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There have been two major trends in the historical development of 
differential equations. The first and oldest is characterized by attempts to 
find explicit solutions, either in closed form-which is rarely possible-or 
in terms of power series . In the second , one abandons all hope of solving 
equations in any traditional sense , and instead concentrates on a search 
for qualitative information about the general behavior of solutions. We 
applied this point of view to linear equations in Chapter 4. The 
qualitative theory of nonlinear equations is totally different . It was 
founded by Poincare around 1880 , in connection with his work in celestial 
mechanics , and since that time has been the object of steadily increasing 
interest on the part of both pure and applied mathematicians . 1 

The theory of linear differential equations has been studied deeply 
and extensively for the past 200 years , and is a fairly complete and 
well -rounded body of knowledge . However, very little of a general 

1 Sec Appendix A for a general account of Poincare 's work in mathematics and science . 
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nature is known about nonlinear equations. Our purpose in this chapter 
is to survey some of the central ideas and methods of this subject , and 
also to demonstrate that it presents a wide variety of interesting and 
distinctive new phenomena that do not appear in the linear theory . The 
reader will be surprised to find that most of these phenomena can be 
treated quite easily without the aid of sophisticated mathematical 
machinery , and in fact require little more than elementary differential 
equations and two-dimensional vector algebra. 

Why should one be interested in nonlinear differential equations? 
The basic reason is that many physical systems-and the equations that 
describe them-are simply nonlinear from the outset .  The usual lineari­
zations are approximating devices that are partly confessions of defeat in 
the face of the original nonlinear problems and partly expressions of the 
practical view that half a loaf is better than none . It should be added at 
once that there are many physical situations in which a linear approxima­
tion is valuable and adequate for most purposes. This does not alter the 
fact that in many other situations linearization is unjustified. 2 

It is quite easy to give simple examples of problems that are 
essentially nonlinear . For instance , if x is the angle of deviation of an 
undamped pendulum of length a whose bob has mass m, then we saw in 
Section 5 that its equation of motion is 

d2x g . -
d 2 + - sm x = 0 ;  t a ( 1 )  

and i f  there i s  present a damping force proportional to  the velocity o f  the 
bob, then the equation becomes 

d2x c dx g . 
- + - - + - Sin X = 0. dt2 m dt a (2) 

In the usual linearization we replace sin x by x, which is reasonable for 
small oscillations but amounts to a gross distortion when x is large . An 
example of a different type can be found in the theory of the vacuum 
tube , which leads to the important van der Pol equation 

(3) 

2 It has even been suggested by Einstein that since the basic equations of physics are 
nonlinear, all of mathematical physics will have to be done over again .  If his crystal ball was 
clear on the day he said this, the mathematics of the future will certainly be very different 
from that of the past and present .  
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It will be seen later that each of these nonlinear equations has interesting 
properties not shared by the others . 

Throughout this chapter we shall be concerned with second order 
nonlinear equations of the form 

d2x ( dx) 
dt2 = f X, dt ' (4) 

which includes equations ( 1 ) ,  (2) , and (3) as special cases. If we imagine 
a simple dynamical system consisting of a particle of unit mass moving on 
the x-axis , and if f(x, dx/dt) is the force acting on it , then (4) is the 
equation of motion. The values of x (position) and dx/dt (velocity) , 
which at each instant characterize the state of the system , are called its 
phases, and the plane of the variables x and dx/dt is called the phase 
plane. If we introduce the variable y = dx/dt, then (4) can be replaced 
by the equivalent system { dx - = y  dt 

dy 
dt = f(x,y ) . 

(5) 

We shall see that a good deal can be learned about the solutions of (4) by 
studying the solutions of (5) .  When t is regarded as a parameter , then in 
general a solution of (5) is a pair of functions x(t) and y(t) defining a 
curve in the xy-plane , which is simply the phase plane mentioned above . 
We shall be interested in the total picture formed by these curves in the 
phase plane . 

More generally, we study systems of the form {dx 
dt = F(x,y ) 

dy 
dt = G (x,y ) , 

(6) 

where F and G are continuous and have continuous first partial 
derivatives throughout the plane . A system of this kind , in which the 
independent variable t does not appear in the functions F and G on the 
right, is said to be autonomous. We now turn to a closer examination of 
the solutions of such a system. 

It follows from our assumptions and Theorem 54-A that if t0 is any 
number and (x0 ,y0) is any point in the phase plane , then there exists a 
unique solution {x = x(t) 

y = y(t) (7) 
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of (6) such that x(t0) = x0 and y (t0) = y0 •  If x(t) and y (t) are not both 
constant functions, then (7) defines a curve in the phase plane called a 
path of the system.3 It is clear that if (7) is a solution of (6) , then {x = x(t + c) 

(8) 
y = y (t + c) 

i s  also a solution for any constant c. Thus each path is represented by 
many solutions , which differ from one another only by a translation of 
the parameter. Also , it i s  quite easy to prove (see Problem 2) that any 
path through the point (x0 ,y0) must correspond to a solution of the form 
(8) . It follows from this that at most one path passes through each point 
of the phase plane . Furthermore , the direction of increasing t along a 
given path is the same for all solutions representing the path . A path is 
therefore a directed curve, and in our figures we shall use arrows to 
indicate the direction in which the path is traced out as t increases. 

The above remarks show that in general the paths of (6) cover the 
entire phase plane and do not intersect one another .  The only exceptions 
to this statement occur at points (x0 ,y0) where both F and G vanish : 

and 

These points are called critical points, and at such a point the unique 
solution guaranteed by Theorem 54-A is the constant solution x = x0 and 
y = y0• A constant solution does not define a path , and therefore no path 
goes through a critical point . In our work we will always assume that each 
critical point (x0 ,y0) is isolated, in the sense that there exists a circle 
centered on (x0 ,y0) that contains no other critical point . 

In order to obtain a physical interpretation of critical points , let us 
consider the special autonomous system (5) arising from the dynamical 
equation (4) . In this case a critical point is a point (x0 , 0) at which y = 0 
and f(x0 , 0) = 0 ;  that is , it corresponds to a state of the particle's motion 
in which both the velocity dx I dt and the acceleration dy I dt = d2x I dt2 
vanish . This means that the particle is at rest with no force acting on i t ,  
and is therefore in a state of equilibrium.4 It is obvious that the states of 
equilibrium of a physical system are among i ts most important features ,  
and this accounts in part for our interest in critical points . 

The general autonomous system (6) does not necessarily arise from 
any dynamical equation of the form (4) . What sort of physical meaning 
can be attached to the paths and critical points in this case? Here it is 
convenient to consider Fig. 66 and the two-dimensional vector field 

3 The terms trajectory and characteristic arc used by some writers . 
4 For this reason , some writers usc the term equilibrium point instead of critical point .  
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FIG URE 66 

defined by 

V(x,y) = F(x,y)i + G(x,y )j ,  

which at a typical point P = (x,y) has horizontal component F(x,y )  and 
vertical component G(x,y) .  Since dx/dt = F and dy/dt = G, this vector 
is tangent to the path at P and points in the direction of increasing t. If 
we think of t as time , then V can be interpreted as the velocity vector of a 
particle moving along the path . We can also imagine that the entire phase 
plane is filled with particles , and that each path is the trail of a moving 
particle preceded and followed by many others on the same path and 
accompanied by yet others on nearby paths . This situation can be 
described as a two-dimensional fluid motion ; and since the system (6) is 
autonomous , which means that the vector V(x,y) at a fixed point (x,y) 
does not change with time , the fluid motion is  stationary. The paths are 
the trajectories of the moving particles, and the critical points Q, R, and 
S are points of zero velocity where the particles are at rest (i . e . , 
stagnation points of the fluid motion) . 

The most striking features of the fluid motion illustrated in Fig .  66 
are : 

(a) the critical points ; 
(b) the arrangement of the paths near critical points; 
(c) the stability or instability of critical points , that is, whether a particle 

near such a point remains near or wanders off into another part of 
the plane ; 

(d) closed paths (like C in the figure ) ,  which correspond to periodic 
solutions . 
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y 

FIGURE 67 

These features constitute a major part of the phase portrait (or overall 
picture of the paths) of the system (6) . Since in general nonlinear 
equations and systems cannot be solved explicitly , the purpose of the 
qualitative theory discussed in this chapter is to discover as much as 
possible about the phase portrait directly from the functions F and G. To 
gain some insight into the sort of information we might hope to obtain ,  
observe that if x(t) is a periodic solution of the dynamical equation (4) , 
then its derivative y (t) = dx/dt is also periodic and the corresponding 
path of the system (5) is therefore closed . Conversely, if any path of (5) is 
closed , then (4) has a periodic solution .  As a concrete example of the 
application of this idea , we point out that the van der Pol equation­
which cannot be solved--can nevertheless be shown to have a unique 
periodic solution (if p. > 0) by showing that its equivalent autonomous 
system has a unique closed path . 

PROBLEMS 

1. Derive equation (2) by applying Newton's second law of motion to the bob of 
the pendulum . 

2. Let (x0,y0) be a point in the phase plane . If x 1 (t), y1 (t) and x2(t) , y2(t) are 
solutions of (6) such that X t (l t ) = Xo, Yt (l t ) = Yo and x2(t2) = Xo, Y2(t2) = Yo for 
suitable t 1 and t2 , show that there exists a constant c such that 

x 1 (t + c) = x2(t) and Yt (l + c) = Y2(t) . 
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3. Describe the relation between the phase portraits of the systems 

{dx {dx 
dt = F(x,y) dt = -F(x ,y) 

d and 
y dy 

dt = G(x,y) dt = - G(x,y) .  

4. Describe the phase portrait of each of the following systems: 

(a) {: = 0 

dy 
= o · 

dt ' 

(b) {: = X 

dy - = 0· 
dt ' 

(c) {� : � dt ' 

(d)
{: = -x 

dy 
dt = -y. 

5. The critical points and paths of equation (4) are by definition those of the 
equivalent system (5) . Find the critical points of equations ( 1 ) ,  ( 2 ) ,  and (3) .  

6. Find the critical points of d2x dx 
(a) - + - - (x3 + x2 - 2x) = O · 

dt2 dt ' 

{dx = y2 - 5x + 6 
(b) 

dt 
dy 
dt = X - y. 

7. Find al l  solutions of the nonautonomous system 

{dx - = x  dt 
dy 

= x + e' dt ' 

and sketch (in the xy-plane) some of the curves defined by these solutions . 

59 TYPES OF CRITICAL 
POINTS. STABILITY 

Consider an autonomous system {dx 
dt 

= F(x,y ) 

dy 
dt 

= G(x,y) .  
(1 )  
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We assume , as usua l ,  that the functions F and G are continuous and have 
continuous first partial derivatives throughout the xy-plane .  The critical 
points of ( 1 )  can be found , at least in principle , by solving the 
simultaneous equations F(x,y) = 0 and G(x,y) = 0. There are four 
simple types of critical points that occur quite frequently , and our 
purpose in this section is to describe them in terms of the configurations 
of nearby paths . First, however ,  we need two definitions. 

Let (x0 ,y0) be an isolated critical point of ( 1 ) .  If C = [x (t) ,y (t)] is a 
path of ( 1 ) ,  then we say that C approaches (x0 ,y0) as t - oo if 

lim x(t) = Xo and lim y (t) = y0 • 5  (2) 
{-+00 l-+00 

Geometrically, this means that if P = (x,y )  is a point that traces out C in 
accordance with the equations x = x(t) and y = y(t) ,  then P - (x0 ,y0) 
as t - oo. If it is also true that 

I . y(t) - Yo Im 
t-+ocX (t) - Xo 

(3) 

exists, or if the quotient in (3) becomes either positively or negatively 
infinite as t - oo, then we say that C enters the critical point (x0 ,y0) as 
t - oo. The quotient in (3) is the slope of the line joining (x0 ,y0) and the 
point P with coordinates x(t) and y (t ) ,  so the additional requirement 
means that this line approaches a definite direction as t - oo. In the 
above definitions , we may also consider limits as t - -oo. It is clear that 
these properties are properties of the path C, and do not depend on 
which solution is used to represent this path . 

It is sometimes possible to find explicit solutions of the system ( 1 ) ,  
and these solutions can then be  used t o  determine the paths . I n  most 
cases , however, to find the paths it is necessary to eliminate t between the 
two equations of the system , which yields 

dy G(x,y )  - = 
dx F(x,y) · (4) 

This first order equation gives the slope of the tangent to the path of ( 1 )  
that passes through the point (x,y ) ,  provided that the functions F and G 
are not both zero at this point .  In this case , of course , the point is a 
critical point and no path passes through it .  The paths of ( 1 )  therefore 
coincide with the one-parameter family of integral curves of (4) , and this 

5 It can be proved that if (2) is true for some solution x(t) , y (t) , then (x0 , y0) is necessarily a 
critical point . See F. G. Tricomi , Differential Equations, p. 47, B lackie , Glasgow, 1961 . 
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family can often be obtained by the methods of Chapter 2 . It should be 
noted, however ,  that while the paths of ( 1 )  are directed curves, the 
integral curves of (4) have no direction associated with them. Each of 
these techniques for determining the paths will be illustrated in the 
examples below . 

We now give geometric descriptions of the four main types of 
critical points . In each case we assume that the critical point under 
discussion is the origin 0 = (0, 0). 

Nodes. A critical point like that in Fig .  67 is called a node. Such a point 
is approached and also entered by each path as t - oo (or as t - -oo). 
For the node shown in Fig. 67 , there are four half-line paths , AO, BO, 
CO, and DO, which together with the origin make up the l ines AB and 
CD. All other paths resemble parts of parabolas , and as each of these 
paths approaches 0 its slope approaches that of the line AB. 

Example 1. Consider the system {dx 
- = x  dt dt = -x + 2y. 

(5) 

It is clear that the origin is the only critical point , and the general solution 
can be found quite easily by the methods of Section 56: 

(6) 

When c 1 = 0, we have x = 0 and y = c2e2'. In this case the path (Fig. 68) 
is the positive y -axis when c2 > 0, and the negative y -axis when c2 < 0, and 
each path approaches and enters the origin as t ---+ -oo. When c2 = 0, we 
have x = c 1 e' and y = c 1 e'. This path is the half-line y = x, x > 0, when 
c 1 > 0, and the half-line y = x, x < 0, when c 1 < 0, and again both paths 
approach and enter the origin as t ---+ -oo. When both c 1 and c2 are #:0, the 
paths lie on the parabolas y = x + (c2/cDx2, which go through the origin 
with slope 1 .  It should be understood that each of these paths consists of 
only part of a parabola , the part with x > 0 if c 1 > 0, and the part with 
x < 0 if c 1 < 0. Each of these paths also approaches and enters the origin 
as t ---+ -oo; this can be seen at once from (6) . If we proceed directly from 
(5) to the differential equation 

dy 
= 

-x + 2y dx X 
(7) 
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y 

X 

FIGURE 68 

g1vmg the slope of the tangent to the path through (x ,y)  [provided 
(x,y)  * (0, 0)) ,  then on solving (7) as a homogeneous equation, we find that 
y = x + cx2• This procedure yields the curves on which the paths lie 
(except those on the y axis) , but gives no information about the manner in 
which the paths are traced out . It is clear from this discussion that the 
critical point (0 ,0) of the system (5) is a node . 

Saddle points. A critical point like that in Fig . 69 is called a saddle point. 
It is approached and entered by two half-line paths AO and BO as 
t --+  oo, and these two paths lie on a line AB. It is also approached and 
entered by two half-line paths CO and DO at t --+ -oo, and these two 
paths lie on another line CD. Between the four half-line paths there are 
four regions , and each contains a family of paths resembling hyperbolas . 
These paths do not approach 0 as t --+  oo or as t --+  -oo,  but instead are 
asymptotic to one or another of the half-line paths as t --+ oo and as 
t --+  -oo. 

Centers. A center (sometimes called a vortex) is a critical point that is 
surrounded by a family of closed paths . It is not approached by any path 
as t --+ oo or as t --+ -oo. 

Example 2. The system {: = -y 

dy 
- = x  
dt 

(8) 
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y 

FIGURE 69 

has the origin as its only critical point , and its general solution is 

{X = -c 1 sin t + C2.
COS t 

y = c 1 cos t + c2 sm t. 

The solution satisfying the conditions x(O) = 1 and y(O) = 0 is clearly 

{X = COS t 
y = sin t ; 

and the solution determined by x (O) = 0 and y (O) = - 1  is {x = sin t = cos ( t - �) 
y = -cos t = sin (t - �) . 

(9) 

(10) 

( 1 1 )  

These two different solutions define the same path C (Fig. 70) , which is 
evidently the circle x2 + y2 = 1 .  Both ( 10) and ( 1 1 )  show that this path is 
traced out in the counterclockwise direction . If we eliminate t between the 
equations of the system , we get 

dy X 
- = - -
dx y 

whose general solution x2 + y2 = c2 yields all the paths (but without their 
directions) .  It is obvious that the critical point (0 ,0) of the system (8) is a 
center. 



NONLINEAR EQUATIONS 451 

y 

FIGURE 70 

Spirals. A critical point like that in Fig . 7 1  is called a spiral (or 
sometimes a focus). Such a point is approached in a spiral-like manner by 
a family of paths that wind around it an infinite number of times as t - oo 
(or as t - -oo) . Note particularly that while the paths approach 0,  they 
do not enter it. That is, a point P moving along such a path approaches 0 
as t - oo (or as t - -oo) , but the line OP does not approach any definite 
direction. 

Example 3. If a is an arbitrary constant ,  then the system {dx 
dt = ax - y  

dy - = x + ay dt 

( 1 2) 

has the origin as its only critical point (why?) .  The differential equation of 
the paths, 

dy x + ay - = --

dx ax - y ( 13) 

is most easily solved by introducing polar coordinates r and (J defined by 
X = r cos (J and y = r sin e. Since 

and (J = tan - 1 � , 
X 
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FIGURE 71 

we see that 

y 

dr dy 
r - = x + y -

dx dx 
and 

X 

2 d(J dy 
r 

dx 
= x 

dx
- y. 

With the aid of these equations, ( 13) can easily be written in the very 
simple form 

dr 
d(J 

= ar, 

so 
(14) 

is the polar equation of the paths. The two possible spiral configurations are 
shown in Fig. 72 and the direction in which these paths are traversed can be 
seen from the fact that dx/dt = -y when x = 0. If a = 0, then (12) 
collapses to (8) and (14) becomes r = c, which is the polar equation of the 
family x2 + y2 = c2 of all circles centered on the origin .  This example 
therefore generalizes Example 2; and since the center shown in Fig. 70 
stands on the borderline between the spirals of Fig. 72, a critical point that 
is a center is often called a borderline case. We will encounter other 
borderline cases in the next section . 

We now introduce the concept of stability as it applies to the critical 
points of the system ( 1 ) .  

I t  was pointed out i n  the previous section that one o f  the most 
important questions in the study of a physical system is that of its steady 
states . However, a steady state has little physical significance unless it has 
a reasonable degree of permanence , i . e . , unless it is stable. As a simple 
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y y 

X X 

FIGURE 72 

example , consider the pendulum of Fig. 73 . There are two steady states 
possible here : when the bob is at rest at the highest point , and when the 
bob is at rest at the lowest point . The first state is clearly unstable , and 
the second is stable . We now recall that a steady state of a simple 
physical system corresponds to an equilibrium point (or critical point) in 
the phase plane . These considerations suggest in a general way that a 
small disturbance at an unstable equilibrium point leads to a larger and 
larger departure from this point , while the opposite is true at a stable 
equilibrium point . 

We now formulate these intuitive ideas in a more precise way . 
Consider an isolated critical point of the system ( 1 ) ,  and assume for the 
sake of convenience that this point is located at the origin 0 = (0, 0) of 
the phase plane . This critical point is said to be stable if for each positive 
number R there exists a positive number r ::5 R such that every path 
which is inside the circle x2 + y2 = r2 for some t = t0 remains inside the 

' 
I 
I 
I 
I I 
I I I I I 

m FIGURE 73 
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FIGURE 74 

circle x2 + y2 = R2 for all t > t0 (Fig . 74) . Loosely speaking , a critical 
point is stable if all paths that get sufficiently close to the point stay close 
to the point . Further , our critical point is said to be asymptotically stable 
if it is stable and there exists a circle x2 + y2 = r� such that every path 
which is inside this circle for some t = t0 approaches the origin as t ---+ oo. 
Finally , if our critical point is not stable , then it is called unstable. 

As examples of these concepts, we point out that the node in Fig. 
68 , the saddle point in Fig . 69 , and the spiral on the left in Fig. 72 are 
unstable , while the center in Fig . 70 is stable but not asymptotically 
stable . The node in Fig . 67 , the spiral in Fig. 71 , and the spiral on the 
right in Fig. 72 are asymptotically stable . 

PROBLEMS 

1. For each of the following nonlinear systems: (i) find the critical points ; (ii) find 
the differential equation of the paths ; (iii) solve this equation to find the paths ; 
and (iv) sketch a few of the paths and show the direction of increasing t. {dx = y (xz + 1)  
(a) :t 

2 = 2xy2 · dt ' {dx - = y (x2 + 1 ) 
(b) dt dt = -x(x2 + 1 ) ;  

{dx - = eY 

(c) :t 

2 = eY cos x · 
dt ' 

(d) {: = -x 

dt = 2xY. 

2. Each of the following linear systems has the origin as an isolated critical point . 
(i) Find the general solution. (ii) Find the differential equation of the paths. 
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(iii) Solve the equation found in (ii) and sketch a few of the paths, showing the 
direction of increasing t. (iv) Discuss the stability of the critical point . 

(a) {E � � dt - y ,  
{dx 

- = -x b) dt ( dy = -2y · dt ' 
- = 4y dt {dx 

(c) � = -x. 
3. Sketch the phase portrait of the equation d2x /dt2 = 2x\ and show that it has 

an unstable isolated critical point at the origin .  

60 CRITICAL POINTS AND STABILITY 
FOR LINEAR SYSTEMS 

Our goal in this chapter is to learn as much as we can about nonlinear 
differential equations by studying the phase portraits of nonlinear 
autonomous systems of the form {dx = F(x y )  dt ' 

dy 
dt = G(x ,y) .  

One aspect of this is the problem of classifying the critical points of such a 
system with respect to their nature and stability . It will be seen in Section 
62 that under suitable conditions this problem can be solved for a given 
nonlinear system by studying a related linear system . We therefore 
devote this section to a complete analysis of the critical points of linear 
autonomous systems. 

We consider the system {: = a 1x + b 1 y 

dy 
dt 

= a2x + b2y, 
( 1 )  

which has the ongm (0,0) as  an  obvious critical point .  We assume 
throughout this section that 

I a , b , l * 0, (2) 
a2 b2 

so that (0,0) is the only critical point . It was proved in Section 56 that ( 1 )  
has a nontrivial solution of  the form {X =  Aemt 

Y = Bernt 
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whenever m is a root of the quadratic equation 

m2 - (a t + b2)m + (a 1 b2 - a2b 1 ) = 0, (3) 
which is called the auxiliary equation of the system. Observe that 
condition (2) implies that zero cannot be a root of (3) . 

Let m1 and m2 be the roots of (3) .  We shall prove that the nature of 
the critical point (0,0) of the system ( 1 )  is determined by the nature of 
the numbers m1 and m2 • It is reasonable to expect that three possibilities 
will occur ,  according as m1 and m2 are real and distinct , real and equal , 
or conjugate complex . Unfortunately the situation is a little more 
complicated than this , and it is necessary to consider five cases, 
subdivided as follows . 

Major cases: 

Case A . 

Case B. 

Case C. 

The roots m 1 and m2 are real , distinct , and of the same sign 
(node) .  
The roots m 1 and m2 are real , distinct , and of opposite signs 
(saddle point ) .  
The roots m1 and m2 are conjugate complex but not pure 
imaginary (spiral) .  

Borderline cases: 

Case D. 
Case E. 

The roots m1 and m2 are real and equal (node) .  
The roots m 1 and m2 are pure imaginary (center) . 

The reason for the distinction between the major cases and the 
borderline cases will become clear in Section 62 . For the present it 
suffices to remark that while the borderline cases are of mathematical 
interest they have little significance for applications, because the cir­
cumstances defining them are unlikely to arise in physical problems. We 
now turn to the proofs of the assertions in parentheses. 

Case A. If the roots m 1 and m2 are real , distinct , and of the same sign , 
then the critical point (0,0) is a node . 

Proof. We begin by assuming that m 1 and m2 are both negative , and we 
choose the notation so that m 1 < m2 < 0. By Section 56, the general 
solution of ( 1 )  in this case is 

{X = c 1 A 1 em , r  + c2A2em21 

y = c , B , em ' l  + CzBzem21, 
(4) 

where the A 's and B's are definite constants such that B 1 /A 1  * B2/A2 , and 
where the c's are arbitrary constants . When c2 = 0, we obtain the solutions 

{X = c 1A 1 em, r  

y = c 1 B 1 em • ' , 
(5) 
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and when c ,  = 0, we obtain the solutions {X = CzAzem21 
Y = CzBze'"2'. 

(6) 

For any c 1 > 0, the solution (5) represents a path consisting of half of the 
line A 1 y = B,x  with slope 8 1 /A , ;  and for any c, < 0, it represents a path 
consisting of the other half of this line (the half on the other side of the 
origin) . Since m 1 < 0, both of these half-line paths approach (0,0) as 
t -+  oo; and since y /x = 8 , /A t > both enter (0,0) with slope 8 1 /A , (Fig. 75) . 
In exactly the same way, the solutions (6) represent two half-line paths 
lying on the line A2y = B2x with slope B2/A2 • These two paths also 
approach (0,0) as t -+ oo, and enter it with slope 82/ A2• 

If c 1 ::/= 0 and c2 ::/= 0, the general solution (4) represents curved 
paths. Since m 1 < 0 and m2 < 0, these paths also approach (0,0) as t -+  oo. 
Furthermore , since m 1 - m2 < 0 and 

y c , B , em 't + CzBzem2t (c , B , /cz)e<m , -m2)' + Bz X c ,A , em ' t + CzAzem2t (c , A , /cz)e<m , m2)' + Az
' 

it is clear that y/x -+ 82/A2 as t -+ oo, so all of these paths enter (0,0) with 
slope 82/A2 • Figure 75 presents a qualitative picture of the situation . It is 
evident that our critical point is a node , and that it is asymptotically stable. 

If m 1 and m2 are both positive , and if we choose the notation so that 
m, > m2 > 0, then the situation is exactly the same except that all the 
paths now approach and enter (0 ,0) as t -+ -oo. The picture of the paths 

y A ,y = B,x 

X 

FIGURE 75 



458 DIFFERENTIAL EQUATIONS 

given in Fig. 75 is unchanged except that the arrows showing their 
directions are all reversed. We still have a node , but now it is unstable .  

Case B.  If the roots m 1 and m2 are real , distinct , and of opposite signs , 
then the critical point (0 ,0) is a saddle point . 

Proof. We may choose the notation so that m1 < 0 < m2• The general 
solution of ( 1 )  can still be written in the form (4) , and again we have 
particular solutions of the forms (5) and (6) . The two half-line paths 
represented by (5) still approach and enter (0,0) as t --+ oo, but this time the 
two half-line paths represented by (6) approach and enter (0,0) as t --+  -oo. 
If c 1 * 0 and c2 * 0, the general solution (4) still represents curved paths, 
but since m 1 < 0 < m2 , none of these paths approaches (0,0) as t --+  oo or 
t --+ -oo. Instead, as t --+ oo, each of these paths is asymptotic to one of the 
half-line paths represented by (6) ; and as t --+  -oo, each is asymptotic to 
one of the half-line paths represented by (5) .  Figure 76 gives a qualitative 
picture of this behavior. In this case the critical point is a saddle point , and 
it is obviously unstable. 

Case C.  If the roots m 1 and m2 are conjugate complex but not pure 
imaginary , then the critical point (0,0) is a spiral . 

Proof. In this case we can write m 1 and m2 in the form a ± ib where a and 
b are nonzero real numbers .  Also , for later use , we observe that the 

FIGURE 76 
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discriminant D of equation (3) is negative : 

D = (a t + b2)2 - 4(a t b2 - a2b 1 )  = (a 1 - b2)2 + 4a2b t < 0. 

By Section 56, the general solution of (1) in this case is 

(7) 

{x = e"' [c 1 (A 1 cos bt - A2 sin bt) + c2(A 1 sin bt + A2 cos bt)) 
y = e"' [c 1 (B 1 cos bt - B2 sin bt) + c2(B 1 sin bt + B2 cos bt)] ,  

(8) 

where the A 's and B's are definite constants and the c's are arbitrary 
constants. 

Let us first assume that a < 0. Then it is clear from formulas (8) that 
x � 0 and y �  0 as t � co, so all the paths approach (0,0) as t � co. We 
now prove that the paths do not enter the point (0,0) as t � co, but instead 
wind around it in a spiral-like manner. To accomplish this we introduce the 
polar cordinate (J and show that , along any path , d(J/dt is either positive for 
all t or negative for all t. We begin with the fact that (J = tan- 1 (y /x) ,  so 

d(J x dy /dt - y dx/dt 
dt x2 + y2 

and by using equations ( 1 )  we obtain 

d(J a2X2 + (b2 - a t )xy - b 1 y2 

dt x2 + y2 (9) 

Since we are interested only in solutions that represent paths , we assume 
that x2 + y2 -=/= 0. Now (7) implies that a2 and b 1  have opposite signs . We 
consider the case in which a2 > 0 and b 1  < 0. When y = 0, (9) yields 
dO/dt = a2 > 0. If y -=/= 0, d(J/dt cannot be 0 ;  for if it were , then (9) would 
imply that 

or 

a2(�r + (b2 - a t ) � - b l = 0 ( 10) 

for some real number x /y-and this cannot be true because the dis­
criminant of the quadratic equation ( 10) is D, which is negative by (7) . This 
shows that dO/dt is always positive when a2 > 0, and in the same way we 
see that it is always negative when a2 < 0. Since by (8) , x and y change sign 
infinitely often as t � co, all paths must spiral in to the origin (coun­
terclockwise or clockwise according as a2 > 0 or a2 < 0). The critical point 
in this case is therefore a spiral , and it is asymptotically stable . 

If a > 0, the situation is the same except that the paths approach 
(0,0) as t � -co and the critical point is unstable . Figure 72 illustrates the 
arrangement of the paths when a2 > 0. 

Case D. If the roots m 1 and m2 are real and equal , then the critical point 
(0,0) is a node . 
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Proof. We begin by assuming that m 1 = m2 = m < 0. There are two 
subcases that require separate discussion: (i) a 1 = b2 ::/= 0 and a2 = b 1 = 0; 
( i i )  al l  other possibilities leading to a double root of equation (3) . 

We first consider the subcase (i) , which is the situation described in 
the footnote in Section 56. If a denotes the common value of a 1 and b2 , 
then equation (3) becomes m2 - 2am + a2 = 0 and m = a . The system (1)  
i s  thus {dx 

- = ax  dt 
dy 
dt = ay, 

and its general solution is 

( 1 1 )  

where c 1 and c2 are arbitrary constants . The paths defined by  ( 1 1 )  are half­
lines of all possible slopes (Fig. 77) , and since m < 0 we see that each path 
approaches and enters (0,0) as t - oo. The critical point is therefore a node , 
and it is asymptotically stable. If m > 0, we have the same situation except 
that the paths enter (0 ,0) as t - -oo, the arrows in Fig. 77 are reversed , 
and (0,0) is unstable . 

y 

X 

FIG URE 77 
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We now discuss subcase (ii ) .  By formulas 56-(20) and Problem 56-(4) , 
the general solution of ( 1 )  can be written in the form 

{X = c 1Aem' + c2(A 1 + At)e"" 
y = c 1 Bem' + c2(B 1 + Bt)e'm , 

( 12) 

where the A 's and B's are definite constants and the c 's are arbitrary 
constants. When c2 = 0, we obtain the solutions 

{x = c 1Aem' 
y = c 1 Bem'. 

(13) 

We know that these solutions represent two half-line paths lying on the line 
Ay = Bx with slope B/A ,  and since m < 0 both paths approach (0,0) as 
t -+  oo (Fig. 78) . Also , since y /x = B/A ,  both paths enter (0,0) with slope 
B/A. If c2 ::/= 0, the solutions (12) represent curved paths , and since m < 0 
it is clear from (12) that these paths approach (0 ,0) as t -+ oo. Furthermore , 
it follows from 

y c . Bemt + Cz(B . + Bt)emt c . B!cz + B t + Bt 
X c 1Aem' + c2(A 1 + At)em' c 1A/c2 + A 1 + At 

that y /x -+ B/A as t -+  oo, so these curved paths a l l  enter (0,0) with slope 
B/A. We also observe that y /x -+ B/A as t -+  -oo. Figure 78 gives a 
qualitative picture of the arrangement of these paths. It is clear that (0,0) is 
a node that is asymptotically stable . If m > 0, the situation is unchanged 

y 

X 

FIGURE 78 
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except that the directions of the paths are reversed and the critical point is 
unstable . 

Case E. If the roots m 1 and m2 are pure imaginary , then the critical point 
(0,0) is a center. 

Proof. It suffices here to refer back to the discussion of Case C ,  for now 
m 1 and m2 are of the form a ± ib with a = 0 and b =F 0. The general 
solution of ( 1 )  is therefore given by (8) with the exponential factor missing, 
so x(t) and y (t) are periodic and each path is a closed curve surrounding the 
origin .  As Fig . 79 suggests , these curves are actually ellipses; this can be 
proved (see Problem 5) by solving the differential equation of the paths , 

dy a2X + bzY 
- = ( 14) 
dx a 1x + b 1 y · 

Our critical point (0,0) is evidently a center that is stable but not 
asymptotically stable. 

In the above discussions we have made a number of statements 
about stability. It will be convenient to summarize this information as 
follows. 

Theorem A. The critical point (0, 0) of the linear system ( 1 )  is stable if and 
only if both roots of the auxiliary equation (3) have nonpositive real parts, 
and it is asymptotically stable if and only if both roots have negative real 
parts. 

y 

X 

FIGURE 79 
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If we now write equation (3) in the form 

(m - m 1 ) (m - m2) = m2 + pm + q = 0, ( 15 )  

so that p = - (m 1 + m2) and q = m 1 m2 , then our five cases can be 
described just as readily in terms of the coefficients p and q as in terms of 
the roots m 1  and m2 • In fact , if we interpret these cases in the pq-plane , 
then we arrive at a striking diagram (Fig . 80) that displays at a glance the 
nature and stability properties of the critical point (0,0) . The first thing to 
notice is that the p-axis q = 0 is excluded ,  since by condition (2) we know 
that m 1m2 * 0. In the light of what we have learned about our five cases, 
al l  of the information contained in the diagram follows directly from the 
fact that 

Thus , above the parabola p2 - 4q = 0, we have p2 - 4q < 0, so m 1  and 
m2 are conjugate complex numbers that are pure imaginary if and only if 
p = 0; these are Cases C and E comprising the spirals and centers . Below 
the p-axis we have q < 0, which means that m 1  and m2 are real , distinct , 
and have opposite signs ; this yields the saddle points of Case B .  And 
finally , the zone between these two regions (including the parabola but 
excluding the p-axis) is characterized by the relations p2 - 4q ;;:::: 0 and 
q > 0, so m 1  and m2 are real and of the same sign ; here we have the 
nodes of Cases A and D. Furthermore , it is clear that there is precisely 
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one region of asymptotic stability : the first quadrant . We state this 
formally as follows . 

Theorem B. The critical point (0, 0) of the linear system ( 1 )  is asymptotically 
stable if and only if the coefficients p = -(a 1 + b2) and q = a 1 b2 - a2b 1 of 
the auxiliary equation (3) are both positive. 

Finally, it should be emphasized that we have studied the paths of 
our linear system near a critical point by analyzing explicit solutions 
of the system . In the next two sections we enter more fully into the spirit of 
the subject by investigating similar problems for nonlinear systems, which 
in general cannot be solved explicitly . 

PROBLEMS 

1. Determine the nature and stability properties of the critical point (0,0) for 
each of the following linear autonomous systems: 

(a) {? = 2x 

2 = 3y · 
dt ' 

{dx - = -x - 2y 
(b) 

dt 
dy 

= 4x - 5y · 
dt ' 

(c) :t {dx = -3x + 4y 

..1 = -2x + 3y · 
dt ' {dx = 5x + 2y 

(d) 
dt 
dy 

= -17x - 5y · 
dt ' 

(e) 
{! = 

-4x 

- y 

dt 
= X - 2y ;  

dt 
(f) 
{dx = 4x - 3y 

dy 
= 8x - 6v · 

dt J '  

{dx - = 4x - 2y 
( ) 

dt 
g 

dy 
dt 

= 5x + 2y. 

2. If a 1 b2 - a2b 1 = 0, show that the system (1) has infinitely many critical points , 
none of which are isolated . 

3. (a) If a 1 b2 - a2b 1 * 0, show that the system 

{dx = a tx + b 1 y + C t dt 
dy 
dt 

= a2X + b2y + C2 

has a single isolated critical point (x11 ,yo). 
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(b) Show that the system in (a) can be written in the form of ( 1 )  by means of 
the change of variables x = x - x0 and y = y - Yo · 

(c) Find the critical point of the system {: = 2x - 2y + 10 

� = l lx - 8y + 49, 

write the system in the form of ( 1} by changing the variables , and 
determine the nature and stability properties of the critical point. 

4. In Section 20 we studied the free vibrations of a mass attached to a spring by 
solving the equation 

where b <=:: 0 and a > 0 are constants representing the viscosity of the medium 
and the stiffness of the spring, respectively. Consider the equivalent auton­
omous system {: = y  

dy 2 - = -a x - 2by 
dt ' 

which has (0,0} as its only critical point . 
(a) Find the auxiliary equation of ( * ) .  What are p and q ?  

( * )  

(b) For each o f  the following four cases, describe the nature and stability 
properties of the critical point , and give a brief physical interpretation of 
the corresponding motion of the mass : 
(i) b = 0;  (iii) b = a ;  
(ii) 0 < b < a ; (iv) b > a. 

5. Solve equation (14} under the hypotheses of Case E ,  and show that the result 
is a one-parameter family of ellipses surrounding the origin .  Hint : Recall that 
if Ax2 + Bxy + Cy2 = D is the equation of a real curve , then the curve is an 
ellipse if and only if the discriminant 82 - 4AC is negative. 

61 STABILITY BY LIAPUNOV'S DIRECT 
METHOD 
It is intuitively clear that if the total energy of a physical system has a 
local minimum at a certain equilibrium point, then that point is stable . 
This idea was generalized by Liapunov6 into a simple but powerful 

6 Alexander Mikhailovich Liapunov ( 1 857- 1 9 18) was a Russian mathematician and mecha­
nical engineer .  He had the very rare merit of producing a doctoral dissertation of lasting 
value . This classic work was originally published in 1 892 in Russian , but is now available in 
an English translation, Stability of Motion, Academic Press , New York , 1966. Liapunov 
died by violence in Odessa, which cannot be considered a surprising fate for a middle-class 
intellectual in the chaotic aftermath of the Russian Revolution .  
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method for studying stability problems in a broader context . We shall 
discuss Liapunov's method and some of its applications in this and the 
next section . 

Consider an autonomous system {dx 
dt = F(x,y )  

dy 
dt = G(x,y ) ,  

( 1 )  

and assume that this system has an isolated critical point , which as  usual 
we take to be the origin (0,0) . 7 Let C = [x (t) ,y (t)] be a path of ( 1 ) ,  and 
consider a function E(x,y) that is continuous and has continuous first 
partial derivatives in a region containing this path . If a point (x,y)  moves 
along the path in accordance with the equations x = x(t) and y = y(t), 
then E(x,y) can be regarded as a function of t along C [we denote this 
function by E(t)] and its rate of change is 

dE aE dx aE dy 
- = - - + - -dt ax dt ay dt 

aE aE = - F + - G. ax ay (2) 

This formula is at the heart of Liapunov's ideas , and in order to exploit it 
we need several definitions that specify the kinds of functions we shall be 
interested in. 

Suppose that E(x,y)  is continuous and has continuous first partial 
derivatives in some region containing the origin .  If E vanishes at the 
origin , so that E(O, O) = 0, then it is said to be positive definite if 
E(x,y ) > 0 for (x,y)  * (0, 0) , and negative definite if E(x,y) < 0 for 
(x,y)  * (0, 0) . Similarly , E is called positive semidefinite if E(O, O) = 0 
and E(x,y) � 0 for (x,y )  * (0, 0) ,  and negative semidefinite if E(O ,O) = 0 
and E(x,y) ::5 0  for (x,y )  * (0, 0). It is clear that functions of the form 
ax2m + by2n , where a and b are positive constants and m and n are 
positive integers , are positive definite . Since E(x,y ) is negative definite if 
and only if -E(x,y) is positive definite , functions of the form ax2m + 
by2n with a < 0 and b < 0 are negative definite . The tunctions x2m, y2m, 
and (x - y )2m are not positive definite , but are nevertheless positive 

7 A critical point (x0 ,y0) can always be moved to the origin by a simple translation of 
coordinates i = x - x0 and y = y - y0 , so there is no loss of generality in assuming that it 
l ies at the origin in the first place . 
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semidefinite . If E(x,y )  is pos1t1ve definite , then z = E(x,y)  can be 
interpreted as the equation of a surface (Fig. 8 1 )  that resembles a 
paraboloid opening upward and tangent to the xy-plane at the origin . 

A positive definite function E(x,y )  with the property that 

oE F + 
oE 

G 
ax oy 

(3) 

is negative semidefinite is called a Liapunov function for the system ( 1 ) .  
By  formula (2) , the requirement that (3) be  negative semidefinite means 
that dE/dt :5 0---and therefore E is nonincreasing-along the paths of ( 1 )  
near the origin .  These functions generalize the concept o f  the total 
energy of a physical system . Their relevance for stability problems is 
made clear in the following theorem , which is Liapunov's basic discovery . 

Theorem A. If there exists a Liapunov function E(x ,y) for the system ( 1 ) ,  
then the critical point (0, 0) is stable. Furthermore, if this function has the 
additional property that the function (3) is negative definite, then the critical 
point (0, 0) is asymptotically stable. 

Proof. Let C1 be a circle of radius R > 0 centered on the origin (Fig .  82) , 
and assume also that C1 is small enough to lie entirely in the domain of 
definition of the function E. Since E(x,y) is continuous and positive 

z 

y 

X 

FIGURE 81 
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FIGURE 82 

definite , it has a positive minimum m on C1 • Next , E(x,y) is continuous at 
the origin and vanishes there , so we can find a positive number r < R such 
that E(x,y) < m whenever (x,y)  is inside the circle C2 of radius r. Now let 
C = [x (t), y (t)] be any path which is inside C2 for t = t0 • Then E(t0) < m, 
and since (3) is negative semidefinite we have dE/dt :s: 0, which implies 
that E(t) :s; E(t0) < m for all t > t0 • It follows that the path C can never 
reach the circle C1 for any t > t0 , so we have stability. 

To prove the second part of the theorem , it suffices to show that 
under the additional hypothesis we also have E(t) --+ 0, for since E(x,y) is 
positive definite this will imply that the path C approaches the critical point 
(0,0) . We begin by observing that since dE/dt < 0, it follows that E(t) is a 
decreasing function ; and since by hypothesis E(t) is bounded below by 0, 
we conclude that E(t) approaches some l imit L � 0 as t --+ co, To prove 
that E(t) --+ 0 it suffices to show that L = 0, so we assume that L > 0 and 
deduce a contradiction. Choose a positive number f < r with the property 
that E(x,y) < L whenever (x,y)  is inside the circle C3 with radius f. Since 
the function (3) is continuous and negative definite , it has a negative 
maximum -k in the ring consisting of the circles C1 and C3 and the region 
between them . This ring contains the entire path C for t � t0 , so the 
equation 

yields the inequality 

i' dE 
E(t) = E(t0) + d dt 

'o t 

E(t) :5 E(t0) - k (t - t0) (4) 

for all t � t0• However, the right side of (4) becomes negatively infinite as 
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t -+  oo, so E(t) -+ -oo as t -+  oo. This contradicts the fact that E(x,y) � 0, 
so we conclude that L = 0 and the proof is complete . 

Example 1. Consider the equation of motion of a mass m attached to a 
spring: 

(5) 

Here c � 0 is a constant representing the viscosity of the medium through 
which the mass moves, and k > 0 is the spring constant . The autonomous 
system equivalent to (5) is {dx 

dt = y 

dy 
= - � x - �y. dt m m 

(6) 

and its only critical point is (0,0) . The kinetic energy of the mass is my2/2, 
and the potential energy (or the energy stored in the spring) is 

Thus the total energy of the system is 

1 2 1 2 E(x,y) = z my + z kx . 

It is easy to see that (7) is positive definite ; and since 

aE aE ( k c ) -F + - G = kxy + my - - x - -y 
ax ay m m 

= -cy2 :5 0, 

(7) 

(7) is a Liapunov function for (6) and the critical point (0,0) is stable . We 
know from Problem 60-4 that when c > 0 this critical point is asymptot­
ically stable, but the particular Liapunov function discussed here is not 
capable of detecting this fact. 8 

8 It is known that both stability and asymptotic stability can always be detected by suitable 
Liapunov functions , but knowing in principle that such a function exists is a very different 
matter from actually finding one . For references on this point , see L .  Cesari , Asymptotic 
Behavior and Stability Problems in Ordinary Differential Equations, p. 1 1 1 ,  Academic 
Press , New York , 1963 ; or G. Sansone and R. Conti , Non-Linear Differential Equations, p. 
481 ,  Macmillan , New York , 1964. 
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Example 2. The system {dx - = -2xy 
dt 
dy 
dt 

= xz - y3 
(8) 

has (0,0) as an isolated critical point. Let us try to prove stability by 
constructing a Liapunov function of the form E(x,y) = ax2"' + by2". It is 
clear that 

= ( -4max2my + 2nbx2y2"- 1 ) - 2nby2" + 2• 

We wish to make the expression in parentheses vanish , and inspection 
shows that this can be done by choosing m = 1, n = 1, a = 1 ,  and b = 2. 
With these choices we have E(x ,y ) = x2 + 2y2 (which is positive definite) 
and (aE/ax)F + (aE/ay)G = -4y4 (which is negative semidefinite) . The 
critical point (0,0) of the system (8) is therefore stable. 

It is clear from this example that in complicated situations it may be 
very difficult indeed to construct suitable Liapunov functions . The 
following result is sometimes helpful in this connection .  

Theorem 8 The function E (x,y ) = ax2 + bxy + cy2 is positive definite if 
and only if a > 0 and b2 - 4ac < 0, and is negative definite if and only if 
a < 0 and b2 - 4ac < 0. 

Proof. If y = 0,  we have E (x , O) = ax2, so E (x , O) > 0 for x * 0 if and 
only if a > 0. If y * 0, we have 

and when a > 0 the bracketed polynomial in x/y (which is positive for large 
x/y)  is positive for all x /y if and only if b2 - 4ac < 0. This proves the first 
part of the theorem, and the second part follows at once by considering the 
function - E (x,y ) .  

PROBLEMS 

1. Determine whether each of the following functions is positive definite , 
negative definite, or neither: 
(a) x2 - xy - y2 ; (c) -2x2 + 3xy - y2 ; 
(b) 2x2 - 3xy + 3y2 ; (d) -x2 - 4xy - 5y2• 

2. Show that a function of the form ax3 + bx2y + cxy2 + dy3 cannot be either 
positive definite or negative definite . 
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3. Show that (0,0) is an 
following systems: 

asymptotically stable critical point for each of the {dx 3 

(a) �� : :,� :Y: dt ' 
4. Prove that the critical point (0,0) of the system ( 1 )  is unstable if there exists a 

function E(x,y) with the following properties: 
(a) E(x,y)  is continuous and has continuous first partial derivatives in some 

region containing the origin ;  
(b) £(0, 0) = 0 ;  
(c) every circle centered on (0,0) contains a t  least one point where E(x,y )  is 

positive ; 
(d) (aE/ax)F + (aE;ay)G is positive definite. 

5. Show that (0,0) is an unstable critical point for the system {dx = 2xy + XJ dt 
dy dt = -xz + ys. 

6. Assume that f(x) is a function such that f(O) = 0 and xf(x) > 0 for x * 0 
[that is, f(x) > 0 when x > 0 and f(x)  < 0 when x < 0] . 
(a) Show that 

is positive definite . 
(b) Show that the equation 

1 r E(x,y ) = zY2 + Jo f (x ) dx  

d2x dtz + f(x)  = 0 

has x = 0, y = dx I dt = 0 as a stable critical point . 
(c) If g(x) � 0 in some neighborhood of the origin ,  show that the equation d2x dx 

- + g(x) - + f(x) = 0 dt2 dt 
has x = 0, y = dx/dt = 0 as a stable critical point . 

62 SIMPLE CRITICAL POINTS OF 
NONLINEAR SYSTEMS 

Consider an autonomous system {: = F(x,y) 

dy 
dt = G(x,y) 

( 1 )  
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with an isolated critical point at (0,0) . If F(x,y) and G(x,y )  can be 
expanded in power series in x and y,  then ( 1 )  takes the form 

When lx l and I Y I  are small-that is , when (x,y )  is close to the origin-the 
terms of second degree and higher are very small . It is therefore natural 
to discard these nonlinear terms and conjecture that the qualitative 
behavior of the paths of (2) near the critical point (0,0) is similar to that 
of the paths of the related linear system 

(3) 

We shall see that in general this is actually the case . The process of 
replacing (2) by the linear system (3) is usually called linearization. 

More generally , we shall consider systems of the form 

(4) 

It will be assumed that 

(5) 

so that the related linear system (3) has (0,0) as an isolated critical point ; 
that f(x,y) and g(x,y )  are continuous and have continuous first partial 
derivatives for all (x,y ) ;  and that as (x,y ) ---+ (0, 0) we have 

lim 
f(x,y ) 

= 0 
vx2 + y2 and r g(x,y ) 

- 0 lm
v 2 2 - . 

X + y 
(6) 

Observe that conditions (6) imply that f(O, O) = 0 and g(O, O) = 0, so 
(0,0) is a critical point of (4) ; also , it is not difficult to prove that this 
critical point is isolated (see Problem 1 ) .  With the restrictions listed 
above , (0,0) is said to be a simple critical point of the system (4) . 
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Example 1. In the case of the system 

we have 

{: = -2x + 3y + xy 

dy 2 
dt 

= -x + y - 2xy 

I a • b • i = l -2 3 1 = 1 -::1= 0, 
a2 b2 - 1 1 

so (5) is satisfied. Furthermore , by using polar coordinates we see that 

and 

lf(x,y ) l l r2 sin 0 cos 0 1  
....:.:;::::::::===== = < r 
Vx2 + y2 r -

lg (x ,y) l 
= 

12r3 sin2 0 cos 0 1  
:5 Zr2, 

vx2 + y2 r 

(7) 

so f(x,y)/r and g(x,y)/r ---+ 0 as (x,y) ---+ (0, 0) (or as r ---+ 0) .  This shows 
that conditions (6) are also satisfied , so (0,0) is a simple critical point of the 
system (7) . 

The main facts about the nature of simple critical points are given 
in the following theorem of Poincare , which we state without proof.9 

Theorem A. Let (0, 0) be a simple critical point of the nonlinear system (4) , 
and consider the related linear system (3). If the critical point (0, 0) of (3) 
falls under any one of the three major cases described in Section 60, then the 
critical point (0, 0) of (4) is of the same type. 

As an illustration ,  we examine the nonlinear system (7) of Example 
1, whose related linear system is {dx = -2x + 3y dt 

dy 
dt = -x + y. 

The auxiliary equation of (8) is m2 + m + 1 = 0, with roots 

- 1 ± v'3 i 
2 

(8) 

9 Detailed treatments can be found in W. Hurewicz , Lectures on Ordinary Differential 
Equations, pp. 86-98 , MIT, Cambridge , Mass . , 1 958; L. Cesari , Asymptotic Behavior and 
Stability Problems in Ordinary Differential Equations , pp. 157- 163 ,  Academic Press , New 
York , 1963 ; or F. G .  Tricomi ,  Differential Equations , pp . 53-72 , Blackie , Glasgow, 1 96 1 .  
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Since these roots are conjugate complex but not pure imaginary , we have 
Case C and the critical point (0,0) of the linear system (8) is a spiral . By 
Theorem A, the critical point (0,0) of the nonlinear system (7) is also a 
spiral . 

It should be understood that while the type of the critical point (0,0) 
is the same for (4) as it is for (3) in the cases covered by the theorem , the 
actual appearance of the paths may be somewhat different. For example , 
Fig. 76 shows a typical saddle point for a linear system, whereas Fig. 83 
suggests how a nonlinear saddle point might look. A certain amount of 
distortion is clearly present in the latter, but nevertheless the qualitative 
features of the two configurations are the same . 

It is natural to wonder about the two borderline cases, which are not 
mentioned in Theorem A. The facts are these : if the related linear system 
(3) has a borderline node at the origin (Case D) , then the nonlinear 
system (4) can have either a node or a spiral ; and if (3) has a center at the 
origin (Case E) , then (4) can have either a center or a spiral . For 
example , (0,0) is a critical point for each of the nonlinear systems 

{: = -y - x2 

dy 
- = x  dt 

and 
{: = -y - x3 

dy 
dt = X. 

(9) 

y 

X 

FIGURE 83 
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In each case the related linear system is {: � -y 

dt = X. 
( 10) 

It is easy to see that (0,0) is a center for ( 10) .  However ,  it can be shown 
that while (0,0) is a center for the first system of (9) , it is a spiral for the 
second . 10 

We have already encountered a considerable variety of configura­
tions at critical points of linear systems, and the above remarks show that 
no new phenomena appear at simple critical points of nonlinear systems. 
What about critical points that are not simple? The possibilities here can 
best be appreciated by examining a nonlinear system of the form (2) . If 
the linear terms in (2) do not determine the pattern of the paths near the 
origin , then we must consider the second degree terms ; if these fail to 
determine the pattern , then the third degree terms must be taken into 
account , and so on . This suggests that in addition to the linear 
configurations , a great many others can arise , of infinite variety and 
staggering complexity . Several are shown in Fig . 84. It is perhaps 
surprising to realize that such involved patterns as these can occur in 
connection with systems of rather simple appearance . For example , the 
three figures in the upper row show the arrangement of the paths of {dx 

- = 2xy dt 
dy 
_ = yz _ xz 
dt ' 

{ dx 
dt = X - 4yv'iXYT 

dr = -y + 4xv'iXYT .  

In the first case , this can be seen at once by looking at Fig . 3 and 
equation 3-(8) . 

We now discuss the question of stability for a simple critical point . 
The main result here is due to Liapunov : if (3) is asymptotically stable at 
the origin ,  then (4) is also . We state this formally as follows . 

Theorem B. Let (0, 0) be a simple critical point of the nonlinear system (4) , 
and consider the related linear system (3). If the critical point (0, 0) of (3) is 
asymptotically stable, then the critical point (0, 0) of ( 4) is also asymptotically 
stable. 

10 See Hurewicz , op. cit. , p. 99. 
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FIGURE 84 

Proof. By Theorem 61-A, it suffices to construct a suitable Liapunov 
function for the system (4) , and this is what we do . 

Theorem 60-B tells us that the coefficients of the linear system (3) 
satisfy the conditions 

and ( 1 1) 

Now define 

by putting 

and 

where 
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By ( 1 1 ) ,  we see that D > 0 and a > 0. Also , an easy calculation shows that 

D2(ac - b2) = (a� + b�)(a� + bi) 

+ (a� + b� + a� + bi)(a 1 b2 - a2b 1) 

+ (a 1b2 - a2b t )2 - (a 1 a2 + b 1 b2)2 

= (a� + b� + a� + bi)(a 1 b2 - a2b 1 ) 

+ 2(a t b2 - a2b 1)2 

> 0, 

so b2 - ac < 0. Thus, by Theorem 61-B , we know that the function E(x,y) 
is positive definite . Furthermore , another calculation (whose details we 
leave to the reader) yields 

aE aE 
- (a tx + b t y)  + -

a 
(a2x + b2y )  = - (x2 + y2) . ( 12) 

ax y 

This function is clearly negative definite , so E(x,y) is a Liapunov function 
for the linear system (3) . 1 1  

We next prove that E(x,y) i s  also a Liapunov function for the 
nonlinear system (4) . If F and G are defined by 

F(x,y) = a 1x + h t Y  + f(x,y) 
and 

G(x,y) = a2x + b2y + g(x,y) ,  

then since E is known to  be positive definite , it suffices to  show that 

aE aE
G - F + -

ax ay 

is negative definite . If we use ( 12) , then ( 13) becomes 

-(x2 + y2) + (ax + by)f(x,y) + (bx + cy )g (x,y ) ;  

and by  introducing polar coordinates we  can write this as 

-r2 + r[(a cos (J + b sin O)f(x,y) + (b cos (J + c sin O)g(x,y)] .  

( 13) 

Denote the largest of the numbers la l , 
now implies that 

l b l , l e i by K. Our assumption (6) 

r 
lf(x,y) l < 

6K 
and 

r 
lg (x ,y) l < 

6K 

for all sufficiently small r > 0, so 

aE aE 2 4Kr2 r2 
- F + - G < -r + -- = - - < 0  
ax ay 6K 3 

1 1  The reason for the definitions of a, b, and c can now be understood : we want ( 12) to be 
true. 
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for these r's .  Thus E(x,y) is a positive definite function with the property 
that (13) is negative definite . Theorem 61-A now implies that (0,0) is an 
asymptotically stable critical point of (4) , and the proof is complete . 

To illustrate this theorem, we again consider the nonlinear system (7) of 
Example 1 ,  whose related linear system is (8) . For (8) we have p = 1 > 0 
and q = 1 > 0, so the critical point (0,0) is asymptotically stable , both 
for the linear system (8) and for the nonlinear system (7) . 

Example 2. We know from Section 58 that the equation of motion for the 
damped vibrations of a pendulum is 

d2x c dx g . - + -- + - sm x = 0, 
dt2 m dt a 

where c is a positive constant . The equivalent nonlinear system is {: = y  dy g . c 
dt 
= - � sm x - ;;;Y· 

Let us now write ( 14) in the form {dx dt 
= y dy g c g . - = -- X - -y + - (x - SID X) . 

dt a m a 
It is easy to see that 

x - sin x --=== � 0 
Vx2 + y 2 

as (x,y ) � (0, 0) , for if x * 0, we have 

.:........,====-' < = 1 - -- � o· lx - sin x l lx - sin x l I sin x l 
Vx2 + y2 - lx l x ' 

( 14) 

(15) 

and since (0,0) is evidently an isolated critical point of the related linear 
system {: = y  dy = -� x - �y. 

dt a m 

(16) 

it follows that (0,0) is a simple critical point of (15) .  Inspection shows 
(p = c/m > 0 and q = g/a > 0) that (0,0) is an asymptotically stable 
critical point of (16) ,  so by Theorem B it is also an asymptotically stable 
critical point of (15) .  This reflects the obvious physical fact that if the 
pendulum is slightly disturbed, then the resulting motion will die out with 
the passage of time . 
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PROBLEMS 

1. Prove that if (0,0) is a simple critical point of (4) , then it is necessarily isolated. 
Hint : Write conditions (6) in the form f(x,y)/r = e- 1 --+ 0 and g(x,y)/r  = 
E2 --+ 0, and in the light of (5) use polar coordinates to deduce a contradiction 
from the assumption that the right sides of (4) both vanish at points arbitrarily 
close to the origin but different from it .  

2. Sketch the family of curves whose polar equation is r = a sin 20  (see Fig. 84) , 
and express the differential equation of this family in the form dy /dx = 
G(x,y)/ F(x,y) .  

3. If (0,0) is a simple critical point of (4) and q = a 1 b 2 - a2b 1 < 0, then 
Theorem A implies that (0,0) is a saddle point of (4) and is therefore unstable . 
Prove that if p = - (a 1 + b2) < 0 and q = a 1 b2 - a2b 1 > 0, then (0,0) is an 
unstable critical point of (4) . Hint :  Adapt the proof of Theorem B to show 
that there exists a positive definite function E(x,y) such that 

aE aE 
-a (a .x + b . y )  + - (a2x + b2y )  = x2 + y2, 

X � . 

and apply Problem 61 -4. (Observe that these facts together with Theorem B 
demonstrate that all the information in Fig. 80 about asymptotic stability and 
instability carries over directly to nonlinear systems with simple critical points 
from their related linear systems. )  

4 .  Show that (0,0) i s  an asymptotically stable critical point of {: � -y - x' 

dt 
= X - y3 , 

but is an unstable critical point of 

How are these facts related to the parenthetical remark in Problem 3? 
5. Verify that (0,0) is a simple critical point for each of the following systems, 

and determine its nature and stability properties: 

- = -x - y - 3x y 
(a) :t 
{dx 

= X + y - 2xy 

; = -2x + y + 3y2 ; 

{dx 2 

(b) 
dt 
dy . 
dt 

= -2x - 4y + y Sin X. 

6. The van der Pol equation 

d2x dx 
- + p.(x2 - 1 ) - + x = 0 
dt2 dt 



480 DIFFERENTIAL EQUATIONS 

is equivalent to the system {dx dt = y dy 2 dt = -x - p, (x - l )y. 

Investigate the stability properties of the critical point (0,0) for the cases p, > 0 
and p, < 0. 

63 NONLINEAR MECHANICS. 
CONSERVATIVE SYSTEMS 

It is well known that energy is dissipated in the action of any real 
dynamical system, usually through some form of friction . However, in 
certain situations this dissipation is so slow that it can be neglected over 
relatively short periods of time . In such cases we assume the law of 
conservation of energy , namely, that the sum of the kinetic energy and 
the potential energy is constant. A system of this kind is said to be 
conservative. Thus the rotating earth can be considered a conservative 
system over short intervals of time involving only a few centuries , but if 
we want to study its behavior throughout millions of years we must take 
into account the dissipation of energy by tidal friction . 

The simplest conservative system consists of a mass m attached to a 
spring and moving in a straight line through a vacuum. If x denotes the 
displacement of m from its equilibrium position , and the restoring force 
exerted on m by the spring is -kx where k > 0, then we know that the 
equation of motion is 

A spring of this kind is called a linear spring because the restoring force is 
a linear function of x. If m moves through a resisting medium , and the 
resistance (or damping force) exerted on m is -c(dx/dt) where c > 0, 
then the equation of motion of this nonconservative system is 

d2x dx m - + c - + kx = 0. dt2 dt 

Here we have linear damping because the damping force is a linear 
function of dx/dt. By analogy , if f and g are arbitrary functions with the 
property that f(O) = 0 and g (O) = 0, then the more general equation 

( 1 )  
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can be interpreted as the equation of motion of a mass m under the 
action of a restoring force -f(x) and a damping force -g(dx/dt) .  In 
general these forces are nonlinear , and equation ( 1 ) can be regarded as 
the basic equation of nonlinear mechanics . In this section we shall briefly 
consider the special case of a nonlinear conservative system described by 
the equation 

(2) 

in which the damping force is zero and there is consequently no 
dissipation of energy. 1 2 

Equation (2) is equivalent to the autonomous system {dx - = y  dt 
dy = _f(x)

. dt m 

(3) 

If we eliminate dt, we obtain the differential equation of the paths of (3) 
in the phase plane , 

dy = 
dx 

and this can be written in the form 

f(x)  
my 

my dy = -f(x) dx. 

(4) 

(5) 

If x = x0 and y = y0 when t = t0 , then integrating (5) from t0 to t yields 

or 

1 2 1 2 I.x 
- my - - my0 = - f(x) dx 
2 2 x11 

1 Lx 1 Lxo 2 my2 + 0 f(x ) dx = 2 my� + 0 f(x) dx. (6) 

To interpret this result ,  we observe that !my2 = !m (dx/dt)2 is the 
kinetic energy of the dynamical system and 

V(x) = f f(x ) dx (7) 

12 Extensive discussions of ( I ) ,  with applications to a variety of physical problems , can be 
found in J. J. Stoker ,  Nonlinear Vibrations, Interscience-Wiley , New York , 1 950; and in A .  
A. Andronow and C. E .  Chaikin ,  Theory of Oscillations , Princeton University Press , 
Princeton, N .J . ,  1 949 . 



482 DIFFERENTIAL EQUATIONS 

is its potential energy . Equation (6) therefore expresses the law of 
conservation of energy , 

1 
2 my2 + V(x)  = E, (8) 

where E = �my� + V(x0) is the constant total energy of the system. It is 
clear that (8) is the equation of the paths of (3) , since we obtained it by 
solving (4) . The particular path determined by specifying a value of E is a  
curve of constant energy in the phase plane . The critical points of the 
system (3) are the points (xc, O) where the Xc are the roots of the equation 
f(x)  = 0. As we pointed out in Section 58, these are the equilibrium 
points of the dynamical system described by (2) . It is evident from (4) 
that the paths cross the x-axis at right angles and are horizontal when 
they cross the lines x = Xc · Equation (8) also shows that the paths are 
symmetric with respect to the x-axis . 

If we write (8) in the form 

y = ±�� [E - V(x) ] ,  (9) 

then the paths can be constructed by the fol lowing easy steps . First , 
establish an xz-plane with the z-axis on the same vertical line as the y-axis 
of the phase plane (Fig . 85) .  Next , draw the graph of z = V(x)  and 
several horizontal lines z = E in the xz-plane (one such line is shown in 
the figure) , and observe the geometric meaning of the difference 
E - V(x) .  Final ly , for each x, multiply E - V(x)  as obtained in the 
preceding step by 2/m and use formula (9) to plot the corresponding 
values of y in the phase plane directly below . Note that since dx/dt = y, 
the positive direction along any path is to the right above the x-axis and 
to the left below this axis . 

Example 1. We saw in Section 58 that the equation of motion of an 
undamped pendulum is 

(10) 

where k is a positive constant .  Since this equation is of the form (2) , it can 
be interpreted as describing the undamped recti linear motion of a unit mass 
under the influence of a nonlinear spring whose restoring force is -k sin x. 
The autonomous system equivalent to ( 1 0) is {dx 

dt 
= y 

dy . 
- = -k sm x 
dt ' 

( 1 1 ) 
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z 

z= E 
E - V(x )  

X 

y 

V� [E- V(x ) ] 

X 

.j� [E- V(x ) ] 

FIGURE 85 

and its critical points are (0,0) , (±.n-, 0) , (±2.n-, O) , . . . .  The differential 
equation of the paths is 

dy 
= 

_ k sin x 
dx y 

and by separating variables and integrating , we see that the equation of the 
family of paths is 

1 "2/ + (k - k cos x) = E. 
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This is evidently of the form (8) , where m = 1 and 

V(x) = ft(x) dx = k - k cos x 

is the potential energy . We now construct the paths by first drawing the 
graph of z = V(x)  and several lines z = E in the xz-plane (Fig. 86 , where 
z = E = 2k is the only line shown) . From this we read off the values 
E - V(x and sketch the paths in the phase plane directly below by using 
y = ± 2[£ - V(x)] .  It is clear from this phase portrait that if the total 
energy E is between 0 and 2k, then the corresponding paths are closed and 
equation (10) has periodic solutions. On the other hand , if E > 2k, then 
the path is not closed and the corresponding solution of (10) is not periodic. 
The value E = 2k separates the two types of motion , and for this reason a 
path corresponding to E = 2k is called a separatrix. The wavy paths outside 
the separatrices correspond to whirling motions of the pendulum, and the 
closed paths inside to oscillatory motions. It is evident that the critical 
points are alternately unstable saddle points and stable but not asymptoti­
cally stable centers . For the sake of contrast , it is interesting to consider the 

E - V (x) 

z = E = 2 k  

FIG URE 86 

z 

3'17" X 
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y 

X 

FIGURE 87 

effect of transforming this conservative dynamical system into a noncon­
servative system by introducing a linear damping force . The equation of 
motion then takes the form 

c > 0, 

and the configuration of the paths is suggested in Fig. 87. We find that the 
centers in Fig. 86 become asymptotically stable spirals, and also that every 
path-except the separatrices entering the saddle points as t � co­
ultimately winds into one of these spirals. 

PROBLEMS 

1. If f(O) = 0 and xf(x) > 0 for x * 0, show that the paths of 

d2x 
dtz 

+ f(x)  = 0 

are closed curves surrounding the origin in the phase plane ; that is ,  show that 
the critical point x = 0, y = dx/dt = 0 is a stable but not asymptotically stable 
center. Describe this critical point with respect to its nature and stability if 
f(O) = 0 and xf(x) < 0 for x * 0. 

2. Most actual springs are not linear. A nonlinear spring is called hard or soft 
according as the magnitude of the restoring force increases more rapidly or 
less rapidly than a linear function of the displacement . The equation 

d2x 
dtz 

+ kx + axJ = 0, k > 0, 

describes the motion of a hard spring if a > 0 and a soft spring if a < 0. 
Sketch the paths in each case . 
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3. Find the equation of the paths of 

and sketch these paths in the phase plane . Locate the critical points and 
determine the nature of each . 

4. Since by equation (7) we have dV /dx = f(x) ,  the critical points of (3) are the 
points on the x-axis in the phase plane at which V ' (x) = 0. In terms of the 
curve z = V(x}-if this curve is smooth and well behaved-there are three 
possibilities: maxima, minima , and points of inflection. Sketch all three 
possibilities, and determine the type of critical point associated with each (a 
critical point of the third type is called a cusp) .  

64 PERIODIC SOLUTIONS. THE 
POINCARE-BENDIXSON THEOREM 

Consider a nonlinear autonomous system {: = F(x,y) 

dy 
dt = G(x,y) 

(1) 

in which the functions F(x,y ) and G(x,y) are continuous and have 
continuous first partial derivatives throughout the phase plane . Our work 
so far has told us practically nothing about the paths of ( 1 )  except in the 
neighborhood of certain types of critical points . However, in many 
problems we are much more interested in the global properties of paths 
than we are in these local properties . Global properties of paths are those 
that describe their behavior over large regions of the phase plane , and in 
general they are very difficult to establish . 

The central problem of the global theory is that of determining 
whether ( 1 )  has closed paths . As we remarked in Section 58, this problem 
is important because of its close connection with the issue of whether ( 1 )  
has periodic solutions. A solution x(t) and y (t) of  ( 1 )  i s  said to  be 
periodic if neither function is constant , if both are defined for all t, and if 
there exists a number T > 0 such that x(t + T) = x(t) and y (t + T) = 
y (t) for all t. The smallest T with this property is called the period of the 
solution . 13 It is evident that each periodic solution of ( 1 )  defines a closed 
path that is traversed once as t increases from t0 to t0 + T for any t0 •  

1 3 Every periodic solution has  a period in this sense . Why? 



NONLINEAR EQUATIONS 487 

Conversely, it is easy to see that if C = [x(t) ,y (t)] is a closed path of ( 1 ) ,  
then x(t) ,  y (t) i s  a periodic solution .  Accordingly , the search for periodic 
solutions of (1 ) reduces to a search for closed paths. 

We know from Section 60 that a linear system has closed paths if 
and only if the roots of the auxiliary equation are pure imaginary , and in 
this case every path is closed . Thus , for a linear system , either every path 
is closed or else no path is closed. On the other hand , a nonlinear system 
can perfectly well have a closed path that is isolated ,  in the sense that no 
other closed paths are near to it .  The following is a well-known example 
of such a system: {dx 2 2 - = -y + x( 1  - x - y ) dt 

dy 
dt 

= x + y( 1  - x2 - y2) .  
(2) 

To solve this system we introduce polar coordinates r and (), where 
x = r cos () and y = r sin e. If we differentiate the relations x2 + y2 = r2 
and () = tan- 1 (y/x) ,  we obtain the useful formulas dx dy dr 

x - + y - = r -dt dt dt and 
dy dx 2 d() 

x - - y - = r -
dt dt dt 

(3) 

On multiplying the first equation of (2) by x and the second by y, and 
adding, we find that 

(4) 

Similarly , if we multiply the second by x and the first by y, and subtract , 
we get 

(5 ) 

The system (2) has a single critical point at r = 0. Since we are concerned 
only with finding the paths, we may assume that r > 0. In this case , (4) 
and (5) show that (2) becomes { dr 

- = r(1 - r2) dt 
d() 
dt = 1 . 

(6) 

These equations are easy to solve separately , and the general solution of 
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the system (6) is found to be 

{ r = �Y;:=l =+1=c:::::::e �21 
() = t + t0 •  

The corresponding general solution of (2) i s  { x = cos (t + t0) V1 + ce 21 
sin (t + t0) y = . Vl + ce 21 

(7) 

(8) 

Let us analyze (7) geometrically (Fig . 88) . If c = 0, we have the solutions 
r = 1 and () = t + t0 , which trace out the closed circular path x2 + y2 = 1 in the counterclockwise direction . If c < 0, it is clear that r > 1 and 
that r - 1 as t - oo. Also , if c > 0, we see that r < 1, and again r - 1 
as t - oo. These observations show that there exists a single closed path 
(r = 1) which all other paths approach spirally from the outside or the 
inside as t - oo. 

y 

X 

FIGURE 88 
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In the above discussion we have shown that the system (2) has a 
closed path by actually finding such a path . In general , of course , we 
cannot hope to be able to do this. What we need are tests that make it 
possible for us to conclude that certain regions of the phase plane do or 
do not contain closed paths . Our first test is given in the following 
theorem of Poincare . A proof is sketched in Problem 1 .  

Theorem A .  A closed path of the system ( 1 )  necessarily surrounds at least 
one critical point of this system. 

This result gives a negative criterion of rather limited value : a 
system without critical points in a given region cannot have closed paths 
in that region . 

Our next theorem provides another negative criterion , and is due to 
Bendixson . 1 4 

Theorem B. If aF I ax + aG I ay is always positive or always negative in a 
certain region of the phase plane, then the system ( 1 )  cannot have closed 
paths in that region . 

Proof. Assume that the region contains a closed path C = [x (t) ,y (t)] with 
interior R. Then Green's theorem and our hypothesis yield 

r (F dy - G dx) = If. ( aF + aG) dx dy * 0. Jc R ax ay 

However, along C we have dx = F dt and dy = G dt, so 

( (F dy - G dx) = ir
(FG - GF) dt = 0. Jc o 

This contradiction shows that our initial assumption is false , so the region 
under consideration cannot contain any closed path . 

These theorems are sometimes useful , but what we really want are 
positive criteria giving sufficient conditions for the existence of closed 
paths of ( 1 ) .  One of the few general theorems of this kind is the classical 
Poincare-Bendixson theorem,  which we now state without proof. 1 5 

14 1var Otto Bendixson ( 1 86 1 - 1 935) was a Swedish mathematician who published one 
important memoir in 1 90 1  supplementing some of Poincare's earlier work . He served as 
professor (and later as president) at the University of Stockholm,  and was an energetic 
long-time member of the Stockholm City Counci l .  
1 5  For details, see Hurewicz , foe. cit. , pp. 102- 1 1 1 ,  or Cesari , foe. cit. , pp .  1 63- 1 67 .  
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Theorem C. Let R be a bounded region of the phase plane together with its 
boundary, and assume that R does not contain any critical points of the 
system (1 ) .  If C = [x (t) ,y (t)] is a path of ( 1 )  that lies in R for some t0 and 
remains in R for all t � t0 , then C is either itself a closed path or it spirals 
toward a closed path as t � co. Thus in either case the system ( 1 )  has a 
closed path in R. 

In order to understand this statement , let us consider the situation 
suggested in Fig .  89 . Here R consists of the two dashed curves together 
with the ring-shaped region between them . Suppose that the vector 

V(x,y) = F(x,y)i + G(x,y )j 

points into R at every boundary point. Then every path C through a 
boundary point (at t = t0) must enter R and can never leave it ,  and under 
these circumstances the theorem asserts that C must spiral toward a 
closed path C0• We have chosen a ring-shaped region R to il lustrate the 
theorem because a closed path like C0 must surround a critical point (P in 
the figure) and R must exclude all critical points. 

The system (2) provides a simple application of these ideas . It is 
clear that (2) has a critical point at (0,0) , and also that the region R 
between the circles r = ! and r = 2 contains no critical points . In our 
earlier analysis we found that 

FIGURE 89 

dr 
- = r(l - r2) 
dt 

for r > 0. 
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This shows that dr/dt > 0 on the inner circle and dr/dt < 0 on the outer 
circle , so the vector V points into R at all boundary points . Thus any path 
through a boundary point will enter R and remain in R as t - oo, and by 
the Poincare-Bendixson theorem we know that R contains a closed path 
C0• We have already seen that the circle r = 1 is the closed path whose 
existence is guaranteed in this way . 

The Poincare-Bendixson theorem is quite satisfying from a theoret­
ical point of view , but in general it is rather difficult to apply. A more 
practical criterion has been developed that assures the existence of closed 
paths for equations of the form 

d2x dx 
dt2 + f(x)  dt + g (x) = 0, (9) 

which is called Lienard's equation. 1 6 When we speak of a closed path for 
such an equation , we of course mean a closed path of the equivalent 
system { dx 

dt = y 

dy 
dt = -g(x ) - f(x)y ; 

( 10) 

and as we know , a closed path of ( 10) corresponds to a periodic solution 
of (9) . The fundamental statement about the closed paths of (9) is the 
following theorem. 

Theorem D. (Lienard's Theorem.) Let the functions f(x)  and g(x) satisfy 
the following conditions : (i) both are continuous and have continuous 
derivatives for all x ;  (ii) g(x)  is an odd function such that g(x)  > 0 for 
x > 0, and f(x) is an even function ; and (iii) the odd function F(x) = 
J:,f(x) dx has exactly one positive zero at x = a, is negative for 0 < x < a ,  
is positive and nondecreasing for x > a, and F(x ) --+ oo as x --+ oo. Then 
equation (9) has a unique closed path surrounding the origin in the phase 
plane, and this path is approached spirally by every other path as t --+ oo. 

For the benefit of the skeptical and tenacious reader who is rightly 
reluctant to accept unsupported assertions , a proof of this theorem is 

16 Alfred Lienard ( 1 869- 1958) was a French scientist who spent most of his career teaching 
applied physics at the School of Mines in Paris , of which he became director in 1 929 . His 
physical research was mainly in the areas of electricity and magnetism, elasticity, and 
hydrodynamics . From time to time he worked on mathematical problems arising from his 
other scientific investigations , and in 1933 was elected president of the French Mathematical 
Society. He was an unassuming bachelor whose life was devoted entirely to his work and his 
students. 
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given in Appendix B .  An intuitive understanding of the role of the 
hypotheses can be gained by thinking of (9) in terms of the ideas of the 
previous section . From this point of view , equation (9) is the equation of 
motion of a unit mass attached to a spring and subject to the dual 
influence of a restoring force -g(x)  and a damping force -f(x ) dx/dt. 
The assumption about g(x)  amounts to saying that the spring acts as we 
would expect , and tends to diminish the magn itude of any displacement .  
On the other hand, the assumptions about f(x)-roughly, that f(x) is 
negative for small lx l and positive for large lx l-mean that the motion is 
intensified for small lx l and retarded for large lx l , and therefore tends to 
settle down into a steady oscillation . This rather peculiar behavior of f(x) 
can also be expressed by saying that the physical system absorbs energy 
when lx l is small and dissipates it when lx l is large . 

The main application of Lienard's theorem is to the van der Pol 1 7  
equation 

( 1 1 ) 

where p. is assumed to be a positive constant for physical reasons. Here 
f(x)  = p.(x2 

- 1 ) and g(x) = x, so condition (i) is clearly satisfied . It is 
equally clear that condition (ii) is true . Since 

we see that F(x)  has a single positive zero at x = 0, is negative for 
0 < x < 0, is positive for x > 0, and that F(x) � oo as x � oo. 
Finally , F ' (x) = p. (x2 

- 1) is positive for x > 1 ,  so F(x) is certainly 
nondecreasing (in fact , increasing) for x > 0. Accordingly , all the 
conditions of the theorem are met , and we conclude that equation ( 1 1 )  
has a unique closed path (periodic solution) that i s  approached spirally 
(asymptotically) by every other path (nontrivial solution) .  

PROBLEMS 

1. A proof of Theorem A can be built on the following geometric ideas (Fig. 90) . 
Let C be a simple closed curve (not necessarily a path) in the phase plane ,  and 
assume that C does not pass through any critical point of the system ( 1 ) .  If 

17 Balthasar van der Pol ( 1 889- 1 959) , a Dutch scientist specializing in the theoretical aspects 
of radioengineering, initiated the study of equation ( I I )  in the 1 920s , and thereby 
stimulated Lienard and others to investigate the mathematical theory of self-sustained 
oscillations in nonlinear mechanics . 
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y 

X 

FIGURE 90 

P = (x,y) is a point on C, then 

V(x,y) = F(x,y)i + G(x,y)j 

is a nonzero vector, and therefore has a definite direction given by the angle 8. 
If P moves once around C in the counterclockwise direction, the angle (} 
changes by an amount !:J. (}  = 2n:n ,  where n is a positive integer, zero , or a 
negative integer. This integer n is called the index of C. If C shrinks 
continuously to a smaller simple closed curve C0 without passing over any 
critical point, then its index varies continuously; and since the index is an 
integer , it cannot change . 
(a) If C is a path of ( 1 ) ,  show that its index is 1 .  
(b) I f  C is a path o f  ( 1 )  that contains no critical points, show that a small C0 

has index 0, and from this infer Theorem A.  
2.  Consider the nonlinear autonomous system 

(a) Transform the system into polar coordinate form . 
(b) Apply the Poincare-Bendixson theorem to show that there is a closed 

path between the circles r = 1 and r = 3. 
(c) Find the general nonconstant solution x = x(t) and y = y (t) of the 

original system , and use this to find a periodic solution corresponding to 
the closed path whose existence was established in (b) . 

(d) Sketch the closed path and at least two other paths in the phase plane . 
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3. Show that the nonlinear autonomous system 

has a periodic solution. 

{dx 2 2 

dt 
= 3x - y - xex +y 

dy 2 2 - = X + 3y - yex +y 
dt 

4. In each of the following cases use a theorem of this section to determine 
whether or not the given differential equation has a periodic solution: 

d2x dx (a) - +  (5x4 - 9x2) - + x5 = O· 
dt2 dt ' 

d2x dx 
(b) - - (x2 + 1) - + x5 = O· 

dt2 dt ' 

d2x (dx) 2 (c) - - - - (1 + x2) = o · 
dt2 dt ' 

(
d) 

dzx 
+ 

dx 
+ 
(dx) s 

- 3xJ = O· 
dt2 dt dt ' 

d2x 6 dx 2 dx 
(e) dt2 

+ X 
dt 

- X 
dt 

+ X = 0. 

5. Show that any differential equation of the form 

d2x dx 
a 

dt2 
+ b (x2 - 1) 

dt 
+ ex = 0 (a, b, c > 0) 

can be transformed into the van der Pol equation by a change of the 
independent variable. 

APPENDIX A. POINCARE 

Jules Henri Poincare ( 1854-1912) was •miversally recognized at the 
beginning of the twentieth century as the greatest mathematician of his 
generation . He began his academic career at Caen in 1879 , but only two 
years later he was appointed to a professorship at the Sorbonne . He 
remained there for the rest of his life ,  lecturing on a different subject 
each year. In his lectures-which were edited and published by his 
students--he treated with great originality and mastery of technique 
virtually all known fields of pure and applied mathematics , and many that 
were not known until he discovered them. Altogether he produced more 
than 30 technical books on mathematical physics and celestial mechanics , 
half a dozen books of a more popular nature , and almost 500 research 
papers on mathematics. He was a quick , powerful , and restless thinker, 
not given to lingering over details ,  and was described by one of his 
contemporaries as "a conquerer, not a colonist . "  He also had the 
advantage of a prodigious memory , and habitually did his mathematics in 
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his head as he paced back and forth in his study , writing it down only 
after it was complete in his mind . He was elected to the Academy of 
Sciences at the very early age of thirty-two . The academician who 
proposed him for membership said that "his work is above ordinary 
praise , and reminds us inevitably of what Jacobi wrote of Abel-that he 
had settled questions which , before him , were unimagined . "  

Poincare's first great achievement i n  mathematics was i n  analysis . 
He generalized the idea of the periodicity of a function by creating his 
theory of automorphic functions . The elementary trigonometric and 
exponential functions are singly periodic, and the elliptic functions are 
doubly periodic. Poincare's automorphic functions constitute a vast 
generalization of these , for they are invariant under a countably infinite 
group of linear fractional transformations and include the rich theory of 
elliptic functions as a detai l .  He applied them to solve linear differential 
equations with algebraic coefficients , and also showed how they can be 
used to uniformize algebraic curves , that is, to express the coordinates of 
any point on such a curve by means of single-valued functions x(t) and 
y(t) of a single parameter t. In the 1880s and 1890s automorphic functions 
developed into an extensive branch of mathematics , involving (in 
addition to analysis) group theory , number theory , algebraic geometry , 
and non-Euclidean geometry . 

Another focal point of his thought can be found in his researches 
into celestial mechanics (Les Methodes Nouvelle de Ia Mecanique Celeste, 
three volumes , 1892-1899) . In the course of this work he developed his 
theory of asymptotic expansions (which kindled interest in divergent 
series) , studied the stability of orbits , and initiated the qualitative theory 
of nonlinear differential equations. His celebrated investigations into the 
evolution of celestial bodies led him to study the equilibrium shapes of a 
rotating mass of fluid held together by gravitational attraction ,  and he 
discovered the pear-shaped figures that played an important role in the 
later work of Sir G. H. Darwin (Charles' son) . 18 In Poincare's summary 
of these discoveries , he writes: "Let us imagine a rotating fluid body 
contracting by cooling, but slowly enough to remain homogeneous and 
for the rotation to be the same in all its parts . At first very approximately 
a sphere , the figure of this mass will become an ellipsoid of revolution 
which will flatten more and more , then , at a certain moment ,  it will be 
transformed into an ellipsoid with three unequal axes. Later ,  the figure 
will cease to be an ellipsoid and will become pear-shaped until at last the 
mass , hollowing out more and more at its 'waist , '  will separate into two 
distinct and unequal bodies . "  These ideas have gained additional interest 

18 See G. H. Darwin, The Tides, chap. XVIII ,  Houghton Mifflin,  Boston,  1899. 
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in our own time ; for with the aid of artificial satellites , geophysicists have 
recently found that the earth itself is slightly pear-shaped .  

Many of  the problems he encountered in this period were the seeds 
of new ways of thinking , which have grown and flourished in twentieth­
century mathematics . We have already mentioned divergent series and 
nonlinear differential equations. In addition, his attempts to master the 
qualitative nature of curves and surfaces in higher dimensional spaces 
resulted in his famous memoir Analysis situs ( 1895 ) ,  which most experts 
agree marks the beginning of the modern era in algebraic topology . Also , 
in his study of periodic orbits he founded the subject of topological (or 
qualitative) dynamics . The type of mathematical problem that arises here 
is illustrated by a theorem he conjectured in 1912 but did not live to 
prove : if a one-to-one continuous transformation carries the ring 
bounded by two concentric circles into itself in such a way as to preserve 
areas and to move the points of the inner circle clockwise and those of 
the outer circle counterclockwise , then at least two points must remain 
fixed. This theorem has important applications to the classical problem of 
three bodies (and also to the motion of a billiard ball on a convex billiard 
table) . A proof was found in 1913 by Birkhoff, a young American 
mathematician . 19 Another remarkable discovery in this field , now known 
as the Poincare recurrence theorem , relates to the long-range behavior of 
conservative dynamical systems . This result seemed to demonstrate the 
futility of contemporary efforts to deduce the second law of thermo­
dynamics from classical mechanics , and the ensuing controversy was the 
historical source of modern ergodic theory . 

One of the most striking of Poincare's many contributions to 
mathematical physics was his famous paper of 1906 on the dynamics of 
the electron . He had been thinking about the foundations of physics for 
many years , and independently of Einstein had obtained many of the 
results of the special theory of relativity. 20 The main difference was that 
Einstein's treatment was based on elemental ideas relating to light 
signals , while Poincare's was founded on the theory of electromagnetism 
and was therefore limited in its applicability to phenomena associated 
with this theory . Poincare had a high regard for Einstein's abilities , and 
in 191 1 recommended him for his first academic position . 2 1 

19 See G. D .  Birkhoff, Dynamical Systems, chap. VI ,  American Mathematical Society 
Colloquium Publications , vol . IX, Providence , R . I . ,  1 927. 
20 A discussion of the historical background is given by Charles Scribner ,  Jr . , "Henri 
Poincare and the Principle of Relativity ,"  Am. J. Phys. , vol .  32, p. 672 ( 1 964) .  
2 1  See M. Lincoln Schuster (ed . ) ,  A Treasury of the World's Great Letters, p.  453 ,  Simon 
and Schuster ,  New York , 1 940. 
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In 1902 he turned as a side interest to writing and lecturing for a 
wider public, in an effort to share with nonspecialists his enthusiasm for 
the meaning and human importance of mathematics and science . These 
lighter works have been col lected in four books , La Science et 
/'Hypothese (1903) , La Valeur de Ia Science (1904) , Science et Methode 
(1908) , and Dernieres Pensees (1913) . 22 They are clear , witty , profound , 
and altogether delightful , and show him to be a master of French prose at 
its best . In the most famous of these essays , the one on mathematical 
discovery , he looked into himself and analyzed his own mental processes , 
and in so doing provided the rest of us with some rare glimpses into the 
mind of a genius at work . As Jourdain wrote in his obituary , "One of the 
many reasons for which he will live is that he made it possible for us to 
understand him as well as to admire him . "  

A t  the present time mathematical knowledge i s  said t o  be  doubling 
every 10 years or so , though some remain skeptical about the permanent 
value of this accumulation . It is generally believed to be impossible now 
for any human being to understand thoroughly more than one or two of 
the four main subdivisions of mathematics-analysis , algebra , geometry , 
and number theory-to say nothing of mathematical physics as well . 
Poincare had creative command of the whole of mathematics :J 'i  it existed 
in his day, and he was probably the last man who will ever be in this 
position . 

APPENDIX B. PROOF OF LIENARD'S 
THEOREM 

Consider Lienard's equation 

d2x dx 
dt2 + f(x ) dt + g (x) = 0, ( 1 ) 

and assume that f(x) and g(x) satisfy the following conditions: (i) f(x) 
and g(x) are continuous and have continuous derivatives; (ii) g (x ) is an 
odd function such that g(x ) > 0 for x > 0, and f(x) is an even function ; 
and (i i i ) the odd function F(x) = fU(x) dx has exactly one positive zero 
at x = a ,  is negative for 0 < x < a , is positive and nondecreasing for 
x > a, and F(x) ---'» oo as x ---'» oo. We shall prove that equation ( 1 ) has a 
unique closed path surrounding the origin in the phase plane , and that 
this path is approached spirally by every other path as t ---'» oo. 

22 All have been published in English translation by Dover Publicat ions , New York . 
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The system equivalent to ( 1 ) in the phase plane is { dx - = y  dt 
dy 
dt = -g(x) - f(x)y. 

(2) 

By condition (i) , the basic theorem on the existence and uniqueness of 
solutions holds . It follows from condition (ii) that g(O) = 0 and g(x) * 0 
for x * 0, so the origin is the only critical point .  Also , we know that any 
closed path must surround the origin .  The fact that 

d2x dx d [dx Lx ] 
- + f(x) - = - - + f(x) dx dt2 dt dt dt 0 

d 
= dt [y + F(x)] 

suggests introducing a new variable , 

z = y + F(x) .  

With this notation , equation ( 1 ) is equivalent to the system {dx 
= z - F(x)  dt 

dz - = -g(x ) dt 

(3) 

in the xz-plane . Again we see that the existence and uniqueness theorem 
holds , that the origin is the only critical point, and that any closed path 
must surround the origin . The one-to-one correspondence (x,y) � (x, z )  
between the points of  the two planes i s  continuous both ways , so  closed 
paths correspond to closed paths and the configurations of the paths in 
the two planes are qualitatively similar. The differential equation of the 
paths of (3) is 

dz -g(x) - = 
dx z - F(x) " 

(4) 

These paths are easier to analyze than their corresponding paths in the 
phase plane , for the following reasons . 

First , since both g(x) and F(x) are odd , equations (3) and (4) are 
unchanged when x and z are replaced by -x and -z. This means that any 
curve symmetric to a path with respect to the origin is also a path . Thus if 
we know the paths in the right half-plane (x > 0), those in the left 
half-plane (x < 0) can be obtained at once by reflection through the 
origin .  
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Second , equation (4) shows that the paths become horizontal only 
as they cross the z-axis ,  and become vertical only as they cross the curve 
z = F(x) .  Also , an inspection of the signs of the right sicjes of equations 
(3) shows that all paths are directed to the right above the curve 
z = F(x) and to the left below this curve , and move downward or 
upward according as x > 0 or x < 0. These remarks mean that the curve 
z = F(x) ,  the z-axis, and the vertical line through any point Q on the right 
half of the curve z = F(x)  can be crossed only in the directions indicated by 
the arrows in Fig . 9 1 .  Suppose that the solution of (3) defining the path C 
through Q is so chosen that the point Q corresponds to the value t = 0 of the 
parameter. Then as t increases into positive values , a point on C with 
coordinatesx(t) and y (t) moves down and to the left until it crosses the z-axis 
at a point R ;  and as t decreases into negative values, the point on C rises to the 
left until it crosses the z -axis at a point P . It will be convenient to let b be the 
abscissa of Q and to denote the path C by Cb . 

It is easy to see from the symmetry property that when the path Cb 
is continued beyond P and R into the left half of the plane , the result will 
be a closed path if and only if the distances OP and OR are equal . To 
show that there is a unique closed path , it therefore suffices to show that 
there is a unique value of b with the property that OP = OR . 

z 
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To prove this , we introduce 

G(x) = Jx g(x) dx 
() 

and consider the function 
1 

E(x, z )  = 2 z2 + G(x) ,  

which reduces t o  z2/2 on  the z-axis . Along any path we  have 

dE 
dx 

dz 
dt = g(x) dt + 

z dt 

so 

dz dz 
= - [z - F(x)] dt + z dt 

dz 
= F(x) dt ' 

dE = Fdz. 

If we compute the line integral of F dz along the path Cb from P to R , we 
obtain 

/(b ) = J. Fdz = J. dE = ER - Er = ! (OR2 - OP2) ,  
PR PR 2 

so it suffices to show that there is a unique b such that I(b ) = 0. 
If b s a, then F and dz are negative , so I(b ) > 0 and Cb cannot be 

closed. Suppose now that b > a , as in Fig .  9 1 .  We split I(b ) into two 
parts , 

so that 

/1 (b ) = J. F dz + f F dz 
PS JTR 

and /2(b ) = J Fdz, 
ST 

Since F and dz are negative as Cb is traversed from P to S and from T to 
R, it is clear that /1 (b ) > 0. On the other hand , if we go from S to T 
along Cb we have F > 0 and dz < 0, so /2(b ) < 0. Our immediate 
purpose is to show that I (b) is a decreasing function of b by separately 
considering /1 (b ) and /2( b ) .  First , we note that equation ( 4) enables us to 
write 

Fdz = F
dz dx 

= -g(x )F(x ) dx. 
dx 

z - F(x) 
The effect of increasing b is to raise the arc PS and to lower the arc TR, 
which decreases the magnitude of [ -g(x )F(x)]/ [z - F(x)] for a given x 
between 0 and a. Since the limits of integration for /1 (b ) are fixed, the 
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result is a decrease in l1 (b ). Furthermore , since F(x) is positive and 
nondecreasing to the right of a, we see that an increase in b gives rise to 
an increase in the positive number -/2(b ) ,  and hence to a decrease in 
/2(b). Thus /(b ) = /1 (b ) + /2(b ) is a decreasing function for b �  a. We 
now show that /2(b ) � -co as b � co. If L in Fig . 91 is fixed and K is to 
the right of L, then 

/2(b) = I. Fdz < f fdz :5 -(LM) · (LN) ; 
ST JNK 

and since LN � co  as b � co, we have /2(b) � -co. 
Accordingly, /(b ) is a decreasing continuous function of b for 

b � a, J(a ) > 0, and /(b ) � -co as b � co. It follows that /(b ) = 0 for 
one and only one b = b0 , so there is one and only one closed path Cbo · 

Finally , we observe that OR > OP for b < b0; and from this and 
the symmetry we conclude that paths inside cbo spiral out to cbo· 
Similarly , the fact that OR < OP for b > b0 implies that paths outside 
cbo spiral in to cbo· 


