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Definitions

The electric displacement field, denoted by D(t) = ~D(~r , t), in units of
coulomb per metre squared C/m2.
The magnetic induction B(t) = ~B(~r , t) is measured in teslas or newtons per
meter per ampere.
E(t) = ~E(~r , t) is the electric field in newtons per coulomb N/C or volts per
meter V/m.
H(t) = ~H(~r , t) is the magnetic field in A/m.
J(t) = ~J(~r , t) is a surface electric current density measured in A/m.

ρ is a surface electric charge density measured in C/m2

– The continuity equation, ∇ · J = −∂ρ∂t
ε is a material permittivity in F/m (farad per meter). ε = ε0 in vacuum,
µ is a material permeabilty in H/m. µ = µ0 in vacuum.

Speed of light c (m/s) and characteristic impedance η(Ω).

– c = 1√
εµ and η =

√
µ
ε .
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Notations
Furthermore, we need the following Hilbert spaces that are related to the rotation
and divergence operators:

H(curl ; Ω) := {u ∈ L2(Ω); ∇× u ∈ L2(Ω)},
H0(curl ; Ω) := {u ∈ H(curl ; Ω); u× n|Γ = 0},

H(div; Ω) := {u ∈ L2(Ω); ∇ · u ∈ L2(Ω)},

H0(div; Ω) := {u ∈ L2(Ω); u · n|Γ = 0}.
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TU ClausthalMaxwell’s equations in nonlinear Optics

Ω be a volume in R3, with boundary Γ and unit outward normal n = ~n. D(t),
B(t) , E(t) and H(t) represent the displacement field, magnetic induction, electric
and magnetic field intensities respectively, where the time variable t belongs to
some interval (0,T ), T > 0. Given a current density function J(t), specifying
the applied current.The time-dependent Maxwell equations for nonlinear medium
as

∂

∂t
D(t) + σE(t)−∇×H(t) := J(t) in Ω× (0,T ), (1)

∂

∂t
B(t) +∇× E(t) := 0 in Ω× (0,T ), (2)

the following constitutive relations shall hold:

B(t) := µ0H(t), (3)
D(t) := ε0E(t) + P(E(t)). (4)

ε0 and µ0 are vacuum permittivity and permeability respectively. Generally, the
constitutive relation P(E) is approximated by a Taylor series for nonlinear optics
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Introduction

P(E(t)) := ε0

(
χ1(~r)E(t) + χ2(~r)|E(t)|2 + χ3(~r)E(t)3

)
. (5)

Restrict the model to isotropic materials so that the second term is
eliminated due to inversion symmetry, and third term is to simplified as
χ3(~r)

(
E(t) · E(t)

)
E(t). Rewrite D(t) as,

∂

∂t
D(t) =

(
aI3 + 2χ3(~r)C

)
∂

∂t
E(t), (6)

where I3 is a (3× 3) unit matrix and a = ε0 + χ3(~r)|E(t)|2. Furthermore intro-
ducing C,

C =

(
E2
1 E1E2 E1E3

E1E2 E2
2 E2E3

E1E3 E2E3 E2
3

)
.
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Introduction
For simplicity we could rewrite displacement field,

∂

∂t
D(t) =

(
ε(E)
)
∂

∂t
E(t). (7)

For the spatial case electric fields E(t) is also satisfied:(
E(t) ·

∂E(t)
∂t
)
E(t) =

(
E(t) · E(t)

)
∂E(t)
∂t

. (8)

We could also rewrite D(t) in case of (8):

∂

∂t
D(t) =

(
ε0 + 3χ3(~r)E(t) · E(t)

)
∂

∂t
E(t). (9)

We suppose χ(~r) > 0 and ε0 + 3χ3(~r)|E(t)|2 6= 0. This condition is fulfilled for
|3χ3(~r)|E(t)|2| < |ε0|. For χ(~r) = 0, we obtain the linear Maxwell’s equations.
Thus the nonlinear Maxwell’s equations (1)-(4) can be written as:
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Weak Formulations

ε(E)
∂

∂t
E(t) + σE(t)−∇×H(t) = J(t) in Ω× (0,T ), (10)

µ0
∂

∂t
H(t) +∇× E(t) = 0 in Ω× (0,T ), (11)

n× E(t) = 0. (12)

Multiplying equation (10) by a test function Φ(t) ∈ U = H0(curl ; Ω) and inte-
grate over Ω. Similarly multiplying (11) by Ψ(t) ∈ V = H(div; Ω) and integrate
over Ω. Now, we can see that the solution
(E(t),H(t)) ∈

[
C1(0,T ;U) ∩ C1(0,T ;V)

]2 of (1)− (2) satisfies:

(ε(E)∂tE(t),Φ(t)) + (σE(t),Φ(t))−(H(t),∇× Φ(t)) = (J(t),Φ(t))
∀Φ(t) ∈ U, (13)

(µ0∂tH(t),Ψ(t)) + (∇× E(t),Ψ(t)) = 0 ∀Ψ(t) ∈ V, (14)

for 0 < t < T with initial conditions:

E(0) = E0 and H(0) = H0, (15)
by Asad Anees, Lutz Angermann Time Domain Finite Element Methods for the Maxwell’s Equations
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Notations
Let PK be the space of scalar real-valued polynomials in the three variables of
maximum degree of k, and P̃k be the space of scalar real-valued homogeneous
polynomials of degree exactly k. For any integer k ≥ 1 and we define the following
subspaces of Pk := [Pk ]3.

Dk = Pk−1 ⊕ P̃k−1 · r , r =< x1, x2, x3 >
Rk = Pk−1 ⊕ Sk , where

Sk = {p ∈ (P̃k)3; p(x) · x = 0}.

i.e Sk ⊂ Pk and Rk ⊂ Pk .

Uh = {vh ∈ H(curl ; Ω); vh|K ∈ Rk ∀K ∈ Th}, (16)

Vh = {uh ∈ U; uh|K ∈ Dk ∀K ∈ Th}. (17)
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Spatial discretization for nonlinear case

Let Uh ⊂ U and Vh ⊂ V be finite dimensional subspaces of given spaces. We
may find (Eh(t),Hh(t)) ∈ C1(0,T ;Uh)× C1(0,T ;Vh) such that:

(ε(Eh)∂tEh(t),Φh(t)) + (σEh(t),Φh(t))− (Hh(t),∇× Φh(t)) = (Jh(t),Φh(t))
∀Φh(t) ∈ Uh, (18)

(µ0∂tHh(t),Ψh(t)) + (∇× Eh(t),Ψh(t)) = 0 ∀Ψh(t) ∈ Vh, (19)

for 0 < t < T , subject to the initial conditions:

Eh(0) = E0 and Hh(0) = H0. (20)
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TU ClausthalWeak Formulation and Spatial discretization for Linear case

For χ(~r) = 0 in (10). Then, we obtain a linear Maxwell’s equations, and time-
independent dielectric permittivity ε, magnetic permeability µ and electric con-
ductivity σ. The weak solution (E(t),H(t)) of the system (1)-(2) for linear
Maxwell’s equations satisfies,

(εEt(t),Φ(t)) + (σE(t),Φ(t))− (H(t),∇× Φ(t)) = (J(t),Φ(t))
∀Φ(t) ∈ H0(curl ; Ω), (21)

(µHt(t),Ψ(t) + (∇× E(t),Ψ(t)) = 0 ∀Ψ(t) ∈ H(div; Ω). (22)

Uh ⊂ U and Vh ⊂ V be finite dimensional subspaces of given spaces. We may
find (Eh(t),Hh(t)) ∈ C1(0,T ;Uh)× C1(0,T ;Vh) such that:

(ε∂tEh(t),Φh(t)) + (σEh(t),Φh(t))− (Hh(t),∇× Φh(t)) = (J(t),Φh(t))
, ∀Φh(t) ∈ Uh, (23)

(µ∂tHh(t),Ψh(t)) + (∇× Eh(t),Ψh(t)) = 0, ∀Ψh(t) ∈ Vh, (24)

for 0 < t < T , subject to the initial conditions,

Eh(0) = E0 and Hh(0) = H0. (25)
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Conserve Energy for linear case

The method (23)-(25) is conserve energy. Take J(t) = 0, σ = 0 and choose
Φh(t) = Eh(t), and Ψh(t) = Hh(t) in (23)-(25) and adding (23)-(25), we obtain:

1
2

(
∂

∂t
‖Eh(t)‖2ε +

∂

∂t
‖Hh(t)‖2µ

)
= 0. (26)

Furthermore,

‖Eh(t)‖2ε + ‖Hh(t)‖2µ = ‖Eh(0)‖2ε + ‖Hh(0)‖2µ. (27)

which states that energy in the discrete system is independent of time.
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Matrices
The method uses edge finite elements as a basis for the electric field and face
finite elements for the magnetic flux density. The edge elements have tangential
continuity whereas the face elements have normal continuity across interfaces.
The Matrices in these equations have the following form:

{M1
α}ij =

∫
Ω
αΦ1

i · Φ1
j dΩ,

{M2
α}ij =

∫
Ω
αΦ2

i · Φ2
j dΩ,

{G12
α }ij =

∫
Ω
α(∇× Φ1

i ) · Φ2
j dΩ.
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TU ClausthalSpatial Discretization for nonlinear case

This leads to the following semi-discrete matrix equations for liner case:

M(1)
Update

∂e
∂t

+ M(1)
σ e =

(
G(12)

)>h + J(1), (28)

M(2)
µ
∂h
∂t

= −G(12)e, (29)

Here e and h are the electric fields and magnetic fields degrees of freedom with
size dimUh and dimVh respectively. M1

Update is the positive definite mass matrix
with size dimUh × dimUh. The matrix M1

Update will have to update or calculate
at each time step, e.g mass matrix M1

Update is obtained at the time step n by the
approximated value of electric field e at the time step n− 1. M1

σ is also positive
definite matrix with size dimUh × dimUh. M2

µ is also symmetric and positive
definite with size dimVh × dimVh. Vectors e and h have different dimensions.
The G12 matrix is a discrete representation of curl with size dimVh × dimUh.
However, G12 matrix is rectangular. J(1) is a discrete current source.
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Spatial Discretization for linear case

This linear Maxwell’s equations leads to the following semi-discrete matrix equa-
tions for liner case:

M(1)
ε
∂e
∂t

+ M(1)
σ e =

(
G(12)

)>h + J(1), (30)

M(2)
µ
∂h
∂t

= −G(12)e, (31)

where M(1) and M(2) are the first 1-form and 2-form mass matrices respectively.
The matrix G(12) is a discrete representation of the curl operator. e and h are the
vectors of electric fields and magnetic fields degrees of freedom. J(1) is a discrete
current source. Since the vectors e and h have different dimensions, G(12) is
rectangular.
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TU ClausthalTime discretization using symplectic method in nonlinear case

Compute the number of time steps. nstep =
tfinal − t0

∆t
Set the initial conditions
e1 ← eInitial
h1 ← hInitial
loop over time steps.
for i=1 to nstep do
begin integration method update
ein ← ei
hin ← hi
update the field values
for j = 1 to k do

eout ← ein + αj∆t(M(1)
Update)−1

((
G(12)

)Thin −M(1)
σ ein + J(1)

)
hout ← hin + βj∆t(M(2)

µ )−1
(
G(12)

)
eout
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TU ClausthalTime discretization using symplectic method in nonlinear case

ein = eout
hin = hout
end for
Update field value for this time step
ei+1 ← eout
hi+1 ← hout
end for
efinal ← enstep+1

hfinal ← hnstep+1.

The value of β and α corresponding to the order of integration. Order=1

β1 = 1, α1 = 1.

Order=2,
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TU ClausthalTime discretization using symplectic method in nonlinear case

β1 =
1
2
, α1 = 0,

β2 =
1
2
, α2 = 1.

Order=3,

β1 =
2
3
, α1 =

7
24
,

β2 = −
2
3
, α2 =

3
4
,

β3 = 1, α3 = −
1
24
.

Order=4,

β1 =
2 + 2

1
3 + 2

−1
3

6
, α1 = 0,

β2 =
1− 2

1
3 − 2

−1
3

6
, α2 =

1

2− 2
1
3
,

β3 =
1− 2

1
3 − 2

−1
3

6
, α3 =

1

1− 2
2
3
.

β3 =
2 + 2

1
3 + 2

−1
3

6
, α4 =

1

2− 2
1
3
.
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CFL stability condition

β3 =
1− 2

1
3 − 2

−1
3

6
, α3 =

1

1− 2
2
3
.

β4 =
2 + 2

1
3 + 2

−1
3

6
, α4 =

1

2− 2
1
3
.

Here we should have to describe the stable time step ∆t. The CFL stability
condition for symplectic integration method is,

∆t ≤
2√

ρ((M(1)
ε )−1(

(
G(12)

)TM(2)
µ G(12))

,

where ρ is spectral radius function.
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Validation of Simulation
Numerical experiment are performed for the fully discretized Maxwell’s equations
to check the stability and convergence properties, where the frequency f =

√
3
2 c0

Hz and c0 is the speed of light in vacuum. ε = ε0 and µ = µ0 are the vacuum
permittivity and permeability respectively. The angular frequency is ω = 2πf
(rad·s−1). The exact electric and magnetic fields are given that

E1(t) = − cos(πx) sin(πy) sin(πz) cos(ωt),
E2(t) = 0.0,
E3(t) = sin(πx) sin(πy) cos(πz) cos(ωt),

H1(t) = −
π

ω
sin(πx) cos(πy) cos(πz) sin(ωt),

H2(t) =
2π
ω

cos(πx) sin(πy) cos(πz) sin(ωt),

H3(t) = −
π

ω
cos(πx) cos(πy) sin(πz) sin(ωt).
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Absolute Error for sympletic method

We measure the L2-norm of the error for a sequence of successively refined meshes
starting from a uniform coarse mesh. Here define notation Err(E) = ‖E(tn) −
En
h‖L2ε(Ω) and Err(H) = ‖H(tn)−Hn

h‖L2µ(Ω) that are used in Table 1.

Table: Absolute Error

Refined Electric and Magnetic Fields absolute error
Level Err(E) Err(B) stable time=∆t steps
l=2 2.786666 1.17524e-08 0.282302ns 300
l=3 0.733713 2.2434e-09 0.140619ns 600

Using MFEM and Hypre.
HperPCG solver.
Set tolerance = 1.0e-12.
Processors in space up to 60.
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TU ClausthalConservation of numerical energy

Energy of the system.
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TU ClausthalTrivial electric field at final time step

The scale shows value of electric field at final time step (n = 1200), by
employing the Sympletic time integration method, when electric and magnetic

fields, and current source are initialized zero.
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TU ClausthalTrivial magnetic field at final time step

The scale shows value of electric field at final time step (n = 1200), by
employing the Sympletic time integration method, when electric and magnetic

fields, and current source are initialized zero.
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TU ClausthalTrivial current source at final time step

The scale shows value of current source at final time step (n = 1200), by
employing the Sympletic time integration method, when electric and magnetic

fields, and current source are initialized zero.
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Energy of the system is zero, in case of trivial solution.
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Time discretization employing Backward Euler for linear case

For brevity, the backward Euler method for the system is given here as an example:

Compute the number of time steps.

nstep =
tfinal − t0

∆t
Set the initial conditions
e1 ← eInitial
h1 ← hInitial
Loop over time steps
for i=1 to nstep do
Begin integration method update
ein ← ei
hin ← hi
Update the field values
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TU ClausthalTime discretization Backward Euler for linear case

eout ← ein + ∆t(M(1)
ε )−1

((
G(12)

)Thout −M(1)
σ eout + J(1)

)
hout ← hin + ∆t(M(2)

µ )−1
(
G(12)

)
eout

Update the field values for this time step
ei+1 ← eout
hi+1 ← hout
end for

efinal ← enstep+1

hfinal ← hnstep+1

Plane wave with the wavelengths varying from 1.0 µm to 2.0 µm and the E(t)
field magnitude varying from 1 V/m to 1.5×108 were injected into the material
with ε0 and µ0 and χ3 = 2× 10−18, . The propagation of these plane waves was
simulated through 2000 times steps of 1

4∆t and snapshots are taken to measure
the wave velocities.
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(a) Electric field (b) Magnetic field

The scale shows value of electric and magnetic fields at final time step (n = 1000),
by employing the backward Euler method. Time step ∆t = 0.001
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TU ClausthalBeam tetrahedron meshes employing Backward Euler

(a) Electric field (b) Magnetic field

The scale shows value of electric and magnetic fields at final time step (n = 1000),
by employing the backward Euler method. Time step ∆t = 0.001.
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Conclusion and future work

Higher order in space and time, in case of complex material ε and µ,
parallel in space,
Energy conserving,
Perform also number of experiments for A-Stable and L-Stable method
(SDIRK23Solver, SDIRK34Solver and Backward Euler solver),
nonlinear Optics
Convergence and error estimation theoretically.

Future work

– validation in nonlinear Optics,
– parallel in space and time parallelism in XBraid.
– when material parameters ε and µ are complex R3x3 Matrix,

space-dependent parameters functions.
The authors would like to thank the Mark L. Stowell, Tzanio Kolev, Aaron
Fisher and White to provide the nice idea and cooperation to fix the bugs.
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