Feuille de TD1

Exercice 1. Factorisation de polynômes, polynômes minimaux et formes de Jordan On travaille dans le corps des complexes.

On considère le polynôme $P = X^7 + 2X^6 - X^5 - 6X^4 - 9X^3 - 10X^2 - 7X - 2$ que l'on peut écrire comme $\prod_i (X - \lambda_i)^{n_i}$, où les λ_i sont les racines de P et n_i leurs multiplicités respectives. On appelle alors Q le polynôme $\prod_i (X - \lambda_i)$. On admet que $Q = X^4 - X^3 - X^2 - X - 2$.

- 1. Rappeler comment obtenir Q à partir de P.
- 2. En trouvant deux racines évidentes de Q, factoriser Q.
- 3. Obtenir alors une factorisation de P.
- 4. Donner un exemple de matrice dans $M_7(\mathbb{C})$ dont P est le polynôme caractéristique et Q est le polynôme minimal.
- 5. Donner des exemples de matrice dans $M_7(\mathbb{C})$ dont P est le polynôme caractéristique et (X+1)Q est le polynôme minimal (exemples avec des rangs différents). De telles matrices sont-elle diagonalisables ?
- 6. Pour une matrice dans $M_7(\mathbb{C})$ dont P est le polynôme caractéristique, quelles sont les autres possibilités pour le polynôme minimal?

Exercice 2. Décomposition de Dunford

On considère le corps $\mathbb{K} = \mathbb{C}$.

Obtenir de deux façons différentes la décomposition de Dunford de la matrice A définie par blocs

$$A = \begin{pmatrix} J_{\lambda,r} & 0\\ 0 & N_0 \end{pmatrix}$$

où $J_{\lambda,r}$ est un bloc de Jordan de taille r>0 associé à un réel λ non nul, et où N_0 est une matrice nilpotente de taille s>0.

Exercice 3. Algorithme de Jordan

On considère l'endomorphisme de \mathbb{C}^4 dont la matrice dans la base canonique est $M = \begin{pmatrix} -1 & -1 & 0 & 0 \\ 0 & -1 & 0 & 0 \\ 0 & 2 & -1 & 0 \\ 0 & -2 & 2 & 3 \end{pmatrix}$.

Déterminer sa forme de Jordan et une base associée. Décrire les espaces caractéristiques.

Exercice 4. Soit P le polynôme $X^2 + X + 1$ sur $\mathbb{F}_2[X]$.

- 1) Quelle est la dimension (comme \mathbb{F}_2 -espace vectoriel) de $\mathbb{F}_2[X]/(P)$? En donner une base simple.
- 2) Ecrire la table de multiplication de $\mathbb{F}_4 = \mathbb{F}_2[X]/(P)$ et montrer que $(\mathbb{F}_4^{\times}, \times) \simeq \langle \overline{X} \rangle$ (iso de groupes).

Exercice 5. Soit \mathbb{K} un corps et p sa caractéristique.

- a) Montrer que \mathbb{K} a une structure de \mathbb{F}_p -espace vectoriel.
- b) En déduire que si \mathbb{K} est fini, il existe $n \in \mathbb{N}^*$ tel que $|\mathbb{K}| = p^n$.

Exercice 6. Soit A un anneau (commutatif unitaire) intègre de caractéristique p.

On considère l'application $Frob: A \to A$ définie par $Frob(x) = x^p$.

- a) Montrer que Frob est un endomorphisme d'anneaux unitaires.
- b) Pour $A = \mathbb{F}_p$, montrer que Frob = id.
- c) Sur $\mathbb{F}_p[X]$, montrer que Frob est linéaire et déterminer ses points fixes.

Exercice 7. Factoriser $X^p - X \in \mathbb{F}_p[X]$. En déduire les points fixes de Frob sur \mathbb{F}_q , où $q = p^n$.

Exercice 8. Montrer que $\mathbb{F}_2[X]/(X^3+X+1)$ et $\mathbb{F}_2[X]/(X^4+X+1)$ définissent \mathbb{F}_8 et \mathbb{F}_{16} . Donner un générateur du groupe multiplicatif de ces corps.

On rappelle pour la suite du cours le théorème fondamental suivant :

Pour tout nombre premier p, pour tout entier naturel non nul n, il existe un corps de cardinal p^n . Ces corps s'obtiennent par exemple comme quotient de $\mathbb{F}_p[X]$ par un polynôme irréductible (engendrant un idéal maximal).