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Problem 1 : control on a fixed, bounded interval [0, T ]
Given T > 0, consider the optimal control problem associated
with the cost functional

J(c) = 1
2‖x(T )− xtarget‖2 + α

2

∫ T

0
c2(t)dt,

where the state function x evolution is described by an
equation :

ẋ(t) = f(x(t), c(t)),

with initial condition x(0) = xinit.

Objective : Given an optimal control solver,
combine it with a time-parallelization.



Problem 2 : assimilation on an unbounded interval
[t0,+∞)
Given a (linear) dynamic

ẋ(t) = Ax(t) +Bu(t)

whose initial condition is NOT known, and an output

y(t) = Cx(t),

which is known.

Objective : Combine observer approaches
with a time-parallelization.



Previous works :
Hackbusch, 1984 : Multgrid approach
Borzì , 2003 : Multigrid for parabolic distributed
Heinkenschloss, 2005 : Block symmetric Gauss-Seidel
preconditioning
Maday, Turinici, J.S. 2007 : intermediate states approach
Mathew, Sarkis, 2010 : combination of a shooting method
and parareal preconditionning
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"Non-linear control" or "Bilinear control"

Linear eq. Non-linear eq.
"Linear" control ẏ = Ay +Bc ẏ = f(y) +Bc

Non-linear control ẏ = A(c)y ẏ = f(y, c)

y = y(t, x) state
c = c(t) or c(t, x) control



Non-linear Control
The Intermediate States Method

Schematic description
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Disclaimer : not a parareal algorithm.
Y. Maday, J. Salomon, G. Turinici, SIAM J. Num. Anal., 45 (6), 2007.

K. M. Riahi, J. Salomon, S. J. Glaser, D. Sugny, Phys. Rev. A, 93 (4), 2016.
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"Linear control"

Linear eq. Non-linear eq.
"Linear" control ẏ = Ay +Bc ẏ = f(y) +Bc

Non-linear control ẏ = A(c)y ẏ = f(y, c)

y = y(t, x) state
c = c(t) or c(t, x) control



Linear Control
The optimality condition then reads

ẏ(t) = f(y(t)) + c(t),
λ̇(t) = −(f(y(t))′)Tλ(t),
αc(t) = −λ(t).

→ Elimination of c :
ẏ = f(y)− λ

α
,

λ̇ = −(f(y)′)Tλ,

and final condition λ(T ) = y(T )− ytarget.

Time discretization⇒Mδt

(
Y
Λ

)
= b



Linear Control
Time parallelization

Our approach is based on two ideas :
1 Partition the time interval [0, T ] :
T0 = 0 < T1 < . . . < TL = T .

2 Coarse approximation of the inverse : Mδt →M∆t.
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Linear Control
Time sub-intervals decomposition

Boundary value problems notations : on the subinterval
[Tl, Tl+1] with initial condition y(Tl) = yl and final condition
λ(Tl+1) = λl+1, we denote(

y(Tl+1)
λ(Tl)

)
=
(
P (yl, λl+1)
Q(yl, λl+1)

)
.



Linear Control
Time sub-intervals decomposition

The optimality system is enriched :

y0 − yinit = 0
y1 − P (y0, λ1) = 0 λ1 −Q(y1, λ2) = 0
y2 − P (y1, λ2) = 0 λ2 −Q(y2, λ3) = 0

...
...

yL − P (yL−1, λL) = 0 λL − yL + ytarget = 0

(1)

That is : a system of boundary value subproblems,
satisfying matching conditions.



Linear Control
Time sub-intervals decomposition

Collecting the unknowns in the vector

(Y T ,ΛT ) := (y0, y1, y2, . . . , yL, λ1, λ2, . . . , λL),

we obtain the nonlinear system

F(Y T ,ΛT ) :=



y0 − yinit
y1 − P (y0, λ1)
y2 − P (y1, λ2)

...
yL − P (yL−1, λL)
λ1 −Q(y1, λ2)
λ2 −Q(y2, λ3)

...
λL − yL + ytarget


= 0.



Linear Control
Time sub-intervals decomposition

Newton’s method :

F′
(

Y n

Λn

)(
Y n+1 − Y n

Λn+1 − Λn

)
= −F

(
Y n

Λn

)
,

where the Jacobian matrix of F is given by

F′
(
Y
Λ

)
=

1
−PY (Y0,Λ1) 1 −PΛ(Y0,Λ1)

. . .
. . .

. . .
−PY (YN−1,ΛN ) 1 −PΛ(YN−1,ΛN )

−QY (Y1,Λ2) 1 −QΛ(Y1,Λ2)
. . .

. . .
. . .

−QY (YN−1,ΛN ) 1 −QΛ(YN−1,ΛN )
−1 1
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Linear Control
Use of a coarse solver

Third idea : coarse approximation of the Jacobian

F ′ ≈ finite difference



Linear Control
Use of a coarse solver

Which concretely corresponds to :

Py(yn`−1, λ
n
` )(yn+1

`−1 − yn`−1) ≈ PG(yn+1
`−1 , λ

n
` )− PG(yn`−1, λ

n
` ),

Pλ(yn`−1, λ
n
` )(λn+1

` − λn` ) ≈ PG(yn`−1, λ
n+1
` )− PG(yn`−1, λ

n
` ),

Qλ(yn`−1, λ
n
` )(λn+1

` − λn` ) ≈ QG(yn`−1, λ
n+1
` )−QG(yn`−1, λ

n
` ),

Qy(yn`−1, λ
n
` )(yn+1

`−1 − yn`−1) ≈ QG(yn+1
`−1 , λ

n
` )−QG(yn`−1, λ

n
` ).

→ Inspiration from the Parareal algorithm :
J.-L. Lions, Y. Maday, and G. Turinici. A "parareal" in time disretization
of pde’s. Comptes Rendus de l’Acad. des Sciences, 2001.
→ and its interpretation :
M. Gander, S. Vandewalle, SISC 2003.



Linear Control
Parareal for Control

Partial summary :
In parallel : all fine propagations on sub-intervals.
Sequential part : only coarse solving.



Linear Control
Linear dynamics

Example : linear dynamics

ẏ(t) = σy(t) + c(t).

Discretizing and setting :

X =
(
Y
Λ

)
,

we get :
Xk+1 =

(
Id−M−1

∆tMδt

)
Xk +M−1

∆t b.



Linear Control
Linear dynamics

Example : linear dynamics

ẏ(t) = σy(t) + c(t).

Discretizing and setting :

X =
(
Y
Λ

)
,

we get :
Xk+1 =

(
Id−M−1

∆tMδt

)
Xk +M−1

∆t b.

Analyze the eigenvalues of Id−M−1
∆tMδt !



Linear Control
Linear dynamics

Results for implicit Euler :
Contraction factor : ρ ≤ C(∆t− δt)
For σ < 0, C can be chosen independent of σ
For very large α, C can grow like log(α) when the number
of subdomains becomes large

F. Kwok, M. Gander, J. Salomon, to appear ...
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Linear Control
Numerical example : Linear dynamics

ẏ(t) = σy(t) + c(t).

Convergence for various values of r = δt/∆t for fixed δt = δt0.



Linear Control
Numerical example : Linear dynamics

Convergence for various with respect to the number of iteration
for various number of subintervals.



Linear Control
Numerical example : Linear dynamics

ẏ(t) = σy(t) + c(t).

Convergence for various values of r = δt/∆t for fixed δt = δt0.



Linear Control
Numerical example : Linear dynamics

Convergence for various with respect to the number of iteration
for various number of subintervals.



Linear Control
Numerical example : Non-linear vectorial dynamics

Minimize

J(c) = 1
2 |y(1)− ytarget|2 + 1

2

∫ 1

0
|c(t)|2 dt

with ytarget = (100, 20)T , subject to the Lotka-Volterra
equation

ẏ1 = a1y1 − b1y1y2 + c1, ẏ2 = a2y1y2 − b2y2 + c2

with initial conditions y(0) = (20, 10)T

Backward Euler, δt = 10−5



Linear Control
Numerical example : Non-linear vectorial dynamics

Vector example - N = 10, r = δt/∆t = 0.01

Iteration #1



Linear Control
Numerical example : Non-linear vectorial dynamics

Vector example - N = 10, r = δt/∆t = 0.01

Iteration #2



Linear Control
Numerical example : Non-linear vectorial dynamics

Vector example - N = 10, r = δt/∆t = 0.01

Iteration #3



Linear Control
Numerical example : Non-linear vectorial dynamics

Vector example - N = 10, r = δt/∆t = 0.01

Iteration #4



Linear Control
Numerical example : Non-linear vectorial dynamics

Minimize

J(c) = 1
2 |y(20)− ytarget|2 + 1

2

∫ 20

0
|c(t)|2 dt

with ytarget = (100, 20)T , subject to the Lotka-Volterra
equation

ẏ1 = a1y1 − b1y1y2 + c1, ẏ2 = a2y1y2 − b2y2 + c2

with initial conditions y(0) = (20, 10)T

Backward Euler, δt = 20 · 10−5



Linear Control
Numerical example : Non-linear vectorial dynamics

Vector example - N = 10, r = δt/∆t = 0.01

Iteration #1



Linear Control
Numerical example : Non-linear vectorial dynamics

Vector example - N = 10, r = δt/∆t = 0.01

Iteration #2



Linear Control
Numerical example : Non-linear vectorial dynamics

Vector example - N = 10, r = δt/∆t = 0.01

Iteration #3



Linear Control
Numerical example : Non-linear vectorial dynamics

Vector example - N = 10, r = δt/∆t = 0.01

Iteration #4



Linear Control
Numerical example : Non-linear vectorial dynamics

Vector example - N = 10, r = δt/∆t = 0.01

Iteration #5



Linear Control
Numerical example : Non-linear vectorial dynamics

Vector example - N = 10, r = δt/∆t = 0.01

Iteration #6



Linear Control
Numerical example : Non-linear vectorial dynamics

Vector example - N = 10, r = δt/∆t = 0.01

Iteration #7



Linear Control
Numerical example : Non-linear vectorial dynamics

Trick : Derivative Evaluation by Gauss-Newton
Approximation : neglect 2nd derivatives

dy′

dt
= f ′(y)y′ − λ′

α
, y′(0) = Y k+1

n − Y k
n ,

dλ′

dt
= −(f ′(y))Tλ′ −�������

(f ′′(y, y′))Tλ, λ′(T ) = Λk+1
n+1 − Λkn+1.

Simplified ODE for λ′ independent of y′

Approximate derivatives in one backward-forward sweep !



Linear Control
Numerical example : Non-linear vectorial dynamics

N = 10 subdomains, varying r = δt/∆t



Linear Control
Numerical example : Non-linear vectorial dynamics

δt/∆t = 0.01, varying # subdomains



Linear Control
Numerical example : Non-linear vectorial dynamics

True Newton :
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Unbounded time domains and assimilation
The problem

Given a (linear) dynamic

ẋ(t) = Ax(t) +Bu(t)

whose initial condition is NOT known, and an output

y(t) = Cx(t),

which is known : data to be assimilated.
→ Solver : Luenberger observer

˙̂x(t) = Ax̂(t) +Bu(t) + L (Cx̂(t)− y(t)) .

In general :
x̂(t0) 6= x(t0).



Unbounded time domains and assimilation
Background

Theoretical result : Assume the observability condition

rank


C
CA
CA2

...
CAn−1

 = n,

then there exists L such that

ρ (exp(A− LC)) ≤ 1 ⇒ ‖x(t)− x̂(t)‖ ≤ κ e−λt‖x(0)− x̂(0)‖,

with λ = minα∈spec(A−LC) |α|, κ = Cond(A− LC).

→ Standard algorithms to design L : Routh’s or Hurwitz
criterion, Ackermann’s formula, LQ theory...
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Unbounded time domains and assimilation
Combining with time parallelization

Idea : In order to accelerate the assimilation, simulate the observer using
time-parallelization on Windows.

T

∆T

Consider the Parareal algorithm and introduce
Windows : interval of length T on which are applied k` iterations of
parareal algorithm.
Subintervals : set of N intervals of length ∆T that make up the
decomposition on which the iterations of the algorithm are based.
Two other time steps : ∆t and δt used in the coarse and the fine
solver respectively.



Unbounded time domains and assimilation
Algorithm

Mandatory :
k` << N.

We proceed as follows : Suppose we are on the window `

W` := [t`, t`+1 = t` + T ],

1 Consider an approximation x̂‖(t`) of x̂(t`).
2 Apply k` iterations of parareal algorithm to get an

approximation of x̂ on W`.
3 Let the final state x̂‖(t`+1) be an initial point for the next

window.



Unbounded time domains and assimilation
Fixed k`

What happens when k` = kmax is fixed for all windows ?

This is not surprising : kmax parareal iterations introduce a
constant error.
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Unbounded time domains and assimilation
Analysis

Lemma : Denote by pn` the jump of the fine (discontinuous)
trajectory x̂‖(t) at time t` + n∆T .
Suppose that

∀1 ≤ n ≤ N, lim
`→+∞

pn` → 0. (?)

Then
lim

t→+∞
x̂‖(t)− x(t)→ 0.

→Condition (?) automatically holds if k` → N .



Unbounded time domains and assimilation
Analysis

Proof : Define ε‖(t) = x̂‖(t)− x(t). We have{
ẋ(t) = Ax(t) +Bu(t),

˙̂x(t) = Ax̂(t) +Bu(t) + L (Cx̂(t)− y(t)) + δp(t),

Substracting, we get :

ε̇‖(t) = (A− LC)ε‖(t)− δp(t),

so that integrating over [t` + n∆T, t` + (n+ 1)∆T ] gives :

ε‖(t` + (n+ 1)∆T ) = exp ((A− LC)∆T ) ε‖(t` + n∆T )
+ exp ((A− LC)∆T ) pn` − pn+1

`

Define sn = ε‖(t` + n∆T ) + pn` :

⇒ sn+1 = exp ((A− LC)∆T ) sn
‖sn+1‖ ≤ κe−λ∆T ‖sn‖.



Unbounded time domains and assimilation
Definition of k`

Strategy : From

sn+1 = exp ((A− LC)∆T ) sn,

we get
sN.`+n = exp ((N.`+ n)(A− LC)∆T ) s0,

hence :

ε‖(t` + n∆T ) = exp ((N.`+ n)(A− LC)∆T ) ε‖(t0)− pn` .

→ If we want to keep Luenberger’s observer rate of
convergence, we need to impose :

‖pn` ‖ ≤ κ̃e−(N.`+n)λ∆T ‖p0
0‖. (??)

→ On each window, define k` as the minimal integer such that
(??) holds.

F. Kwok, S. Reyes-Riffo, J. Salomon, to appear ...
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Unbounded time domains and assimilation
Numerical example

Example : N = 20.

A =
(

0 1
−1 −2

)

B =
(

0
1

)
, C =

(
0 1

)
, L =

(
0.8
−1.1

)
u(t) = 3 + 0.5 sin(0.75t)

T = 5, ∆T = T

N
= 0.25.

∆t = ∆T, δt = ∆t
25 .



Unbounded time domains and assimilation
Numerical example

Example : N = 20.



Unbounded time domains and assimilation
Numerical example

Efficiency : CPU time to reach ‖ε‖‖ = ‖x(t)− x̂‖(t)‖ ≤ 10−12.

CPU‖ : 0.2363
CPUseq : 0.8361
Ratio : 0.2826
Efficiency : 17%



Trugarez-vras !


	Non-linear Control
	Linear Control
	Time sub-intervals decomposition
	Use of a coarse solver
	Numerical examples

	Unbounded time domains and assimilation
	Algorithm
	Analysis
	Numerical example


