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Motivation

� E-bike with a synchronous machine
� Robust geometry optimization
� Expensive time domain simulations
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The eddy current problem

� Eddy current problem on domains Ω1 and Ω2

σ
∂ ~A

∂t
(~x, t) = −∇×

(
ν∇× ~A(~x, t)

)
+ ~Js(~x, t)

with magnetic vector potential ~A(~x, 0) = ~A0(~x),
current density in coils and magnets ~Js,
conductivity σ(~x) and reluctivity ν(~x, ~A).

� Spatial discretization yields initial value problem

Mdtu(t) = f
(
t,u(t)

)
, t ∈ (0, T ],

u(0) = u0,

with unknown u(t), mass matrix M and right-hand-side f
(
...
)
.

Γ1

Γ2

Ω2

Ω1

Ω2

Ω2
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Challenges

Time / s

S
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io

n
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|/

W
b

� Machines operate most of their
life time in steady state

� Long simulation time until
steady state is reached

� Effects on several time scales,
e.g. due to pulsed excitations

� Many time steps yield
time-consuming computation

=⇒ parallel-in-time method
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Parareal for highly-oscillatory discontinuous excitation

Parareal
� PWM (pulse width modulation): excitation

contains high-order frequency components
� Propagators: fine F and coarse G
� Solver F resolves high-frequency pulses
� Solver G might not capture dynamics

� Solve coarse problem for slowly-varying
smooth input

� Low-frequency component: sinusoidal
waveform sin

(
2π
T t
)

� What about convergence?

0 10 20

−1

0

1

Time / ms

In
pu

tf
un

ct
io

n

PWM signal with a switching
frequency of 500 Hz.
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Modified Parareal with reduced coarse dynamics

� Splitting of the nonsmooth excitation for t ∈ (0, T ]

Mdtu(t) = f(t,u(t))

� Reduced coarse propagator Ḡ
Mdtu(t) = f̄(t,u(t)),

u(0) = u0

� Original fine propagator F
Mdtu(t) = f(t,u(t)),

u(0) = u0

� Modified Parareal update formula

U
(k+1)
0 = u0,

U(k+1)
n = F

(
Tn, Tn−1,U

(k)
n−1
)

+ Ḡ
(
Tn, Tn−1,U

(k+1)
n−1

)
− Ḡ

(
Tn, Tn−1,U

(k)
n−1
)

� Proof: based on perturbation results for ODEs with discontinuities
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Mdtu(t) = f̄(t,u(t)),

u(0) = u0

� Original fine propagator F
Mdtu(t) = f(t,u(t)),

u(0) = u0

� Modified Parareal update formula

U
(k+1)
0 = u0,

U(k+1)
n = F

(
Tn, Tn−1,U

(k)
n−1
)

+ Ḡ
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Convergence of the modified approach

Theorem (Gander, K.-R., Schöps, Niyonzima, ’18)

• For I := [0, T ] let ∆T = T/N denote window length and F
(
Tn, Tn−1,U

(k)
n−1

)
be the

exact solution to the original problem at Tn, with the RHS f = f̄ + f̃ . For p ≥ 1 we denote
Cp = ‖f̃‖Lp(I,Rn) and let q ≥ 1 be given by 1/p + 1/q = 1.

• Assume Ḡ
(
Tn, Tn−1,U

(k)
n−1

)
is an approximation to the reduced problem with the

smooth RHS f̄ . The error is bounded by C3∆T l+1, and let Ḡ satisfy the Lipschitz
condition:

‖Ḡ
(
t + ∆T, t, U

)
− Ḡ

(
t + ∆T, t, Y

)
‖ ≤ (1 + C2∆T )‖U − Y ‖.

Then at iteration k we have: ||u(Tn)−Uk
n|| ≤

C̄k1

[
C̄4Cp∆T

(l+1)k+1/q + C̄3

(
∆T l+1

)k+1
]

(1 + C2∆T )n−k−1

(k + 1)!

k∏
j=0

(n− j).
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Numerical verification

RL-circuit model:

1

R
φ′(t) +

1

L
φ(t) = f (t) , t ∈ (0, T ],

φ(0) = 0,

with R = 0.01 Ω, L = 0.001 H, T = 0.02 s;

f− supplied PWM current source of 20 kHz. 0 10 20

−1
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Time / ms
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(
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)
, t ∈ [0, T ]

=⇒ f̃(t) := f(t)− f̄(t) ∈ L∞(0, T ) ⇐⇒ 1/q = 1.

May 4, 2018 | TU Darmstadt | Institut Theorie Elektromagnetischer Felder and Graduate School CE | Iryna Kulchytska-Ruchka | 11



Numerical verification

Step input: ∆T (l+1)k+1/q = ∆T 3; Sine wave:
(
∆T l+1

)k+1
= ∆T 4

101 102 103 104
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N = T/∆T
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∆T 4

Convergence of the Parareal iteration k = 1 using the implicit Euler method
(l = 1) and the reduced coarse step- and sine-input.
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Numerical verification

Step input: ∆T (l+1)k+1/q = ∆T 5; Sine wave:
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Convergence of the Parareal iteration k = 2 using the implicit Euler method
(l = 1) and the reduced coarse step- and sine-input.

May 4, 2018 | TU Darmstadt | Institut Theorie Elektromagnetischer Felder and Graduate School CE | Iryna Kulchytska-Ruchka | 13



Numerical verification
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Convergence of the Parareal iteration k = 1 using the Crank-Nicolson scheme
(l = 2) and the reduced coarse step- and sine-input.
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Application to an induction machine

Magnetic flux density
0 T 2 T

Four-pole squirrel cage ’im_3kw’ model and its
magnetic field at t = 20 ms if excited by a
sinusoidal voltage source (author: Gyselinck).
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PWM voltage source of 5 kHz with a ramp-up
and phase 1 of the corresponding sinusoidal
waveform of 50 Hz.
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Numerical results
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Stator currents for the three-phase PWM
voltage source of 20 kHz on [0, 20] ms.
Software: implicit Euler within GetDP.
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Convergence of the standard Parareal and the
modified Parareal algorithms to reach the
prescribed tolerance 1.5 · 10−5.
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Time-periodic eddy current problem

� Goal: obtain the steady-state solution
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� Solve periodic boundary value problem in time:

Mdtu(t) = f(t,u(t)), t ∈ (0, T ) with u(0) = u(T ).
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Parareal for time-periodic problems

u(t)

tT0 T1 T2 T3 T4 T5

PP-IC: periodic parareal algorithm with initial value coarse problem:

U
(k+1)
0 = U

(k)
N ,

U(k+1)
n = F(Tn, Tn−1,U

(k)
n−1) + G(Tn, Tn−1,U

(k+1)
n−1 )− G(Tn, Tn−1,U

(k)
n−1).

M. J. Gander et al., Analysis of Two Parareal Algorithms for Time-Periodic Problems, SIAM Journal on
Scientific Computing 35 (5), 2013.
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Results for induction machine with PWM voltage source
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Sequential
Parareal
PP-IC

Computational efforts to obtain the periodic
(steady-state) solution:

� Sequential: 9 periods until the steady
state =⇒ 2 176 179 system solves

� Parareal: calculation on [0, 9T ], needs
effectively 583 707 linear solutions

� PP-IC: applied on one period [0, T ],
requires 194 038 linear solutions

Period T = 0.02 s, available CPUs N = 20

Fine propagator F : three-phase PWM excitation of 20 kHz, δT = 10−6 s

Coarse solver Ḡ: three-phase sinusolidal source of 50 Hz, ∆T = 10−3 s
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Conclusions and outlook

Conclusions
� Introduced a new Parareal algorithm with reduced coarse dynamics

� Developed convergence theory for problems with (highly-oscillatory)
discontinuous excitation

� Applied the modified Parareal method to the time-periodic eddy current
problem for an induction machine model

Outlook
� Prove convergence of the modified PP-IC algorithm

� Further development of parallel-in-time methods for the periodic eddy
current problem with PWM excitation

� Combine the time-parallel techniques with spatial domain decomposition for
simulation of electric machines
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Thank you!
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