Problem ${ }^{\circ} 1$: MATRICES

Exercice 0 : From the lecture notes.

Study the exercise on p 16 on tridiagonal matrices

Exercice 1 : Special Matrices.

a) Show that the product of two lower (resp. upper) triangular matrices is a lower (resp. upper) triangular matrix.
b) Shwo that the inverse of the lower triangular (invertible) matrix \mathbb{L}, triangulaire is lower triangular. Furthermore $\left(\mathbb{L}^{-1}\right)_{i i}=\frac{1}{\mathbb{L}_{i i}}$.
c) Show that the product of two banded matrices is a banded matrix, and evaluate it bandwidth in terms of the bandwidth of the two matrices.

Exercice 2 : Block Matrices.

a) Show that the product of two block lower (resp. upper) triangular matrices is a block lower (resp. upper) triangular matrix. b) We want to calculate the determinant of the matrix $\mathbb{A}=\left(\begin{array}{ll}\mathbb{A}_{11} & \mathbb{A}_{12} \\ \mathbb{A}_{21} & \mathbb{A}_{22}\end{array}\right)$ split in blocks. The blocks \mathbb{A}_{11} and \mathbb{A}_{22} are square.
i) Calculate the determinant of matrices

$$
\mathbb{A}_{1}=\left(\begin{array}{cc}
\mathbb{A}_{11} & 0 \\
0 & \mathbb{I}
\end{array}\right), \quad \mathbb{A}_{2}=\left(\begin{array}{cc}
\mathbb{I} & 0 \\
0 & \mathbb{A}_{22}
\end{array}\right)
$$

Deduce the determinant of

$$
\mathbb{A}_{3}=\left(\begin{array}{cc}
\mathbb{A}_{11} & 0 \\
0 & \mathbb{A}_{22}
\end{array}\right)
$$

ii) Calculate the determinant of

$$
\mathbb{A}_{4}=\left(\begin{array}{cc}
\mathbb{I} & \mathbb{A}_{12} \\
0 & \mathbb{I}
\end{array}\right)
$$

and the product of the two block matrices

$$
\left(\begin{array}{cc}
\mathbb{A}_{11} & 0 \\
0 & \mathbb{A}_{22}
\end{array}\right) \text { et }\left(\begin{array}{cc}
\mathbb{I} & \mathbb{A}_{11}^{-1} \mathbb{A}_{12} \\
0 & \mathbb{I}
\end{array}\right) .
$$

Deduce the determinant of

$$
\mathbb{A}_{5}=\left(\begin{array}{cc}
\mathbb{A}_{11} & \mathbb{A}_{12} \\
0 & \mathbb{A}_{22}
\end{array}\right)
$$

iii) Calculate the product of block matrices

$$
\left(\begin{array}{cc}
\mathbb{I} & 0 \\
\mathbb{A}_{21} \mathbb{A}_{11}^{-1} & \mathbb{I}
\end{array}\right) \text { et }\left(\begin{array}{cc}
\mathbb{A}_{11} & \mathbb{A}_{12} \\
0 & \mathbb{A}_{22}-\mathbb{A}_{21} \mathbb{A}_{11}^{-1} \mathbb{A}_{12}
\end{array}\right)
$$

Deduce the determinant of \mathbb{A}.
c) Calculate the determinant of the block triangular matrix

$$
\left(\begin{array}{cccc}
\mathbb{A}_{11} & \mathbb{A}_{12} & & \mathbb{A}_{1 n} \\
0 & \mathbb{A}_{22} & & \mathbb{A}_{2 n} \\
0 & 0 & \ddots & \\
0 & 0 & & \mathbb{A}_{n n}
\end{array}\right)
$$

Exercice 3 : Irréducible Matrices .

A is a square matrix of size n, denoted $A=\left(a_{i j}\right)_{1 \leq i, j \leq n}$. We say that A is reducible if there exists a permutation matrix P such that

$$
{ }^{t} P A P=B=\left[\begin{array}{cc}
\left.B^{(11}\right) & B^{(12)} \\
0 & B^{(22)}
\end{array}\right]
$$

where $B^{(11)}$ and $B^{(22)}$ are square matrices of size p et $n-p$ respectively. Recall that a permutation matrix is defined by $P_{i j}=\delta_{i \sigma(j)}$ where σ is a permutation of the set $\{1, \ldots, n\}$.
a) Show that A est reducible if and only if there exists a partition of $\{1, . ., n\}$ in two (disjoint) sets I and J such that $a_{i j}=0$ for i in I and j in J.

We define the graph associated to A as the set of points X_{i}, for $1 \leq i \leq n$. The points X_{i} and X_{j} are linked by an arch if $a_{i j} \neq 0$. A path is a sequence of archs. We say that the arch is strongly connected if 2 points can always be related (in order) by a path.
b) Show that a matrix is irreducible if and only if its graph is strongly connected.

Exercice 4 : Diagonally Dominant Matrices.

a) Show the Gerschgörin-Hadamard theorem : any eigenvalue λ of A belongs to the union of discs D_{k} defined by

$$
\left|z-a_{k k}\right| \leq \Lambda_{k}=\sum_{\substack{1 \leq j \leq n \\ j \neq k}}\left|a_{k j}\right|
$$

b) Show that if A est irreducible, and if an eigenvalue λ is on the boundary of the union of discs D_{k}, then all the circles pass through λ.

We say that A est diagonally dominant if

$$
\forall i, 1 \leq i \leq n,\left|a_{i i}\right| \geq \Lambda_{i}
$$

We say that A is strictly diagonally dominant if

$$
\forall i, 1 \leq i \leq n,\left|a_{i i}\right|>\Lambda_{i}
$$

We say that A est à strongly diagonally dominant if it is diagonally dominant and if furthermore

$$
\exists i, 1 \leq i \leq n,\left|a_{i i}\right|>\Lambda_{i}
$$

c) Prove that if A is strictly diagonally dominant, it is invertible.
d) Prove that if A is strongly diagonally dominant and irreducible, it is invertible.
e) Prove that if A is, either strictly diagonally dominant,or strongly diagonally dominant and irreducible, and if the diagonal entries are strictly positive, then the real part of the eigenvalues is strictly positive.

Exercice 5: Discretisation of laplacian in dimension 1.

Consider the boundary value problem on $] a, b[$

$$
\left\{\begin{array}{l}
\left.-u^{\prime \prime}=f \text { sur }\right] a, b[, \tag{1}\\
u(a)=0, \\
u(b)=0 .
\end{array}\right.
$$

where f is a continuous function on $] a, b[$.
This problem has a unique solution we want to compute by finite differences. a) Show that if u is \mathcal{C}^{2},

$$
\begin{equation*}
u^{\prime \prime}(x)=\frac{u(x+h)-2 u(x)+u(x-h)}{h^{2}}+O\left(h^{2}\right) \tag{2}
\end{equation*}
$$

We split the segment into n intervals of length $h=(b-a) / n$.
b) Write by using (2) the linear system issued from (1) whose unknowns u_{i} are approximations of $u(a+i h)$ for $1 \leq i \leq n-1$. Note A the matrix of the system.
c) Show by exercice II that A is symmetric definite positive.
d) Show the maximum principle : If all f_{i} are ≤ 0, then the u_{i} are ≤ 0 and the maximum is reached for $i=1$ ou $n-1$.
e) Let a and b two real numbers. For $n \geq 0$, note Δ_{n} the tridiagonal le determinant

$$
\Delta_{n}=\left|\begin{array}{ccccc}
a & -b & 0 & & \\
-b & a & & & \\
\ddots & & \ddots & & \\
& & -b & a & -b \\
& & 0 & -b & a
\end{array}\right|
$$

Write a two levels recursion relation on the Δ_{n}.
f) Note $P_{n}(\lambda)$ the characteristic polynomial of A. Using the change of variable

$$
\lambda+2=-2 \cos \theta,
$$

prove that $P_{n}(\lambda)=\frac{\sin (n+1) \theta}{\sin \theta}$. Deduce that the eigenvalues of A are $\lambda_{k}=\frac{4}{h^{2}} \sin ^{2}\left(\frac{k \pi}{2 n}\right)$ and the associated eigenvectors $u^{(k)}$ given by $u_{j}^{(k)}=\sin \left(\frac{k \pi j}{n}\right)$.
f) Deduce the condition number of A.

ExERCICE 6: DISCRETISATION OF LAPLACIEN IN DIMENSION 2.

Consider the boundary value problem on $] 0,1[\times] 0,1[$

$$
\left\{\begin{array}{l}
\left.-\frac{\partial^{2} u}{\partial x^{2}}-\frac{\partial^{2} u}{\partial y^{2}}=f \text { sur }\right] 0,1[\times] 0,1[, \tag{3}\\
u=0 \text { on the boundary }
\end{array}\right.
$$

Divide the interval $[0,1]$ horizontally in $M+1$ intervals $\left[x_{i}, x_{i+1}\right], x_{i}=a+i h, 0 \leq i \leq M+1$, with $h=1 /(M+1)$. Divide the interval $[0,1]$ vertically en $M+1$ intervalles $\left[y_{j}, y_{j+1}\right], y_{j}=c+j h$, $0 \leq j \leq M+1$. We then obtain a meshing in x, y. A point in the mesh is $\left(x_{i}, y_{j}\right)$. An approximation of $u\left(x_{i}, y_{j}\right)$ is noted $u_{i, j}$.

The Poisson equation (3) is then discretized by $\left(f_{i, j}=f\left(x_{i}, y_{j}\right)\right)$

$$
\begin{array}{r}
-\left(\Delta_{h} u\right)_{i, j}=-\frac{1}{h^{2}}\left(u_{i+1, j}-2 u_{i, j}+u_{i-1, j}\right)-\frac{1}{h^{2}}\left(u_{i, j+1}-2 u_{i, j}+u_{i, j-1}\right)=f_{i, j}, \tag{4}\\
1 \leq i \leq M, 1 \leq j \leq M
\end{array}
$$

The nodes of the mesh must be stored as a vector. They can be numbered by increasing j and for any j by increasing i (see Figure 1).

Figure 1 - numérotation by rows
Suppose only internal degrees of freedom are stored. Then the point $\left(x_{i}, y_{j}\right)$ is numbered $i+(j-$ 1) M. We create a vector Z of all unknowns

$$
Z=\left(u_{1,1}, u_{2,1}, u_{M, 1}\right),\left(u_{1,2}, u_{2,2}, u_{M, 2}\right), \cdots\left(u_{1, M}, u_{2, M}, u_{M, M}\right)
$$

with $Z_{i+(j-1) * M}=u_{i, j}$.
a) If the equations are numbered accordingly (the k -th equation is equation at point k, show that the matrix is block tridiagonal :

$$
A=\frac{1}{h^{2}}\left(\begin{array}{ccccc}
B & -C & & 0_{M} & \tag{5}\\
-C & B & -C & & \\
& \ddots & \ddots & \ddots & \\
& & -C & B & -C \\
& 0_{M} & & -C & B
\end{array}\right)
$$

with $C=I_{M}$, and B is the tridiagonal matrix

$$
B=\left(\begin{array}{ccccc}
4 & -1 & & 0 & \\
-1 & 4 & -1 & & \\
& \ddots & \ddots & \ddots & \\
& & -1 & 4 & -1 \\
& 0 & & -1 & 4
\end{array}\right)
$$

The righthand side is then $b_{i+(j-1) * M}=f_{i, j}$, and the system is $A Z=b$.
b) Show that matrix A est invertible with strictly positive eigenvalues.
c) Show that the eigenvalues of A are $\lambda_{p q}=\frac{4}{h^{2}}\left(\sin ^{2}\left(\frac{p \pi}{2 M}\right)+\sin ^{2}\left(\frac{q \pi}{2 M}\right)\right)$. Deduce the condition number of A.
d) Same study with the alternating numbering by columns.

Hints on eigenvalues and eigenvectors Consider the 1 - D Laplace operator on $[0,1]$ with zero Dirichlet boundary values. The eigenvalues and (normalized) eigenmodes are defined by

$$
-u^{\prime \prime}=\lambda u
$$

and given by

$$
\lambda_{k}=k^{2} \pi^{2}, \quad u_{k}=\sqrt{2} \sin k \pi x, \quad k \in \mathbb{Z}
$$

For the discretization matrix of size n,

$$
A=\left(\begin{array}{ccccc}
2 & -1 & 0 & & \\
-1 & 2 & -1 & & \\
\ddots & & \ddots & & \\
& & -1 & 2 & -1 \\
& & 0 & -1 & 2
\end{array}\right)
$$

The eigenvalues are (cf exercice 5) $\frac{4}{h^{2}} \sin ^{2}\left(\frac{k \pi}{2 n}\right)$ and the associated eigenvectors $u^{(k)}$ given by $u_{j}^{(k)}=$ $u_{k}\left(x_{j}\right)=\sqrt{2} \sin \left(\frac{k \pi j}{n}\right)$. They forme an orthonormal basis, therefore the matrix Q whos columns are the $u^{(k)}$ os orthogonale.

Consider now the $2-D$ Laplace operator on $[0,1] \times[0,1]$ with zero Dirichlet boundary values. The eigenvalues and (normalized) eigenmodes are defined by

$$
-u_{x x}-u_{y y}=\lambda u
$$

We search for eigenfunctions in separate variables : $u(x, y)=v(x) w(y)$.

$$
-v^{\prime \prime}(x) w(y)-v(x) w^{\prime \prime}(y)=\lambda v(x) w(y)
$$

$$
\begin{aligned}
-v(x) w^{\prime \prime}(y) & =\left(\lambda v(x)+v^{\prime \prime}(x)\right) w(y) . \\
\frac{-w^{\prime \prime}(y)}{w(y)} & =\frac{\lambda v(x)+v^{\prime \prime}(x)}{v(x)}
\end{aligned}
$$

On the left we have a function of y, on the right a function of x, they must are constant : there is a a such that

$$
\frac{-w^{\prime \prime}(y)}{w(y)}=\frac{\lambda v(x)+v^{\prime \prime}(x)}{v(x)}=a
$$

which gives

$$
w^{\prime \prime}(y)+a w(y)=0, \quad w(0)=w(1)=0
$$

This is a 1-D eigenequation, whose solutions are (modulo a multiplicative factor) with $a=p^{2} \pi^{2}$ for $p \in \mathbb{N}$

$$
w_{p}=\sqrt{2} \sin p \pi y
$$

then for each p,

$$
\begin{gathered}
\lambda v(x)+v^{\prime \prime}(x)=p^{2} \pi^{2} v(x) \\
\lambda v(x)+v^{\prime \prime}(x)=p^{2} \pi^{2} v(x) \\
v^{\prime \prime}(x)+\left(\lambda-p^{2} \pi^{2}\right) v(x)=0
\end{gathered}
$$

again this is a 1-D eigenmode problem, then

$$
\lambda-p^{2} \pi^{2}=q^{2} \pi^{2}, \quad v_{q}(x)=\sqrt{2} \sin q \pi x
$$

An orthonormal system is then

$$
\lambda_{p, q}=\left(p^{2}+q^{2}\right) \pi^{2}, \quad u_{p, q}=2(\sin q \pi x)(\sin p \pi y)
$$

For the $2-D$ discrete system, we will do the same as for the continuous case : suppose that the eigenvalues are

$$
\lambda_{p, q}=\frac{4}{h^{2}}\left(\sin ^{2}(p \pi h)+\sin ^{2}(q \pi h)\right), \quad u_{i, j}^{p, q}=2\left(\sin q \pi x_{i}\right)\left(\sin p \pi y_{j}\right)
$$

and check it directly on equation (4).

