FEUILLE D'EXERCICES N°6

Méthodes itératives I

EXERCICE 1: NON CONVERGENCE DE LA MÉTHODE DE JACOBI.

Soit $a \in \mathbb{R}$ et $A \in \mathcal{M}_3(\mathbb{R})$ donnée par

$$A = \begin{pmatrix} 1 & a & a \\ a & 1 & a \\ a & a & 1 \end{pmatrix}.$$

Montrer que A est symétrique définie positive si et seulement si $-\frac{1}{2} < a < 1$ et que la méthode de Jacobi converge si et seulement si $-\frac{1}{2} < a < \frac{1}{2}$.

EXERCICE 2 : MÉTHODE DU GRADIENT À PAS FIXE.

Soit A une matrice dans $\mathcal{M}_n(\mathbb{R})$ avec $n \geq 2$ telle qu'il existe un réel α strictement positif avec

$$\langle Ax, x \rangle \ge \alpha ||x||_2 \quad \forall x \in \mathbb{R}^n.$$

- Q.1) Montrer que pour tout vecteur $b \in \mathbb{R}^n$, le système linéaire Ax = b admet une unique solution.
- **Q.2)** Soient θ un réel et $(x_k)_{k\in\mathbb{N}}$ la suite de vecteurs définis par

$$\begin{cases} x_0 \in \mathbb{R}^n \\ x_{k+1} = x_k - \theta(Ax_k - b), \quad \forall k \in \mathbb{N} \end{cases}.$$

Montrer que pour $\theta \in \left]0, \frac{2\alpha}{||A||_2^2}\right[$, la suite $(x_k)_{k \in \mathbb{N}}$ converge vers la solution du système linéaire Ax = b.

EXERCICE 3: AUTRE EXEMPLE DE LA MÉTHODE DU GRADIENT.

Soit A une matrice carrée d'ordre n>0, et b un vecteur de $\mathbb{R}^n.$ On veut résoudre le système linéaire

$$Ax = b. (1)$$

On note D la matrice diagonale constituée des éléments diagonaux de la matrice A. Soit $\alpha \neq 0$, on étudie la méthode itérative

$$x^{k+1} = (I_n - \alpha D^{-1}A) x^k + \alpha D^{-1}b.$$

- **Q.1)** Montrer que la méthode est consistante, i.e si $(x^k)_{k\in\mathbb{N}}$ converge vers x alors x est solution de (1).
- **Q.2)** Exprimer les coefficients de la matrice $D^{-1}A$ en fonction de ceux de A.
- **Q.3)** On suppose que $0 < \alpha \le 1$ et que A est à diagonale strictement dominante, i.e

$$|a_{i,i}| > \sum_{j=1}^{n} |a_{i,j}|, \quad \forall i = 1, \dots, n.$$

Montrer que la méthode est bien définie et

$$\left|\left|I_n - \alpha D^{-1} A\right|\right|_{\infty} < 1.$$

En déduire que la méthode est convergente.

EXERCICE 4: MÉTHODE DE RELAXATION.

Soit $A \in \mathcal{M}_3(\mathbb{R})$ définie par $A = I_d - E - F$ avec

$$E = \begin{pmatrix} 0 & -2 & 0 \\ -1 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix} \quad \text{et} \quad F = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ -1 & -1 & 0 \end{pmatrix}.$$

- $\mathbf{Q.1}$) Montrer que A est inversible.
- **Q.2)** Soit $0 < \omega < 2$. Montrer que la matrice $\left(\frac{1}{\omega}I_d E\right)$ est inversible si et seulement si $\omega \neq \frac{\sqrt{2}}{2}$.

Pour $0 < \omega < 2$ avec $\omega \neq \frac{\sqrt{2}}{2}$, on considère la méthode itérative, pour la résolution du système linéaire Ax = b, définie par :

$$\left(\frac{1}{\omega}I_d - E\right)x^{k+1} = \left(F + \frac{1-\omega}{\omega}I_d\right)x^k + b,$$
et note $\mathcal{L}_{\omega} = \left(\frac{1}{\omega}I_d - E\right)^{-1}\left(F + \frac{1-\omega}{\omega}I_d\right).$

- **Q.3)** Calculer en fonction de ω , les valeurs propres de \mathcal{L}_{ω} et son rayon spectral.
- **Q.4)** Pour quelles valeurs de ω la méthode est-elle convergente? Déterminer $\omega_0 \in]0,2[$ tel que $\rho(\mathcal{L}_{\omega_0}) = \min \left\{ \rho(\mathcal{L}_{\omega}), \ \omega_0 \in]0,2[, \ \omega \neq \frac{\sqrt{2}}{2} \right\}.$

EXERCICE 5 : MÉTHODE DE JACOBI ET GAUSS-SIEDEL POUR UNE MATRICE TRIDIAGONALE.

On considère la matrice tridiagonale A d'ordre $n \geq 3$ à coefficients réels ou complexes donnée par

$$A = \begin{pmatrix} a_1 & c_1 & 0 & \dots & 0 \\ b_2 & a_2 & c_2 & \ddots & \vdots \\ 0 & \ddots & \ddots & \ddots & 0 \\ \vdots & \ddots & b_{n-1} & a_{n-1} & c_{n-1} \\ 0 & \dots & 0 & b_n & a_n \end{pmatrix},$$

où les coefficients a_i étant non nuls.

Q.1) Montrer que pour toute matrice $B=(b_{i,j})_{1\leq i,j\leq n}$ dans $\mathcal{M}_n(\mathbb{K})$ et pour tout scalaire t, la matrice $B(t)=(b_{i,j}(t))_{1\leq i,j\leq n}$ définie par

$$b_{i,j}(t) = t^{i-j}b_{i,j}, \quad 1 \le i, j \le n,$$

est semblable à B.

- **Q.2)** Montrer que le polynôme caractéristique de la matrice J intervenant dans la méthode de Jacobi (pour la résolution de Ax = b) s'écrit sous la forme $P_J(\lambda) = P(\lambda^2)\lambda^q$, où P est polynôme tel que $P(0) \neq 0$.
- **Q.3)** Montrer que le polynôme caractéristique de la matrice G intervenant dans la méthode de Gauss-Siedel s'écrit $P_G(\lambda^2) = P_J(\lambda)\lambda^n$.
- **Q.4)** Montrer que $\rho(G) = (\rho(J))^2$ et $R_{\infty}(G) = 2R_{\infty}(J)$, et conclure.