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Parallel-in-time methods

Motivations for parallel-in-time:

• Potential for faster total time to solution than sequential approach on
parallel computers, and can complement spatial parallelism.

• Some problems have forward/backward structure (e.g. control problems)
that cannot be solved sequentially like initial value problems.

• Many methods (parareal, space-time multigrid, PFASST, MGRIT...)
Nievergelt 64, Hackbusch 84, Womble 90, Horton 92, Horton Vandewalle
95, Lions Maday & Turinici 01, Bal 05, Gander & Vandewalle 07,
Emmett & Minion 12, Falgout et al. 14, Gander & Neumüller 16 . . .
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Parallel-in-time methods

Another reason to be interested in PinT

• Available theory and understanding of iterative methods for nonsymmetric
systems is much less developed than for symmetric problems.

• Time-global formulation of evolution problems leads to nonsymmetric
systems that are not “perturbations” of symmetric ones (e.g.
non-diagonalizability)

y ′ + ay = 0→

1 + τa
−1 1 + τa

. . .


y1

y2

...

 =

y0

0
...


• Suggests understanding of PinT methods is relevant in the broader

context of iterative methods for nonsymmetric systems.

Can we develop a (reasonably) systematic approach to preconditioning
nonsymmetric linear systems?
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Approach based on inf-sup theory

Key motivation: sufficient and necessary conditions for well-posedness for
linear problems (Nečas 62, Babuška 72, Brezzi 74)

Applications of inf-sup theory in numerical analysis of time-dependent
problems are diverse:

• A priori error analysis, e.g. Tantardini & Veeser ’16

• A posteriori error analysis, e.g. Ern, S. & Vohralik ’17

• Reduced basis methods, e.g. Urban & Patera ’14

In the context of iterative methods for solving discrete systems:

• Andreev, SIAM J. Numer. Anal. 16: wavelet-in-time method, multigrid in
space, based on continuous inf-sup stability of problem

• S., IMA J. Numer. Anal. 17: high-order DG time-stepping, based on
discrete inf-sup stability of the method, considered system of a single
time-step, robust with respect to space, time, & poly degree.
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I. Inf-sup theory
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Reminder

Inf-sup theorem (quoted here from Schwab 98)

Let X and Y real reflexive Banach spaces with norms ‖·‖X and ‖·‖Y
respectively. Let Y ∗ be the dual of Y .
Let further B : X → Y ∗ be a bounded linear operator. Then the
conditions

inf
u∈X\{0}

sup
v∈Y\{0}

〈Bu, v〉Y ∗×Y
‖u‖X‖v‖Y

≥ β > 0, (∗)

sup
u∈X
〈Bu, v〉Y ∗×Y > 0 ∀ v ∈ Y \ {0}, (∗∗)

are necessary and sufficient for well-posedness:
∀f ∈ Y ∗, ∃! u ∈ X such that Bu = f and ‖u‖X ≤ β−1‖f ‖Y ∗ .

Remark: can be equivalently formulated in terms of bilinear forms with
b(u, v) = 〈Bu, v〉Y ∗×Y .
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Inf-sup theory

Inf-sup theory for an abstract parabolic problem

∂tu +A(t) u = f in (0,T ), u(0) = u0 ∈ H (1)

with separable Hilbert spaces V ↪→ H ↪→ V∗ (densely and compactly)

and A(t) : V → V∗,

‖A(t)‖V→V∗ ≤ C bounded

〈A(t) u, v〉V∗×V = 〈A(t) v , u〉V∗×V , self-adjoint

α‖u‖2
V ≤ 〈A(t)u, u〉V∗×V , coercive

for all u, v ∈ V, with C and α > 0 independent of t.
Suppose also that f ∈ L2(0,T ;V∗).
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Inf-sup theory

Let 〈·, ·〉 be the duality pairing on V∗ × V from now on.

Well-posed weak formulation

Find u ∈ S := L2(0,T ;V) ∩ H1(0,T ;V∗) s.t. u(0) = u0 and∫ T

0

〈∂tu +A(t)u, v〉dt =

∫ T

0

〈f , v〉dt ∀v ∈ L2(0,T ;V),

Full details of theory in many standard references, see e.g. Wloka 87, Zeidler
90 (II/A).

Extension to many nonlinear problems in Roub́ıček 05.

Remark:
∫ T

0
〈·, ·〉dt is equivalent to the duality pairing on L2(0,T ;V∗) and

L2(0,T ;V)
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Inf-sup theory

Key identity: For all u ∈ S := L2(0,T ;V) ∩ H1(0,T ;V∗)

‖u‖2
S =

[
sup

v∈X\{0}

∫ T

0
〈∂tu +A(t)u, v〉dt

‖v‖A

]2

+ ‖u(0)‖2
H (†)

where the norms are defined by

‖u‖2
S :=

∫ T

0

‖∂tu‖2
∗,t + ‖u‖2

A(t)dt + ‖u(T )‖2
H

‖v‖2
A :=

∫ T

0

‖v‖2
A(t)dt

with ‖·‖2
A(t) = 〈A(t)·, ·〉V∗×V , and with ‖·‖∗,t the dual-norm on V∗

wrt ‖·‖A(t), i.e. ‖φ‖2
∗,t = 〈φ,A−1(t)φ〉 for φ ∈ V∗.

The identity implies that inf-sup condition (∗) holds here with constant β = 1.
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Proof

For all u ∈ S := L2(0,T ;V) ∩ H1(0,T ;V∗)

‖u‖2
S =

[
sup

v∈X\{0}

∫ T

0
〈∂tu +A(t)u, v〉dt

‖v‖A

]2

+ ‖u0‖2
H

Proof. Let w∗ = A−1(t)∂tu, then 〈∂tu +A(t)u, v〉 = 〈A(t)(w∗ + u), v〉 and[
sup

v∈L2(0,T ;V)\{0}

∫ T

0
〈A(t)(w∗ + u), v〉 dt

‖v‖A

]2

=

∫ T

0

‖w∗ + u‖2
A(t) dt (equality with v = w∗ + u)

=

∫ T

0

‖w∗‖2
A(t) + 2〈A(t)w∗, u〉+ ‖u‖2

A(t) dt

=

∫ T

0

‖∂tu‖2
∗,t + 2〈∂tu, u〉+ ‖u‖2

A(t) dt

=

∫ T

0

‖∂tu‖2
∗,t + ‖u‖2

A(t) dt + ‖u(T )‖2
H︸ ︷︷ ︸

=‖u‖2
S

−‖u(0)‖2
H
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Discrete inf-sup theory of Implicit Euler

Implicit Euler discretization of abstract time-dependent equation: find
un ∈ V

M(un − un−1) + τnAnun = τnfn, n = 1, . . . ,N

where M and {An}Nn=1 are SPD matrices, and u0 is given.

No assumption on time-regularity/continuity of An or fn.

No assumption on connection between M and An (so no assumption on τ
and h2)
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Discrete inf-sup theory of Implicit Euler

M(un − un−1) + τnAnun = τnfn, n = 1, . . . ,N

The link between analysis of continuous and discrete settings: equivalent
variational formulation (DG0): piecewise-constant approximation on
intervals In = (tn−1, tn]:

Find uτ s.t. b(uτ , vτ ) = `(vτ ) ∀ vτ ∈ Vτ := ⊕N
n=1P0(In;V).

where b(uτ , vτ ) :=
N∑

n=1

∫
In

(∂tIuτ , vτ )M + (uτ , vτ )An dt,

`(vτ ) := (u0, v1)M +
N∑

n=1

∫
In

(fn, vτ )M dt,

where Iuτ is P1 interpolatory reconstruction.

uτ Iuτ
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Discrete inf-sup theory of Implicit Euler

Discrete inf-sup condition

‖uτ‖S = sup
v∈Vτ\{0}

b(uτ , vτ )

‖vτ‖A
∀ uτ ∈ Vτ (2)

where

‖uτ‖2
S :=

N∑
n=1

∫
In

‖∂tIuτ‖2

MA−1
n M

+ ‖uτ‖2
An

dt + ‖uN‖2
M +

N∑
n=1

‖Luτ Mn−1‖2
M︸ ︷︷ ︸

jump terms

,

‖vτ‖2
A :=

N∑
n=1

∫
In

‖vτ‖2
An

dt,

Full details of proof in Neumüller & S. ’18, arxiv:1802.08126.

Extends to higher-order DG, see S. 17.

NB: Dual norm

‖v‖MA−1
n M = sup

w∈V\{0}

(v ,w)M
‖w‖An

=

√
v>MA−1

n Mv
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Relation to other norms

Relation to maximum norm

For any u ∈ S ,
‖u‖L∞(0,T ;H) ≤ ‖u‖S .

For any uτ ∈ Vτ ,

max
t∈[0,T ]

‖uτ (t)‖M ≤ ‖uτ‖S.

Constant is 1 for any T , any spaces V, H, and operator A(t) (and in
discrete case any {An}, any M, and N, . . . )
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II. Symmetric reformulations & inexact Uzawa iterations
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Symmetric reformulations

Matrix form
Function uτ ∈ Vτ ⇐⇒ u = [u1, . . . , uN ] ∈ VN := V× · · · × V,

b(uτ , vτ ) = `(vτ )

in matrix formM + τ1A1

−M M + τ2A2

. . .


︸ ︷︷ ︸

B

u1

...
uN


︸ ︷︷ ︸

u

=

τ1f1 + Mu0

τ2f2
. . .


︸ ︷︷ ︸

f

Can write
B = K ⊗M + diag{τnAn}Nn=1 = K + A

where K =

(
1
−1 1

. . .

)
∈ RN×N
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Symmetric reformulations

Matrix form of inf-sup:

uτ ∈ Vτ ⇐⇒ u ∈ VN , ‖·‖S ⇐⇒ ‖·‖S,

with SPD matrix S defined by defined by

S := K>A−1K︸ ︷︷ ︸∫
‖∂tIuτ‖2

MA
−1
n M

dt

+ K + K>︸ ︷︷ ︸
jump terms

+ A︸︷︷︸∫
‖uτ‖2

An
dt

Matrix form of inf-sup stability of implicit Euler

‖u‖S = sup
v∈VN\{0}

v>Bu

‖v‖A
∀u ∈ VN ,

where the norm ‖·‖S ⇐⇒ ‖·‖S with SPD matrix S.

Optimal test function in inf-sup is v = (A−1K + I)u.
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Symmetric reformulations

We can think of the mapping u 7→ (A−1K + I)u the optimal test function as
a left-preconditioner of the system

P = A−1K + I

Then
S = P>B

Symmetric reformulation I

So u is equivalently solution of SPD problem

Su = g, g := P>f.

In theory, could solve Su = g with, e.g., Precond. Conjugate Gradients.

Not always realistic: requires exact A−1 since S := K>A−1K + K + K> + A.
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Symmetric reformulations

To allow for inexact approximations of A−1, introduce auxiliary variable

Ap = Ku− f,

Su = g ⇐⇒ K>p + (K + K> + A)u = f.

Symmetric reformulation II[
A −K

−K> −
(
K + K> + A

)]︸ ︷︷ ︸
A

[
p

u

]
︸︷︷︸

u

=

[
−f

−f

]
︸ ︷︷ ︸

g

.

A is a symmetric saddle-point matrix.

S is the Schur complement of A.

• Advantage: new formulation no longer explicitly requires A−1.
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Symmetric reformulations

A =

[
A −K
−K> −

(
K + K> + A

)] , Au = g ,

Proposition: Stability of symmetric reformulation

c1‖u‖∗ ≤ sup
v∈VN×VN\{0}

v>Au
‖v‖∗

≤ c2‖u‖∗.

with c1 = 1
2

(√
5− 1

)
and c2 = 1

2

(√
5 + 1

)
, where

‖v‖2
∗ := ‖q‖2

A + ‖v‖2
S, v = [q, v] ∈ VN × VN .

• stability distinguishes this from “classical” symmetric formulations, e.g.
B>Bu = B>f.

• In fact, stable symmetric reformulation generalises straightforwardly to arbitrary
order dG-in-time.
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III. Convergent iterative method with parallel-in-time preconditioners



Inexact Uzawa method

Inexact Uzawa method

Sequence uj = [pj ,uj ] where

pj+1 = pj + Ã−1 (Kuj − Apj − f) ,

uj+1 = uj + ωH̃−1
(
f −K>pj+1 −

[
K + K> + A

]
uj

)
,

where Ã and H̃ are respectively preconditioners for A and S, ω > 0 a
damping parameter.

Recall A = diag{τnAn}Nn=1, so Ã can be built from standard elliptic solvers,
trivially parallel in time.

We will specify a suitable time-parallel H̃ in next few slides.
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Interpretation of inexact Uzawa as using inexact

left-preconditioner

Inexact Uzawa

pj+1 = pj + Ã−1 (Kuj − Apj − f) ,

uj+1 = uj + ωH̃−1
(
f −K>pj+1 −

[
K + K> + A

]
uj

)
,

Recall the ideal left preconditioner P = A−1K + I and S = P>B.

Suppose we choose initial guess p0 = −u0 (consistent with exact solution)

Then doing 1 step of the Inexact Uzawa on u0 = [p0,u0] is equivalent to

u1 = u0 + ωH̃−1P̃> (f − Bu0)

with P̃ = Ã−1K + I.

Advantage of saddle point formulation is established convergence theory.

NB: it is not necessary to require p0 = −u0 for the inexact Uzawa method
to converge (see following).
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General convergence theory of Uzawa

Inexact Uzawa

pj+1 = pj + Ã−1 (Kuj − Apj − f) ,

uj+1 = uj + ωH̃−1
(
f −K>pj+1 −

[
K + K> + A

]
uj

)
,

Convergence theory of inexact Uzawa requires:

‖I− Ã−1A‖Ã ≤ ρA < 1 (Contraction)

λminH̃ ≤ S ≤ λmaxH̃ (Spectral equivalence)

with λmax ≥ λmin > 0.
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General convergence theory of Uzawa

Theorem: Convergence of inexact Uzawa

Define the norm

‖v‖2
D := ωρA‖q‖2

Ã
+ ‖v‖2

H̃
∀v = [q, v].

Then
‖u − uj+1‖D ≤ ρU‖u − uj‖D

where ρU := max{σ−, σ+}:

σ− :=
1

2

[
(1− ρA)(1− ωλmin) +

√
4ρA + (1− ρA)2(1− ωλmin)2

]
,

σ+ :=
1

2

[
(1 + ρA)(1 + ωλmax)− 2 +

√
4ρA + [(1 + ρA)(1 + ωλmax)− 2]2

]
.

Convergent under damping condition:

ω λmax < 2
1− ρA

1 + ρA
=⇒ ρU < 1.

Proof based on Zulehner 02 23/39



Preconditioners for the Schur complement

We need to find H̃ such that

λminH̃ ≤ S ≤ λmaxH̃

Motivation by following example:

Example: Constant operators with uniform time-steps

In special case τn = τ and An = A:

S =
1

τ
K>K ⊗MA−1M + (K + K>)⊗M + IdN ⊗ τA.

K>K =

 2 −1
−1 2 −1

. . . −1
−1 1

 , K + K> =

 2 −1
−1 2 −1

. . . −1
−1 2

 .
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Preconditioners for the Schur complement

So far, {An}Nn=1 are SPD but otherwise general.

Main assumption: quasi-uniform spectral equivalence of τnAn

Assume ∃ SPD matrix A, τ > 0, and α ≥ 1 s.t.

1

α
τA ≤ τnAn ≤ α τA ∀ n = 1, . . . ,N,

• Weaker than assuming quasi-unif. of {An}Nn=1 and of {τn}Nn=1 separately.

• Rules out degeneracy.

• User can choose A and τ , but these are required in the computation.

• Does not require any time-regularity/continuity of the operators {An}.

• Does not require any relation between M and τnAn: no
mesh-size/time-step restriction.

25/39



Preconditioners for the Schur complement

So far, {An}Nn=1 are SPD but otherwise general.

Main assumption: quasi-uniform spectral equivalence of τnAn

Assume ∃ SPD matrix A, τ > 0, and α ≥ 1 s.t.

1

α
τA ≤ τnAn ≤ α τA ∀ n = 1, . . . ,N,

Consequence

Then S is spectrally equivalent to a simpler matrix S̃:

1

α
S̃ ≤ S ≤ 3αS̃,

S̃ :=
1

τ
K>K ⊗MA−1M + ĨdN ⊗ τA, ĨdN =

(
1

. . .
1/2

)

25/39



Preconditioners for the Schur complement

Idea: Block-diagonalise the simpler matrix S̃ by a Discrete Sine Transform
(DST)
Define (Type-II/III) DST

û = Φ u, ûk =
2

N

N∑
n=1

1

1 + δnN
un sin

(
(2k − 1)nπ

2N

)
, k = 1, . . . ,N.

u = Φ−1û, un =
N∑

k=1

ûk sin

(
(2k − 1)nπ

2N

)
, n = 1, . . . ,N.

Parallelization: implemented via Fast Fourier Transform: O(logN) parallel
complexity (and trivially parallel wrt space).

S̃ = Φ>D̂ Φ, D̂ :=
N

2
diag

{
µ2
k

τ
MA−1M + τA

}N

k=1

,

with µk := 2 sin
(

(2k−1)π
4N

)
> 0 for k = 1, . . . ,N.
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Preconditioners for the Schur complement

S̃ = Φ>D̂ Φ, D̂ :=
N

2
diag

{
µ2
k

τ
MA−1M + τA

}N

k=1

,

Idea from Pearson & Wathen 2014:

µ2
k

τ
MA−1M + τA ≈ 1

τ
HkA

−1Hk , Hk := µkM + τA

So we propose “ideal” (exact spatial inverses) preconditioner

H := Φ>Ĥ Φ, Ĥ :=
N

2
diag

{
1

τ
HkA

−1Hk

}N

k=1

,

Main spectral equivalence result

1

2α
H ≤ S ≤ 3αH.

Proof: 1
2 H ≤ S̃ ≤ H and 1

α S̃ ≤ S ≤ 3αS̃.
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Preconditioners for the Schur complement

In practice, we approximate H ≈ H̃ where H−1
k = (µkM + τA)−1 is

approximated by a spatial solver, e.g. multigrid V-cycle.

We shall assume that there are fixed positive constants γ and Γ such that

γH̃ ≤ H ≤ ΓH̃

Then
γ

2α
H̃ ≤ S ≤ 3αΓH̃.

So we can take λmin = γ/2α and λmax = 3αΓ in the convergence theorem
of inexact Uzawa.
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Preconditioners for the Schur complement

Summary of convergence theory

If ‖I− Ã−1A‖Ã ≤ ρA < 1, γH̃ ≤ H ≤ ΓH̃, and if ω < 2
3αΓ

1−ρA

1+ρA
,

then ∃ ρU ∈ (0, 1) such that

‖u − uj+1‖D ≤ ρU‖u − uj‖D.

• Rigorous proof of convergence provided availability of spatial solvers,
which is robust wrt number of time-steps N, time-length T , mesh size
and spatial operators (for fixed ω, α, ρA, γ and Γ).

• Only a small number of quantities determine ρU : ρA, γ, Γ, α, ω.
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Parallel complexity

Cost of different spatial operations treated abstractly:

• C add
V cost of additions and subtractions of vectors in V;

• Cmult
V cost of performing a matrix vector product with M, A or An,

n = 1, . . . ,N;

• Cprec
V cost of performing the action of the spatial preconditioners Ãn

−1 or

H̃k
−1.

Parallel complexity (assuming O(N) processors)

Parallel complexity = O
(
C add
V (logN + 1) + Cmult

V + Cprec
V

)
,

where constant is independent of V and of N.
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Theory summary

• existing theory of iterative methods for symmetric systems to solve
nonsymmetric Bu = f.

• allows for minimal regularity of data, operators & solutions

• allows inexact solves of spatial problems

• convergence robust wrt timesteps N, mesh & time-steps sizes

• no restrictions between time-steps/spatial meshes

• optimal time-parallel complexity of order logN (cf Worley 91)
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V. Numerical experiments

Model problem: heat equation in one, two, and three space dimensions

• Condition numbers (1D)

• Influence of spatial preconditioners (2D)

• Time-parallel (3D)

• Space-time parallel (3D)



Numerical experiments: condition numbers H−1S

1D heat equation (for accuracy of computations)

h = 1/64 N = 4 N = 8 N = 16 N = 32 N = 64 N = 128 N = 256 N = 512 N = 1024
λmin 0.8099 0.7080 0.6270 0.5728 0.5402 0.5223 0.5129 0.5081 0.5056
λmax 1.9999 1.9998 1.9996 1.9993 1.9986 1.9972 1.9944 1.9888 1.9780
κ(H−1S) 2.4693 2.8248 3.1893 3.4906 3.6994 3.8237 3.8885 3.9145 3.9122

h = 1/128 N = 4 N = 8 N = 16 N = 32 N = 64 N = 128 N = 256 N = 512 N = 1024
λmin 0.8099 0.7079 0.6270 0.5728 0.5402 0.5223 0.5129 0.5081 0.5056
λmax 2.0000 2.0000 1.9999 1.9998 1.9996 1.9993 1.9986 1.9972 1.9944
κ(H−1S) 2.4694 2.8250 3.1897 3.4916 3.7014 3.8278 3.8967 3.9310 3.9445

Theoretical bound: κ(H−1S) ≤ 6

In practice: κ(H−1S) ≤ 4

Eigenvalue λmax ≈ 2 suggest that damping parameter ω < 1 is enough for
ρA reasonably small: e.g. we can take ω = 0.9 .
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Numerical experiments

Effect of spatial approximations in Ãn ≈ An and H̃k ≈ Hk on convergence

• Direct solvers

• 1 multigrid V-cycle

• 2 multigrid V-cycles

2D computation with 4 064 256 DOFs

0 10 20 30 40

1

10−2

10−4

10−6

10−8

10−10

Iteration

‖u
−

u
j
‖ S

/
‖u
‖ S

Direct solvers

1 V-cycle

2 V-cycles

33/39



Numerical experiments

Robustness with respect to mesh size h, time-steps N

2D problem, using 1 multigrid V-cycle for spatial inverses:

h = 1/8 h = 1/16 h = 1/32 h = 1/64
N = 128 20 21 21 21
N = 256 21 22 22 22
N = 512 22 22 22 22
N = 1024 22 22 22 22

Iterations to reach ‖u− uj‖S < 10−6‖u‖S.
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Parallel computations

Setup

• 3D Heat equation on uniform meshes

• Vulcan BlueGene Q at Lawrence Livermore

• Computations up to 131 072 processors and 2 249 728 000 DOFs

• Time-parallelism in FFT using FFTW3 library

• Spatial problems using MFEM and hypre AMG solvers

• We used GMRES as an acceleration method for Uzawa
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Time-parallel results

Weak scaling tests for time-parallel results

• Fixed spatial mesh

• Assign 16 time-steps per processor, and increase N

• Iterations and timings to reach a residual tolerance of 10−8

procs N dofs iter time/iter total time time FFT (%) time AMG (%)
1 16 157 216 15 1.87 28.00 0.9% 84.5%
2 32 314 432 15 1.85 27.75 1.5% 83.4%
4 64 628 864 15 1.81 27.16 1.7% 82.8%
8 128 1 257 728 15 1.77 26.60 1.9% 82.4%

16 256 2 515 456 15 1.78 26.72 2.1% 82.1%
32 512 5 030 912 15 1.79 26.78 2.3% 82.0%
64 1 024 10 061 824 16 1.79 28.66 3.0% 81.3%

128 2 048 20 123 648 19 1.81 34.35 4.1% 79.8%
256 4 096 40 247 296 20 1.81 36.11 4.2% 79.5%
512 8 192 80 494 592 21 1.80 37.88 4.2% 79.3%

1 024 16 384 160 989 184 22 1.81 39.77 4.4% 79.0%
2 048 32 768 321 978 368 22 1.82 40.10 5.3% 78.3%
4 096 65 536 643 956 736 22 1.87 41.09 7.4% 76.4%

Weak scaling. Computational times in seconds.

Notice that time/iter is essentially constant.
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Strong scaling results

• Fix N = 65 356 and increase number of processors

• Iterations and timings to reach a residual tolerance of 10−8

procs N dofs iter time/iter total time time FFT (%) time AMG (%)
16 65 536 643 956 736 22 310.18 6823.88 3.9% 72.9%
32 65 536 643 956 736 22 155.68 3425.04 4.1% 72.9%
64 65 536 643 956 736 22 78.66 1730.53 4.8% 72.4%

128 65 536 643 956 736 22 39.98 879.52 5.5% 72.0%
256 65 536 643 956 736 22 20.89 459.60 7.1% 70.5%
512 65 536 643 956 736 22 10.76 236.82 7.3% 70.9%

1024 65 536 643 956 736 22 5.65 124.22 6.8% 72.3%
2048 65 536 643 956 736 22 3.13 68.79 7.0% 74.1%
4096 65 536 643 956 736 22 1.87 41.09 7.4% 76.4%

Strong scaling. Computational times in seconds.

• Very good strong scaling

• Costs of time-parallelism for FFTs is much smaller than cost of solving
spatial problems.
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Space-time parallelism

• 3D heat equation in unit cube with 262 144 elements, and N = 4096
time-steps. Total 2 249 728 000 DOFs

• px processors in space, pt in time: total pxpt processors (up to 131 072)

• Spatial parallelism in AMG provided by hypre (default settings).

• Timings to solution

procs w.r.t. space px
16 32 64 128 256 512

pr
o

cs
w

.r
.t

.
ti

m
e
p
t

4 12 158.70 7 000.47 4 381.72 2 925.62 2 132.41 2 107.73
8 6 721.02 3 911.30 2 437.63 1 654.01 1 219.39 1 170.38

16 4 016.91 3 522.05 1 459.71 1 007.60 728.52 703.79
32 2 203.77 1 946.12 822.15 565.93 421.31 418.68
64 1 212.84 9 04.27 429.03 304.47 238.31 245.17

128 667.20 468.11 220.43 162.00 130.97 135.74
256 341.14 232.08 117.75 85.76 70.97 74.36
512 172.21 119.18 59.54 44.76 37.58

1 024 84.94 60.44 30.12 23.07
2 048 44.92 31.73 15.96
4 096 27.94 21.29
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Summary

• Parabolic problems

◦ general time-dependent self-adjoint operators and right-hand sides,
◦ No regularity/continuity assumptions on the data/operators

• Equivalent inf-sup stable saddle-point symmetric formulations

• Robust convergence rates for inexact Uzawa

◦ Time-parallel & spectrally equivalent preconditioners for S
◦ Easy implementation: FFT and black-box spatial preconditioners.
◦ Parallel complexity O(logN).
◦ No restrictions on spatial mesh & time-step sizes

• Good weak and strong scaling in parallel computations

Full details in Neumüller & S. 18, arxiv:1802.08126

Inf-sup approach for more general nonsymmetric linear systems?

Thank you!
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