A New Parareal Algorithm for Problems with Discontinuous Sources I. Kulchytska¹, M. J. Gander², S. Schöps¹, I. Niyonzima³

¹Institut Theorie Elektromagnetischer Felder and Graduate School CE, TU Darmstadt,

²Section de Mathématiques, University of Geneva,

³Department of Civil Engineering and Engineering Mechanics, Columbia University

TECHNISCHE

May 4, 2018 | TU Darmstadt | Institut Theorie Elektromagnetischer Felder and Graduate School CE | Iryna Kulchytska-Ruchka | 1

Outline of the Talk

Introduction

- Motivation
- The eddy current problem
- 2 Systems with highly-oscillatory excitations
 - Modified Parareal with reduced coarse dynamics
 - Convergence results for nonsmooth sources
 - Numerical example: induction machine
- 3 Acceleration of convergence to the steady state
 - Time-periodic eddy current problem
 - Parareal for time-periodic problems
 - Results for the induction machine
- 4 Conclusions and outlook

Outline of the Talk

1 Introduction

- Motivation
- The eddy current problem
- 2 Systems with highly-oscillatory excitations
- 3 Acceleration of convergence to the steady state
- 4 Conclusions and outlook

Motivation

- E-bike with a synchronous machine
- Robust geometry optimization
- Expensive time domain simulations

Motivation

- E-bike with a synchronous machine
- Robust geometry optimization
- Expensive time domain simulations

The eddy current problem

Eddy current problem on domains Ω_1 and Ω_2

$$\boldsymbol{\sigma} \frac{\partial \vec{A}}{\partial t}(\vec{x},t) = -\nabla \times \left(\boldsymbol{\nu} \nabla \times \vec{A}(\vec{x},t)\right) + \vec{J}_{\rm s}(\vec{x},t)$$

with magnetic vector potential $\vec{A}(\vec{x}, 0) = \vec{A}_0(\vec{x})$, current density in coils and magnets \vec{J}_s , conductivity $\sigma(\vec{x})$ and reluctivity $\nu(\vec{x}, \vec{A})$.

Spatial discretization yields initial value problem

$$\mathbf{Md}_t \mathbf{u}(t) = \mathbf{f}(t, \mathbf{u}(t)), \ t \in (0, T],$$
$$\mathbf{u}(0) = \mathbf{u}_0,$$

with unknown $\mathbf{u}(t)$, mass matrix \mathbf{M} and right-hand-side $\mathbf{f}(...)$.

The eddy current problem

Eddy current problem on domains Ω₁ and Ω₂

$$\boldsymbol{\sigma} \frac{\partial \vec{A}}{\partial t}(\vec{x},t) = -\nabla \times \left(\boldsymbol{\nu} \nabla \times \vec{A}(\vec{x},t)\right) + \vec{J}_{\rm s}(\vec{x},t)$$

with magnetic vector potential $\vec{A}(\vec{x}, 0) = \vec{A}_0(\vec{x})$, current density in coils and magnets \vec{J}_s , conductivity $\sigma(\vec{x})$ and reluctivity $\nu(\vec{x}, \vec{A})$.

Spatial discretization yields initial value problem

$$\mathbf{M}\mathbf{d}_t \mathbf{u}(t) = \mathbf{f}(t, \mathbf{u}(t)), \ t \in (0, T],$$
$$\mathbf{u}(0) = \mathbf{u}_0,$$

with unknown $\mathbf{u}(t)$, mass matrix \mathbf{M} and right-hand-side $\mathbf{f}(...)$.

The eddy current problem

Eddy current problem on domains Ω_1 and Ω_2

$$\boldsymbol{\sigma} \frac{\partial \vec{A}}{\partial t}(\vec{x},t) = -\nabla \times \left(\boldsymbol{\nu} \nabla \times \vec{A}(\vec{x},t)\right) + \vec{J}_{\rm s}(\vec{x},t)$$

with magnetic vector potential $\vec{A}(\vec{x}, 0) = \vec{A}_0(\vec{x})$, current density in coils and magnets \vec{J}_s , conductivity $\sigma(\vec{x})$ and reluctivity $\nu(\vec{x}, \vec{A})$.

Spatial discretization yields initial value problem

$$\mathbf{Md}_t \mathbf{u}(t) = \mathbf{f}(t, \mathbf{u}(t)), \ t \in (0, T],$$
$$\mathbf{u}(0) = \mathbf{u}_0,$$

with unknown $\mathbf{u}(t)$, mass matrix \mathbf{M} and right-hand-side $\mathbf{f}(...)$.

Challenges

- Machines operate most of their life time in steady state
- Long simulation time until steady state is reached
- Effects on several time scales, e.g. due to pulsed excitations
- Many time steps yield time-consuming computation

Challenges

- Machines operate most of their life time in steady state
- Long simulation time until steady state is reached
- Effects on several time scales, e.g. due to pulsed excitations
- Many time steps yield time-consuming computation

parallel-in-time method

Outline of the Talk

1 Introduction

- 2 Systems with highly-oscillatory excitations
 - Modified Parareal with reduced coarse dynamics
 - Convergence results for nonsmooth sources
 - Numerical example: induction machine
- 3 Acceleration of convergence to the steady state
- 4 Conclusions and outlook

Parareal for highly-oscillatory discontinuous excitation

Parareal

- PWM (pulse width modulation): excitation contains high-order frequency components
- Propagators: fine *F* and coarse *G*
- Solver \mathcal{F} resolves high-frequency pulses
- Solver *G* might not capture dynamics

PWM signal with a switching frequency of 500 Hz.

Parareal for highly-oscillatory discontinuous excitation

Parareal

- PWM (pulse width modulation): excitation contains high-order frequency components
- Propagators: fine ${\cal F}$ and coarse ${\cal G}$
- Solver \mathcal{F} resolves high-frequency pulses
- Solver *G* might not capture dynamics

Idea

- Solve coarse problem for slowly-varying smooth input
- Low-frequency component: sinusoidal waveform $\sin\left(\frac{2\pi}{T}t\right)$

PWM signal with a switching frequency of 500 Hz and a sine wave of 50 Hz.

Parareal for highly-oscillatory discontinuous excitation

Parareal

- PWM (pulse width modulation): excitation contains high-order frequency components
- Propagators: fine ${\cal F}$ and coarse ${\cal G}$
- Solver \mathcal{F} resolves high-frequency pulses
- Solver *G* might not capture dynamics

Idea

- Solve coarse problem for slowly-varying smooth input
- Low-frequency component: sinusoidal waveform $\sin\left(\frac{2\pi}{T}t\right)$

Question

What about convergence?

PWM signal with a switching frequency of 500 Hz and a sine wave of 50 Hz.

Splitting of the nonsmooth excitation for $t \in (0,T]$

 $\mathbf{M} \mathrm{d}_t \mathbf{u}(t) = \mathbf{f}(t, \mathbf{u}(t))$

Splitting of the nonsmooth excitation for $t \in (0, T]$

$$\mathbf{M}d_t\mathbf{u}(t) = \mathbf{f}(t, \mathbf{u}(t)) = \overline{\mathbf{f}}(t, \mathbf{u}(t))$$

fast switching

slow smooth

Splitting of the nonsmooth excitation for $t \in (0,T]$

$$\mathbf{M}\mathbf{d}_t\mathbf{u}(t) = \mathbf{f}(t, \mathbf{u}(t)) = \overline{\mathbf{f}}(t, \mathbf{u}(t))$$

slow smooth

Reduced coarse propagator $\overline{\mathcal{G}}$ $\mathbf{M} \mathbf{d}_t \mathbf{u}(t) = \overline{\mathbf{f}}(t, \mathbf{u}(t)),$ $\mathbf{u}(0) = \mathbf{u}_0$ • Original fine propagator \mathcal{F} $\mathbf{M} d_t \mathbf{u}(t) = \mathbf{f}(t, \mathbf{u}(t)),$ $\mathbf{u}(0) = \mathbf{u}_0$

Splitting of the nonsmooth excitation for $t \in (0,T]$

$$\mathbf{M}\mathbf{d}_t\mathbf{u}(t) = \mathbf{f}(t, \mathbf{u}(t)) = \overline{\mathbf{f}}(t, \mathbf{u}(t))$$

Reduced coarse propagator $\overline{\mathcal{G}}$ $\mathbf{M} \mathbf{d}_t \mathbf{u}(t) = \overline{\mathbf{f}}(t, \mathbf{u}(t)),$ $\mathbf{u}(0) = \mathbf{u}_0$ • Original fine propagator \mathcal{F} $\mathbf{M}d_t\mathbf{u}(t) = \mathbf{f}(t, \mathbf{u}(t)),$ $\mathbf{u}(0) = \mathbf{u}_0$

Modified Parareal update formula

 $\begin{aligned} \mathbf{U}_{0}^{(k+1)} &= \mathbf{u}_{0}, \\ \mathbf{U}_{n}^{(k+1)} &= \mathcal{F}(T_{n}, T_{n-1}, \mathbf{U}_{n-1}^{(k)}) + \bar{\mathcal{G}}(T_{n}, T_{n-1}, \mathbf{U}_{n-1}^{(k+1)}) - \bar{\mathcal{G}}(T_{n}, T_{n-1}, \mathbf{U}_{n-1}^{(k)}) \end{aligned}$

slow smooth

Splitting of the nonsmooth excitation for $t \in (0,T]$

$$\mathbf{M}\mathbf{d}_t\mathbf{u}(t) = \mathbf{f}(t, \mathbf{u}(t)) = \overline{\mathbf{f}}(t, \mathbf{u}(t))$$

Reduced coarse propagator $\overline{\mathcal{G}}$ $\mathbf{M} d_t \mathbf{u}(t) = \overline{\mathbf{f}}(t, \mathbf{u}(t)),$ $\mathbf{u}(0) = \mathbf{u}_0$ • Original fine propagator \mathcal{F} $\mathbf{M} d_t \mathbf{u}(t) = \mathbf{f}(t, \mathbf{u}(t)),$ $\mathbf{u}(0) = \mathbf{u}_0$

Modified Parareal update formula

 $\begin{aligned} \mathbf{U}_{0}^{(k+1)} &= \mathbf{u}_{0}, \\ \mathbf{U}_{n}^{(k+1)} &= \mathcal{F}(T_{n}, T_{n-1}, \mathbf{U}_{n-1}^{(k)}) + \bar{\mathcal{G}}(T_{n}, T_{n-1}, \mathbf{U}_{n-1}^{(k+1)}) - \bar{\mathcal{G}}(T_{n}, T_{n-1}, \mathbf{U}_{n-1}^{(k)}) \end{aligned}$

slow smooth

Proof: based on perturbation results for ODEs with discontinuities

Theorem (Gander, K.-R., Schöps, Niyonzima, '18)

• For $\mathcal{I} := [0, T]$ let $\Delta T = T/N$ denote window length and $\mathcal{F}(T_n, T_{n-1}, \mathbf{U}_{n-1}^{(k)})$ be the exact solution to the original problem at T_n , with the RHS $\mathbf{f} = \bar{\mathbf{f}} + \tilde{\mathbf{f}}$. For $p \ge 1$ we denote $C_p = \|\tilde{\mathbf{f}}\|_{L^p(\mathcal{I},\mathbb{R}^n)}$ and let $q \ge 1$ be given by 1/p + 1/q = 1.

• Assume $\overline{\mathcal{G}}(T_n, T_{n-1}, \mathbf{U}_{n-1}^{(k)})$ is an approximation to the reduced problem with the smooth RHS $\overline{\mathbf{f}}$. The error is bounded by $C_3 \Delta T^{l+1}$, and let $\overline{\mathcal{G}}$ satisfy the Lipschitz condition:

$$\|\bar{\mathcal{G}}(t+\Delta T,t,U) - \bar{\mathcal{G}}(t+\Delta T,t,Y)\| \le (1+C_2\Delta T)\|U-Y\|.$$

$$\bar{C}_1^k \left[\bar{C}_4 C_p \Delta T^{(l+1)k+1/q} + \bar{C}_3 \left(\Delta T^{l+1} \right)^{k+1} \right] \frac{(1+C_2 \Delta T)^{n-k-1}}{(k+1)!} \prod_{j=0}^k (n-j).$$

Theorem (Gander, K.-R., Schöps, Niyonzima, '18)

• For $\mathcal{I} := [0, T]$ let $\Delta T = T/N$ denote window length and $\mathcal{F}(T_n, T_{n-1}, \mathbf{U}_{n-1}^{(k)})$ be the exact solution to the original problem at T_n , with the RHS $\mathbf{f} = \bar{\mathbf{f}} + \tilde{\mathbf{f}}$. For $p \ge 1$ we denote $C_p = \|\tilde{\mathbf{f}}\|_{L^p(\mathcal{I},\mathbb{R}^n)}$ and let $q \ge 1$ be given by 1/p + 1/q = 1.

• Assume $\overline{\mathcal{G}}(T_n, T_{n-1}, \mathbf{U}_{n-1}^{(k)})$ is an approximation to the reduced problem with the smooth RHS $\overline{\mathbf{f}}$. The error is bounded by $C_3 \Delta T^{l+1}$, and let $\overline{\mathcal{G}}$ satisfy the Lipschitz condition:

$$\|\bar{\mathcal{G}}(t+\Delta T,t,U) - \bar{\mathcal{G}}(t+\Delta T,t,Y)\| \le (1+C_2\Delta T)\|U-Y\|.$$

$$\bar{C}_1^k \left[\bar{C}_4 C_p \Delta T^{(l+1)k+1/q} + \bar{C}_3 \left(\Delta T^{l+1} \right)^{k+1} \right] \frac{(1+C_2 \Delta T)^{n-k-1}}{(k+1)!} \prod_{j=0}^k (n-j).$$

Theorem (Gander, K.-R., Schöps, Niyonzima, '18)

• For $\mathcal{I} := [0, T]$ let $\Delta T = T/N$ denote window length and $\mathcal{F}(T_n, T_{n-1}, \mathbf{U}_{n-1}^{(k)})$ be the exact solution to the original problem at T_n , with the RHS $\mathbf{f} = \bar{\mathbf{f}} + \tilde{\mathbf{f}}$. For $p \ge 1$ we denote $C_p = \|\tilde{\mathbf{f}}\|_{L^p(\mathcal{I},\mathbb{R}^n)}$ and let $q \ge 1$ be given by 1/p + 1/q = 1.

• Assume $\overline{\mathcal{G}}(T_n, T_{n-1}, \mathbf{U}_{n-1}^{(k)})$ is an approximation to the reduced problem with the smooth RHS $\overline{\mathbf{f}}$. The error is bounded by $C_3 \Delta T^{l+1}$, and let $\overline{\mathcal{G}}$ satisfy the Lipschitz condition:

$$\|\bar{\mathcal{G}}(t+\Delta T,t,U) - \bar{\mathcal{G}}(t+\Delta T,t,Y)\| \le (1+C_2\Delta T)\|U-Y\|.$$

$$\bar{C}_1^k \left[\bar{C}_4 \frac{C_p}{2} \Delta T^{(l+1)k+1/q} + \bar{C}_3 \left(\Delta T^{l+1} \right)^{k+1} \right] \frac{(1+C_2\Delta T)^{n-k-1}}{(k+1)!} \prod_{j=0}^k (n-j).$$

Theorem (Gander, K.-R., Schöps, Niyonzima, '18)

• For $\mathcal{I} := [0, T]$ let $\Delta T = T/N$ denote window length and $\mathcal{F}(T_n, T_{n-1}, \mathbf{U}_{n-1}^{(k)})$ be the exact solution to the original problem at T_n , with the RHS $\mathbf{f} = \bar{\mathbf{f}} + \tilde{\mathbf{f}}$. For $p \ge 1$ we denote $C_p = \|\tilde{\mathbf{f}}\|_{L^p(\mathcal{I},\mathbb{R}^n)}$ and let $q \ge 1$ be given by 1/p + 1/q = 1.

• Assume $\overline{\mathcal{G}}(T_n, T_{n-1}, \mathbf{U}_{n-1}^{(k)})$ is an approximation to the reduced problem with the smooth RHS $\overline{\mathbf{f}}$. The error is bounded by $C_3 \Delta T^{l+1}$, and let $\overline{\mathcal{G}}$ satisfy the Lipschitz condition:

$$\|\bar{\mathcal{G}}(t+\Delta T,t,U) - \bar{\mathcal{G}}(t+\Delta T,t,Y)\| \le (1+C_2\Delta T)\|U-Y\|.$$

$$\bar{C}_1^k \left[\bar{C}_4 \frac{C_p}{\Delta T^{(l+1)k+1/q}} + \bar{C}_3 \Delta T^{(l+1)k+l+1} \right] \frac{(1+C_2 \Delta T)^{n-k-1}}{(k+1)!} \prod_{j=0}^k (n-j).$$

RL-circuit model:

$$\frac{1}{R}\phi'(t) + \frac{1}{L}\phi(t) = f(t), \quad t \in (0,T],$$

$$\phi(0) = 0,$$

with $R = 0.01 \ \Omega$, $L = 0.001 \ \text{H}$, $T = 0.02 \ \text{s}$; f- supplied PWM current source of $20 \ \text{kHz}$.

RL-circuit model:

$$\frac{1}{R}\phi'(t) + \frac{1}{L}\phi(t) = f(t), \quad t \in (0,T],$$

$$\phi(0) = 0,$$

with $R = 0.01 \ \Omega$, $L = 0.001 \ \text{H}$, $T = 0.02 \ \text{s}$; f- supplied PWM current source of $20 \ \text{kHz}$.

Choice of the coarse reduced input:

$$\bar{f}_{\text{step}}(t) = \begin{cases} 1, & t \in [0, T/2), \\ -1, & t \in [T/2, T) \end{cases}$$

RL-circuit model:

$$\frac{1}{R}\phi'(t) + \frac{1}{L}\phi(t) = f(t), \quad t \in (0,T],$$

$$\phi(0) = 0,$$

with $R = 0.01 \ \Omega$, $L = 0.001 \ \text{H}$, $T = 0.02 \ \text{s}$; f- supplied PWM current source of $20 \ \text{kHz}$.

Choice of the coarse reduced input:

$$\bar{f}_{\text{step}}(t) = \begin{cases} 1, & t \in [0, T/2), \\ -1, & t \in [T/2, T) \end{cases}$$

$$\bar{f}_{\mathbf{sine}}(t) = \sin\left(\frac{2\pi}{T}t\right), \ t \in [0,T]$$

RL-circuit model:

$$\frac{1}{R}\phi'(t) + \frac{1}{L}\phi(t) = f(t), \quad t \in (0,T], \phi(0) = 0,$$

with $R = 0.01 \ \Omega$, L = 0.001 H, T = 0.02 s; f- supplied PWM current source of 20 kHz.

Choice of the coarse reduced input:

$$\bar{f}_{\text{step}}(t) = \begin{cases} 1, & t \in [0, T/2), \\ -1, & t \in [T/2, T) \end{cases} \qquad \bar{f}_{\text{sine}}(t) = \sin\left(\frac{2\pi}{T}t\right), \ t \in [0, T] \end{cases}$$
$$\implies \tilde{f}(t) := f(t) - \bar{f}(t) \in \boldsymbol{L}^{\infty}(0, T) \iff 1/q = 1.$$

Convergence of the Parareal iteration k = 1 using the implicit Euler method (l = 1) and the reduced coarse step- and sine-input.

Convergence of the Parareal iteration k = 2 using the implicit Euler method (l = 1) and the reduced coarse step- and sine-input.

Convergence of the Parareal iteration k = 1 using the Crank-Nicolson scheme (l = 2) and the reduced coarse step- and sine-input.

Application to an induction machine

Four-pole squirrel cage 'im_3kw' model and its magnetic field at t = 20 ms if excited by a sinusoidal voltage source (author: Gyselinck).

PWM voltage source of 5 kHz with a ramp-up and phase 1 of the corresponding sinusoidal waveform of 50 Hz.

Numerical results

voltage source of 20 kHz on [0, 20] ms. Software: implicit Euler within GetDP. Convergence of the standard Parareal and the modified Parareal algorithms to reach the prescribed tolerance $1.5 \cdot 10^{-5}$.

Outline of the Talk

1 Introduction

2 Systems with highly-oscillatory excitations

3 Acceleration of convergence to the steady state

- Time-periodic eddy current problem
- Parareal for time-periodic problems
- Results for the induction machine

4 Conclusions and outlook

Time-periodic eddy current problem

Goal: obtain the steady-state solution

Time / s

Time-periodic eddy current problem

Goal: obtain the steady-state solution

Time / s

Solve periodic boundary value problem in time:

 $\mathbf{M}d_t\mathbf{u}(t) = \mathbf{f}(t, \mathbf{u}(t)), \ t \in (0, T)$ with $\mathbf{u}(0) = \mathbf{u}(T)$.

Parareal for time-periodic problems

PP-IC: periodic parareal algorithm with initial value coarse problem:

$$\begin{split} \mathbf{U}_{0}^{(k+1)} &= \mathbf{U}_{N}^{(k)}, \\ \mathbf{U}_{n}^{(k+1)} &= \mathcal{F}(T_{n}, T_{n-1}, \mathbf{U}_{n-1}^{(k)}) + \mathcal{G}(T_{n}, T_{n-1}, \mathbf{U}_{n-1}^{(k+1)}) - \mathcal{G}(T_{n}, T_{n-1}, \mathbf{U}_{n-1}^{(k)}). \end{split}$$

M. J. Gander et al., *Analysis of Two Parareal Algorithms for Time-Periodic Problems*, SIAM Journal on Scientific Computing 35 (5), 2013.

Results for induction machine with PWM voltage source

Computational efforts to obtain the periodic (steady-state) solution:

- Sequential: 9 periods until the steady state ⇒ 2 176 179 system solves
- Parareal: calculation on [0,9T], needs effectively 583 707 linear solutions
- PP-IC: applied on one period [0, *T*], requires 194 038 linear solutions

Period T = 0.02 s, available CPUs N = 20

Fine propagator \mathcal{F} : three-phase PWM excitation of 20 kHz, $\delta T = 10^{-6} \text{ s}$ Coarse solver $\overline{\mathcal{G}}$: three-phase sinusolidal source of 50 Hz, $\Delta T = 10^{-3} \text{ s}$

Outline of the Talk

1 Introduction

- 2 Systems with highly-oscillatory excitations
- 3 Acceleration of convergence to the steady state
- 4 Conclusions and outlook

Conclusions and outlook

Conclusions

- Introduced a new Parareal algorithm with reduced coarse dynamics
- Developed convergence theory for problems with (highly-oscillatory) discontinuous excitation
- Applied the modified Parareal method to the time-periodic eddy current problem for an induction machine model

Conclusions and outlook

Conclusions

- Introduced a new Parareal algorithm with reduced coarse dynamics
- Developed convergence theory for problems with (highly-oscillatory) discontinuous excitation
- Applied the modified Parareal method to the time-periodic eddy current problem for an induction machine model

Outlook

- Prove convergence of the modified PP-IC algorithm
- Further development of parallel-in-time methods for the periodic eddy current problem with PWM excitation
- Combine the time-parallel techniques with spatial domain decomposition for simulation of electric machines

Thank you!

ACKNOWLEDGEMENT

The work of I. Kulchytska-Ruchka has been supported by the Excellence Initiative of the German Federal and State Governments, the Graduate School of Computational Engineering at TU Darmstadt, and the BMBF (grant No. 05M2018RDA) in the framework of project PASIROM.

- M. J. Gander, I. Kulchytska-Ruchka, I. Niyonzima, and S. Schöps. *A new Parareal algorithm for problems with discontinuous sources*, 2018. Submitted, https://arxiv.org/abs/1803.05503.
- S. Schöps, I. Niyonzima, and M. Clemens, *Parallel-in-time simulation of eddy current problems using Parareal*, IEEE Trans. Magn. 54 (3), 2018.

J. Gyselinck, L. Vandevelde, and J. Melkebeek. *Multi-slice FE modeling of electrical machines with skewed slots-the skew discretization error*, IEEE Trans. Magn. 37(5), 2001.