Master Vietnam-France in HCMC High Performance computing
 TP 0 : Taking matters in hand - A short review of basic Finite Elements functions in a few steps

Figure 1 - Visualization of how a car deforms in an asymmetrical crash using finite element analysis
(https://commons.wikimedia.org/w/index.php?curid=641911)
The aim of this session is to recall and use some basic functions of Finite Elements problems without any crash.

The classical Laplace problem is defined in a domain $D \subset \mathbb{R}^{2}$,

$$
\begin{cases}-\nabla \cdot(\mu \nabla u)=-\Delta u=f & \text { in } D \quad(\mu=1) \tag{1}\\ u=g & \text { on } \partial D\end{cases}
$$

Domain D is meshed with a set of triangles $\Omega=\cup_{k} \Omega_{k}, \Gamma_{k}=\partial \Omega_{k}$. μ is a function constant per triangle that characterises the material (in our case $\mu=1$) Applying a variational formulation and using P_{1} Finite Elements, one obtains the following formulation :

$$
\begin{equation*}
\forall \phi \in P_{1}, \int_{\Omega} \nabla u \nabla \phi d x=\int_{\Omega} f \phi d x \tag{2}
\end{equation*}
$$

Let $V=\left(\phi_{i}\right)_{i=1, N}$ be a a generating family of P_{1}, the P_{1} finite element problem can be defined as

Find $u=\sum_{i} u_{i} \phi_{i}$ such that

$$
\begin{equation*}
\forall \phi_{j} \in V, \quad \sum_{i=1, N} u_{i} \int_{\Omega} \nabla \phi_{i} \nabla \phi_{j} d x=\int_{\Omega} f \phi_{j} d x \quad j=1, N \tag{3}
\end{equation*}
$$

Let Nnodes be the number of nodes in the mesh. Eq. 3 can be written in matrix form as

$$
\text { Find } X=\left(u_{i}\right) \text { in } \mathbb{R}^{2} \text {, such that } K X=M F
$$

with $F=M\left(f_{j}\right)_{j=1, \text { Nnodes }}$ and $f_{j}=f\left(x_{j}\right)$ with x_{j} the node associated to ϕ_{j} for all nodes.
K is the stiffness matrix , M is the mass matrix (more details are to be found in FEDforstudents.pdf)

Step $1=$ Meshing

Provided :

- Newmesh.m : $[\mathrm{N}, \mathrm{T}, \mathrm{P}]=\operatorname{NewMesh}(\mathrm{G})$: A function generating a finite element mesh. G is an integer designing the object being meshed (triangle, square, space shuttle, ...)
N is the node array of 2 D coordinates
T is the triangle array : T (triangle number $\mathrm{i}, 1: 6$) where $\mathrm{T}(\mathrm{i}, 1: 3)$ are the 3 node numbers that define the triangle given in trigonometrical order, $\mathrm{T}(\mathrm{i}, 4: 6)$ gives the type of edge ($0=$ inner edge, $1=$ edge with a Dirichlet boundary condition, $2=$ edge with a Neumann boundary condition)
P is a 1 d array that associates to each triangle a material characteristic (in our case $P(i)=\mu=1)$
- RefineMesh.m : A function refining a given Finite Element mesh
- PlotMesh.m : A function that visualizes the mesh

To do

- Understand how they work $=$ Create a mesh $(\mathrm{G}=6)$ and see how boundary conditions are taken into account. Visualize it.
- Refine the mesh twice and visualize the 2 refinements.

Step $2=$ Solving - Direct solvers - Matlab backslash solver

Provided :

- ComputeElementMassMatrix.m : Me=ComputeElementMassMatrix(t) a function that generates the mass matrix associated to the triangular element described by its three nodal coordinates $\mathrm{t}=[\mathrm{x} 1 \mathrm{y} 1 ; \mathrm{x} 2 \mathrm{y} 2 ; \mathrm{x} 3 \mathrm{y} 3]$, where the nodes are labelled trigonometrically.
- ComputeElementStiffnessMatrix.m : Ke=ComputeElementStiffnessMatrix (t) a function that generates the stiffness matrix associated to the triangular element described by its three nodal coordinates as above.
- PlotSolution.m : PlotSolution(u,N,T) a function that will plot a vector $u=\left(u_{i}\right)$ defined on all the nodes N defining a triangular mesh of triangles T .
- FEpoisson.m

To do 1

A Matlab script that solves the Laplace equation Eq. 3 with Dirichlet boundary equation on a square given by $\operatorname{NewMesh(6)~refined~twice~with~a~given~manufactured~solution~}$ and solved with the Matlab backslash operator using the provided functions.

There are two ways of writing the script.

Version 1

The first is to consider the problem associated to the values of u on all the nodes. What do you need?

- An array of dimension the number of nodes equal to 0 if an inner node and equal to 1 if on the border.
- The sparse mass matrix M of size (Nnodes, Nnodes) assembled with ComputeElementMassMatrix.m
- The sparse stiffness matrix K of size (Nnodes, Nnodes) assembled with ComputeElementStiffnessMatrix.m. For each line associated to a boundary point, all elements should be set to 0 except for the diagonal element set to 1
- The right hand side associated to Eq. 3 where each coefficient associated to a boundary point is set to the Dirichlet value.
Look at FEPoisson.m

Version 2

The second is to consider the problem associated to the values of u on all the inner nodes.
What do you need?
Let INodes be the number of inner nodes.

- An array of dimension the number of nodes equal to 0 if an inner node and equal to 1 if on the border.
- The sparse mass matrix M of size (INnodes, INnodes) assembled with ComputeElementMassMatrix.m
- The sparse stiffness matrix K of size (INnodes, INnodes) assembled with ComputeElementStiffnessMatrix.m .
- The right hand side associated to Eq. 3 modified by the contribution of Dirichlet nodes.
Look at FEDforstudents.pdf (page 2)

What is a manufactured solution and what is it for :

- choose a function $u_{m}(x, y)$.
- Define $g=u_{m}$ on ∂D.
- Compute $f=-\Delta u_{m}$ in D.
- solve Eq. 3 with the defined f and g and compute the error as the L2 norm of $u-u_{m}$

To do 2 - Validate

A method that is not validated is of no value.
Show that the P_{1} method defined above is second order in space. Choose a manufactured solution and check that the result is coherent .

- case 1: $u_{m}=$ constant, or u_{m} linear function. Compute the L2 norm of the error which should be 0 within numerical accuracy (i.e. less than 10^{-13}).
- case $2: u_{m}$ a polynomial of order greater than 2 . Check that the L2 norm of the error which is a function of $\mathrm{r}(\mathrm{r}=$ minimal radius of inscribed circles over all triangles $)$, has the right behaviour, i.e. $\log (\mathrm{E})$ versus $\log (\mathrm{r})$ should have a slope of 2.

$$
\begin{gathered}
\text { Radius }=\frac{\text { TriangularArea }}{k}=\frac{\sqrt{k(k-a)(k-b)(k-c)}}{k} \\
\text { where } k=\frac{1}{2}(a+b+c)
\end{gathered}
$$

Figure 2 - computation of the inscribed circle radius

To do 3 - Send us your scripts

Create a directory with your first name and second name : for example mkdir JulietteRyan.
In this directory, you will put all the scripts developed in To do $\mathbf{1}$ and To do $\mathbf{2}$, the main script will be called MyLapSolver.m
Zip this directory and send it by mail to
halpern@math.univ-paris13.fr
ryan@math.univ-paris13.fr

Step 3 = Solving - Direct solvers - LU solver

To do :
Write a Lower Upper (LU) decomposition of $K=L U$ without permutation and 2 functions to solve $L U X=F$ to replace the backslash operator in your script developed in step 2
K is given in Matlab sparse format. Create L and U as banded matrices.

Step $4=$ Begin your project

If your project needs a specific mesh, create it.
If not, generate the mesh for the following domains :

- the domain contained by an outer circle and an inner square
- the domain contained by an outer rectangle and an inner square
- the domain contained by an outer rectangle and an inner circle

