

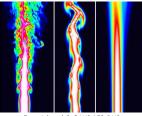
Stable time-parallel integration of advection dominated problems using Parareal with space coarsening.

Julien Bodart – ISAE-SUPAERO Serge Gratton – Toulouse-INP-IRIT Xavier Vasseur – ISAE-SUPAERO Thibaut Lunet – University of Geneva

May 4, 2018

Larger and larger problems for research and industrial applications with Computational Fluid Dynamics

- Higher complexity
 - → Turbulence, Acoustics, Combustion ...
- High fidelity simulation
 - → High Order Discretization, LES, DNS, ...



From right to left: RANS, LES, DNS

Massively parallel supercomputer for tomorrow

- Supercomputer speed rather based on number of cores than processor speed
- Largest one today:
 - $ightharpoonup \sim 10 \times 10^6 \text{ cores}$
 - ► ~ 100 PetaFlop/s
- Highlights the limits of exclusive space-parallelization

Sunway TaihuLight (2016) ©www.dailymail.co.uk

⇒ Space-time parallelism could be an interesting alternative to enhance efficiency on exascale supercomputers

Actual solutions for time-parallelization

- Space-Time Multigrid The first born
- Parareal The famous cadet
- PFASST When complexity serves efficiency
- MGRIT Toward an universal solution
- And many others ...

How to convince the HPC-CFD community?

- ► Proof of concept on representative test-cases
 - 1. Accuracy of the time-parallel integration
 - 2. Efficiency gain compared to exclusive space-parallelization
- Solution that can be easily integrated into (huge) pre-existent CFD codes
 - Explicit time-stepping solvers
 - ► Temporal evolution of variables (*e.g.* pressure sensor for acoustics simulation)
 - ▶ .

\Rightarrow First step : investigations of Parareal R1 with space coarsening R2

[R1] Lions et al., "A "Parareal" in time discretization of PDE's" (2001)

[R2] Fischer et al., "A Parareal in time semi-implicit approximation of the Navier-Stokes equations" (2005)

Thibaut Lunet et al. ROSCOFF 2018 May 4, 2018

What was done so far

PhD Thesis - "Space-time parallel strategies for the numerical simulation of turbulent flows" (Defended January 9, 2018)

- ▶ What could be the best solution from today's algorithms? (Chap. 2)
- Can we understand theoretically the behavior of explicit forms of PARAREAL? (Chap. 3)
- ▶ What about large scale turbulent flow problems ? (Chap. 4)
 - Space-time parallel efficiency?
 - Accuracy on two representative test case (Homogeneous Isotropic Turbulence, Turbulent Channel Flow)

Part of the work was accepted for publication R1

But there was a major issue at the beginning ...

[R1] Lunet et al., "Time-parallel simulation of the decay of homogeneous turbulence using Parareal with spatial coarsening" (2017)

Thibaut Lunet et al. ROSCOFF 2018 May 4, 2018

Parareal VS Advective Problems

Many studies underlined the difficulties of Parareal on

$$\frac{\partial U}{\partial t} + c \frac{\partial U}{\partial x} = 0$$

- ▶ Numerical instabilities^{R1} and slow convergence for some setting^{R2}
- ► Parareal looses its contraction factor on periodic domains (cf. M. Gander's talk)

Difficulty to prove with such problem if it would work on CFD problems

- Parareal does not define a unique algorithm
- 2. Molecular viscosity and Reynolds number
 - "The convergence of Parareal deteriorates as the viscosity parameter becomes smaller and the flow becomes more and more dominated by convection." R3
 - ▶ But: the Reynolds number does not have a unique definition!

 Low influence of the Re_{λ} number increase compared to other parameters for Homogeneous Isotropic Turbulence (cf. PhD manuscript)
- 3. In most CFD problem, space resolution and Reynolds number increase simultaneously

May 4, 2018

5 / 17

- Space coarsening implies to choose an interpolation method (Linear, High Order, Fourier,)
 - [R1] Ruprecht and Krause, "Explicit parallel-in-time integration of a linear acoustic-advection system" (2012)
 - [R2] Gander, "Analysis of the Parareal algorithm applied to hyperbolic problems using characteristics" (2008)

[R3] Steiner et al., "Convergence of Parareal for the Navier-Stokes equations depending on the Reynolds number" (2015)

Thibaut Lunet et al. ROSCOFF 2018

Main object of this talk

- ▶ Starts from the 1D linear advection problem with low diffusion
- Focus on one particular Parareal form
 - 1. Space coarsening for \mathcal{G} (one point out of two)
 - 2. High order explicit time-integration (RK4)
 - 3. Highly accurate space discretization (Centered 6th order)
- Change several parameters that can influence PARAREAL convergence (Reynolds, space resolution, interpolation method, ...)
- Increase problem complexity (non-linearity, ...)
- ► Try to answer the following questions:

What are the most influent parameters for this version of PARAREAL?

How to set them to enhance convergence for a more complex case?

Thibaut Lunet et al. ROSCOFF 2018 May 4, 2018

Definition of a baseline test case

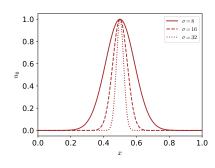
Advection with small diffusion

$$\frac{\partial u}{\partial t} = -c \frac{\partial u}{\partial x} + \nu \frac{\partial^2 u}{\partial x^2}, \ \nu << c$$

- Periodic 1D mesh with $x \in [0, 1]$
- Gaussian initial solution with varying width

$$u_0(x) = e^{-\frac{(x-1/2)^2}{\sigma^2}}$$

- CFL = 1 for both fine and coarse solvers
- Final time $T = 64\delta_t \ (\sim T_{period}/7)$
- Time domain decomposition in 4 time-slices



Error criterion based on fine solution comparison

$$E_{T,L_2}^k = \frac{\left\| U_{\mathcal{P}}^k(T) - U_{\mathcal{F}}(T) \right\|_2}{\left\| U_{\mathcal{F}}(T) \right\|_2}, \text{ for } k \in \{0, 1, 2, 3\}$$

Thibaut Lunet et al. ROSCOFF 2018 May 4, 2018

Definition of a baseline test case

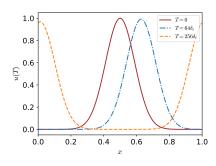
Advection with small diffusion

$$\frac{\partial u}{\partial t} = -c \frac{\partial u}{\partial x} + \nu \frac{\partial^2 u}{\partial x^2}, \quad \nu << c$$

- Periodic 1D mesh with $x \in [0, 1]$
- Gaussian initial solution with varying width

$$u_0(x) = e^{-\frac{(x-1/2)^2}{\sigma^2}}$$

- CFL = 1 for both fine and coarse solvers
- Final time $T = 64\delta_t \ (\sim T_{period}/7)$
- Time domain decomposition in 4 time-slices



Error criterion based on fine solution comparison

$$E_{T,L_2}^k = \frac{\left\| U_{\mathcal{P}}^k(T) - U_{\mathcal{F}}(T) \right\|_2}{\left\| U_{\mathcal{F}}(T) \right\|_2}, \text{ for } k \in \{0, 1, 2, 3\}$$

Thibaut Lunet et al. ROSCOFF 2018 May 4, 2018

What will vary in the next graphs

Main parameters

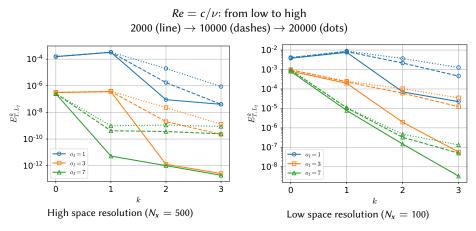
- Interpolation method
 - 1. Linear ($o_l = 1$, blue-circle)
 - 2. Cubic ($o_l = 3$, orange-square)
 - 3. 7^{th} order ($o_I = 7$, green-triangle)
- Space mesh resolution
 - 1. Fine (left side)
 - 2. Coarse (right side)

Secondary parameters (lines - dashes - dots)

- 1. Reynolds number
- 2. Time slice length
- 3. Regularity of the solution
- 4. Non-linearity of the advection term

Thibaut Lunet et al. ROSCOFF 2018 May 4, 2018

Linear case - influence of the Reynolds number

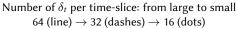


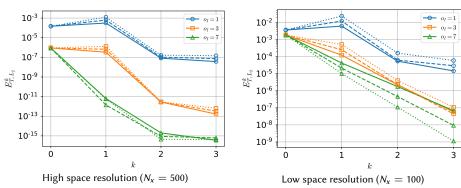
Main observations

- ▶ Staggered benefit of interpolation order increase (first on \mathcal{G} , then on Parareal convergence)
- ▶ Few influence of *Re* for the 1st iteration with low order interpolation or low space resolution

Thibaut Lunet et al. ROSCOFF 2018 May 4, 2018

Linear case - influence of the time-slice length





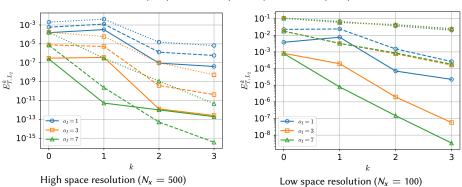
Main observations

- Small impact on the convergence
- Effect is "inverted" when going to high order interpolation

Thibaut Lunet et al. ROSCOFF 2018 May 4, 2018

Linear case - influence of the solution regularity

Width of the initial Gaussian: from large to small $\sigma = 8 \text{ (line)} \rightarrow \sigma = 16 \text{ (dashes)} \rightarrow \sigma = 32 \text{ (dots)}$



Main observations

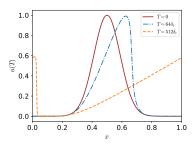
- ▶ Mainly influence the coarse solver error, less the convergence
- A too low space resolution cancels the beneficial impact of high order interpolation

Thibaut Lunet et al. ROSCOFF 2018 May 4, 2018

The new problem

▶ Non-linear advection term

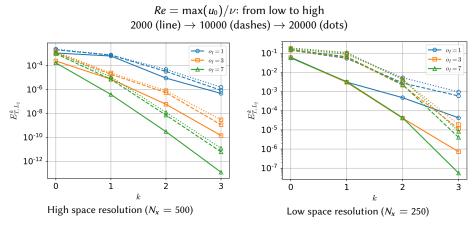
$$\frac{\partial u}{\partial t} = -u \frac{\partial u}{\partial x} + \nu \frac{\partial^2 u}{\partial x^2}, \ \nu << \max_{x} (u_0)$$



► Centered scheme applied to $\frac{1}{2} \frac{\partial u^2}{\partial x}$

Thibaut Lunet et al. ROSCOFF 2018 May 4, 2018

Non linear case - influence of the Reynolds number



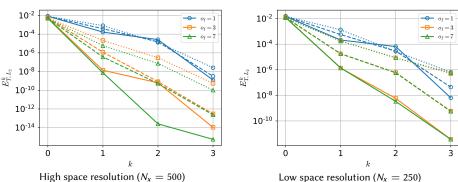
Main observations

- Similar behavior as the linear case, except for deterioration of the coarse solver accuracy
- Bad space resolution quickly cancels high order interpolation benefits

Thibaut Lunet et al. ROSCOFF 2018 May 4, 2018

Non linear case - influence of the time-slice length

Number of δ_t per time-slice: from large to small 128 (line) \rightarrow 64 (dashes) \rightarrow 32 (dots)



Main observation

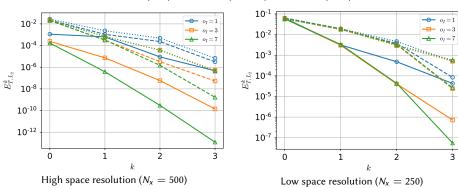
► Increasing the time-slice length enhances the convergence (for each resolutions)

 \neq linear case

Thibaut Lunet et al. ROSCOFF 2018 May 4, 2018

Non linear case - influence of the solution regularity

Width of the initial Gaussian: from large to small $\sigma = 8 \text{ (line)} \rightarrow \sigma = 16 \text{ (dashes)} \rightarrow \sigma = 32 \text{ (dots)}$



Main observation

▶ Increasing sharpness of the solution \simeq increasing the Reynolds number

Thibaut Lunet et al. ROSCOFF 2018 May 4, 2018

Conclusions from this study

General conclusion for Parareal with space coarsening on advection problem

- Reasonably good convergence obtained for some cases
- ► Advection is not the only player to blame, there is also
 - 1. Low order interpolation (PLEASE do not use linear interpolation!)
 - 2. Space mesh resolution not adapted to a sharp initial solution
 - 3. ...
- Non-linearity can change everything
 - 1. Increasing the time-slice can enhance the convergence
 - 2. More sensitivity to the tuple: (mesh resolution, solution form)

Perspectives

- ▶ Numerical experiments done with the CASPER PYTHON code
 - 1. Not open-source yet but can be shared at demand
 - 2. Could be used to conduct many other tests
- Theoretical Fourier analysis of the algorithm to understand its main behavior (DD25 + draft)
- ► Complete convergence theory for the advection-diffusion problem (contraction factor, ...)

Thanks a lot for your attention,

I would be glad to answer if you have Any questions?