OBSTRUCTION THEORY FOR ALGEBRAS OVER AN OPERAD

ERIC HOFFBECK

ABSTRACT. The goal of this paper is to set up an obstruction theory in the context
of algebras over an operad and in the framework of differential graded modules over a
field. Precisely, the problem we consider is the following: Suppose given two algebras
A and B over an operad P and an algebra morphism from H.A to H.B. Can we
realize this morphism as a morphism of P-algebras from A to B in the homotopy
category? Also, if the realization exists, is it unique in the homotopy category?

We identify obstruction cocycles for this problem, and notice that they live in the
first two groups of operadic I"-cohomology.

In this paper we study a question of realizability of morphisms in a category of
algebras over an operad.

In general, a realization problem takes the following form. We fix a category C
equipped with a model structure (for instance: topological spaces, spectra, differential
graded algebras over an operad). We have a homology (or homotopy) functor H: C —
A with values in a purely algebraic category (for instance: graded modules, graded
algebras). The usual questions are the existence of a realization of an object a in A by
an object ¢ in C such that H(c) = a and the existence of a realization of a morphism
f: H(c1) — H(cg) by a morphism ¢: ¢; — ¢o such that H(¢) = f.

Generally, the obstructions to these existences can be interpreted as classes in some
(co)homology theory.

The most classical example goes back to Steenrod for C the category of topological
spaces and H = Hs*ing. A solution of this problem in the case of rationally nilpotent
CW-complexes has been given by Halperin and Stasheff in [HS]. They apply rational
homotopy theory to reduce this topological realization problem to a realization problem
in the category of differential graded commutative algebras. The obstructions then live
in some Harrison cohomology groups. The obstruction theory of Blanc, Dwyer and
Goerss [BDG] for the realizability of II-algebras by a space, the theories of Robinson
[Rob] and of Goerss and Hopkins [GH] for the realizability of an algebra by an E-
spectra are other fundamental examples of obstruction theories in homotopy theory.

We are here interested in the case C = pdgModg, the category of algebras over a
fixed operad P in the framework of differential graded modules (for short dg-modules)
over a field K. The functor H is the homology of the underlying dg-module of an
algebra over P. This homology inherits a H,P-algebra structure. The target category
A consists of the graded H,P-algebras. The realization problem has been studied by
Livernet [Liv, Section 3] in the setting of N-graded dg-modules and when the ground
field K has characteristic 0.
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The obstruction classes live in some cohomology groups of a natural cohomology
theory associated to P, generalizing the Harrison cohomology for P = Com.

In this paper, we obtain an obstruction theory for the realization of morphisms in
the setting of Z-graded dg-modules and when the ground ring K is any field. We can
identify a sequence of obstructions lying in some cohomology groups. Precisely, the I'-
cohomology of algebras over an operad (defined in [Hof], generalizing Robinson’s and
Whitehouse’s I'-homology [RW]) appears in our construction and we get the following
theorems:

Theorem (Theorem 2.7). Let P be a connected graded operad and let P be an operadic
cofibrant replacement of P. Let A and B be two algebras over P. Suppose given a
P-algebra morphism f : H A — H,B (where H,A and H,B have the structure induced
by the action of P in homology).

The obstruction cocycles to the realizability of the morphism f lie in HU'5(H, A, H, B).
If HF%,(H*A, H,.B)=0, then there automatically exists a morphism ¢ in the homotopy
category of P-algebras such that Hy¢p = f.

Theorem (Theorem 3.5). Let P be a connected graded operad and let P be an operadic
cofibrant replacement of P. Let A and B be two algebras over P. Suppose given a
P-algebra morphism f : H, A — H,B and two homotopy morphisms ¢1, o such that
H.$1 = Hipa = f.

The obstruction cocycles to the uniqueness of the realizations in the homotopy cate-
gory lie in the group HUY(H.A, H.B). If HT}(H.A, H.B) = 0, then ¢1 = ¢2 in the
homotopy category of ﬁ’—algebms.

The groups of I'-cohomology involved here come from a derived functor of the op-
eradic derivations from H.A to H,B. In particular, the group HI'S(H. A, H,B) = 0 is
just P-derivations from H,A to H,B, and in the associative case, we can identify, for
* >0, HT%, with HH*!, the shifted Hochschild cohomology.

Notice also that, as in the usual examples, the obstructions to uniqueness lie one
degree lower than the obstructions to existence.

To obtain these theorems, the method is first to reduce our study to the case where
the differentials of A and B are trivial. Then we use model category structures to
make explicit cofibrant replacements of the algebras A and B. The crucial point of
the proof is a natural filtration of the cooperad B(P X E), which allows us to filter the
generators of the cofibrant replacements. We construct step by step a map inducing
the realization and identify where the obstructions to this construction live.

An important thing to notice in our theorems is that only the structures of P-algebra
on H,A and H,B appear. So we do not need to know the complete |5—algebra structures
on A and B, but only a part of it.

There are some immediate corollaries to the previous theorems. First, one defines the
set of homotopy automorphisms hauts(A) := {¢ : A = A} for A a cofibrant P-algebra.
We can consider its connected components for the following homotopy relation
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where A ® A! denotes the cylinder object of A.
Consider the map H.(—) : mo(hauts(A)) — autp(H,A). Our obstruction theory
implies the following results:
o If HT'}(H, A, H.,A) = 0 then H,(—) is injective.
o If HT'5(H. A, H,A) = 0 then H,(—) is surjective.

Moreover, for a P-algebra H such that H F%,(H ,H) = 0, the first theorem implies
that all P-algebras A such that H,(A) = H are connected by weak equivalences.

In Section 1, we recall some results about operads, cooperads and operadic I'-
homology. In Section 2, we identify the obstructions to the realizability. In the last
section, we study the obstructions to the uniqueness up to homotopy of the realizations.

Convention. We work in the differential graded setting. We take as ground category
the category of differential Z-graded modules (for short dg-modules) over a fixed field
K.

Our dg-modules M are equipped with an internal differential dy; : M — M, decreas-
ing the degree by 1. We sometimes twist it by a cochain 0 € Hom(M, M) of degree
—1 in order to get a new differential 0 + dj;. The relation 82 +dyr 00+ 0ody =0 is
assumed, so that 9 + dj; satisfies (0 + dps)? = 0. We omit the internal differential dy;
in the notation: We write M to denote the module M with differential d;; and write
(M, 0) for the module M with differential 0 + dj.

All operads P will be assumed to be connected in the sense that P(0) = 0 and
P(1) =K.

1. RECOLLECTIONS

1.1. Model structures. We give references for the model structures of the categories
which are used in this paper. For general references on the subject, we refer the reader
to the survey of Dwyer and Spalinksi [DS] and the books of Hirschhorn [Hir] and Hovey
[Hov|. For model structures in the operadic context, we refer to the articles of Hinich



4 ERIC HOFFBECK

[Hin], of Berger and Moerdijk [BM1] and of Goerss and Hopkins [GH], and the book
of Fresse [F1].
Just recall the following standard definitions:

(1) The category of dg-modules is equipped with the model structure such that
a morphism is a fibration (resp. a weak equivalence) if it is an epimorphism
(resp. induces an isomorphism in homology).

(2) The category of operads inherits a model structure where fibrations (resp. weak
equivalences) are fibrations (resp. weak equivalences) of the underlying dg-
modules.

(3) The category of algebras over a cofibrant operad inherits a model structure
where fibrations (resp. weak equivalences) are fibrations (resp. weak equiva-
lences) of the underlying dg-modules.

In all cases, cofibrations are given by the LLP with respect to acyclic fibrations.

We usually call ¥,-module a collection of dg-modules {M (r)},en where each M(r)
is equipped with an action of the r-th symmetric group ¥,. The category of X,-
modules also inherits a model structure such that fibrations (resp. weak equivalences)
are fibrations (resp. weak equivalences) of the underlying dg-modules. Every operad
has an underlying 3,-module and we say that an operad is >,-cofibrant if the underlying
Y«-module is cofibrant. The category of algebras over a Y.-cofibrant operad can also
be equipped with a semi-model structure, but we will not need this refinement.

We will use a cofibrant replacement of operads given by the cobar-bar duality, which
can be found in the paper of Getzler and Jones [GJ] in characteristic 0, and the paper
of Berger and Moerdijk [BM2, Section 8.5] in our more general context. We denote by
B the bar construction of an operad, introduced in [GK], and by B¢ the cobar construc-
tion, introduced in [GJ]. Recall that an element of the bar (or cobar) construction B(P)
can be seen as a tree labelled by elements of P. Thus the bar (and cobar) construction
is equipped with a weight, given by the number of vertices of the tree representing an
element. The operad E denotes the Barratt-Eccles operad, whose definition is recalled
later in Section 1.4, and X denotes the arity-wise tensor product of 3,-modules, i.e.
(PXE)(r) =P(r) ® E(r) for all r € N.

1.1.1. Fact ([BM2, Theorem 8.5.4]). Let P be an operad.
The operad B¢(B(P X E)) is a cofibrant replacement of the operad P.

If Q is a cofibrant replacement of an operad P, working with algebras over Q is
equivalent to working with algebras over B°(B(P K E)). In this paper, we always pick
this particular cofibrant replacement, which will always be denoted by P.

1.2. General recollections on cooperads and coderivations. Let D be a cooperad
with D(0) = 0 and D(1) = K. These hypotheses are verified by the bar construction of
an operad. The cooperad structure is given by a coproduct

v:D(n) > @ D(r) @D(m) ®...® D(n,)

where the sum ranges over decompositions n =nj + ...+ n,.
This total coproduct induces a quadratic coproduct

vy : D(n) = @) D(n1) @ D(ny)
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where the sum ranges over decompositions n = nj + ng — 1.
It is convenient to work with a graphical representation of the elements of the coop-
erad and the coproducts.
1 n

N/

We represent an element v € D(n) by a corolla with n inputs v

The coproduct maps an element v € D to a sum of formal composites of elements
represented by

il,l il,sl 7/.r,l ir,sr
1 n NS N/

N/ 1 !
v Y :Z 1\ //
~y
|

| v

where 7/, v/, ...,/ are elements of D and the entries form a multi-shuffle of {1,...,n}
(i.e. 111 <21 <...<lp1 and ik71 < ik72 <... < ik,sk forall 1 <k < 7").
To avoid too many indices, we will write such a sum in the following form:
N/ N/
5 Ve N Ve
v ’7/
|

The quadratic coproduct of an element v € D is represented by
J1 Je
1 n N/
\ / i v
vy = Z AN //
| va 04
|

V2

where +' and the +” are elements of D and the {i1,...,ix} [[{j1,.-.,J¢} Tun over
partitions of {1,...,n}.

Recall that for P an operad and A, B two P-algebras, a P-derivation between A and
B with respect to a given morphism f : A — B is a linear map 6 satisfying

Vp € P(n),¥(ai,...,a,) € A", 0(p(ay,...,a,)) = Zp(f(al), o 0(ai), .. flan)).
i=1
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In the special case B = A and f = id, the condition becomes
Vp € P(n),Y(a1,...,a,) € A" 0(p(ay,...,a,)) = Zp(al, o 0(ai), .. an).
i=1

Dually, for D a cooperad, one can define the notion of a coderivation. Considering a
D-coalgebra C', a D-coderivation 8 : C' — C' is a linear map satisfying

Ve e Cv 1/(0(0)) = 27(C17 s ,9(17;, ‘. '7Cn)7

where v(c) =), v(c1,...,cn) is the coproduct of c.

1.3. Quasi-free coalgebras over cooperads. Recall that P = B¢(B(P K E)) is a
cofibrant replacement of the operad P, and let D denote B(P X E).

The first goal of this subsection is to provide an explicit cofibrant replacement of a
P-algebra A, of the form (P(D(A),dy),d). The second goal is then to recall how one
can reduce the study of morphisms from A to B in the homotopy category of Is—algebras
to the study of some particular maps from D(A) to B.

These results have been first given in the preprint of Getzler and Jones [GJ], using
the notion of twisting cochain. But we use them in the wider context of Z-graded
modules and over a field of any characteristic, and we refer to the article of Fresse [F2]
for the generalization in the latter setting. As we need precise formulas for our study,
we recall some propositions in full details, but without proofs.

Let A be a dg-module, whose differential is denoted by d4. Recall that D(A) is the
cofree connected coalgebra given by

D(4) = P(D(r) ® A%y,

The element y(ai,...,a,) € D(A) is associated to the tensor v ® (ai,...,a,). We
represent such an element in D(A) by a corolla with inputs indexed by elements of A.

The next two propositions give the precise definition of 0, in (P(D(A), da),0) (which
will be a cofibrant replacement of A) and one condition it must satisfy.

1.3.1. Proposition ([GJ, Proposition 2.14], [F2, Proposition 4.1.3]). For a cofree coal-
gebra D(A), we have a bijective correspondance between D-coderivations 0 : D(A) —
D(A) and homomorphisms « : D(A) — A. The homomorphism « associated to a
coderivation O is given by the composition with the canonical projection. Conversely,
the coderivation O, associated to « is determined by

s a
ai an, ai - a(a;) - an al N/ "
* *

a ,.Y//
Oa \7/ :Zi \"y/ +Zi \‘,/
7 12) Yy
|

for every y(ai,...,ay) in D(A). The first term corresponds to o applied to a; € A C
D(A). For the second term, we use the quadratic coproduct vy and then apply o on the
upper corolla which represents an element in D(A).
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1.3.2. Proposition ([F2, Proposition 4.1.4]). Let a : D(A) — A be a homomorphism
of degree -1 such that cq = 0.

A D-coderivation Oy : D(A) — D(A) of degree —1 defines a differential graded quasi-
cofree coalgebra (D(A), ) if and only if the homomorphism o : D(A) — A satisfies
the relation

for every element y(ay, ..., an) in D(A), where d(a) denotes da o=+ ao(9a+dp(a))-

The following proposition explains how one can encode a B¢(D)-algebra structure
on A into a map D(4) — A.

1.3.3. Proposition ([GJ, proposition 2.15], [F2, Proposition 4.1.5]). A B¢(D)-algebra
structure on a dg-module A is equivalent to a map o : D(A) — A which satisfies
Equation (1) and such that the restriction o4 vanishes.

When we are given an operad morphism B¢(D) — Q, we have a functor which, to any
D-coalgebra C, associates a quasi-free Q-algebra RqQ(C) = (Q(C), 9) for some twisting
differential 0 (cf. [GJ] or [F2, Section 4.2.1]).

We apply this construction to D = B(PXE), the morphism id : B¢(D) — B¢(D) = P
and the coalgebra C' = (D(A),d,) associated to a P-algebra A (the action is denoted
by «). We get the following result:

1.3.4. Proposition ([GJ, Theorem 2.19], [F2, Theorem 4.2.4]). Let A be an algebra
over P and let a denote the action. Let D denote B(P X E). The augmentation € :
R5(D(A),0q) = (P(D(A),8a),0) — A defines a weak equivalence and (P(D(A),da),d)
forms a cofibrant replacement of A in the category of P-algebras.

In this context, to study morphisms in the homotopy category of f’—algebras, we
just have to study morphisms of quasi-cofree D-coalgebras. Indeed, a map from A
to B in the homotopy category of P-algebras is a class of morphisms of P-algebras
between cofibrant replacements of A and B. Such morphisms between (P(D(A), ), d)
and (P(D(B),d3),0) can be obtained using the functor Ry from D-coalgebras maps
between (D(A),dy) and (D(B), d3).

The following two propositions show how to reduce our study to the corestrictions
of such morphisms.

1.3.5. Proposition ([F2, Observation 4.1.7]). The homomorphisms ¢ : D(A) — D(B)
of degree 0 and commuting with coalgebra structures are in bijection with homomor-
phisms of dg-modules f : D(A) — B. The homomorphism f associated to ¢ is given
by the composite of ¢ with the projection. Conversely, the homomorphism ¢ = ¢y
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associated to f is determined by the formula

* a*
N

a
al Qg f

for every element y(ai,...,a,) in D(A). We use the total coproduct and we apply f to
all upper corrolas.

1.3.6. Proposition ([F2, Proposition 4.1.8]). The homomorphism of cofree coalgebras
o5 : D(A) — D(B) associated to a homomorphism f : D(A) — B defines a morphism
between quasi-cofree coalgebras (D(A),0y) — (D(B),0p) if and only if we have the
identity

(™ Q.
a an al N/
N4 wit 7 Lo
5(f) 7 — > xf S ] e

1) Y

|

(™ Q. Ay Q.
fl N 7 fl N 7
VY Ve
+> 8 =0

for every element (a1, ...,a,) in D(A), where 6(f) denotes dp o f + f o (0a + dp(a))-

In conclusion, a morphism from A to B in the homotopy category of Is—algebras can
be obtained from a map D(A) — B satisfying the identity of Proposition 1.3.6, where
« encodes the algebra structure on A as specified in Propositionl.3.

1.4. The Barratt-Eccles operad and its action on cochains. Recall that an F.-
operad is a Y,-cofibrant replacement of the commutative operad.

The Barratt-Eccles operad E is an example of F.-operad, defined by the normalized
chain complex E = N,(EX,), where EY,, is the total space of the universal 3,,-bundle
in simplicial spaces. The chain complex N,(EX,) is identified with the acyclic homo-
geneous bar construction of the symmetric group ¥, the module spanned in degree ¢
by the (t + 1)-tuples of permutations w = (wy,...,w;) together with the differential
§ such that d(w) = >°,(—1)"(wo,...,W;,...,w;). We consider the left action of the
symmetric group on this chain complex.

The composition product of E is obtained using the composition product of permu-
tations (which is just the insertion of a block). More precisely, for w = (wy, ..., wy,) €
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E(r) and w’' = (wy,...,w}) € E(s), the composite w o; w’ € E(r + s — 1) is defined by

wo; w = Z +(Way 0 Wy, - - Way .,y O w;m+n)
Ty Y
where the sum ranges over the monotonic paths from (0,0) to (m,n) in N x N.

The operad E acts on N*(A!), according to the paper by Berger and Fresse [BF]. We
denote this action by o. For our purposes, we simply recall the action of the component
of degree 0 of E. We have the equality of dg-modules N*(A!) = K.0” @ K.1# ¢ K.01%
where 0%, 1% (both in degree 0) and 01% (in degree —1) denote the dual of the basis of
non-degenerate simplices. The differential Oy satisfies Oy (017) = 0, On(07) = —017
and Oy (1%) = 01#. The r-th component in degree 0 of E is actually ¥,, and the
identity of 3, acts on N*(A!) as follows:

id.(0%,...,0%,01% 1#, . 1#) = 01#

id.(u1,...,u,) = 0 otherwise.

The equivariance gives the action of the other permutations of .. We will not need
the formula for the action of E in higher degrees.

1.5. The path object of an algebra over an operad. Let Q be any cofibrant
operad, for instance Q = B°(B(PXE)). Let B be a Q-algebra, with the structure given
by . We recall in this section the results we need from [BF, Section 3.1].

The path object of B in the category of Q-algebras is B ®@ N*(Al).

It is naturally endowed with the action f ® o of Q X E:

(qg7m) (b1 ®uy,....br @uy) =q(b,...,by) @7(ut,...,u)

for g € Q,m € E, (by,...,b) € B", (u1,...,u,) € N*(A')". Fixing an operadic section
p:Q — QXE of the augmentation QX E — Q, we can see B® N*(A!) as a Q-algebra.
In Section 3.2, we will fix an explicit map p.

1.6. Operadic I'-cohomology. In [Hof|, we have defined a generalization of Robin-
son’s and Whitehouse’s I'-(co)homology. The aim was to get a (co)homology theory of
algebras over an operad when the objects in the underlying category are dg-modules
over a field of positive characteristic (or over a ring). We recall here the definition of
I'-cohomology with coefficients in an algebra, which is enough for us in the context of
the current paper.

Let A and B be P-algebras and f : A — B a morphism of P-algebras. The T'-
cohomology HT'5(A, B) of A with coefficients in B is defined by H,(Ders (A, B)) where

P is a X,-cofibrant replacement of P and 521 a cofibrant replacement of A as P-algebras.
In this definition, the derivations are the P-derivations relatively to the morphism f o1,
where ¢ denotes the morphism A = A. The differential of this complex of derivations
is the usual differential of a complex of morphisms. One can show that the definition
of I'-cohomology is independent of the choice of the cofibrant replacements.

An easy way to understand I'-cohomology is the following: the I'-cohomology of a
P-algebra A is the usual André-Quillen cohomology of A seen as an algebra over a
>.-cofibrant replacement of P.
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Note that the I'-cohomology HI'}(A, B) depends on the morphism f : A — B, but
we do not specify it in the notation when there is no ambiguity.

2. REALIZABILITY OF MORPHISMS

Suppose given

e an operad P with the canonical operadic cofibrant replacement P= B¢(B(PKX
E));

e two algebras, A and B, over P;

e a P-algebra morphism fy : H,A — H,B (where H,A and H,B have the struc-
ture induced in homology).

We want to understand the obstructions to the existence of a morphism ¢ : A — B in
the homotopy category of P-algebras such that H.¢ = fj.

2.1. Outline of the study. We will proceed in the following way:

We first show in Section 2.2 that we can restrict our study to the case where the
differentials of A and B are trivial, and we give some results concerning the structures
induced in homology. We consider the cooperad D = B(P X E), and the explicit
cofibrant replacements of A and B from Proposition 1.3.4. In Section 2.5, we want to
construct a D-coalgebra map ¢ : (D(A),dn) — (D(B),0g) extending fo (it will lead
to the expected morphism in the homotopy category). We introduce a filtration on
D(A), to proceed by induction. We notice that the obstructions to the construction
of ¢y lie in a certain cohomology group which can be identified with the first group
of I'-cohomology of H,A with coefficients in H,B. If ¢; can be constructed, then (as
the construction R is functorial, see Proposition 1.3.4) we obtain Rs(¢y) which fits a
diagram

(B(D(A), 8), 0) —L (B(D(B), 95),0) .

v v

and thus we obtain a morphism from A to B in the homotopy category of P-algebras.

2.2. Restriction of the hypotheses. We show here that we can reduce our study to
the case where the differentials of A and B are trivial.
First, recall the following result concerning the transfer of structures:

2.2.1. Fact. Let f : A S B be a weak equivalence of dg-modules. Suppose that B has
an action of a cofibrant operad Q.
Then A inherits the structure of a Q-algebra such that

(1) A< -5 B where the morphisms are weak equivalences of Q-algebras,
(2) Ho (A& -5 B) = H.f.
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This result in the A, context was already in Kadeishvili’s work [Kad]. In our
context, we refer to the result stated by Fresse [F4, Theorem A]. The second assertion
is not made explicit in the theorem of this reference but immediately follows from the
proof.

Let H = H,A be the homology of a Q-algebra A. The graded module H can be
seen as a dg-module equipped with a trivial differential, weakly equivalent to A as dg-
modules. We fix a splitting A, = Z*AGBBi_lA, where Z, A denote the cycles of A (and
where B, ;A is isomorphic to the boundaries B,_1A). This yields a map A — Z,A,
which induces a map A — H by composition with the projection Z, A — H. As we
are working over a field, we can fix a section of dg-modules s : H, A — Z,A of the
projection Z,A — H,A, and thus a map H = A.

The fact 2.2.1 implies that H inherits a structure of a Q-algebra such that H < - =
A, where the morphisms are weak equivalences of Q-algebras. This action of Q on H
induces in homology an action of H,Q on H = H,H.

On the other hand, as H is the homology of the Q-algebra A, it inherits the structure
of an algebra over H,Q.

2.2.2. Lemma. These actions of H,Q on H coincide.

Proof. The zig-zag of Q-algebras H < - = A induces in homology the zig-zag of H,Q-
algebras H & H,(-) = H,A. By the second point of the Fact 2.2.1, H (with the first
action) and H,A (with the second action) are equal as H,Q-algebras. O

Let B be another Q-algebra and K = H, B its homology. Let H and K be cofibrant
replacements of H and K in the category of Q-algebras. We get the following diagram
of Q-algebras, where every vertical arrow is a quasi-isomorphism:

H— K
H > K

2
C—
C—

2

<
Y
W=

It implies the identity
I_IOInHo Q—alg (A7 B) = I_IOInHo Q—alg (H7 K) = [ﬁv K]Qfalg
where the notation [—, —] refers to the homotopy classes, and we get

2.3. Proposition. OQur initial problem (of finding a lift of a P-algebra morphism from
H.A to H.B to a Is—algebm homotopy morphism from A to B) is equivalent to finding
a ﬁ—algebm homotopy morphism from H.A to H.B (both equipped with the If’—algebm
structure induced by the map from P to P).

Therefore, in the rest of the paper, we only consider the case of trivial differentials
on A and B.
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2.4. Description of the homology action. Let « denote the action of the operad
Q on the dg-module A. We now make explicit the action a1 of H,Q on H, A, as it will
be used in the next section.

Let Z,Q denote the cycles of Q. As before, we can consider a section of the homology
SQ H *Q — Z*Q.

2.4.1. Observation. The action a1 can be determined by the commutativity of the
following diagram:

aq

H.Q(r) ® H,A®" H.A,
iso®(5A)®’" T
Z*Q(T) & Z*A®T “ > Z*A
Qlr) @ A% @ A

where the dotted map is the restriction. The image of this restriction is included in the
cycles of A.

We now consider the case where A is an algebra over Q = P := B(B(PKXE)), where
P is a graded operad. We use the particular section P — B¢(B(P X E)) given by the
composite of the inclusion P — P K E (sending p € P(r) to p ® idy, ), with the obvious
inclusions PXE to B(PXE) and B(PXE) — B¢(B(PXE)). The above paragraphs give
an action of P on H,A. If dy4 = 0, then we identify A and H.A, and thus we obtain
the action «; of P on A.

2.5. Construction of the morphism of coalgebras. We can now study our prob-
lem. We are given

e a differential graded operad P such that dp=0,

e two algebras, A and B, over P = B(B(P K E)), with actions denoted by a and
B, with trivial differentials,

e a P-algebra morphism fy : (H.A,oq) = (HiB, p1).

In this section, we do not distinguish between A (resp. B) and H.A (resp. H.B) as
they are equal as dg-modules. We specify the structure (a or ay, 8 or 1) when we
consider them as algebras over P or P.

We want to define a morphism ¢; of D-coalgebras from (D(A),d,) to (D(B),ds)
such that the first component for a certain graduation is fp. Recall from Section
2.1 that such a morphism ¢, will induce a morphism from A to B in the homotopy
category. The morphism ¢ : (D(A),0,) — (D(B),dg) will be the morphism induced
by f:D(A) — B, as defined in Proposition 1.3.5.

We use the graduation of D = B(P X E) given by the sum of the bar weight and
the degree in E. Recall that the bar construction is given by a quasi-free object, and
that the underlying free cooperad is equipped with a weight given by the number of
tensors, as in the usual algebraic world. For instance, as dg-modules, Dyq is just K

in arity 1, and Dyy) in any arity r is sP(r) ® K[X,], where s denotes the suspension of
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dg-modules and P the augmentation ideal of P. This grading of D induces a splitting
D(A) = @4 Djq(A) (we do not take into account any degree of A or weight in A).
The quadratic coproduct v on D sends v € Djg41] to composites

* *
N/
* "

/

such that 4" € Dy, 7" € Dy and p + ¢ = d + 1. We will denote 7' by Yy
the notation in which degree it lies. In a similar way, for the map f : D(A) — B, we
denote the component D(A)(q — B by fig and the component D(A)(<q — B by fi<q-
We want to construct the map f by induction on the degree, that is to construct fig
supposing that fiq is known. We notice that in degree zero, Dig(A) is reduced to A
and thus we define fig) = fo (remember we want ¢ to realize fy).
The morphism ¢; must fit the following commutative diagram:

to keep in

D(A) b5
&ﬁ-le
D(A) b5

The triangle on the right obviously commutes. The commutativity of the triangle on
the left defines f, the restriction of ¢, at the target. The commutativity of the exterior
diagram is equivalent to the commutativity of the inner square.

The commutativity of this diagram is equivalent to the equation:

(2) fo(dp+0a) =Pody,

that is the condition obtained in Proposition 1.3.6 in the case d4 = 0 and dg = 0.

We now suppose that f is defined for degrees smaller than d and we consider an
element y(a1, . .., a,) where 7 lies in D|4,1). For this element, Equation (2) is equivalent
to

A« (o
ai G al NS
AN / * ’Y[Illc] A

f dpy +Z§djf ’ S \//

‘ v2 k=1 y
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Qe Qs Qe Qs
fl N 7 fl N 7
d+1 Ve Ve
- Z Z B \ / /
Vo=l k)

Specifying the degrees of f and taking the terms for £ = 1 out of the sums, we get:

A« Ay
a G al| N\ /S
A«

"
NS Qx RN

Tl dpy +Zf[d} \ \//

-
|

d a, y

(K]

+ Z Z Jia+1-#] \

v k=2 \ "y/ /
\
Qs Qs s a Qs a
fal N/ Jeaq| N 7| Jea| N 7
foax Vay foa d+1 Ya Ve
=5 \ + Z Z B

The last sum of the left hand side and the last sum of the right hand side involve f
in degrees smaller than d, while the three other terms involve f only in degree exactly
d. The second and fourth terms involve respectively «y and (1, as only the restricted
structure matters for elements in degree 1 (according to 2.2.2 and 2.4).

Thus we write the above equation in the following form:

s s
ai (79} o [ N " / :|
@ )

NS
Jia dpy +Zf[d} \ \//

-
|

A%
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=-> zd: fla+1-k) \

vy k=2 y

s a;
al NN/
QU ’yf]’ﬂ o
\
!
\

Ay a s a
ficq| N 7| feq| N 7/
dt1 Yy Vi
+> 38 S /
k=l k]

with f in degree d grouped in the left hand side and f in degrees smaller than d grouped
in the right hand side.

The left hand side can be identified with d(fig)(v(a1, ..., a,)) where 9 is the differen-
tial in Hom((D(A), O, ), (B, 81)). Note that this differential involves only the P-algebra
structures a; and (1 induced in homology, and not the whole Is—algebra structures «
and .

According to our induction hypothesis, the right hand side is known and is the
obstruction.

2.6. Proposition. If the cohomology group H'Hom((D(A),0a,), (B, 1)) is equal to
0, we can construct a map fig (i.e. continue our induction), and hence a map ¢y
answering the initial problem.

Proof. We have one thing left to prove: Check that the obstruction is a cocycle.

This is just a direct computation, but quite hard to write down explicitely. The
best way to understand the computation is first to do it in characteristic two (to avoid
being lost because of signs), and in the special case D = Asi and P=Ay (even if this
case is not exactly included in our context) and then follow the same procedure for our
general context.

In the special case, we denote by A and B the A -algebras, with trivial differentials,
and the action is denoted « and 3. To respect the previous notation, «; corresponds to
the action on the operation p;11 of As. The homologies H, A and H, B are associative
algebras, and fj is an associative morphism, meaning that we have (1 (fo, fo) = fooas.
Let us also denote f(jui+1 by fi, aipit1 by i and Bipi1 by Bi to make the notation
lighter.
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The construction of f; is possible if the following equation is satisfied:

Bi(fa fo) + Bu(fo, fa) + fac o =Y B(fedsr-- s f<a) + Y fea© a1,

=R, =Ro

where the indices in the sums are chosen in such a way that the trees have arity d+ 2
and o denotes the PreLie composition product

FoG= Y  F(id,...,G,...,id).
inputs of F'
As before, we suppose that for k < d, the maps f, are already defined, and we check
what happens when we construct fy.
Let us call R = R; + Ry the right handside of this equation and compute O(R)
where 0 is the Hochschild differential. First notice that, by definition, 9(R) = Roag +
B1(fo, R) + B1(R, fo). We compute separately four terms:

The first term is:
Rl oQ1 = Zﬁ(f<da"'7f<d) caq

:Zﬂ<f<d7"'7f<doa17"'7f<d)
= Bfedr--rTcavast,- s fea) + D B(f<dr- s D B(f<dr- - f<d)s- - [<a)
:Zﬁ(f<da"'af<d)Oa>1+ZB(f<d7'"7ZB(f<d""7f<d)a"'af<d)

=51 =S

In the first sum Sy, the terms 51 (fo, Y. f<goas1) and 51(> f<qoas1, fo) are missing,
and in the second sum Sy, the terms 31 (fo, > 8(f<d, - - -, f<a)) and 1> B(f<d,- - -, f<d), fo)
are missing.

We have used the induction hypothesis for k& < d to go from the second line to the
third line.

The second term is:

ﬁl(vaRl) +61(R17f0) = ﬂl(f0>218(f<d7 . '>f<d))+ﬁl(26(f<da . '7f<d)af0)

:=Sg Z=S4

The third term is:
Ryoay = (Zf<d °oas1) o

= feao(asiom)+ Y feqgo(aroasi)+ D (feaoar)oas
=Y feao(asi0a)+ Y feao(aroast)+ Y B(fedr--r fea)oas1+ > (feaoast)oas

=S5 :=Sg =57 :=Sg
We have first used the PreLie relation, and finally the induction hypothesis for the
last sum.
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The fourth and last term is:
Bi(fo, R2) + Bi(Ra, fo) = Bi(fo, > f<a© as1)+Bi(D_ feao a1, fo)

=S89 :=S10
We can now gather these 10 terms as follows:
e S|+ Sy + S0 =57.
e So+ S5+ Sy =>.(BopB)(f<ds---fca) =0 using the Stasheff relation for B.
e S5+ S6+ Ss =) feao (awoa) =0 using the Stasheff relation for A.

This concludes the special case.

For the general case, the computations are precisely the same. We get three families
of terms which vanish as in the example with As. Though a few points differ:

e When computing for a given v € D, the use of coproducts makes appear ~/, 7"
and " (which correspond to the y; of the special case), and the coassociativity
of the coproduct allows us to identify some terms.

e Some additional terms involving the internal differential of D appear. They
would have appeared in the special case in the Stasheff relation if we had a
non-trivial differential on A or B. The Stasheff relation is now replaced by the
relation which appears in Proposition 1.3.2.

e Signs are given by the Koszul rule.

We now relate this cohomology group with one group of I'-homology:
2.7. Theorem. The obstructions to the realizability of morphisms lie in HI‘};(H*A, H.B).

Proof. First, as a derivation is defined by the image of the generators, there is an iso-
morphism HOIH((D(A), 8041)7 (Bv ﬁl)) = Derﬁ(Rﬁ(D(A)v 8041)7 (Bv 51)) The Is'algebra
Rz(D(A), 04, ) is nothing but a cofibrant replacement of (A, 1) (according to Propo-
sition 1.3.4), so the cohomology H* Ders(Rs(D(A),0a,), (B, B1)) is the I'-cohomology

of the P-algebra A with coefficients in B, for the actions a; and 3;. This cohomology
is actually HI'5(H. A, H.B), cf. Section 1.6. O

2.8. Remark. It is possible to work over a ring K instead of a field, but some additional
assumptions are then necessary. We need to assume that relevant dg-modules over K
are projective and that we have sections of the maps: H,A — A and H,B — B.

3. REALIZABILITY OF HOMOTOPIES
In this section, we consider the problem of uniqueness of realizations in the homotopy
category. We are given

e a graded operad P with the canonical operadic cofibrant replacement P =
B¢(B(PXE));
e two algebras over P, (A, «) and (B, 3), with trivial differentials;
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e two morphisms f0, f1 : (D(A),d,) — B realizing the same P-algebra morphism

v : HA— H.B.
The morphisms f% and f* induce morphisms Rs(¢ o) and Rs(¢f1) from Rs(D(A), da)
to Rs(D(B),0d3), and thus two morphisms of P-algebras from A to B in the homotopy
category. The question we want to study in this section is: what is the obstruction

to the equality of these morphisms in the homotopy category? We show that the
obstructions lie in a group of I'-cohomology.

3.1. Outline of the study. We restrict our study to the case where the differentials
of A and B are trivial. We consider the cooperad D defined by B(P X E). We also
consider the path object B ® N*(A') of B in the category of P-algebras, whose action
is denoted (8 ® o) o p, cf. Section 1.5. For this matter, we define an explicit section
p: P — PXE in Section 3.2.

In Section 3.3, we want to construct a D-coalgebra map ¢ : (D(A),0s) = (D(B ®
N*(AD)), O(Boo)op) giving a homotopy between ¢ro and ¢1. Its restriction f must fit
into the following commutative diagram:

As in the previous section, we will construct ¢ ¢ by induction, and see the obstructions
to the construction. Such a map ¢; induces a homotopy between the morphisms
Rg(¢go) and Rp(¢py1) and thus their equality in the homotopy category. Our study is
very similar to the previous one, except we have to consider the path object B N*(Al)
instead of B itself.

3.2. Construction of a section. We define in this section an explicit operadic section
p: P PXE.

Recall from [BM2] that the cobar-bar construction B¢(B(—)) can be identified with
the cubical W-construction W(—). Markl and Shnider [MS] have constructed a di-

agonal on the W-construction: a map Wr(Q) N Wo(Q) X Wh(Q) for any operad
Q.

Moreover, for any operads P and Q, one can map B¢(B(P X Q)) to B¢(B(P)) K
BY(B(Q)).
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Combining these two facts, we can consider the composite :

B°(B(PXE)) — BC(B(P)) X BC(B(E))

_ B%B@&EnﬁB%BED
idlZ_a)ug B¢(B(PK E))

where aug denotes the augmentation B(B(E)) —
We denote this composite by p : P PXE.

3.3. Construction of the morphism of coalgebras. Suppose A and B are algebras
over P. The same argument as in Section 2.2 allows us to suppose their differentials
are trivial. We use the same graduation as in Section 2.5.

The morphism ¢; must fit the following commutative diagram:

by

D(4) D(B ® N*(A1)
Oa~+dp 8N+8(B®0)0p+dD
o)o jod
D(A) b5 D(B @ N*(Al)) (B®c)op+projody

B ® 017,

The triangle on the right obviously commutes. The commutativity of the triangle
on the left defines f9!, the restriction of f at the target in the component of 01#. The
commutativity of the exterior diagram is equivalent to the commutativity of the inner
square.

The commutativity of this diagram is equivalent to the equation:

(3) (' ®01%) o (dp + 0a) = (B@ 0) 0 po gy + (f = f9) @ 0L,

We want to construct the map f°! by induction on the degree. We notice that in
degree zero, Djg)(A) is reduced to A and that f&)] - f[%} =1 — 1) = 0. Thus we define
f(]l =0.

We now suppose by induction that f°! is defined for degrees smaller than d and we

consider an element y(ay, ..., an) where 7 lies in D(g,1). For this element, Equation (3)
is equivalent to

(f*' @ 01%) dpy +> > (M eor#) \
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A« A
A [\ /| @€ fer [\ /| @€l

1" "
d+1 e Vs

= Y d(Beo)op ~.

eef01,01} 7 VK]

+((f' = f°) ® 017) v

where ’y[/k] and ’y[/;g] denote elements in D).

The main difficulty in this equation (and the main difference with the study in
Section 2.5) comes from the term

A% (0
fe [\ /| @t fer [\ /| @€t
d+1 Ve Y
Y > (Bea)op
v k=l ye

If 4/ is an element of D),k > 2, then the maps fOl appearing in this term are
applied to elements 'YfZ] with £ < d— k. Thus these terms are already known, according
to the induction hypothesis.

If v/ = p® 7 is an element of Dy, we first notice that p(p @ 7) = (p®@ m) ® 7 for

p®m e PXE CP. Then we can rewrite the term for k = 1 as

Ay Ay
frIN 7 ferIN 7/
’Y,/,! "
\ / ®O-(7ra§#a'“a§fé)

pRT
\

with p in P and 7 in Ey. Exactly one of the ¢” has to be 01% so that this term ends
up in B® 01% (cf. the description of the action of Eg on N*(Al) in Section 1.4). Thus
there is only one map f°! involved. If this map f°' is applied to an element 7{2} with
¢ < d—1, the term is known. If this map f°! is applied to an element 7{2] with £ = d,

we know that all other v must be in degree 0, and thus the f€ applied to these 7" are
just .
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Thus we rewrite Equation (3) as

Ay Ay A4
vIN sled N /|e0# |\ /| ed
,7// [ ] 1 7//
- > (B®o)op |
v /
c.c{0,1} 7[‘1}
Ay Q4 Ay
N sed 1IN /et fe N /|
d—1 Vs Vi Ve
= > (B®a)op l
e€{0,1} =0 T
|
(o™ Ay
FUN s|ed e N /| ed
d+1 ’Yi’ ’Yi’
+ Y D (Bwoa)op S , _
c.ef01,01} =2 7[‘k]
A« ('
d @ N\ " / al an
x VK] A N/
=D > (fphog®017) N ER (VAR WUy o

The last sum of the left hand side can be simplified. Actually, for a given 7{1] =pRm,
we have
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Ay Qe
s [\ Jl@01# |\ /| ed
Y Ve
\
!
Rl
|
Ay
A4
Ve
:5 ‘ ®O’(7T,€:1#,' ,@#7 767#)

|
A A Ay
YN /// f[% h /// YN ///
=f T ’Y‘* T ®a(w,ef,...,@#,...,ef£).
p
|

Only one choice of €’s will give a non-zero term: the one where after composition
with the permutation 7, the sequence is (Q#, ...,0%,017 1%, ..., 1%), according to the
action of Eg on N*(Al).

Thus we finally get

* a*
a1 an alf \ " / :|
01 # N7 01 # . gy A
(f" ®017) d?v + ) () © 01%) \ | /
12 f'}/
|
Q4 Ay Ay
oINS AN
" 7 "
o Ve g
- 8 | ® 01#
v My

A (™
SN Aear# N /@
d—1 " o
= > (Br@o)op j
e.efo1y =0 Ri
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(™ A%
fa [\ A [\ /| e
d+1 Ve Vs

+ > Z;(M@U)Op \ /

!
e.c{01,01} F VK]

Qs a
a[ N ] —
d Ay ’yf]::} Ay N
S geat) | N |+t eot) [y

vo k=2 ,}/ ‘
|

where '7[/1]|P denotes the component in P of '7[’1] € PXE.
All the terms in the right hand side are already known. The left hand side can be
identified with (O(f2 ® 01%))(v) where 0 is the differential in Hom((D(A), 8y, ), (B ®

[d]
ﬂ#v ﬁl))

We have proved

3.4. Proposition. If the cohomology group H' Ders(Rs(D(A),da,), (B ® 01%, 1)) is
equal to 0, we can construct a map f[% (i.e. continue our induction), and hence a map
¢ answering the initial problem.

Proof. The proof follows exactly the same idea as the proof of 2.6. g

We now relate this cohomology group with one group of I'-cohomology:

3.5. Theorem. The obstructions to the existence of a homotopy of two realizations of
a morphism lie in HI‘(F’,(H*A,H*B).

Proof. The proof is almost the same as the proof of Theorem 2.7. The only difference
is that working with B ® 017 instead of B creates a shift of —1 in the degree of the
codomain, and thus in the degree of the cohomology group. O
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