A posteriori error estimates for space-time domain decomposition method for two-phase flow problem

Sarah Ali Hassan, Elyes Ahmed, Caroline Japhet, Michel Kern, Martin Vohralík

INRIA Paris & ENPC (project-team SERENA), University Paris 13 (LAGA), UPMC Work supported by ANDRA. ANR DEDALES and ERC GATIPOR

> PINT, 7th Workshop on Parallel-in-Time methods, Roscoff Marine Station, May 02–05, 2018

OUTLINE

Motivations and problem setting

Robin domain decomposition for a two-phase flow problem

2 Estimates and stopping criteria in a two-phase flow problem

3 Numerical experiments

OUTLINE

- Robin domain decomposition for a two-phase flow problem
- 2 Estimates and stopping criteria in a two-phase flow problem
- 3 Numerical experiments

Deep underground repository (High-level radioactive waste)

Puts Cone de stockage 6 Zone de stockage C Come de stockage C

Challenges:

- Different materials → strong heterogeneity, different time scales.
- Large differences in spatial scales.
- Long-term computations.

Deep underground repository (High-level radioactive waste)

Puts Condectionage B Zone de stockage C Zone de stockage C Candens de Interna de Interna de Unité de labolation Candens Acases C

Challenges:

- Different materials → strong heterogeneity, different time scales.
- Large differences in spatial scales.
- Long-term computations.

Deep underground repository (High-level radioactive waste)

Challenges:

- Different materials → strong heterogeneity, different time scales.
- Large differences in spatial scales.
- Long-term computations.

Estimate the error at each iteration of the DD method

Deep underground repository (High-level radioactive waste)

Challenges:

- Different materials → strong heterogeneity, different time scales.
- Large differences in spatial scales.
- Long-term computations.

Use space-time DD methods

- Estimate the error at each iteration of the DD method
- Develop stopping criteria to stop the DD iterations as soon as the discretization error has been reached

OUTLINE

Notivations and problem setting

Robin domain decomposition for a two-phase flow problem

- 2 Estimates and stopping criteria in a two-phase flow problem
- 3 Numerical experiments

• Discretize in time and apply the DD algorithm at each time step:

- Discretize in time and apply the DD algorithm at each time step:
 - Solve stationary problems in the subdomains, in parallel,
 - Exchange information through the interface

- Discretize in time and apply the DD algorithm at each time step:
 - Solve stationary problems in the subdomains, in parallel,
 - Exchange information through the interface

- Discretize in time and apply the DD algorithm at each time step:
 - Solve stationary problems in the subdomains, in parallel,
 - Exchange information through the interface

- Discretize in time and apply the DD algorithm at each time step:
 - Solve stationary problems in the subdomains, in parallel,
 - Exchange information through the interface

- Discretize in time and apply the DD algorithm at each time step:
 - Solve stationary problems in the subdomains, in parallel,
 - Exchange information through the interface
- Same time step on the whole domain.

- Discretize in time and apply the DD algorithm at each time step:
 - Solve stationary problems in the subdomains, in parallel,
 - Exchange information through the interface
- Same time step on the whole domain.

- Discretize in time and apply the DD algorithm at each time step:
 - Solve stationary problems in the subdomains, in parallel,
 - Exchange information through the interface
- Same time step on the whole domain.

Space-time domain decomposition

- Discretize in time and apply the DD algorithm at each time step:
 - Solve stationary problems in the subdomains, in parallel,
 - Exchange information through the interface
- Same time step on the whole domain.

Space-time domain decomposition

- Discretize in time and apply the DD algorithm at each time step:
 - Solve stationary problems in the subdomains, in parallel,
 - Exchange information through the interface
- Same time step on the whole domain.

Space-time domain decomposition

- Discretize in time and apply the DD algorithm at each time step:
 - Solve stationary problems in the subdomains, in parallel,
 - Exchange information through the interface
- Same time step on the whole domain.

Space-time domain decomposition

- Discretize in time and apply the DD algorithm at each time step:
 - Solve stationary problems in the subdomains, in parallel,
 - Exchange information through the interface
- Same time step on the whole domain.

Space-time domain decomposition

- Discretize in time and apply the DD algorithm at each time step:
 - Solve stationary problems in the subdomains, in parallel,
 - Exchange information through the interface
- Same time step on the whole domain.

Space-time domain decomposition

- Solve time-dependent problems in the subdomains, in parallel,
- Exchange information through the space-time interface · · · Following [Halpern-Nataf-Gander (03), Martin (05)]

- Discretize in time and apply the DD algorithm at each time step:
 - Solve stationary problems in the subdomains, in parallel,
 - Exchange information through the interface
- Same time step on the whole domain.

Space-time domain decomposition

- Solve time-dependent problems in the subdomains, in parallel,
- Exchange information through the space-time interface · · · Following [Halpern-Nataf-Gander (03), Martin (05)]
- Different time steps can be used in each subdomain according to its physical properties.
 - ···· Following [Halpern-C.J.-Szeftel (12), Hoang-C.J.-Jaffré-Kern-Roberts (13)]

Two-phase immiscible flow with discontinuous capillary pressure curves ··· Following [Enchery-Eymard-Michel 06] Nonlinear (degenerate) diffusion equation in each subdomain

For $f \in L^2(\Omega \times (0, T))$ and a final time T > 0, find $u_i : \Omega_i \times [0, T] \to [0, 1]$, i = 1, 2, such that: $\partial_t u_i - \Delta \varphi_i(u_i) = f$, in $\Omega_i \times (0, T)$,

$$u_i - \Delta \varphi_i(u_i) = t$$
, in $\Omega_i \times (0, T)$,
 $u_i(\cdot, 0) = u_0$, in Ω_i ,
 $u_i = g_i$, on $\Gamma_i^{D} \times (0, T)$.

Kirchhoff transform φ_i

$$arphi_i(u_i) = \int_0^{u_i} \lambda_i(a) \pi_i'(a) \mathrm{d}a$$

Capillary pressure $\pi_i(u_i)$: $[0,1] \rightarrow \mathbb{R}$

- $\Omega \subset \mathbb{R}^d$, d = 2, 3
- u scalar unknown gas saturation
- 1 u is the water saturation

Global mobility of the gas $\lambda_i(u_i) : [0,1] \to \mathbb{R}$

- u₀ initial gas saturation
- g boundary gas saturation

$$\begin{aligned} \nabla \varphi_1(u_1) \cdot \mathbf{n}_1 &= -\nabla \varphi_2(u_2) \cdot \mathbf{n}_2, \quad \text{on } \Gamma \times (0, T), \\ \pi_1(u_1) &= \pi_2(u_2), \qquad \text{on } \Gamma \times (0, T), \end{aligned}$$

$$\begin{aligned} \nabla \varphi_1(u_1) \cdot \mathbf{n}_1 &= -\nabla \varphi_2(u_2) \cdot \mathbf{n}_2, \quad \text{on } \Gamma \times (0, T), \\ \pi_1(u_1) &= \pi_2(u_2), \qquad \text{on } \Gamma \times (0, T), \end{aligned}$$

··· Following [Chavent - Jaffré (86), Enchéry et al. (06), Cances (08), Ern et al (10), Brenner et al. (13)]

$$\begin{aligned} \nabla \varphi_1(u_1) \cdot \mathbf{n}_1 &= -\nabla \varphi_2(u_2) \cdot \mathbf{n}_2, \quad \text{on } \Gamma \times (0, T), \\ \overline{\pi}_1(u_1) &= \overline{\pi}_2(u_2), \qquad \text{on } \Gamma \times (0, T), \end{aligned}$$

··· Following [Chavent - Jaffré (86), Enchéry et al. (06), Cances (08), Ern et al (10), Brenner et al. (13)]

$$\begin{aligned} \nabla \varphi_1(u_1) \cdot \mathbf{n}_1 &= -\nabla \varphi_2(u_2) \cdot \mathbf{n}_2, \quad \text{on } \Gamma \times (0, T), \\ \overline{\pi}_1(u_1) &= \overline{\pi}_2(u_2), \qquad \text{on } \Gamma \times (0, T), \end{aligned}$$

··· Following [Chavent - Jaffré (86), Enchéry et al. (06), Cances (08), Ern et al (10), Brenner et al. (13)]

$$\begin{aligned} \nabla \varphi_1(u_1) \cdot \mathbf{n}_1 &= -\nabla \varphi_2(u_2) \cdot \mathbf{n}_2, \quad \text{on } \Gamma \times (0, T), \\ \overline{\pi}_1(u_1) &= \overline{\pi}_2(u_2), \quad \text{on } \Gamma \times (0, T), \quad \Leftrightarrow \quad \Pi_1(u_1) = \Pi_2(u_2) \end{aligned}$$

··· Following [Chavent - Jaffré (86), Enchéry et al. (06), Cances (08), Ern et al (10), Brenner et al. (13)]

•
$$\Pi_i(u) := \int_{\pi_2(0)}^{\pi_j} \min_{j \in \{1,2\}} (\lambda_j \circ \pi_j^{-1}(u)) \, \mathrm{d} u \quad \cdots \quad \text{smoother than } \overline{\pi}_i$$

$$\nabla \varphi_1(u_1) \cdot \mathbf{n}_1 + \alpha_{1,2} \Pi_1(u_1) = -\nabla \varphi_2(u_2) \cdot \mathbf{n}_2 + \alpha_{1,2} \Pi_2(u_2),$$

$$\nabla \varphi_2(u_2) \cdot \mathbf{n}_2 + \alpha_{2,1} \Pi_2(u_2)) = -\nabla \varphi_1(u_1) \cdot \mathbf{n}_1 + \alpha_{2,1} \Pi_1(u_1),$$

where $\alpha_{i,j}$ are free parameters which optimized convergence rates.

···· Following [Chavent - Jaffré (86), Enchéry et al. (06), Cances (08), Ern et al (10), Brenner et al. (13)]

•
$$\Pi_i(u) := \int_{\pi_2(0)}^{\pi_i} \min_{j \in \{1,2\}} (\lambda_j \circ \pi_j^{-1}(u)) \, \mathrm{d} u \quad \cdots \quad \text{smoother than } \overline{\pi}_i$$

$$\nabla \varphi_1(u_1) \cdot \mathbf{n}_1 + \alpha_{1,2} \Pi_1(u_1) = -\nabla \varphi_2(u_2) \cdot \mathbf{n}_2 + \alpha_{1,2} \Pi_2(u_2),$$

$$\nabla \varphi_2(u_2) \cdot \mathbf{n}_2 + \alpha_{2,1} \Pi_2(u_2)) = -\nabla \varphi_1(u_1) \cdot \mathbf{n}_1 + \alpha_{2,1} \Pi_1(u_1),$$

where $\alpha_{i,j}$ are free parameters which optimized convergence rates.

···· Following [Chavent - Jaffré (86), Enchéry et al. (06), Cances (08), Ern et al (10), Brenner et al. (13)]

• where $\overline{\pi}_1 : u \mapsto \max(\pi_1(u), \pi_2(0))$ and $\overline{\pi}_2 : u \mapsto \min(\pi_2(u), \pi_1(1))$

•
$$\Pi_i(u) := \int_{\pi_2(0)}^{\pi_i} \min_{j \in \{1,2\}} (\lambda_j \circ \pi_j^{-1}(u)) \, \mathrm{d} u \quad \cdots \quad \text{smoother than } \overline{\pi}_i$$

Extended to the Ventcell DD method in [Ahmed-S-A.H.-Japhet-Kern-Vohralík (18)]

We now define a weak solution to this problem which satisfies:

•
$$u \in H^{1}(0, T; H^{-1}(\Omega));$$

• $u(\cdot, 0) = u_{0};$
• $\varphi_{i}(u_{i}) \in L^{2}(0, T; H^{1}_{\varphi_{i}(g_{i})}(\Omega_{i})), \text{ where } u_{i} := u|_{\Omega_{i}}, i = 1,$

$$\cdots \quad \text{where } H^1_{\varphi_i(g_i)}(\Omega_i) := \{ v \in H^1(\Omega_i), v = \varphi_i(g_i) \text{ on } \Gamma^{\mathsf{D}}_i \}$$

$$(u, \cdot) \in L^2(0, T; H^1_{\Pi(g, \cdot)}(\Omega))$$

· · · where $H^1_{\Pi(g,\cdot)}(\Omega) := \{ v \in H^1(\Omega), v = \Pi(g,\cdot) \text{ on } \partial \Omega \}$

So For all $\psi \in L^2(0, T; H_0^1(\Omega))$, the following integral equality holds:

$$\int_0^T \left\{ \left\langle \partial_t u, \psi \right\rangle_{H^{-1}(\Omega), H^1_0(\Omega)} + \sum_{i=1}^2 \left(\nabla \varphi_i(u_i), \nabla \psi \right)_{\Omega_i} - (f, \psi) \right\} \mathrm{d}t = 0.$$

2;

OSWR algorithm

For $k \ge 0$, at step k, solve in parallel the space-time Robin subdomain problems (i = 1, 2):

$$\begin{split} \partial_t u_i^k - \Delta \varphi_i(u_i^k) &= f_i, & \text{in } \Omega_i \times (0, T), \\ u_i^k(\cdot, 0) &= u_0, & \text{in } \Omega_i, \\ \varphi_i(u_i^k) &= \varphi_i(g_i), & \text{on } \Gamma_i^{\mathsf{D}} \times (0, T), \\ \nabla \varphi_i(u_i^k) \cdot \mathbf{n}_i + \alpha_{i,j} \Pi_i(u_i^k) &= \Psi_i^{k-1}, & \text{on } \Gamma \times (0, T), \end{split}$$

with

•
$$\Psi_i^{k-1} := -\nabla \varphi_j(u_j^{k-1}) \cdot \mathbf{n}_j + \alpha_{i,j} \Pi_j(u_j^{k-1}), \quad j = (3-i), \ k \ge 2,$$

• Ψ_i^0 is an initial Robin guess on $\Gamma \times (0, T)$.

··· well-posedness of Robin problem following [Ahmed-Japhet-Kern, in preparation]

The discrete solution is found using the cell centered finite volume scheme in space and the backward Euler scheme in time for the subdomain problem ... Following [Enchéry-Eymard-Michel (2006)]

 $u_{h,i}^{k,n} \in \mathbb{P}_0(\mathcal{T}_{h,i}) \times \mathbb{P}_0(\mathcal{E}_h^{\bar{r}})$: unknown discrete saturation at each time step $0 \le n \le N$

The discrete solution is found using the cell centered finite volume scheme in space and the backward Euler scheme in time for the subdomain problem ... Following [Enchéry-Eymard-Michel (2006)]

 $u_{h,i}^{k,n} \in \mathbb{P}_0(\mathcal{T}_{h,i}) \times \mathbb{P}_0(\mathcal{E}_h^{\bar{r}})$: unknown discrete saturation at each time step $0 \le n \le N$

- At each OSWR DD step $k \ge 1$ and each time step $n \ge 1$, Newton–Raphson iterative linearization procedure is used to linearize the local Robin problem At each linearization step $m \ge 1$, find $u_{h,i}^{k,n,m} \in \mathbb{P}_0(\mathcal{T}_{h,i}) \times \mathbb{P}_0(\mathcal{E}_h^{\Gamma})$
- Solution Define $u_{h\tau,i}^{k,m}|_{I_n} := u_{h,i}^{k,n,m}$ where I_n is a subinterval in time
- For a posteriori estimates: P_{τ}^{1} continuous, piecewise affine in time functions

OUTLINE

Intivations and problem setting

Robin domain decomposition for a two-phase flow problem

Estimates and stopping criteria in a two-phase flow problem

3 Numerical experiments

• $\underbrace{\|u - \tilde{u}_{h_{\mathcal{T}}}^{k,m}\|_{\sharp}}_{\text{unknown}} \leq \text{Fully computable estimators}$

• Goal :
$$\underbrace{\|u - \tilde{u}_{h\tau}^{k,m}\|_{\sharp}}_{\text{unknown}} \leq \eta_{\text{sp}}^{k,m} + \eta_{\text{DD}}^{k,m} + \eta_{\text{tm}}^{k,m} + \eta_{\text{lin}}^{k,m}$$

- $\underbrace{\|u \tilde{u}_{h\tau}^{k,m}\|_{\sharp}}_{\text{unknown}} \leq \text{Fully computable estimators}$
- Goal : $\underbrace{\|\boldsymbol{u} \tilde{\boldsymbol{u}}_{h\tau}^{k,m}\|_{\sharp}}_{\text{unknown}} \leq \boldsymbol{\eta_{sp}^{k,m}} + \boldsymbol{\eta_{DD}^{k,m}} + \boldsymbol{\eta_{tm}^{k,m}} + \boldsymbol{\eta_{lin}^{k,m}}$
- Results on a posteriori error estimates valid during the iteration of an algebraic solver [Becker-Johnson-Rannacher (95), Arioli (04), Arioli-Loghin(07), Patera & Rønquist (01), Meidner-Rannacher-Vihharev (09), Jiránek-Strakoš-Vohralík (10), Ern-Vohralík (13)]

- $\underbrace{\|u \tilde{u}_{h\tau}^{k,m}\|_{\sharp}}_{\text{unknown}} \leq \text{Fully computable estimators}$
- Goal : $\underbrace{\|u \tilde{u}_{h\tau}^{k,m}\|_{\sharp}}_{\text{unknown}} \leq \eta_{\text{sp}}^{k,m} + \eta_{\text{DD}}^{k,m} + \eta_{\text{tm}}^{k,m} + \eta_{\text{lin}}^{k,m}$
- Results on a posteriori error estimates valid during the iteration of an algebraic solver [Becker-Johnson-Rannacher (95), Arioli (04), Arioli-Loghin(07), Patera & Rønquist (01), Meidner-Rannacher-Vihharev (09), Jiránek-Strakoš-Vohralík (10), Ern-Vohralík (13)]
- More recent results on coupling DD and a posteriori error estimates [V.Rey-C.Rey-Gosselet (14)] Dirichlet & Neumann subdomain problems ⇒ H(div, Ω) flux at each DD iteration Following [Prager-Synge (47), Ladevèze-Pelle (05), Repin (08), Ern-Vohralík (15)]
- ont applicable to more general (e.g. Robin, Ventcell) transmission conditions

- $\underbrace{\|u \tilde{u}_{h\tau}^{k,m}\|_{\sharp}}_{\text{unknown}} \leq \text{Fully computable estimators}$
- Goal : $\underbrace{\|u \tilde{u}_{h\tau}^{k,m}\|_{\sharp}}_{\text{unknown}} \leq \eta_{\text{sp}}^{k,m} + \eta_{\text{DD}}^{k,m} + \eta_{\text{tm}}^{k,m} + \eta_{\text{lin}}^{k,m}$
- Results on a posteriori error estimates valid during the iteration of an algebraic solver [Becker-Johnson-Rannacher (95), Arioli (04), Arioli-Loghin(07), Patera & Rønquist (01), Meidner-Rannacher-Vihharev (09), Jiránek-Strakoš-Vohralík (10), Ern-Vohralík (13)]
- More recent results on coupling DD and a posteriori error estimates [V.Rey-C.Rey-Gosselet (14)] Dirichlet & Neumann subdomain problems ⇒ H(div, Ω) flux at each DD iteration Following [Prager-Synge (47), Ladevèze-Pelle (05), Repin (08), Ern-Vohralík (15)]
- ont applicable to more general (e.g. Robin, Ventcell) transmission conditions
- In our contribution: develop a posteriori estimates for DD algorithms where on the interfaces, neither the conformity of the flux nor that of the saturation are preserved for unsteady degenerated non linear problem

Following [Nochetto-Schmidt-Verdi (00), Cancès-Pop-Vohralík (14), Di Pietro-Vohralík-Yousef (15)]

Steady diffusion equation

$\mathbf{u} = -\mathbf{S} abla p,$	in	Ω
$\nabla \cdot \mathbf{u} = f,$	in	Ω
$ ho=g_{ m D}$	on	${\sf \Gamma}_D\cap\partial\Omega$
$-\mathbf{u}\cdot \mathbf{\textit{n}}=g_{\mathrm{N}}$	on	$\Gamma_N\cap\partial\Omega$

S-A.H., C. Japhet, M. Kern, and M. Vohralík, A posteriori stopping criteria for optimized Schwarz domain decomposition algorithms in mixed formulations, Comput. Methods Appl. Math., (2018), Accepted.

Unsteady diffusion equation

$$\begin{split} \mathbf{u} &= -\boldsymbol{S} \nabla p, \quad \text{in} \quad \Omega \times (0, T) \\ \phi \frac{\partial p}{\partial t} + \nabla \cdot \mathbf{u} &= f, \qquad \text{in} \quad \Omega \times (0, T) \\ p &= g_{\text{D}} \qquad \text{on} \quad \Gamma_{\text{D}} \cap \partial \Omega \times (0, T) \\ -\mathbf{u} \cdot \boldsymbol{n} &= g_{\text{N}} \qquad \text{on} \quad \Gamma_{\text{N}} \cap \partial \Omega \times (0, T) \\ p(\cdot, 0) &= p_{0} \qquad \text{in} \quad \Omega \end{split}$$

S-A.H., C. Japhet, M. Kern, and M. Vohralík, A posteriori stopping criteria for optimized Schwarz domain decomposition algorithms in mixed formulations, Comput. Methods Appl. Math., (2018), Accepted.

S-A.H., C. Japhet, and M. Vohralík, A posteriori stopping criteria for space-time domain decomposition for the heat equation in mixed formulations, Electron. Trans. Numer. Anal., (2018), Accepted . PINT 2017 by M. Kern

In this contribution: we take up the path initiated in the two papers above

• $\|u - \tilde{u}_{h\tau}^{k,m}\|_{\sharp} \leq$ unknown

Fully computable estimators

depend on $H(div, \Omega)$ flux and a saturation which have good properties

• $||u - \tilde{u}_{h\tau}^{k,m}||_{\sharp} \leq ||u| + ||u| + ||u||_{H^{1}(M^{1})}$

So FV method gives $u_{h,i}^{k,n,m} \notin H^1(\Omega_i), \ i = 1, 2 \implies \begin{cases} \varphi_i(u_{h,i}^{k,n,m}) \notin H^1(\Omega_i) \\ \Pi_i(u_{h,i}^{k,n,m}) \notin H^1(\Omega_i) \implies \Pi(u_h^{k,n,m}) \notin H^1(\Omega_i) \end{cases}$

• $||u - \tilde{u}_{h\tau}^{k,m}||_{\sharp} \leq unknown$

Fully computable estimators

depend on $H(div,\Omega)$ flux and a saturation which have good properties

- So FV method gives $u_{h,i}^{k,n,m} \notin H^1(\Omega_i), i = 1, 2 \implies \begin{cases} \varphi_i(u_{h,i}^{k,n,m}) \notin H^1(\Omega_i) \\ \Pi_i(u_{h,i}^{k,n,m}) \notin H^1(\Omega_i) \implies \Pi(u_h^{k,n,m}) \notin H^1(\Omega) \end{cases}$
- Solution BD method gives $\mathbf{u}_{h}^{k,n,m} \notin \mathbf{H}(\text{div}, \Omega)$ and $\Pi(u_{h}^{k,n,m})$ jumps accros Γ

• $\|u - \tilde{u}_{h\tau}^{k,m}\|_{\sharp} \leq$ unknowr

Fully computable estimators

depend on $H(div,\Omega)$ flux and a saturation which have good properties

8 FV method gives
$$u_{h,i}^{k,n,m} \notin H^1(\Omega_i), i = 1, 2 \implies \begin{cases} \varphi_i(u_{h,i}^{k,n,m}) \notin H^1(\Omega_i) \\ \Pi_i(u_{h,i}^{k,n,m}) \notin H^1(\Omega_i) \implies \Pi(u_h^{k,n,m}) \notin H^1(\Omega) \end{cases}$$

8 Robin DD method gives $\mathbf{u}_{h}^{k,n,m} \notin \mathbf{H}(\text{div}, \Omega)$ and $\Pi(u_{h}^{k,n,m})$ jumps accros Γ

Strategy:

Follow Nochetto-Schmidt-Verdi (00), Cancès-Pop-Vohralík (14), Di Pietro-Vohralík-Yousef (15), S-A.H., C. Japhet, M. Kern, and M. Vohralík (18)] Extension to Robin DD for nonlinear problem in this work

• $||u - \tilde{u}_{h\tau}^{k,m}||_{\sharp} \leq unknown$

Fully computable estimators

depend on $H_{(div,\Omega)}$ flux and a saturation which have good properties

8 FV method gives
$$u_{h,i}^{k,n,m} \notin H^1(\Omega_i), i = 1, 2 \implies \begin{cases} \varphi_i(u_{h,i}^{k,n,m}) \notin H^1(\Omega_i) \\ \Pi_i(u_{h,i}^{k,n,m}) \notin H^1(\Omega_i) \implies \Pi(u_h^{k,n,m}) \notin H^1(\Omega) \end{cases}$$

Solution BD method gives $\mathbf{u}_{h}^{k,n,m} \notin \mathbf{H}(\text{div}, \Omega)$ and $\Pi(u_{h}^{k,n,m})$ jumps accros Γ

Strategy:

Follow [Nochetto-Schmidt-Verdi (00), Cancès-Pop-Vohralik (14), Di Pietro-Vohralik-Yousef (15), S-A.H., C. Japhet, M. Kern, and M. Vohralik (18)] Extension to Robin DD for nonlinear problem in this work

• Postprocessing: $\tilde{u}_{h\tau}^{k,m}(u_{h\tau}^{k,m})$ is piecewise constant and not suitable for the energy norm) where $\tilde{u}_{h\tau}^{k,m} := \varphi_i^{-1}(\tilde{\varphi}_{h\tau,i}^{k,m})$ with $\tilde{\varphi}_{h\tau,i}^{k,m} \in P_1^{-1}(\mathcal{P}_2(\mathcal{T}_{h,i}))$ $\tilde{u}_{h\tau}^{k,m}$ used for theoretical analysis and $\tilde{\varphi}_{h\tau,i}^{k,m}$ used in practice for the estimators • $||u - \tilde{u}_{h\tau}^{k,m}||_{\sharp} \leq ||u|known|$

Fully computable estimators

depend on $\mathbf{H}_{(div,\Omega)}$ flux and a saturation which have good properties

Solution BD method gives $\mathbf{u}_{h}^{k,n,m} \notin \mathbf{H}(\text{div}, \Omega)$ and $\Pi(u_{h}^{k,n,m})$ jumps accros Γ

Strategy:

Follow [Nochetto-Schmidt-Verdi (00), Cancès-Pop-Vohralik (14), Di Pietro-Vohralik-Yousef (15), S-A.H., C. Japhet, M. Kern, and M. Vohralik (18)] Extension to Robin DD for nonlinear problem in this work

• Postprocessing: $\tilde{\boldsymbol{\nu}}_{h\tau}^{k,m}(\boldsymbol{\mu}_{h\tau}^{k,m} \text{ is piecewise constant and not suitable for the energy norm)}$ where $\tilde{\boldsymbol{\nu}}_{h\tau}^{k,m} := \varphi_i^{-1}(\tilde{\varphi}_{h\tau,i}^{k,m})$ with $\tilde{\varphi}_{h\tau,i}^{k,m} \in P_1^{-1}(\mathcal{P}_2(\mathcal{T}_{h,i}))$ $\tilde{\boldsymbol{\nu}}_{h\tau}^{k,m}$ used for theoretical analysis and $\tilde{\varphi}_{h\tau,i}^{k,m}$ used in practice for the estimators

Saturation and flux reconstructions:

- Reconstruction saturation $s_{h,i}^{k,n,m} := \varphi_i^{-1}(\hat{\varphi}_{h,i}^{k,n,m})$
 - where $\hat{\varphi}_{h\tau,i}^{k,m} \in P_{\tau}^{1}(\mathcal{P}_{2}(\mathcal{T}_{h,i}) \cap H^{1}(\Omega_{i}))$ -conforming in each subdoamin
 - modified to ensure the continuity across the interface: $\Pi_1(s_{h,1}^{k,n,m}) = \Pi_2(s_{h,2}^{k,n,m})$

• $\sigma_{h\tau}^{k,m}$: **H**(div, Ω)-conforming and local conservative in each element, piecewise constant in time

Potential reconstructions (2 subdomains)

Following [Di Pietro-Vohralík-Yousef (14), Cancès-Pop-Vohralík (14)] Extension to Robin DD

$$Q_{t,i} := L^2(0,\,t;L^2(\Omega_i)), \qquad X_t := L^2(0,\,t;H^1_0(\Omega)), \qquad X_t' := L^2(0,\,t;H^{-1}(\Omega)).$$

$$\begin{split} \|u - \tilde{u}_{h\tau}^{k,m}\|_{\star}^{2} &:= \sum_{i=1}^{2} \|\varphi_{i}(u_{i}) - \varphi_{i}(\tilde{u}_{h\tau,i}^{k,m})\|_{Q_{T,i}}^{2} + \frac{L_{\varphi}}{2} \|u - \tilde{u}_{h\tau}^{k,m}\|_{X'}^{2} + \frac{L_{\varphi}}{2} \|(u - \tilde{u}_{h\tau}^{k,m})(\cdot, T)\|_{H^{-1}(\Omega)}^{2} \\ \|u - \tilde{u}_{h\tau}^{k,m}\|_{\sharp}^{2} &:= \|u - \tilde{u}_{h\tau}^{k,m}\|_{\star}^{2} + 2\sum_{i=1}^{2} \int_{0}^{T} \left(\|\varphi_{i}(u_{i}) - \varphi_{i}(\bar{u}_{h\tau,i}^{k,m})\|_{Q_{I,i}}^{2} + \int_{0}^{t} \|\varphi_{i}(u_{i}) - \varphi_{i}(\bar{u}_{h\tau,i}^{k,m})\|_{Q_{S,i}}^{2} e^{t-s} ds \right) dt; \end{split}$$

where L_{φ} is the maximal Lipschitz constant of the functions φ_i

Theorem

If
$$\bar{\varphi} \in L^2(0, T; H^1_0(\Omega))$$
, where $\bar{\varphi}|_{\Omega_i} := \varphi_i(u_i) - \varphi_i(s_{h\tau,i}^{k,m}), \quad i = 1, 2$, then

$$\|\boldsymbol{u} - \tilde{\boldsymbol{u}}_{h\tau}^{k,m}\|_{\sharp} \leq \sqrt{\frac{L_{\varphi}}{2}}\sqrt{2\boldsymbol{e}^{\mathrm{T}} - 1}\eta_{\mathrm{IC}}^{k,m} + \eta_{\mathrm{sp}}^{k,m} + \eta_{\mathrm{tm}}^{k,m} + \eta_{\mathrm{dd}}^{k,m} + \eta_{\mathrm{lin}}^{k,m}$$

which depend on $\sigma_{h\tau}^{k,m}$, $\hat{\varphi}_{h\tau,i}^{k,m}$, $\hat{\varphi}_{h\tau,i}^{k,m}$,

0 - Postprocessing function $\tilde{\varphi}_{h,i}^{k,n,m}$ of $\varphi_i(u_{h\tau,i}^{k,m})$

 $\tilde{\varphi}_{h,i}^{k,n,m} \in \mathcal{P}_2(\mathcal{T}_{h,i})$ at each iteration *k*, at each time step *n*, n = 0, ..., N, and at each linearization step *m*, is constructed as:

$$\begin{aligned} & -\nabla \tilde{\varphi}_{h,i}^{k,n,m} \mid_{K} = \mathbf{u}_{h,i}^{k,n,m} \mid_{K}, \qquad \forall K \in \mathcal{T}_{h,i}, \\ & \frac{(\varphi^{-1}(\tilde{\varphi}_{h,i}^{k,n,m}), \mathbf{1})_{K}}{|K|} = u_{K}^{k,n,m} \mid_{K}, \qquad \forall K \in \mathcal{T}_{h,i}. \end{aligned}$$

•
$$\tilde{\varphi}_{h,i}^{k,n,m} \notin H^1(\Omega_i)$$

0 - Postprocessing function $\tilde{\varphi}_{h,i}^{k,n,m}$ of $\varphi_i(u_{h\tau,i}^{k,m})$

 $\tilde{\varphi}_{h,i}^{k,n,m} \in \mathcal{P}_2(\mathcal{T}_{h,i})$ at each iteration *k*, at each time step *n*, n = 0, ..., N, and at each linearization step *m*, is constructed as:

$$\begin{aligned} & -\nabla \tilde{\varphi}_{h,i}^{k,n,m} \mid_{K} = \mathbf{u}_{h,i}^{k,n,m} \mid_{K}, \qquad \forall K \in \mathcal{T}_{h,i}, \\ & \frac{(\varphi^{-1}(\tilde{\varphi}_{h,i}^{k,n,m}), \mathbf{1})_{K}}{|K|} = u_{K}^{k,n,m} \mid_{K}, \qquad \forall K \in \mathcal{T}_{h,i}. \end{aligned}$$

•
$$\tilde{\varphi}_{h,i}^{k,n,m} \notin H^1(\Omega_i)$$

1 - Piecewise continuous polynomial $\hat{\varphi}_{h,i}^{k,n,m}$ in each subdomain

$$\begin{split} \hat{\varphi}_{h,i}^{k,n,m}(\mathbf{x}) &:= \mathcal{I}_{av}(\tilde{\varphi}_{h,i}^{k,n,m})(\mathbf{x}) = \frac{1}{|\mathcal{T}_{\mathbf{x}}|} \sum_{K \in \mathcal{T}_{\mathbf{x}}} \tilde{\varphi}_{h,i}^{k,n,m}|_{K}(\mathbf{x}) \in \mathbb{P}_{2}(\mathcal{T}_{h,i}) \cap H^{1}(\Omega_{i}) \\ \hat{\varphi}_{h,i}^{k,n,m}(\mathbf{x}) &:= \varphi_{i}(g_{i}(\mathbf{x})) \text{ on } \Gamma_{i}^{\mathsf{D}}. \end{split}$$

2 - Reconstruction saturation

reconstruction saturation in each subdomain:
$$s_h^{k,n,m}|_{\Omega_i} := \varphi_i^{-1}(\hat{\varphi}_{h,i}^{k,n,m})$$

According to the weak solution u, we require that

•
$$s_{h\tau}^{k,n,m}|_{\Omega_i} \in H^1(0,T;H^{-1}(\Omega))$$

•
$$\varphi_i(\boldsymbol{s}_{h\tau,i}^{k,m}) \in L^2(0, T; H^1_{\varphi_i(g_i)}(\Omega_i))$$

 $\cdots \quad \varphi_i(\boldsymbol{s}_h^{k,n,m}|_{\Omega_i}) := \varphi_i(\varphi_i^{-1}(\hat{\varphi}_{h,i}^{k,n,m})) = \hat{\varphi}_{h,i}^{k,n,m} \in H^1_{\varphi_i(g_i)}(\Omega_i)$

•
$$\Pi_1(s_h^{k,n,m}|_{\Omega_1}) = \Pi_2(s_h^{k,n,m}|_{\Omega_2})$$
 on Γ
... where Π_i , $1 \le i \le 2$, is chosen as follows:
 $\Pi_i(u_i^{-1}(z_i^{k,n,m}(\mathbf{x}_i))) + \Pi_i(u_i^{-1}(z_i^{k,n,m}(\mathbf{x}_i)))$

$$\Pi_i(\boldsymbol{s}_h^{k,n,m}|_{\Omega_i}(\mathbf{x}_{\Gamma})) = \frac{\Pi_i(\varphi_i^{-1}(\hat{\varphi}_{h,i}^{n,n,m}(\mathbf{x}_{\Gamma}))) + \Pi_j(\varphi_j^{-1}(\hat{\varphi}_{h,j}^{n,n,m}(\mathbf{x}_{\Gamma})))}{2}.$$

• $\frac{1}{|K|}(s_h^{k,n,m},1)_K = u_K^{k,n,m}, \quad \forall K \in \mathcal{T}_h$

··· using suitable constants $\alpha_K^{k,n,m}$ and the b_K the bubble function on K.

$$\begin{aligned} \boldsymbol{\sigma}_{h\tau}^{k,m} \in P_{\tau}^{0}(\mathbf{H}(\operatorname{div},\Omega)), \\ \left(f^{n} - \frac{\boldsymbol{u}_{K}^{k,n,m} - \boldsymbol{u}_{K}^{k,n-1}}{\tau^{n}} - \nabla \cdot \boldsymbol{\sigma}_{h}^{k,n,m}, \mathbf{1}\right)_{K} &= 0, \quad \forall K \in \mathcal{T}_{h}. \end{aligned}$$

Average of the fluxes on the interface

$$\begin{aligned} \boldsymbol{\sigma}_{h\tau}^{k,m} \in \boldsymbol{P}_{\tau}^{0}(\mathbf{H}(\operatorname{div},\Omega)), \\ \left(f^{n} - \frac{\boldsymbol{u}_{K}^{k,n,m} - \boldsymbol{u}_{K}^{k,n-1}}{\tau^{n}} - \nabla \cdot \boldsymbol{\sigma}_{h}^{k,n,m}, \mathbf{1}\right)_{K} &= \mathbf{0}, \quad \forall K \in \mathcal{T}_{h}. \end{aligned}$$

- Average of the fluxes on the interface
- Misfit of mass balance in each subdomain

$$\begin{aligned} \boldsymbol{\sigma}_{h\tau}^{k,m} \in \boldsymbol{P}_{\tau}^{0}(\mathbf{H}(\operatorname{div},\Omega)), \\ \left(f^{n} - \frac{\boldsymbol{u}_{K}^{k,n,m} - \boldsymbol{u}_{K}^{k,n-1}}{\tau^{n}} - \nabla \cdot \boldsymbol{\sigma}_{h}^{k,n,m}, \mathbf{1}\right)_{K} &= \mathbf{0}, \quad \forall K \in \mathcal{T}_{h}. \end{aligned}$$

- Average of the fluxes on the interface
- Misfit of mass balance in each subdomain
- Distribute the misfit by coarse grid problem

$$\begin{aligned} \boldsymbol{\sigma}_{h\tau}^{k,m} \in \boldsymbol{P}_{\tau}^{0}(\mathbf{H}(\operatorname{div},\Omega)), \\ \left(f^{n} - \frac{\boldsymbol{u}_{K}^{k,n,m} - \boldsymbol{u}_{K}^{k,n-1}}{\tau^{n}} - \nabla \cdot \boldsymbol{\sigma}_{h}^{k,n,m}, \mathbf{1}\right)_{K} &= \mathbf{0}, \quad \forall K \in \mathcal{T}_{h}. \end{aligned}$$

- Average of the fluxes on the interface
- Misfit of mass balance in each subdomain
- Distribute the misfit by coarse grid problem
- Add the corrections to the averages

$$\begin{aligned} \boldsymbol{\sigma}_{h\tau}^{k,m} \in \boldsymbol{P}_{\tau}^{0}(\mathbf{H}(\operatorname{div},\Omega)), \\ \left(f^{n} - \frac{\boldsymbol{u}_{K}^{k,n,m} - \boldsymbol{u}_{K}^{k,n-1}}{\tau^{n}} - \nabla \cdot \boldsymbol{\sigma}_{h}^{k,n,m}, \mathbf{1}\right)_{K} &= \mathbf{0}, \quad \forall K \in \mathcal{T}_{h}. \end{aligned}$$

- Average of the fluxes on the interface
- Misfit of mass balance in each subdomain
- Distribute the misfit by coarse grid problem
- Add the corrections to the averages
- Solve local Neumann problem in the bands

OUTLINE

- Robin domain decomposition for a two-phase flow problem
- Estimates and stopping criteria in a two-phase flow problem

3 Numerical experiments

Numerical experiment with two rock types

Let $\Omega = [0, 1]^3$, $\Omega = \Omega_1 \cap \Omega_2$, where $\Gamma = \{x = 1/2\}$. We consider the capillary pressure functions and the global mobilities given respectively by

 $\pi_1(u) = 5u^2, \qquad \pi_2(u) = 5u^2 + 1, \qquad \lambda_i(u) = u(1-u), \ i \in \{1,2\}.$

- Homogeneous Neumann boundary conditions are fixed on the remaining part of $\partial \Omega$
- f = 0 in Ω and $u_0 = 0$

• $\pi_2(0) = \pi_1(u_1^*) \Rightarrow u_1^* = \frac{1}{\sqrt{5}}$ Here, the gas cannot enter the subdomain Ω_2 if $\pi_1(u_1)$ is lower than the entry pressure $\pi_1(u_1^*)$, with $u_1^* = \frac{1}{\sqrt{5}} \approx 0.44$.

- Robin transmission conditions $\alpha = \alpha_{1,2} = \alpha_{2,1}$.
- The implementation is based on the Matlab Reservoir Simulation Toolbox (MRST)

Stopping criterion

DD:

- Classical stopping criterion: Residual $\leq 10^{-6}$
- Adaptive stopping criterion:

$$\eta_{dd}^{k,m} \leq 0.1 \max\left\{\eta_{sp}^{k,m}, \eta_{tm}^{k,m}
ight\}.$$

Stopping criterion

DD:

- Classical stopping criterion: Residual $\leq 10^{-6}$
- Adaptive stopping criterion: $\eta_{\rm dd}^{k,m} \leq 0.1 \max \left\{ \eta_{\rm sp}^{k,m}, \eta_{\rm tm}^{k,m} \right\}.$

Newton at final iteration of OSWR, t = 6.6:

 Classical stopping criterion: Residual ≤ 10⁻⁸

•
$$\eta_{\text{lin},i}^{k,n,m} \leq 0.1 \max\left\{\eta_{\text{sp},i}^{k,n,m}, \eta_{\text{tm},i}^{k,n,m}, \eta_{\text{dd},i}^{k,n,m}\right\},\ i = 1, 2$$

Saturation u(t) for t = 2.9

Estimated error for t = 2.9

Saturation u(t) for t = 6.6

Estimated error for t = 6.6

Saturation u(t) for t = 13

Estimated error for t = 13

Saturation u(t) for t = 15

Estimated error for t = 15

Numerical experiments

Saturation u(t) for t = 15

Estimated error for t = 15

Capillary pressure $\pi(u(t), \cdot)$ for t = 6.6

Estimated DD error for t = 6.6

Numerical experiments

Saturation u(t) for t = 15

Estimated error for t = 15

Capillary pressure $\pi(u(t), \cdot)$ for t = 15

Estimated DD error for t = 15

Conclusions

- The quality of the result is ensured by **controlling the error** between the approximate solution and the exact solution at each iteration of the DD algorithm.
- Different components of the error have been distinguished.
- An efficient stopping criterion for the DD iterations has been established.
- Many of the DD and linearization iterations usually performed can be saved.

Future work

- Assess how much computing time can be saved
- Develop an a posteriori coarse-grid corrector
- Extend to advection-diffusion

Conclusions

- The quality of the result is ensured by **controlling the error** between the approximate solution and the exact solution at each iteration of the DD algorithm.
- Different components of the error have been distinguished.
- An efficient stopping criterion for the DD iterations has been established.
- Many of the DD and linearization iterations usually performed can be saved.

Future work

- Assess how much computing time can be saved
- Develop an a posteriori coarse-grid corrector
- Extend to advection-diffusion

S-A.H.-Japhet-Kern-Vohralík, accepted, 2018 (steady case)

S-A.H.-Kern-Japhet-Vohralík, EDP-Normandie Proceedings, 2018 (unsteady case - heat equation)

S-A.H.-Japhet-Vohralík, accepted, 2018 (unsteady case - heterogenous)

Ahmed-S-A.H.-Japhet-Kern-Vohralík, Preprint hal, 2018, submitted (two phase flow - nonlinear)

Thank you for your attention!