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VISCOUS PROBLEMS WITH INVISCID APPROXIMATIONS IN SUBREGIONS :

A NEW APPROACH BASED ON OPERATOR FACTORIZATION

Martin J. Gander1, Laurence Halpern2, Caroline Japhet3 et Veronique

Martin4

Abstract. In many applications the viscous terms become only important in parts of the computa-

tional domain. As a typical example serves the flow around the wing of an airplane, where close to

the wing the viscous terms in the Navier Stokes equations are essential for the solution, while away

from the wing, Euler’s equations would suffice for the simulation. This leads to the interesting problem

of finding coupling conditions between these two partial differential equations of different type. While

coupling conditions have been developed in the literature, for example by using a limiting procedure on

a globally viscous problem, we are interested here to develop coupling conditions which lead to coupled

solutions which are as close as possible to the fully viscous solution. We develop our new approach

on the one dimensional model problem of advection reaction diffusion equations with pure advection

reaction approximation in subregions, which leads to the problem of coupling first and second order

operators. Our guiding principle for finding transmission conditions is an operator factorization, and

we show both analytically and numerically that the new coupling conditions lead to coupled solutions

which are much closer to the fully viscous ones than other coupling conditions from the literature.

1. Introduction

There are two main reasons for coupling different models in different regions : the first are problems where the
physics is different in different regions, and hence different models need to be used, for example in fluid-structure
coupling. Such problems can well be treated using the so called heterogeneous domain decomposition methods,
which were first presented in [19] and are methods specialized to couple different models, see also [20], [9], and
in particular for fluid structure interaction [6]. The second are problems where one is in principle interested in
the full physical model, but the full model is too expensive computationally over the entire region, and hence
one would like to use a simpler model in most of the region, and the full one only where it is essential to capture
the physical phenomena, see [16,17]. We are interested in the latter case here, and we use as our model problem
the advection reaction diffusion equation

Ladu := −νu′′ + au′ + cu = f in Ω = (−L1, L2),
B1u = g1 on x = −L1,
B2u = g2 on x = L2,

(1.1)
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where ν and c are positive constants, a, g1, g2 ∈ R, f ∈ H1(Ω), L1, L2 > 0 and Bj , j = 1, 2 are suitable boundary
operators of Dirichlet, Neumann or Robin type. If in part of Ω, the diffusion plays only a minor role, one would
like to replace the viscous solution u by an inviscid approximation, which leads to two decoupled problems : a
viscous problem on, say, Ω− := (−L1, 0),

Laduad = f in Ω−,
B1uad = g1 on x = −L1,

(1.2)

and a pure advection reaction problem on Ω+ := (0, L2),

Laua := au′
a + cua = f in Ω+. (1.3)

For this problem, coupling conditions were developed in the seminal papers [14] and for two dimensional problems
in [15], and in the PhD thesis [7]. In [14], we find as the main motivation for the work the convenience for treating
each region with an appropriate model, which can lead to substantial numerical savings. The authors develop
coupling conditions between the two regions and models based on a limiting procedure for a fully viscous
problem, where one would impose continuity of the solution and the fluxes, i.e.

u(0−) = u(0+), (−ν−u′ + au)(0−) = (−ν+u′ + au)(0+), (1.4)

where ν− and ν+ are the viscosity in Ω− and Ω+. This is equivalent to imposing continuity of the solution, and
continuity of the normal derivative, if ν is continuous at x = 0.

In the case of positive advection, a > 0, the authors in [14] find the two variational coupling conditions

uad(0) = ua(0), (−νu′
ad + auad)(0) = aua(0), a > 0, (V+)

which are obtained by passing to the limit as ν+ goes to zero in a variational formulation with the viscous
coupling conditions (1.4). If the advection is negative, a < 0, a similar analysis in [14] leads to the one variational
coupling condition

(−νu′
ad + auad)(0) = aua(0), a < 0, (V-)

and continuity of the coupled solution is lost. The authors also introduce a different set of coupling conditions :
since (1.4) implies continuity of the normal derivatives, they propose to impose directly this continuity, and
not the continuity of the fluxes. This approach does not lead to a global variational formulation (“Now, the
two problems do not admit a ’natural’ global variational formulation and the question of existence and the
asymptotic behavior are somewhat more complicated” [14]), but the authors manage to show that with these
conditions, in the limit as ν+ goes to zero, one finds for positive advection the coupling conditions

uad(0) = ua(0), u′
ad(0) = u′

a(0), a > 0, (NV+)

and for negative advection

uad(0) = ua(0), a < 0, (NV-)

and thus the solution is at least continuous at the interface x = 0. In a later publication [15], the authors
generalize only the analysis of the variational transmission conditions to two dimensions (“Among all allowed
choices, we make the most natural one, namely we take those interface conditions which are generated by a
limit procedure on ‘globally viscous’ problems” [15]), see also [20].

Computational savings are also the driving force in [5], which indicates a different requirement one could try
to impose on coupling conditions, namely that the coupled problem should in some sense lead to the best ap-
proximation of the fully viscous solution, an approach quite different from heterogeneous domain decomposition,
since the underlying domain is homogeneous. It is known that the variational conditions do not lead to such a
best approximation, and to improve the approximation, a correction boundary layer has been introduced in [4],
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based on singular perturbation theory, which gives in the form of matched asymptotic expansions an elegant
analytical tool to treat singularly perturbed problems, see for example [21]. This analytical tool itself can be
numerically exploited, in order to obtain suitable domain decomposition methods for solving problems with
boundary layers, see for example [13], who name such techniques again heterogeneous domain decomposition
methods, even though the same physical problem is solved throughout the domain. A different approach of
viscous/inviscid coupling consists of introducing a non-linear function into the viscous term, which makes this
term zero, as soon as it becomes small enough, see [3], and [1] for a numerical procedure to solve such problems
in the case of Burgers equation. For more classical domain decomposition approaches for singularly perturbed
problems, see [2] and references therein.

The goal of finding coupling conditions which lead to the best possible approximation of the fully viscous
problem has been the focus of the PhD thesis [7] :

L’objectif est alors d’essayer de trouver des conditions de transmission adéquates à la frontière
de façon à minimiser l’erreur entre la solution du problème de transmission et celle de Navier
Stokes complet dans tout le domaine.

In one chapter of the thesis, the case of advection diffusion without reaction, c = 0 is considered, and a set of
coupling conditions is proposed : for positive advection, the conditions are

uad(0) = ua(0), u′
ad(0) = u′

a(0), a > 0, (1.5)

where the second condition is obtained using a factorization of the operator in order to transfer information from
the right hand side function f , and an expansion for ν small in order to find the original advection operator.
The first condition is not mathematically justified (“puisque nous avons déjà le raccord C0 des dérivées des
solutions en x = 0 et sachant de plus que la solution appartient à C1, il est raisonnable de se donner cette
condition” [7]). In the case of negative advection, the coupling condition is

(−νu′
ad + auad)(0) = aua(0), a < 0, (1.6)

again obtained based on the factorization of the operator, and using this tool, it is shown that for the case
c = 0, this condition actually leads to the exact solution in the viscous part of the domain, uad ≡ u, provided
the domain is Ω = R, and hence condition (1.6) can be considered as an exact transparent boundary condition
for the coupled problem. We note that these latter conditions are for a < 0 the variational conditions (V-)
obtained by the limiting viscosity approach, whereas for a > 0 these are the non-variational conditions (NV+).
It has been shown in [12] for a one dimensional test problem that the non-variational coupling conditions lead
to closer solutions to the fully viscous solution than the variational coupling conditions, when ν becomes small.

We will show in this paper for the model problem of an advection reaction diffusion equation in one dimension
that using the factorization of the operator as a guiding principle, one can systematically construct transmission
conditions which lead to solutions of the coupled problem which are very close approximations of the global
viscous solution as ν goes to zero. Operator factorizations have already been successfully used in the design of
other numerical methods, see for example the paraxial approximation in [18], the AILU preconditioner in [10],
and in domain decomposition, see [11] and references therein.

2. Coupling Conditions Based on the Factorization of the Operator

A direct computation shows that the advection reaction diffusion operator Lad in (1.1) can be factored,

Lad = (a∂x − aλ+)(−ν

a
∂x +

ν

a
λ−), (2.1)

where λ± = (a ±
√
a2 + 4νc)/2ν, λ+ > 0 and λ− < 0. In order to see how this factorization helps in finding

good transmission conditions, we place ourselves first on Ω = R. Integrating (1.1) once for the first factor from
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x to ∞, we obtain

−ν

a
u′(x) +

ν

a
λ−u(x) = −1

a

∫ ∞

x

f(σ)eλ
+(x−σ) dσ, (2.2)

and thus all the information the viscous problem in Ω− needs from Ω+ is the integral term over f with the
exponential weighting λ+. Defining the modified advection reaction problem

L̃aũa := aũ′
a − aλ+ũa = f in Ω+, (2.3)

and integrating from x to ∞, we find that

ũa(x) = −1

a

∫ ∞

x

f(σ)eλ
+(x−σ) dσ, (2.4)

and thus this inviscid advection reaction problem can provide exactly the required information needed for the
viscous computation on Ω−, it suffices to impose the coupling condition

−νu′
ad(0) + νλ−uad(0) = aũa(0). (F)

Hence after solving the modified advection reaction equation (2.3) for ũa on Ω+, we can solve the advection
reaction diffusion problem on Ω− with coupling condition (F) and obtain uad ≡ u on Ω−, independent of the
advection direction a : this coupling condition together with the modified advection reaction equation gives the
exact viscous solution on the decoupled domain Ω−.

If the domain is bounded, Ω = (−L1, L2), in addition to the information on f , the viscous solution on Ω−

also needs information from the boundary condition imposed at x = L2. Integrating the viscous problem (1.1)
from x to L2, we find that p := −ν(u′ − λ−u)/a is given by

p(x) = p(L2)e
λ+(x−L2) − 1

a

∫ L2

x

f(σ)eλ
+(x−σ) dσ, (2.5)

and integrating the modified advection reaction equation (2.3) on the same interval leads to

ũa(x) = ũa(L2)e
λ+(x−L2) − 1

a

∫ L2

x

f(σ)eλ
+(x−σ) dσ. (2.6)

As a consequence at x = 0 the viscous solution u and the inviscid solution ũa are linked by the relation

−νu′(0) + νλ−u(0) = (−νu′(L2) + νλ−u(L2)− aũa(L2))e
−λ+L2 + aũa(0). (2.7)

Hence, if we can choose the boundary condition ũa(L2) for the advection reaction equation on Ω+ such that the

term (u′(L2)−λ−u(L2) + aũa(L2)/ν)e
−λ+L2 vanishes, the coupling condition (F) becomes again exact, and we

have uad ≡ u on Ω−. This is for example the case, if at x = L2 the Robin condition −νu′(L2) + νλ−u(L2) = g2
is imposed, and we choose ũa(L2) = 1

ag2. The Robin condition −νu′(L2) + νλ−u(L2) = g2 is in fact the
transparent condition and leads us back to the case of the infinite line. If the advection is positive, a > 0, then

we have λ+ = a
ν + O(1), see Lemma 3.2, and the term e−λ+L is exponentially small in ν so that the choice

of the boundary condition ũa(L2) for the advection reaction problem is not important. In the case of negative
advection, a < 0, we can use an expansion of −νu′(L2) + νλ−u(L2) for ν small, see Lemma 3.6, in order to
determine a suitable boundary condition ũa(L2), which leads in the case of a Dirichlet condition at x = L2,
u(L2) = g2, to the approximation

ũa(L2) =
1

a2
(
(c+ aλ−)g2 − f(L2)

)
ν +

1

a4
(
c2g2 − cf(L2) + af ′(L2)

)
ν2 +O(ν3), (2.8)
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and in the case of a Robin condition, (u′ + αu)(L2) = g2, see Lemma 3.7, we get

ũa(L2) =

(
α+ λ−

aα− c
(g2 −

1

a
f(L2))

)
ν − 1

a3
α+ λ−

aα− c

(
ac2

aα− c
g2 +

aαc

aα− c
f(L2) + af ′(L2)

)
ν2 +O(ν3). (2.9)

We thus propose the following algorithm to solve the coupled problem (1.2,1.3) :

(1) Solve the modified advection reaction problem (2.3) on Ω+, for a > 0 with boundary condition
B2ũa = g2 at x = L2 (or any other convenient choice), and for a < 0 with boundary condition
ũa(L2) taken from the expansion (2.8,2.9) up to O(νm) for some m ∈ N.

(2) Solve the advection reaction diffusion problem (1.2) with transmission condition (F).
(3) Solve the advection reaction problem (1.3) with ua = uad at x = 0 if a > 0, and B2ua = g2

at x = L2 if a < 0, where the latter correction is optional, since ũa and ua are comparable
for ν small.

(2.10)

Note that this algorithm is a direct solver, no iteration is needed, in contrast to the algorithms obtained from the
variational and non-variational coupling conditions (V+) and (NV+), which require an iteration by subdomain
whenever a > 0.

3. Rigorous Error Estimates

We now provide rigorous error estimates for the approximation of u|Ω− and u|Ω+ by uad and ua, both for
our new coupling strategy, and the classical variational and non-variational approaches, and we use asymptotic
analysis to compare them.

3.1. Coupling Based on the Factorization

3.1.1. Positive Advection

We start by studying the viscous solution u of (1.1), where in the case of a > 0, a boundary layer can appear
at x = L2. We consider at the inflow boundary x = −L1 only the case of a Dirichlet condition, B1 = Id, since
the other cases lead to similar results.

Lemma 3.1. If a > 0 and u(−L1) = g1, then the viscous solution u of (1.1) satisfies at x = 0 for ν small

u(0) = e−
c

a
L1g1 +

1

a

∫ 0

−L1

f(σ)e
c

a
σdσ +O(ν), (3.1)

u′(0) = − c

a
e−

c

a
L1g1 −

c

a2

∫ 0

−L1

f(σ)e
c

a
σdσ +

1

a
f(0) +O(ν), (3.2)

independently of the boundary condition B2 at x = L2. At x = L2, the derivative of u has in the case of a
Dirichlet condition, u(L2) = g2, the expansion

u′(L2) =
a

ν
g2 −

a

ν

(
g1e

− c

a
(L2+L1) +

e−
c

a
L2

a

∫ L2

−L1

f(σ)e
c

a
σdσ

)
+O(1). (3.3)

In the case of a Robin condition, u′(L2) + αu(L2) = g2, the expansions at x = L2 for ν small are

u(L2) = g1e
− c

a
(L2+L1) +

e−
c

a
L2

a

∫ L2

−L1

f(σ)e
c

a
σdσ +O(ν), (3.4)

u′(L2) = g2 − α

(
g1e

− c

a
(L2+L1) +

e−
c

a
L2

a

∫ L2

−L1

f(σ)e
c

a
σdσ

)
+O(ν). (3.5)
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Démonstration. Following [8], we perform an inner and outer expansion of the solution and then match them.
Away from x = L2, we seek a regular expansion of the solution u for ν small, u(x) = u0(x) + νu1(x) +O(ν2).
Using the boundary condition u(−L1) = g1 gives for the zeroth order term

u0(x) = g1e
− c

a
(x+L1) +

e−
c

a
x

a

∫ x

−L1

f(σ)e
c

a
σdσ. (3.6)

Evaluating (3.6) and its derivative at x = 0 gives (3.1,3.2).
Now for the inner expansion, we introduce the stretching variable ξ = (L2 − x)/ν, and find for v(ξ) =

u((L2 − x)/ν) and the Dirichlet condition u(L2) = g2 the equation

− 1

ν
v′′ − a

ν
v′ + cv = f,

v(0) = g2.

Using now the regular expansion v(ξ) = v0(ξ)+νv1(ξ)+O(ν2), we obtain for the zeroth order term the solution

v0(ξ) = e−aξg2 −
K

a
(1 − e−aξ), (3.7)

with K the constant which will be used in matching the inner and outer expansions.
It remains now to match the two approximate solutions (3.7) and (3.6), for which we use the matching

condition limξ→+∞ v0(ξ) = limx→L2
u0(x), which yields

−K

a
= g1e

− c

a
(L2+L1) +

e−
c

a
L2

a

∫ L2

−L1

f(σ)e
c

a
σdσ. (3.8)

Thus for x close to L2, we obtain the boundary layer expansion

u(x) = e−
a

ν
(L2−x)g2 +

(
g1e

− c

a
(L2+L1) +

e−
c

a
L2

a

∫ L2

−L1

f(σ)e
c

a
σdσ

)
(1− e−

a

ν
(L2−x)) +O(ν), (3.9)

which we can differentiate at x = L2 to obtain (3.3).
Now in the case of Robin conditions, v0 satisfies a homogeneous Neumann condition, v′0(0) = 0, and we thus

obtain for the zeroth order term v0 = − K̃
a . Using the matching condition, we find that K̃ = K from the Dirichlet

case, and thus obtain (3.4). Finally, for (3.5), we use the boundary condition for the first order term v1, which
is −v′1(0) + αv0(0) = g2, and taking a derivative of the expansion of u(x) = v0(

L2−x
ν ) + νv1(

L2−x
ν ) +O(ν2), we

have u′(L2) = −v′1(0) +O(ν), which together with v0 = − K̃
a finishes the proof. �

Before obtaining our main error estimate, we need the behavior of λ± for ν small, which can easily be obtained
by expansion.

Lemma 3.2. For a > 0, λ± = a
2ν ±

√
a2+4νc
2ν have for ν small the expansion

λ+ =
a

ν
+

c

a
− c2

a3
ν +O(ν2), λ− = − c

a
+

c2

a3
ν +O(ν2). (3.10)

If a < 0, the expansions for ν small are

λ+ = − c

a
+

c2

a3
ν +O(ν2), λ− =

a

ν
+

c

a
− c2

a3
ν +O(ν2). (3.11)
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For all a ∈ R, we have
δ := ν(λ+ − λ−) = |a|+O(ν). (3.12)

We are now ready to prove our main error estimate in the viscous region for the case of positive advection,
a > 0. We show the result for B1 = Id, similar results can also be obtained for other boundary conditions at
x = −L1.

Theorem 3.1. For a > 0, B1 = Id and B2 either a Dirichlet or a Robin condition, the viscous approximation
uad in Ω− obtained with the new coupling algorithm (2.10) satisfies the estimate

‖u− uad‖2Ω− = νe−
2a
ν
L2e−

2c
a
L2 (C +O(ν)) , (3.13)

where C is a constant independent of ν, and u is the viscous solution of (1.1).

Démonstration. The error ead := u− uad satisfies in Ω− the equation

Ladead = 0 in Ω−,

ead(−L1) = 0,

(−νe′ad + νλ−ead)(0) = K̄,

where K̄ = −νu′(0) + νλ−u(0)− aũa(0). This equation can readily be solved, and we obtain

ead(x) = −K̄

δ

(
eλ

+x − e−
δ

ν
L1eλ

−x
)
. (3.14)

Squaring (3.14) and integrating on (−L1, 0) yields

‖ead‖2Ω− =
K̄2

δ2

(
−νλ−

2c
− 2ν

a
e−

δ

ν
L1 − νλ+

2c
e−2 δ

ν
L1 + (

a

2c
+

2ν

a
)e−2λ+L1

)
. (3.15)

Using Lemma 3.2, we see that the term in the parentheses on the right is O(ν), and it remains to study K̄2.
Using relation (2.7) we obtain

K̄ = (−νu′(L2) + νλ−u(L2)− aũa(L2))e
−λ+L2 .

On the one hand, we obtain for the exponential term the expansion e−λ+L2 = e−
a

ν
L2e−

c

a
L2(1 +O(ν)). On the

other hand, Lemma 3.1 shows in the case of a Dirichlet condition at x = L2 that −νu′(L2)+ νλ−u(L2) = O(1),
and in the case of a Robin condition at x = L2 that −νu′(L2) + νλ−u(L2) = O(ν). Combining this with the
estimate for the exponential, we obtain (3.13). �

In order to estimate the error in the advection part, we need several technical Lemmas, and also the solution
ua of the advection equation (1.3),

ua(x) = ua(0)e
− c

a
x +

e−
c

a
x

a

∫ x

0

f(σ)e
c

a
σdσ. (3.16)

The next Lemma gives point-wise error estimates at the boundaries of Ω+ for the case of Dirichlet conditions
at x = L2.

Lemma 3.3. If a > 0 and u(L2) = g2, the error ea := u− ua of the inviscid solution ua obtained with the new
coupling algorithm (2.10) satisfies on the boundary of Ω+ for ν small the estimates

ea(0) = O(e−
a

ν ), e′a(0) = O(ν), ea(L2) = O(1), e′a(L2) = O(
1

ν
). (3.17)



8 ESAIM: PROCEEDINGS

Démonstration. We treat each case separately. For the first one, we have ea(0) = u(0)−ua(0) = u(0)−uad(0) =
ead(0), and thus equation (3.14) in the proof of Theorem 3.1, together with the estimates right after (3.14), give
the desired result.

For the second result, using the definition of the error, we get e′a(0) = u′(0)− u′
a(0), and from the advection

reaction equation (1.3) we obtain u′
a(0) = (f(0) − cua(0))/a, with ua(0) = uad(0) = u(0) − ead(0) = u(0) +

O(e−
a

ν ). Now using Lemma 3.1 for u(0) and u′(0) gives the desired result.
For the third result, we get ea(L2) = u(L2)− ua(L2) = g2 − ua(L2), where we used the Dirichlet condition,

and with (3.16) we obtain

ua(L2) = ua(0)e
− c

a
L2 +

e−
c

a
L2

a

∫ L2

0

f(σ)e
c

a
σdσ,

which leads to the O(1) estimate.
For the last estimate, starting with e′a(L2) = u′(L2)− u′

a(L2), we use again Lemma 3.1 for u′(L2), and from
(3.16) we get

u′
a(L2) = − c

a
ua(0)e

− c

a
L2 − c

a2
e−

c

a
L2

∫ L2

0

f(σ)e
c

a
σdσ +

1

a
f(L2), (3.18)

and the term ua(0) can now be treated like for the second result. �

Lemma 3.4. If a > 0 and B2 = ∂x + α, the error ea := u − ua of the inviscid solution ua obtained with the
new coupling algorithm (2.10) satisfies on the boundary of Ω+ for ν small the estimates

ea(0) = O(e−
a

ν ), e′a(0) = O(ν), ea(L2) = O(ν), e′a(L2) = O(1). (3.19)

Démonstration. The estimates at x = 0 are similar to the ones proved in Lemma 3.3, since at x = 0, the
boundary operator B2 has no effect. For the estimates at x = L2, we have ea(L2) = u(L2)− ua(L2), and from
Lemma 3.1, we obtain u(L2). For ua(L2), we can use the explicit solution formula (3.16) at x = L2, with

ua(0) = uad(0) = u(0)− ead(0) = u(0) +O(e−
a

ν ) = g1e
− c

a
L1 + 1

a

∫ 0

−L1
f(σ)e

c

a
σdσ +O(ν), and thus obtain that

ea(L2) = O(ν).
Finally, for e′a(L2) = u′(L2)− u′

a(L2), we obtain u′(L2) from Lemma 3.1, and u′
a(L2) from (3.18), and upon

substituting ua(0) = u(0) +O(e−
a

ν ), the result follows. �

We will also need an estimate on the second derivative of the advection reaction solution, which is provided
in the following Lemma.

Lemma 3.5. For a > 0, the inviscid solution ua obtained with the new coupling algorithm (2.10) in Ω+ satisfies
‖u′′

a‖2Ω+ ≤ K1, where K1 is independent of ν.

Démonstration. Squaring and integrating the equation Lau
′
a = f ′ on (0, L2) yields

a2‖u′′
a‖2Ω+ + c2‖u′

a‖2Ω+ + 2ac

∫ L2

0

u′
au

′′
a = ‖f ′‖2Ω+ ,

and after integrating by parts, we obtain

a2‖u′′
a‖2Ω+ + c2‖u′

a‖2Ω+ + ac(u′
a)

2(L2) = ‖f ′‖2Ω+ + ac(u′
a)

2(0).

Now for the second term on the right, we can use the advection equation to obtain u′
a(0) = (f(0)− cua(0))/a,

and by definition ua(0) = u(0)− ea(0). By Lemma 3.1, u(0) = O(1), and using Lemma 3.3 and Lemma 3.4 we
get ea(0) = O(e−

a

ν ), which completes the proof. �

We are now ready to state our main error estimate in the inviscid region for the case of positive advection,
a > 0. Again we show the result for B1 = Id, similar results can also be obtained for other boundary conditions
at x = −L1.
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Theorem 3.2. If a > 0, B1 = Id and B2 = ∂x +α, the inviscid approximation ua in Ω+ obtained with the new
coupling algorithm (2.10) satisfies the estimate

‖u− ua‖Ω+ ≤ O(ν), (3.20)

where u is the viscous solution of (1.1).

Démonstration. Since Ladua = f − νu′′
a, the error ea := u − ua satisfies Ladea = νu′′

a . Squaring this equation
and integrating on (0, L2) yields

ν2‖e′′a‖2Ω+ + a2‖e′a‖2Ω+ + c2‖ea‖2Ω+ − 2aν

∫ L2

0

e′′ae
′
a − 2νc

∫ L2

0

e′′aea + 2ac

∫ L2

0

e′aea = ν2‖u′′
a‖2Ω+ .

We now integrate by parts and rearrange terms to obtain

ν2‖e′′a‖2Ω+ + (a2 + 2νc)‖e′a‖2Ω+ + c2‖ea‖2Ω+ − 2aν

∫ L2

0

e′′ae
′
a + ace2a(L2)

= ν2‖u′′
a‖2Ω+ + 2νce′a(L2)ea(L2)− 2νce′a(0)ea(0) + ace2a(0).

(3.21)

Using the Cauchy Schwarz and Young’s inequality, we obtain for any α > 0, β > 0 and γ > 0 the three inequal-

ities e′a(0)ea(0) ≤ 1
2α (e

′
a)

2(0) + α
2 e

2
a(0), e

′
a(L2)ea(L2) ≤ 1

2β (e
′
a)

2(L2) +
β
2 e

2
a(L2), and

∫ L2

0 e′′ae
′
a ≤ 1

2γ ‖e′′a‖2Ω+ +
γ
2‖e′a‖2Ω+ , which when inserted into (3.21) gives us the estimate

(ν2 − aν

γ
)‖e′′a‖2Ω+ + (a2 + 2νc− aνγ)‖e′a‖2Ω+ + c2‖ea‖2Ω+ + c(a− νβ)e2a(L2)

≤ ν2‖u′′
a‖2Ω+ +

νc

α
(e′a)

2(0) + ανce2a(0) +
νc

β
(e′a)

2(L2).
(3.22)

Hence choosing γ = a
ν + c

a yields ν2 − aν
γ = cν3

a2+cν and a2 + 2νc − aνγ = νc. We also choose β = a
2ν so that

c(a− νβ) = a
2 and νc

β = 2cν2

a , and the constant α can be chosen to equal 1. We now use Lemma 3.4 and 3.5 to

estimate the right hand side of (3.22), which concludes the proof. �

3.1.2. Negative Advection

In the case of negative advection, a < 0, we need first a technical Lemma giving point-wise solution estimates
at the boundaries of Ω+, for the case of Dirichlet conditions at x = L2. We show our results for Dirichlet
conditions B1 = Id at x = −L1 only, other cases lead to similar results.

Lemma 3.6. For a < 0 and B1 = B2 = Id, the solution u of (1.1) satisfies for ν small the estimates

u(0) = e
c

a
L2g2 −

1

a

∫ L2

0

f(σ)e
c

a
σdσ +O(ν),

u(L2) = g2,

u′(0) = − c

a
e

c

a
L2g2 +

c

a2

∫ L2

0

f(σ)e
c

a
σdσ +

1

a
f(0) +O(ν),

u′(L2) = − c

a
g2 +

1

a
f(L2) +

ν

a3
(
c2g2 − cf(L2) + af ′(L2)

)
+O(ν2).

Démonstration. Using a regular expansion of the solution u(x) = u0(x)+νu1(x)+O(ν2), the zeroth order term
satisfies

au′
0 + cu0 = f in Ω,

u0(L2) = g2.
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The solution of this problem is u0(x) = g2e
− c

a
(x−L2) − e−

c

a
x

a

∫ L2

x
f(σ)e

c

a
σdσ, from which we can deduce the

zeroth order terms of u(0), u′(0) and u′(L2).
The first order term satisfies the equation au′

1 + cu1 = u′′
0 , which implies u′

1(L2) = − c
au1(L2) +

1
au

′′
0(L2),

and using the boundary condition u1(L2) = 0, we obtain u′
1(L2) =

1
au

′′
0(L2) =

1
a

(
c2

a2 g2 − c
a2 f(L2) +

1
af

′(L2)
)
,

where we differentiated the zeroth order solution twice, which concludes the proof. �

Lemma 3.7. For a < 0, B1 = Id and B2 = ∂x + α, α 6= c/a, the solution u of (1.1) satisfies for ν small the
estimates

u(0) =
ag2 − f(L2)

aα− c
e

c

a
L2 − 1

a

∫ L2

0

f(σ)e
c

a
σdσ +O(ν),

u(L2) =
ag2 − f(L2)

aα− c
− ν

a2
1

aα− c

(
c2
ag2 − f(L2)

aα− c
− cf(L2) + af ′(L2)

)
+O(ν2),

u′(0) = − c

a

(
ag2 − f(L2)

aα− c

)
e

c

a
L2 +

c

a2

∫ L2

0

f(σ)e
c

a
σdσ +

1

a
f(0) +O(ν),

u′(L2) = − c

a

(
ag2 − f(L2)

aα− c

)
+

1

a
f(L2) +

ν

a2
α

aα− c

(
c2
ag2 − f(L2)

aα− c
− cf(L2) + af ′(L2)

)
+O(ν2).

Démonstration. We proceed as in the proof of Lemma 3.6. Now u0 satisfies the boundary condition (u′
0 +

αu0)(L2) = g2 i.e. u0(x) =
ag2−f(L2)

aα−c e−
c

a
(x−L2) − e−

c

a
x

a

∫ L2

x f(σ)e
c

a
σdσ, which gives the zeroth order terms. The

first order term u1 satisfies now the boundary condition (u′
1 + αu1)(L2) = 0. Hence we have

u1(x) = − 1

a2(aα− c)

(
c2
ag2 − f(L2)

aα− c
− cf(L2) + af ′(L2)

)
e−

c

a
(x−L2) − e−

c

a
x

a

∫ L2

x

u′′
0(σ)e

c

a
xdσ,

which gives the first order terms of u(L2) and u′(L2). �

Remark 3.1. The degenerate case α = c
a can be treated as well, but we omit the details here.

We are now ready to prove our main error estimates for the case a < 0.

Theorem 3.3. For a < 0 and B1 = B2 = Id, if ũa(L2) is chosen such that (−νu′(L2)+νλ−u(L2)−aũa(L2)) =
O(νm), m ∈ N, see (2.8), then the viscous approximation uad in Ω− obtained with the new coupling algorithm
(2.10) satisfies the estimate

‖u− uad‖Ω− = O(νm),

where u is the viscous solution of (1.1).

Démonstration. Using the norm of the error ead := u − uad given in (3.15), which is also valid for a < 0, we

find with Lemma 3.2 that − νλ−

2c − 2ν
a e−

δ

ν
L1 − νλ+

2c e−2 δ

ν
L1 +( a

2c +
2ν
a )e−2λ+L1 = O(1), and since e−λ+L2 = O(1)

we obtain with the hypothesis of the theorem K̄ = (−νu′(L2) + νλ−u(L2) − aũa(L2))e
−λ+L2 = O(νm), which

concludes the proof. �

Theorem 3.4. For a < 0 and B1 = B2 = Id, if ũa(L2) is chosen such that (−νu′(L2)+νλ−u(L2)−aũa(L2)) =
O(νm), m ∈ N, see (2.8), then the inviscid approximation ũa in Ω+ obtained with the new coupling algorithm
(2.10) satisfies the estimate

‖u− ũa‖Ω+ ≤ O(ν),

where u is the viscous solution of (1.1).



ESAIM: PROCEEDINGS 11

Démonstration. Subtracting the two equations Ladu = f and L̃aũa = f in Ω+, we obtain for the error ẽa :=
u− ũa the equation

aẽ′a + cẽa = νu′′ − (c+ aλ+)ũa.

Multiplying this equation by ẽa, integrating on Ω+ and using the Cauchy-Schwarz and Young’s inequality leads
to

c‖ẽa‖2Ω+ − a

2
ẽ2a(0) ≤ −a

2
ẽ2a(L2) +

ν

2β
‖u′′‖2Ω+ +

νβ

2
‖ẽa‖2Ω+ + |c+ aλ+|

(
1

2γ
‖ũa‖2Ω+ +

γ

2
‖ẽa‖2Ω+

)
,

for any strictly positive β and γ. If we choose β = β0/ν and γ = γ0/ν, we get

(c− β0

2
− |c+ aλ+|

2ν
γ0)‖ẽa‖2Ω+ ≤ −a

2
ẽ2a(L2) +

ν2

2β0
‖u′′‖2Ω+ +

ν|c+ aλ+|
2γ0

‖ũa‖2Ω+ .

Now Lemma 3.2 gives |c + aλ+| = c2

a2 ν + O(ν2), so that the constants β0 and γ0 can be chosen such that

c − β0

2 − γ0

2 ( c
2

a2 + O(ν)) > 0. For the first term on the right, we have ẽa(L2) = u(L2) − ũa(L2) = g2 −
1
a2 ((c+ aλ−)g2 − f(L2)) ν + O(ν2) = O(ν), and both ‖u′′‖2Ω+ and ‖ũa‖2Ω+ can be expanded using positive
powers of ν, since there is no boundary layer, which leads to the announced estimate. �

3.2. Variational Coupling

We give now rigorous error estimates for ν small for the approximations obtained by coupling the viscous
and inviscid problem with the variational coupling conditions (V+) for a > 0 and (V-) for a < 0. Like in our
previous analysis, we consider at the inflow boundary x = −L1 only the case of a Dirichlet condition, B1 = Id,
since the other cases lead to similar results.

3.2.1. Positive Advection

Theorem 3.5. For a > 0, B1 = Id and B2 either a Dirichlet or a Robin condition, the viscous approximation
uad in Ω− obtained with the variational coupling conditions (V+) satisfies the estimate

‖u− uad‖Ω− = O(ν3/2), (3.23)

where u is the viscous solution of (1.1).

Démonstration. The error ead := u− uad satisfies by linearity the equation

Ladead = 0 in Ω−,

ead(−L1) = 0,

e′ad(0) = u′(0),

where the inhomogeneous boundary condition at x = 0 comes from the coupling conditions (V+), which imply
−νe′ad(0) + aead(0) = −νu′(0) + au(0) − aua(0) = −νu′(0) + aea(0), and ead(0) = ea(0). Solving for ead, we
obtain

ead(x) =
u′(0)

λ+ − λ−e−
δ

ν
L1

(
eλ

+x − e−
δ

ν
L1eλ

+x
)
, (3.24)

which leads to

‖ead‖2Ω− =
u′(0)2

(λ+ − λ−e−
δ

ν
L1)2

(
−νλ−

2c
− 2ν

a
e−

δ

ν
L1 − νλ+

2c
e−2 δ

ν
L1 + (

a

2c
+

2ν

a
)e−2λ+L1

)
= O(ν3),

where we used Lemma 3.1 and Lemma 3.2 for the last step. �
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Lemma 3.8. If a > 0, B1 = Id and B2 = ∂x + α, the error ea := u − ua of the inviscid approximation ua

in Ω+ obtained with the variational coupling conditions (V+) satisfies on the boundary of Ω+ for ν small the
estimates

ea(0) = O(ν), e′a(0) = O(ν), ea(L2) = O(ν), e′a(L2) = O(ν). (3.25)

Démonstration. We have ea(0) = u(0) − ua(0) = u(0) − uad(0) = ead(0) = u′(0)

λ+−λ−e−
δ

ν
L1

(1 − e−
δ

ν
L1), where

we used (3.24) for the last step. From Lemma 3.2 and 3.3 we thus obtain the first estimate ea(0) = O(ν).
The proof for the other three estimates is similar to the proof of Lemma 3.4, since it is based on the relations
ua(0) = uad(0) = u(0)− ead(0) = u(0) +O(ν) = u0(0) +O(ν), which still hold. �

Theorem 3.6. For a > 0, B1 = Id and B2 = ∂x + α, the inviscid approximation ua in Ω+ obtained with the
variational coupling conditions (V+) satisfies the estimate

‖u− ua‖Ω+ ≤ O(ν), (3.26)

where u is the viscous solution of (1.1).

Démonstration. The proof is similar to the proof of Theorem 3.2. It is based on the estimate (3.22) and uses
Lemma 3.8. �

3.2.2. Negative Advection

Theorem 3.7. For a < 0 and B1 = B2 = Id, the viscous approximation uad in Ω− and the inviscid approxi-
mation ua in Ω+ obtained with the variational coupling condition (V-) satisfy the estimates

‖u− uad‖Ω− = O(ν), ‖u− ua‖Ω+ ≤ O(ν), (3.27)

where u is the viscous solution of (1.1).

Démonstration. The estimate in Ω+ is proved as in Theorem 3.4, replacing the term c + aλ+ by 0. Note that
in this case −a

2 ea(L2) = 0. To prove the estimate in Ω−, the error ead := u− uad satisfies the equation

Ladead = 0, in Ω−,

ead(−L1) = 0,

−νe′ad(0) + aead(0) = −νu′(0) + aea(0),

whose solution is

ead(x) =
u′(0)− a

ν ea(0)

−λ− + λ+e−
δ

ν
L1

(eλ
+x − e−

δ

ν
L1eλ

−x).

Hence

‖ead‖2Ω− =

(
u′(0)− a

ν ea(0)

−λ− + λ+e−
δ

ν
L1

)2 (
−νλ−

2c
− 2ν

a
e−

δ

ν
L1 − νλ+

2c
e−2 δ

ν
L1 + (

a

2c
+

2ν

a
)e−2λ+L1

)
.

Now the term in the parentheses on the right is O(1), see Lemma 3.2, and hence it remains to evaluate the term
u′(0)− a

ν
ea(0)

−λ−+λ+e−
δ

ν
L1

, which is O(ν). �

3.3. Non-Variational Coupling

As before, we consider only the case of a Dirichlet condition at x = −L1, B1 = Id, since the other cases lead
to similar results.
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3.3.1. Positive Advection

Theorem 3.8. For a > 0, B1 = Id and B2 either a Dirichlet or a Robin condition, the viscous approximation
uad in Ω− obtained with the non-variational coupling conditions (NV+) satisfies the estimate

‖u− uad‖Ω− = O(ν5/2), (3.28)

where u is the viscous solution of (1.1).

Démonstration. The boundary conditions for the error ead := u − uad in the proof of Theorem 3.5 are now
ead(0) = ea(0) and e′ad(0) = e′a(0), and we obtain

ead(x) =
νu′′(0)

aλ+ + c− (c+ aλ−)e−
δ

ν
L1

(
eλ

+x − e−
δ

ν
L1eλ

+x
)
. (3.29)

Squaring and integrating as in Theorem 3.5 then leads to the desired estimate. �

Lemma 3.9. If B2 = ∂x + α, the error ea := u− ua of the inviscid approximation ua in Ω+ obtained with the
non-variational coupling conditions (NV+) satisfies on the boundary of Ω+ for ν small the estimates

ea(0) = O(ν2), e′a(0) = O(ν), ea(L2) = O(ν), e′a(L2) = O(ν). (3.30)

Démonstration. We have ea(0) = u(0) − ua(0) = u(0) − uad(0) = ead(0) = νu′′(0)

aλ++c−(c+aλ−)e−
δ

ν
L1

(1 − e−
δ

ν
L1),

where we used (3.29) for the last step. Using Lemma 3.2 and 3.3 then yields the first estimate. The proof for
the other estimates is similar to the proof of Lemma 3.4, since it is based on the relation ua(0) = u(0) +O(ν),
which still holds. �

Theorem 3.9. For a > 0, B1 = Id and B2 = ∂x + α, the inviscid approximation ua in Ω+ obtained with the
non-variational coupling conditions (NV+) satisfies the estimate

‖u− ua‖Ω− ≤ O(ν), (3.31)

where u is the viscous solution of (1.1).

Démonstration. The proof is similar to the proof of Theorem 3.2, using estimate (3.22) and Lemma 3.8. �

3.3.2. Negative Advection

Theorem 3.10. For a < 0 and B1 = B2 = Id, the viscous approximation uad in Ω− and the inviscid approxi-
mation ua in Ω+ obtained with the non-variational coupling conditions (NV-) satisfy the estimates

‖u− uad‖Ω− = O(ν), ‖u− ua‖Ω+ = O(ν), (3.32)

where u is the viscous solution of (1.1).

Démonstration. The solution for the variational and the non-variational coupling conditions satisfy the same
equation, hence they satisfy the same estimate given by Theorem 3.7. To prove the estimate in Ω−, the error
ead := u− uad satisfies the same equation as in the proof of Theorem 3.7 with the boundary condition ead(0) =
ea(0), whose solution is

ead(x) =
ea(0)

1− e−(λ+−λ−)L1
(eλ

+x − e−
δ

ν
L1eλ

−x).

Hence

‖ead‖2Ω− =

(
ea(0)

1− e−(λ+−λ−)L1

)2(
−νλ−

2c
− 2ν

a
e−

δ

ν
L1 − νλ+

2c
e−2 δ

ν
L1 + (

a

2c
+

2ν

a
)e−2λ+L1

)
.
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a > 0

Factorization Variational Non-Variational

‖ead‖Ω− O(e−
a

ν ) O(ν3/2) O(ν5/2)
‖ea‖Ω+ O(ν) O(ν) O(ν)

a < 0

Factorization Variational Non-Variational
‖ead‖Ω− O(νm), m = 1, 2, . . . O(ν) O(ν)
‖ea‖Ω+ O(ν) O(ν) O(ν)

Tableau 1. Summary of the asymptotic behavior of the errors for the various approaches.
The integer m depends on the coupling conditions chosen, see Theorem 3.3 and Theorem 3.4,
and also equations (2.8) and (2.9).

Now the term in the parentheses on the right is O(1), see Lemma 3.2, and hence it remains to evaluate the term
−ea(0)e

−λ
−

L1

e−λ+L1−e−λ−L1
, which is O(ν). �

3.4. Asymptotic Comparison of the Approximation Qualities

We show in Table 1 a summary of the asymptotic results we obtained in the previous section. This compar-
ison shows that the results from the new algorithm based on the factorization of the underlying operator are
significantly better approximations of the fully viscous solution in Ω− than the approximations obtained with
the other coupling conditions. Even in the case of negative advection, a < 0, where the error in Ω+ is O(ν), our
approximation in Ω− is significantly better than O(ν). All these results will also be confirmed by our numerical
experiments in the next section.

4. Numerical Results

We show now two sets of numerical experiments to illustrate our analysis. We chose Ω = (−1, 1), Ω− = (−1, 0),
Ω+ = (0, 1), f(x) = cosx+sinx, c = 1, and various values for the viscosity ν and the advection a. We discretize
the advection reaction diffusion equation (1.1) using a standard second order accurate centered finite difference
method, and also use a centered scheme for the pure advection reaction equation (1.3). We use 2000 grid points
in each subregion, including boundary nodes, which leads to a discretization step h = 5.0025e− 04 and ensures
that solutions do not have spurious oscillations for the values of ν we use.

In the first set of experiments, we use a positive advection a = 1, ν = 1
4 , with a Dirichlet condition on

the left, u(−1) = 1, and a homogeneous Neumann condition on the right u′(1) = 0. In Figure 1 we show on
the left the approximations obtained with the various approaches, compared to the fully viscous solution u.
Clearly the new coupling conditions lead to the best approximation in the viscous region, followed by the non-
variational ones. The variational conditions lead to a significantly less good approximation, as we expect from
our asymptotic analysis. In the inviscid region, the three approaches are comparable. Note that while the new
coupling conditions lead to a non-iterative algorithm, where one simply first computes the modified advection
problem, then the advection diffusion problem and finally the advection correction, both the variational and non-
variational approaches are solved by an iteration per subdomain, and we chose to relax the Dirichlet variables, in
the variational case by a relaxation parameter proportional to ν, and in the non-variational case by a relaxation

parameter proportional to ν
1
20 , which turned out to lead to convergence in 7 and 8 iterations respectively.

Next we chose a negative advection, a = −1, ν = 1
4 , with a homogeneous Dirichlet condition on the left,

u(−1) = 0, and an inhomogeneous Dirichlet condition on the right u(1) = 1. In Figure 1 we show on the right
the approximations obtained with the new coupling conditions, compared to the variational and non-variational
approaches. Again the approximation obtained with the new coupling conditions is significantly better in the
viscous region than the one obtained with the other ones, as expected from the analysis : the new approximation
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Figure 1. Approximations obtained with the various approaches, compared to the fully viscous
solution, on the left for a positive advection, and on the right for a negative one.
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Figure 2. Asymptotic comparison of the error for the various coupling conditions, on the left
for positive, and on the right for negative advection.

can hardly be distinguished in the plot from the fully viscous solution, even though in the inviscid region, the
same inaccurate solution is computed. In this case, none of the algorithms requires iteration.

An asymptotic comparison of the error as a function of ν for ν small is shown in Figure 2, on the left for
the case of positive advection, and on the right for negative advection. These numerical results show that the
asymptotic analysis, summarized in Table 1 becomes relevant already for moderately small ν, and that the new
coupling conditions are largely superior for the viscous approximation qualities of the solution.
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5. Conclusions

Using the factorization of the operator, we have been able to obtain coupling conditions for a one dimensional
advection reaction diffusion equation with pure advection reaction approximation in a subregion which lead to
coupled solutions that are much closer to the fully viscous solution than any other coupling conditions from the
literature. When a > 0, the computational cost of the new algorithm is significantly lower compared to the other
coupling strategies, since no iterations are needed. For a < 0, the computational cost of the three approaches is
comparable.

While the factorization approach can be generalized to higher dimensional problems and other equations,
the factors will then in general contain non-local operators, which need to be approximated for convenient use
as transmission conditions. In the context of coupling conditions, we will be most interested in approximations
for small viscosity. As a first step into this direction, we will generalize our coupling conditions to advection
reaction diffusion problems in higher dimensions.
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