. By = By = = ot I'={z =0}
d? 1 1
—@U?Jr +up™ = fin Q) = (-0, L) (5.54)
di ntl — diug for x = L,
T T
d2
_@ugﬁ-l + U,;H_l = fin Q = (0, +00) (5.55)
d)
d—u?“ = d—u? for x = 0.
T x
For A € R, M;(),0) is defined by
d2
—F'LL1+U1:O, Z'SL
e (5.56)

which can be solved as
Mi(X,0) = e L

et
BoM; (X, 0) = e E

Similarly we have
d2
———uz +u =0, x>0
dd:z: (5.57)
%ug =Adenz=0

which can be written as
MQ()\, 0) =—-Xe *

et
BiMy(\,0) = e L
Matrix J is
0 1
J=et
1 0
Thus the algorithm
By M (0,
An+1:JAn+ 1 2(f)
BZMl (O, f)

which again can be written as

N = e ID 4 o
Mt = e EAT + 8
The spectral radius of J is strictly less than 1 for any L > 0. The Jacobi algorithm
converges thus towards the solution (A1, A2) to system
1 —e L AM «Q
—e L 1 Ao 153
With no overlap, the algorithm diverges.

Remark 5.2 For any L > 0, the matrix of the system is symmetric positive definite . For
L =0, it is not inversible.

107

5.2.8 Substructuring method revisited

Let us go back to the example in chapter 5.1 with a Schwarz algorithm. The approxi-
mate transmission conditions are of Robin type on a boundary I' (no overlap case). Using
chapter 5.1 notations

0 0
Bl 8714‘]7, 62—8777/24—}7

Here p is a strictly positive real number.

—Aup =/
out . oup? e
R L 559

uf =0on I

~Aug = f

ousy . ous! _

e = o5
2 =0on FQ

To compute M; , let us use its definition and write the variational formulation

7AU1 =0

8u1

— +pu; = A1 (560)
ony

U1:OOHF1

We define on Vi = {v € H'(;),v =0 on I';} the bilinear form b; by

bi(v,) =a1(v,<p)+p/wdy, a1(v,) = | VoVedady. (5.61)
I 1951

The bilinear form a; is the scalar product of V;. It corresponds to a homogeneous
Dirichlet problem. The additional term corresponds to the boundary condition on I'.
M7()\,0) is thus solution to the variational problem in V;

VLp eV, by (Ml /\17 , P / Al(pdy (562)
Moreover M;(0, f) is solution to the variational problem in V}

Ve € Vi, b (M (0, f), / Fpdrdy (5.63)

Let us consider applying a finite element technique, P; for example to this problem.
Basis functions are noted {¢;},<;<nz. Nodes are numbered as inner nodes {S;}1<j<nz ,
and boundary nodes as {Sj}nz y1<j< ~z- Same for the basis functions. If (S;,S;) are such
that that one of them does not belong to I', b1 (¢, ¢;) = a1(y;,¢;j). The system matrix
becomes

K K
B, = 1) 9 (5.64)
K3 K33 +pAF

The right hand side {/ A dy} can be expressed as (0, ApA1), and the system can
r
be written by decomposing vector (uj (S;)) into (U, Us) :

108

Ky K3
Uy 0

inner points coupling _ (565)
K3 K + pAr Us ArAy
———
boundary
which be written as the following system
Ki11U1 4+ K13U: =0
11U1 13U3 (5.66)
KUy + (K + pAr)Us = ArAy

Matrix K7; is invertible as it is the matrix associated to a homogeneous Dirichlet
problem. U; can be expressed as a function of Us and carrying it in the second equation
as in chapter 5.1 :

Uy = —(K11) ' K13Us,

(5.67)
(K33 — K31(K11) ' K13 + pAr)Us = ArAy

The new Schur Complement matrix in Qi, Sk, is defined from the old one by
Shovin = S* + pAr. It is also symmetric positive definite.
For M;(0, f), with similar notations , the following system is obtained

K1 Up + Ky3U: = F
11U1 13U3 1 (5.68)
Ks1Uy + (K35 + pAr)Us = Fj
and thus Us is solution to system
S}QobinU?’ = F31 - K31(K11)71F1 (569)

It now remains to compute Bo M (A1,0) and Bo M (0, f). To do this, let us note that
thanks to the boundary conditions, we have

0 0

BQMl()\l,O) = 672 +pu1 = *8721 +pu1 = 7/\1 + 2pM1()\1,0)
ou

By My (0, f) = _87n1 +puy = 2pM, (0, f)

Thus

BQMl (/\1,0) = 2p(Sll%obin)_1AFA1 — Al

(5.70)
By My (0, f) = 2(Skopin) ' (F5 — Ks1 (K1) FY).
Similarly we have
By Ma(A2,0) = 2p(S% ...) T ArAs — A
1M2(A2,0) P(Shobin) iz 2 (5.71)

BiM(0, f) = 2(Shopin) ~ (FF — Kso(K22) ™' Fa).

where So the Schur Complement matrix in .

Remark 5.3 With notation Us, we have implicitly supposed that discretizations coincide
on the common boundary. This is not necessary.

The matrix algorithm associated to the Schwarz can now be written as

109

AT 0 —1 4 2p(Shopin) AL (AT

At —T +2p(Skopin) *Ar 0 A
(5.72)
N 2(Sopin) " (F5 — Ka1 (K1)~ Fy)
2(Shopin)(F5 — Kso(K22) ™')
which is the Jacobi method to solve a system whose matrix is
1 I—-2p(S% .,)Y 1A
(p(Robzn) F) (573)
(I = 2p(Skopin) ' Ar) I

The alternate Schwarz algorithm mentioned in (5.7) corresponds to a Gauss-Seidel
method. Convergence can be accelerated by applying a Krylov method as in chapter 5.1.

110

Bibliographie

1]
2]
3]

4]
5]

[6]

7]

Suzanne.C Brenner and Ridgway Scott. The mathematical theory of finite element
methods. Springer-Verlag, 1994.

William L. Briggs and Van Emden Henson. A multigrid tutorial.
www.llnl.gov/CASC/people/henson/mgtut /ps/mgtut.pdf.

Charles F Loan Gene H Golub. Matrixz computations. Johns Hopkins University Press,
1996.

Wolfgang Hackbusch. Multigrid methods and applications. Springer-Verlag, 1985.

Hans Petter Langtangen and Aslak Tveitog. What is multigrid ?
folk.uio.no/infima/doc/mg-underscore-nmfpd.pdf.

Pierre-Arnaud Raviart and Jean-Marie Thomas. Introduction a l'analyse numérique
des équations aux dérivées partielles. Masson, 1988.

P. Wesseling. An introduction to multigrid methods. Wiley -Interscience, 1992.

111

	Classical methods
	Direct methods
	Stationary iterative methods
	Sparse and banded matrices

	Nonstationary methods
	Non-Stationary iterative methods. Symmetric definite positive matrices
	Krylov methods for non symmetric matrices, Arnoldi algorithm

	Preconditioning
	Introduction
	Deflation method for GMRES
	Fast methods using Fast Fourier Transform

	Multigrid methods
	Geometric multigrid
	Algebraic Multigrid AMG

	Parallelism
	Substructuring methods
	Schwarz Algorithms

