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1 Introduction
We consider in this paper the following model diffusion problem: find the fluid
pressure head 𝑝 and the Darcy velocity u such that

u = −𝑆𝑆𝑆∇𝑝 in Ω, (1a)
∇·u = 𝑓 in Ω, (1b)

𝑝 = 𝑔D on ΓD, (1c)
−u·n = 𝑔N on ΓN, (1d)

where Ω ⊂ R𝑑, 𝑑 = 2, 3, is a polygonal (polyhedral if 𝑑 = 3) domain (open,
bounded and connected set) with Lipschitz-continuous boundary 𝜕Ω = ΓD ∪ ΓN.
Here ΓN is the boundary with a Neumann condition 𝑔N ∈ 𝐿2(ΓN) and ΓD is
the boundary with a Dirichlet condition 𝑔D such that 𝑔D is a trace on ΓD of a
function from 𝐻1(Ω); moreover, we suppose 𝑔D ∈ 𝐶0(ΓD) and, for simplicity, the
(𝑑 − 1)-dimensional measure of ΓD nonzero, |ΓD| > 0. Other boundary conditions
can be treated as well. Furthermore, 𝑓 ∈ 𝐿2(Ω) is the source term, n is the
outward unit normal vector to 𝜕Ω, and 𝑆𝑆𝑆 is a symmetric, bounded, and uniformly
positive definite tensor whose terms are functions in 𝐿∞(Ω).

Domain decomposition (DD) methods decompose Ω into subdomains and
then reduce the second order elliptic problem (1) to smaller problems on each
subdomain. They can be traced back to H. A. Schwarz [46] who used such an idea
to prove existence and uniqueness of the solution of Laplace’s equation in irregular
domains. Then P.-L. Lions [33] introduced a parallelizable nonoverlapping version
of the Schwarz method based on Robin transmission conditions. This approach
provides a strong basis for domain decomposition methods, in particular for the
optimized Schwarz method studied in [26, 27] that is used throughout this paper.
This method relies on Robin or Ventcell transmission conditions on the interfaces
whose coefficients can be optimized to improve convergence rates. An overview
of the optimized Schwarz method is given in [21, 15], completed by an extension
to a diffusion problem with discontinuous coefficient in [22]. In the context of
mixed finite elements, we refer also to [17, 24, 25]. The multi-domain problem
can actually be reformulated as an interface problem (see [15] or [24]) that can
be solved by various iterative methods, such as block-Jacobi or GMRES.

Several a posteriori error estimates valid during the iteration of an algebraic
iterative solver have been derived previously. In particular, Becker et al. in [7]
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obtain residual-based estimates in the context of conforming finite element
discretizations and multigrid solvers. Arioli [4] then derives stopping criteria
for the conjugate gradient solver in the same setting, and Arioli and Loghin [5]
obtain such results for mixed finite element discretizations. Goal-oriented a
posteriori error estimates for linear elliptic problems have also been derived
in the inexact solver context, in particular for the primal-dual preconditioned
conjugate-gradient Lanczos method by Patera and Rønquist in [37], and for the
multigrid algorithm by Meidner in et al. [36]. A general framework taking into
account any numerical method and any algebraic solver was then introduced
in [18], following some basic ideas of [28], and has since then been used also
to coupled unsteady nonlinear and degenerate problems, see [10, 14] and the
references therein.

Coupling specifically domain decomposition and a posteriori error estimates
has also recently been addressed by Rey et al. in [42, 43]. Here, the case of
the linear elasticity problem approximated by the finite element method in
combination with non-overlapping domain decomposition method such as the
finite element tearing and interconnecting (FETI, see [20]) or Balancing Neumann–
Neumann (BDD, see [34] and [12] for the case of mixed finite elements) have
been studied. The authors derive both upper and lower bounds for the overall
error, and the discretization and the domain decomposition error components
are distinguished, which leads to an a posteriori stopping criterion. One crucially
uses here the nature of the domain decomposition algorithm, where 1) a 𝐻1

0 (Ω)-
conforming potential solution is provided at each step, given by the subdomain
problems with the Dirichlet condition on the interface; 2) simultaneously, an
auxiliary variable with coinciding normal fluxes on the interface results from
the subdomain Neumann problems. Thus, an H(div, Ω)-conforming flux can
be easily reconstructed at each step, and the a posteriori methodology in the
spirit of Prager–Synge [39] applies, cf. Ladevèze and Pelle [31], Repin [41], or
the recent developments in [19]. This, unfortunately, only seems to be possible
in the simultaneous presence of subdomain problems with two types (Dirichlet
and Neumann) interface conditions solved at each DD iteration. Actually, the
potential reconstruction 𝑠𝑘

ℎ of Concept 4.5 and the equilibrated flux reconstruction
𝜎𝑘

ℎ of Concept 4.6 are our key tools.
In this contribution, we are interested in domain decomposition algorithms

where on the interfaces, neither the conformity of the flux nor that of the potential
is preserved. To exemplify our ideas, we treat (optimized) Schwarz methods with
Robin transmission conditions, but any other DD approach can be treated,
including Ventcell transmission conditions. We focus on mixed finite element
discretizations in the subdomains and extend the approaches from [30, 47, 2, 48]
on a posteriori error estimates in mixed methods with exact linear algebra
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(leading to mass conservation and flux continuity) and in particular the approach
from [38] for a posteriori error estimates in mixed methods without flux continuity.
We first build a flux reconstruction that is globally H(div, Ω)-conforming and
locally conservative in each mesh element. In a first stage, a simple coarse
balancing problem, with one unknown per interface and two unknowns (in two
space dimensions) per each subdomain boundary lying in 𝜕Ω, is solved. Then we
adopt the construction of [38, Section 3.5.2] and solve a local Neumann problem
in a band around the interfaces in each subdomain by the mixed finite element
method. Finally, two 𝐻1

0 (Ω)-conforming potential reconstructions are built. One
is standard relying on the averaging operator ℐav following [1, 29, 8], whereas
the other introduces weights on the interfaces whose goal is to separate the DD
and the discretization components.

The outline of the paper is as follows: after introducing some useful notation
in Section 2, we present in Section 3 the multi-domain formulation using the
optimized Schwarz method and reformulate it as an interface problem. We next
show how to solve this interface problem using either a block-Jacobi or a GMRES
method, and detail the approximation of the corresponding local problems by
the mixed finite element method. In Section 4, we derive a fully computable
upper bound for the error between the exact and the approximate numerical
solutions in an energy norm. The details about the employed flux and potential
reconstructions are presented in Section 5. Finally, in Section 6, numerical results
for two examples, relying respectively on the block-Jacobi and the GMRES
iterations, testify tight overall error control and important reduction of the
number of DD iterations.

2 Preliminaries
In this section we introduce the partition of Ω and some function spaces.

2.1 Partitions of the domain Ω

We suppose that the domain Ω is decomposed into 𝒩 non-overlapping polygonal
subdomains Ω𝑖, 𝑖 ∈ J1, 𝒩 K, such that Ω =

𝒩
∪

𝑖=1
Ω𝑖. For all 𝑖 ∈ J1, 𝒩 K, let ΓN

𝑖 :=

ΓN ∩ 𝜕Ω𝑖, ΓD
𝑖 := ΓD ∩ 𝜕Ω𝑖, and n𝑖 be the unit outward-pointing normal on 𝜕Ω𝑖.

Let 𝐵𝑖 be the set of neighbors of the subdomain Ω𝑖 that share at least one edge
(if 𝑑 = 2) with Ω𝑖 (face if 𝑑 = 3) and let |𝐵𝑖| be the cardinality of this set. Using
this notation, we introduce the interface Γ𝑖,𝑗 := 𝜕Ω𝑖 ∩ 𝜕Ω𝑗 , 𝑗 ∈ 𝐵𝑖, between
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two adjacent subdomains Ω𝑖 and Ω𝑗 . Consequently, 𝜕Ω𝑖 = ΓN
𝑖 ∪ ΓD

𝑖 ∪ Γ𝑖 with
Γ𝑖 := ∪

𝑗∈𝐵𝑖
Γ𝑖,𝑗 . We also define Γ := ∪

𝑖∈J1,𝒩 K
Γ𝑖.

We assume that this decomposition is geometrically conforming in the sense
that the intersection of the closure of two different subdomains is either a common
vertex, or a common edge, or a common face, or the empty set. We then define
𝒯ℎ :=

𝒩
∪

𝑖=1
𝒯ℎ,𝑖, where 𝒯ℎ,𝑖 is a regular triangulation of the subdomain Ω𝑖, such

that Ω𝑖 = ∪
𝐾∈𝒯ℎ,𝑖

𝐾, where |𝒯ℎ,𝑖| is the number of triangles (tetrahedra if d=3)

in the i-th subdomain. We suppose that 𝒯ℎ,𝑖 is a conforming mesh, i.e., such that
if 𝐾, 𝐾′ ∈ 𝒯ℎ,𝑖, 𝐾 ̸= 𝐾′, then 𝐾 ∩ 𝐾′ is either an empty set or a common vertex
or edge or face. For simplicity, we also assume that 𝒯ℎ is conforming, although
this assumption could be easily avoided by introducing the concept of a simplicial
submesh as in, e.g., [38, 16] and the references therein. We denote the set of all
edges (faces if 𝑑 = 2) of 𝒯ℎ,𝑖 by ℰℎ,𝑖, and the set of all edges (faces) of 𝐾 by ℰ𝐾 .
ℰ int

ℎ,𝑖 is the set of interior edges (faces) of the subdomain Ω𝑖, ℰext
ℎ,𝑖 = ℰΓD

ℎ,𝑖 ∪ ℰΓN

ℎ,𝑖 is
the set of boundary edges (faces) on 𝜕Ω ∩ 𝜕Ω𝑖, and ℰΓi,j

ℎ is the set of sides on
on the interfaces Γ𝑖,𝑗 . Then ℰℎ,𝑖 = ( ∪

𝑗∈𝐵𝑖
ℰΓi,j

ℎ ) ∪ ℰ int
ℎ,𝑖 ∪ ℰext

ℎ,𝑖 . Let ℎ𝐾 denote the

diameter of 𝐾 and let ℎ𝑖 be the largest diameter of all triangles (tetrahedra if
𝑑 = 3) in 𝒯ℎ,𝑖, i.e., ℎ𝑖 = max

𝐾∈𝒯ℎ,𝑖

ℎ𝐾 .

2.2 Some functions spaces

We recall here the definition of some basic function spaces. For a given non-
empty domain 𝐷 ⊂ Ω, and a real number 𝑙, 1 ≤ 𝑙 ≤ ∞, we employ the standard
functional notations 𝐿𝑙(𝐷) and L𝑙(𝐷) := [𝐿𝑙(𝐷)]𝑑 of Lebesgue spaces. We denote
by (·, ·)𝐷 the scalar product for 𝐿2(𝐷) and L2(𝐷), associated with the norm
‖·‖𝐷, and by |𝐷| the Lebesgue measure of 𝐷. Shall 𝐷 = Ω, the index will be
dropped. Let ⟨·, ·⟩𝛾 be the scalar product for the 𝑑 − 1 dimensional 𝐿2(𝛾) on
𝛾 = 𝜕𝐷 or a subset of it. Let also 𝐻1(𝐷) := {𝑣 ∈ 𝐿2(𝐷); ∇𝑣 ∈ L2(𝐷)} be the
Sobolev space and let H(div, 𝐷) := {v ∈ L2(𝐷); ∇·v ∈ 𝐿2(𝐷)} be the space of
vector functions whose weak divergence is square integrable.
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3 Multidomain formulation using the optimized
Schwarz method

In this section, we present a nonoverlapping domain decomposition method for
solving problem (1). For any scalar-, vector-, or tensor-valued function 𝜙 defined
on Ω, let 𝜙𝑖 denote the restriction of 𝜙 to Ω𝑖, 𝑖 = 1, .., 𝒩 . Using this notation,
problem (1) can be reformulated as an equivalent multidomain problem consisting
of the following subdomain problems (see [32, 40]), for 𝑖 ∈ J1, 𝒩 K:

u𝑖 = −𝑆𝑆𝑆∇𝑝𝑖 in Ω𝑖,

∇·u𝑖 = 𝑓 in Ω𝑖,

𝑝𝑖 = 𝑔D on ΓD
𝑖 ,

−u𝑖·n𝑖 = 𝑔N on ΓN
𝑖 ,

together with the transmission conditions on the interfaces (with n𝑖 = −n𝑗)

𝑝𝑖 = 𝑝𝑗 on Γ𝑖,𝑗 , ∀𝑗 ∈ 𝐵𝑖, (2a)
u𝑖·n𝑖 + u𝑗 ·n𝑗 = 0 on Γ𝑖,𝑗 , ∀𝑗 ∈ 𝐵𝑖. (2b)

Equations (2) are the “natural” transmission conditions which ensure the conti-
nuity of the pressure head 𝑝 and of the normal trace of the flux u on the interface
Γ𝑖,𝑗 .

Alternatively and equivalently, see [33], one may impose the Robin transmis-
sion conditions

− 𝛽𝑖,𝑗u𝑖·n𝑖 + 𝑝𝑖 = −𝛽𝑖,𝑗u𝑗 ·n𝑖 + 𝑝𝑗 on Γ𝑖,𝑗 , ∀𝑗 ∈ 𝐵𝑖, (3)

where 𝛽𝑖,𝑗 > 0, 𝑗 ∈ 𝐵𝑖, 𝑖 ∈ J1, 𝒩 K are fixed parameters that may be optimized
to improve the convergence rate of the iterative domain decomposition method,
see [26, 27] (or [21, 15] for an overview). This method is called the optimized
Schwarz method.

Remark 3.1. Note that from (3), and using n𝑗 = −n𝑖, the interface term
transmitted from Ω𝑖 to Ω𝑗 will be 𝛽𝑗,𝑖u𝑖·n𝑖 + 𝑝𝑖 on Γ𝑖,𝑗 . Now, in the context
of mixed finite elements, 𝑝𝑖 ∈ 𝐿2(Ω𝑖), so that 𝑝𝑖|Γ𝑖,𝑗

is not well defined, and
must be defined by way of the Robin condition in Ω𝑖. This condition reads
−𝛽𝑖,𝑗u𝑖·n𝑖 + 𝑝𝑖 = 𝜉𝑖,𝑗 , with a given Robin boundary data 𝜉𝑖,𝑗 on Γ𝑖,𝑗 , and thus
we obtain the well-defined expression 𝑝𝑖|Γ𝑖,𝑗

= 𝜉𝑖,𝑗 + 𝛽𝑖,𝑗u𝑖·n𝑖. This approach will
in particular be used below to define the Robin-to-Robin operator 𝒮RtR

𝑖 in (7),
as well as on the discrete level to define the mixed finite element scheme in
Section 3.4.
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3.1 The interface problem

An interface operator can be used to reformulate the multidomain problem as a
problem where the unknowns are located only on the interface (see e.g. [15]). Here
the formulation of this interface problem is based on [24] for 2 subdomains, and
on [13] for the case of multiple subdomains. Let 𝒱𝑖 = 𝐿2(Ω𝑖) × 𝐿2(ΓD

𝑖 ) × 𝐿2(ΓN
𝑖 )

for 𝑖 ∈ J1, 𝒩 K. We first introduce the space W𝑖 := {v ∈ H(div, Ω𝑖); v·n𝑖 ∈
𝐿2(𝜕Ω𝑖)} with an increased normal trace regularity, as Robin condition will
be considered in the sequel. This requirement could possibly be weakened, by
proceeding as in the recent preprint [11], where Dirichlet and Neumann conditions
are treated. We, however, only use the space W𝑖 for abstract formulation of the
interface problem and for motivation; the present a posteriori error analysis does
not rely on it. We then define the sets W𝑔N

𝑖 := {v ∈ W𝑖; v·n𝑖 = 𝑔N on ΓN ∩
𝜕Ω𝑖} of functions respecting the Neumann boundary condition on ΓN. We now
introduce the subproblem solution operator for the subdomain Ω𝑖, 𝑖 ∈ J1, 𝒩 K, as
follows:

ℳ𝑖 : 𝐿2(Γ𝑖) × 𝒱𝑖 → 𝐿2(Γ𝑖) × 𝐿2(Ω𝑖) × W𝑔N
𝑖 ,

(𝜉𝑖,ℱℱℱ 𝑖) ↦→ (𝜉𝑖, 𝑝𝑖, u𝑖),
(4)

where 𝐿2(Γ𝑖) :=
∏︁

𝑗∈𝐵𝑖

𝐿2(Γ𝑖,𝑗), 𝜉𝑖 := (𝜉𝑖,𝑗)𝑗∈𝐵𝑖 , ℱℱℱ 𝑖 := (𝑓 |Ω𝑖
, 𝑔D|ΓD

𝑖
, 𝑔N|ΓN

𝑖
), and

where (𝑝𝑖, u𝑖) is the solution of the following problem in Ω𝑖 (in an appropriate
mixed formulation):

u𝑖 = −𝑆𝑆𝑆∇𝑝𝑖 in Ω𝑖, (5a)
∇·u𝑖 = 𝑓 in Ω𝑖, (5b)

𝑝𝑖 = 𝑔D on ΓD
𝑖 , (5c)

−u𝑖·n𝑖 = 𝑔N on ΓN
𝑖 , (5d)

−𝛽𝑖,𝑗u𝑖·n𝑖 + 𝑝𝑖 = 𝜉𝑖,𝑗 on Γ𝑖,𝑗 , ∀𝑗 ∈ 𝐵𝑖. (5e)

The operator ℳ𝑖 takes the available Robin condition 𝜉𝑖 and the volume and
Dirichlet and Neumann boundary data stored in ℱℱℱ 𝑖 and maps them to 𝜉𝑖 together
with the subdomain pressure head 𝑝𝑖 and the Darcy velocity u𝑖.

Using Remark 3.1, we also introduce the operator

ℛ𝑖 :
𝐿2(Γ𝑖) × 𝐿2(Ω𝑖) × W𝑔N

𝑖 → 𝐿2(Γ𝑖),
(𝜉𝑖, 𝑝𝑖, u𝑖) ↦→ (𝛽𝑗,𝑖u𝑖·n𝑖 + (𝜉𝑖,𝑗 + 𝛽𝑖,𝑗u𝑖·n𝑖))𝑗∈𝐵𝑖 ,

(6)

which transforms the available Robin condition 𝜉𝑖 together with the pressure
head 𝑝𝑖 and Darcy velocity u𝑖 to a new Robin datum.

The Robin-to-Robin operator is finally defined as:

𝒮RtR
𝑖 := ℛ𝑖 ∘ ℳ𝑖 : 𝐿2(Γ𝑖) × 𝒱𝑖 → 𝐿2(Γ𝑖). (7)
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Then conditions (3) with (𝑝𝑖, u𝑖) solution of the subproblem (5) lead to the
equivalent interface problem: find 𝜉 := (𝜉1, . . . , 𝜉𝒩 ) ∈ 𝐿2(Γ) :=

∏︁
𝑖∈J1,𝒩 K

𝐿2(Γ𝑖)

such that
(𝜉𝑖)𝑗 = (𝒮RtR

𝑗 (𝜉𝑗 ,ℱℱℱ𝑗))𝑖, ∀𝑗 ∈ 𝐵𝑖, ∀𝑖 ∈ J1, 𝒩 K. (8)

Using the fact that ℳ𝑗(𝜉𝑗 ,ℱℱℱ𝑗) = ℳ𝑗(𝜉𝑗 ,000) + ℳ𝑗(000,ℱℱℱ𝑗), the linearity of the
operator ℛ𝑖, and defining

𝒮𝑅 :
𝐿2(Γ) → 𝐿2(Γ)

𝜉 ↦→
(︁(︀

(𝜉𝑖)𝑗 − (𝒮RtR
𝑗 (𝜉𝑗 ,000))𝑖

)︀
𝑗∈𝐵𝑖

)︁
1≤𝑖≤𝒩

,
(9)

and
𝜒𝜒𝜒 :=

(︁(︀
(𝒮RtR

𝑗 (000,ℱℱℱ𝑗))𝑖

)︀
𝑗∈𝐵𝑖

)︁
1≤𝑖≤𝒩

,

problem (8) can be rewritten as:

𝒮𝑅 𝜉 = 𝜒𝜒𝜒. (10)

The interface problem (10) is usually solved by iterative methods, using block-
Jacobi iterations or GMRES.

3.2 Solving the interface problem by the block-Jacobi
method

The simplest method for solving the interface problem (10) is a block-Jacobi
method (equivalent to Richardson’s iteration in our case, because the “diagonal” of
the operator is zero). To show the similarity with the GMRES method introduced
below, we write the algorithm as follows: given an initial guess 𝜉0 ∈ 𝐿2(Γ), at
iteration 𝑘 ≥ 1 compute the residual

𝑟𝑟𝑟𝑘−1 := 𝜒𝜒𝜒 − 𝒮𝑅𝜉𝑘−1

and define a new iterate by

𝜉𝑘 := 𝜉𝑘−1 + 𝑟𝑟𝑟𝑘−1.

The block-Jacobi algorithm applied to the interface problem (10) is equivalent
to solving local subdomain problems and then transferring information to the
neighboring subdomain. At each iteration 𝑘 ≥ 1 of this algorithm, for 𝑖 ∈ J1, 𝒩 K,
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find 𝑝𝑘
𝑖 and u𝑘

𝑖 in subdomain Ω𝑖 such that:

u𝑘
𝑖 = −𝑆𝑆𝑆∇𝑝𝑘

𝑖 in Ω𝑖, (11a)
∇·u𝑘

𝑖 = 𝑓 in Ω𝑖, (11b)
𝑝𝑘

𝑖 = 𝑔D on ΓD
𝑖 , (11c)

−u𝑘
𝑖 ·n𝑖 = 𝑔N on ΓN

𝑖 , (11d)
−𝛽𝑖,𝑗u𝑘

𝑖 ·n𝑖 + 𝑝𝑘
𝑖 = 𝜉𝑘−1

𝑖,𝑗 on Γ𝑖,𝑗 , ∀𝑗 ∈ 𝐵𝑖, (11e)

where 𝜉𝑘−1
𝑖,𝑗 := −𝛽𝑖,𝑗u𝑘−1

𝑗 ·n𝑖 + 𝑝𝑘−1
𝑗 is the information coming from the neigh-

boring subdomain Ω𝑗 , 𝑗 ∈ 𝐵𝑖, at step 𝑘 − 1 of the algorithm. The initial guess
𝜉0 ∈ 𝐿2(Γ) is a given function in 𝐿2(Γ𝑖,𝑗). The convergence analysis of this
algorithm has been carried out in [17].

Remark 3.2. Note that the continuity of the normal traces u𝑖·n𝑖 = u𝑗 ·n𝑖 and
of the pressure 𝑝𝑖 = 𝑝𝑗 will be satisfied only at convergence of the DD algorithm.

3.3 Solving the interface problem by the GMRES method

To obtain faster convergence, one can use Krylov acceleration techniques for
solving the interface problem, such as GMRES [45, 44]. For this purpose, let us
consider the interface problem (10). Given an initial guess 𝜉0 ∈ 𝐿2(Γ) and the
corresponding residual 𝑟𝑟𝑟0 := 𝜒𝜒𝜒 − 𝒮𝑅𝜉0 ∈ 𝐿2(Γ), let

𝒦𝑘 := 𝒦𝑘(𝒮𝑅, 𝑟𝑟𝑟0) := span {𝑟𝑟𝑟0, 𝒮𝑅 𝑟𝑟𝑟0, 𝒮2
𝑅 𝑟𝑟𝑟0, . . . , 𝒮𝑘−1

𝑅 𝑟𝑟𝑟0} ⊂ 𝐿2(Γ)

be the 𝑘-th Krylov subspace for this problem, 𝑘 ≥ 1. Note that the iterates for
the block-Jacobi method introduced above all belong to the space 𝜉0 + 𝒦𝑘. The
GMRES algorithm (see e.g. [9, 23] for infinite-dimensional spaces) generates a
sequence of iterates {𝜉𝑘}𝑘≥1, where 𝜉𝑘 is a solution of the finite-dimensional
minimization problem

min
𝜉∈𝜉0+𝒦𝑘

‖𝒮𝑅𝜉 − 𝜒𝜒𝜒‖𝐿2(Γ). (12)

Let {e1, . . . , ek} denote the vectors of the canonical basis of R𝑘. At the 𝑘-th
GMRES iteration, 𝑘 ≥ 1, the calculation of 𝜉𝑘 requires the computation of
functions 𝑞𝑞𝑞1, . . . , 𝑞𝑞𝑞𝑘+1 ∈ 𝐿2(Γ) that form an orthonormal basis of 𝒦𝑘+1 using
the Arnoldi method. More precisely, the Arnoldi algorithm computes a matrix
𝐻𝑘 ∈ R𝑘×𝑘 and an element 𝑓𝑓𝑓𝑘+1 ∈ 𝐿2(Γ) such that

𝒮𝑅𝑄𝑘y = QkHky + 𝑓𝑓𝑓k+1ek
Ty ∀y ∈ Rk, (13)
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where the operator 𝑄𝑘 : R𝑘 → 𝒦𝑘 is defined by 𝑄𝑘y =
𝑘∑︁

𝑗=1

(︀
e𝑇

𝑗 y
)︀

𝑞𝑞𝑞𝑗 , y ∈ R𝑘. If

𝑓𝑓𝑓𝑘+1 ̸= 0, equation (13) is rewritten as

𝒮𝑅𝑄𝑘y = Qk+1Hky ∀y ∈ Rk,

where 𝐻𝑘 is the matrix in R(𝑘+1)×𝑘 obtained by appending to 𝐻𝑘 the row
‖𝑓𝑓𝑓𝑘+1‖𝐿2(Γ)ek

𝑇 , and where the operator 𝑄𝑘+1 is defined as 𝑄𝑘, replacing 𝑘 by
𝑘 + 1 and with 𝑞𝑞𝑞𝑘+1 := 𝑓𝑓𝑓𝑘+1/‖𝑓𝑓𝑓𝑘+1‖𝐿2(Γ). Then problem (12) can be rewritten
as

min
𝜉∈𝜉0+𝒦𝑘

‖𝒮𝑅𝜉 − 𝜒𝜒𝜒‖𝐿2(Γ) = min
y∈R𝑘

‖‖𝑟𝑟𝑟0‖𝐿2(Γ)e1 − 𝐻𝑘y‖2, (14)

where ‖·‖2 is the 𝑙2-norm on R𝑘. The 𝑘-th GMRES iteration is then as follows:

1. Compute an orthonormal basis {𝑞𝑞𝑞1, . . . , 𝑞𝑞𝑞𝑘} of 𝒦𝑘 using the Arnoldi method.
2. Find the y𝑘 which solves the unconstrained (full rank) least squares problem

in (14).
3. Compute 𝜉𝑘 := 𝜉0 + 𝑄𝑘y𝑘.

One repeats the iteration in 𝑘 until the residual ‖‖𝑟𝑟𝑟0‖𝐿2(Γ)e1 − 𝐻𝑘y𝑘‖2 becomes
small enough. Note that if 𝑓𝑓𝑓𝑘+1 = 0 then 𝜉𝑘 is the exact solution to our problem.

At each iteration, the action of the operator 𝒮𝑅 on the vectors 𝑞𝑞𝑞𝑘 must be
calculated. It uses definition (9) and thus involves solving the local subdomain
problem in the form (5) (in approprate mixed formulation and replacing 𝜉 by 𝑞𝑞𝑞𝑘

in (5e)).

3.4 Approximation of the subdomain problems by the
mixed finite element method

We now introduce the discrete counterparts of the block-Jacobi or GMRES
algorithms introduced in Sections 3.2 and 3.3, respectively. They consist in using
the mixed finite element method to approximate the subdomain problems (5).
For both methods, the main ingredient is thus the computation of the action of
the discrete Robin-to-Robin interface operator to an arbitrary argument that
becomes an algebraic vector 𝜉. We now show how this computation can be
realized.

Let 𝑀ℎ,𝑖 × Wℎ,𝑖 ⊂ 𝐿2(Ω𝑖) × H(div, Ω𝑖) be the Raviart–Thomas–Nédélec
mixed finite element spaces of order 0 for each subdomain Ω𝑖. Here,

𝑀ℎ,𝑖 := {𝑞ℎ,𝑖 ∈ 𝐿2(Ω𝑖); 𝑞ℎ,𝑖|𝐾 ∈ P0(𝐾) ∀𝐾 ∈ 𝒯ℎ,𝑖},



A posteriori stopping criteria for DD in mixed formulations 11

where P0(𝐾) is the space of polynomials of degree 0, and

Wℎ,𝑖 := {vℎ,𝑖 ∈ H(div, Ω𝑖); vℎ,𝑖|𝐾 ∈ RTN0(𝐾) ∀𝐾 ∈ 𝒯ℎ,𝑖},

where RTN0(𝐾) := [P0(𝐾)]𝑑+xP0(𝐾), x ∈ R𝑑, is the Raviart–Thomas–Nédélec
vectorial field space of degree zero defined locally over an element 𝐾 ∈ 𝒯ℎ,𝑖. We
also define the approximation 𝑔ℎ,N of the function 𝑔N as a piecewise constant

function on each edge (face if 𝑑 = 3) 𝑒 ⊂ ΓN, 𝑔ℎ,N|𝑒 := 1
|𝑒|

∫︁
𝑒

𝑔Nd𝛾, where |𝑒| is

the measure of 𝑒. We then define the following set:

W𝑔ℎ,N
ℎ,𝑖 := {wℎ,𝑖 ∈ Wℎ,𝑖; wℎ,𝑖·n = 𝑔ℎ,N on ΓN

𝑖 }.

Let 𝜉ℎ := (𝜉ℎ,1, . . . , 𝜉ℎ,𝒩 ), where 𝜉ℎ,𝑖 is piecewise constant on ∪
𝑗∈𝐵𝑖

ℰΓi,j
ℎ with

the values 𝜉ℎ,𝑖,𝑗 ; this is the discrete Robin condition. The discrete formulation
of problem (5) can then be written as: find uℎ,𝑖 ∈ W𝑔ℎ,N

ℎ,𝑖 and 𝑝ℎ,𝑖 ∈ 𝑀ℎ,𝑖 such
that:

a𝑖(uℎ,𝑖, vℎ,𝑖) − b𝑖(vℎ,𝑖, 𝑝ℎ,𝑖) = ℓℓℓ𝑖(vℎ,𝑖), ∀vℎ,𝑖 ∈ W0
ℎ,𝑖, (15a)

b𝑖(uℎ,𝑖, 𝑞ℎ,𝑖) = (𝑓, 𝑞ℎ,𝑖)Ω𝑖
, ∀𝑞ℎ,𝑖 ∈ 𝑀ℎ,𝑖, (15b)

and we define the approximate solution (𝑝ℎ, uℎ) is such that:

𝑝ℎ|Ω𝑖
:= 𝑝ℎ,𝑖, uℎ|Ω𝑖

:= uℎ,𝑖, ∀𝑖 ∈ J1, 𝒩 K.

The bilinear forms a𝑖 and b𝑖 are as follows:

a𝑖 :W𝑔ℎ,N
ℎ,𝑖 × W0

ℎ,𝑖 ↦−→ R, a𝑖(u, v) = (𝑆𝑆𝑆−1u, v)Ω𝑖
+

∑︁
𝑗∈𝐵𝑖

⟨𝛽𝑖,𝑗u·n𝑖, v·n𝑖⟩Γ𝑖,𝑗
,

b𝑖 : W𝑔ℎ,N
ℎ,𝑖 × 𝑀ℎ,𝑖 ↦−→ R, b𝑖(v, 𝑝) = (𝑝, ∇·v)Ω𝑖

,

ℓℓℓ𝑖 : W0
ℎ,𝑖 ↦−→ R, ℓℓℓ𝑖(v) = −⟨𝑔D, v·n𝑖⟩ΓD

𝑖
−

∑︁
𝑗∈𝐵𝑖

⟨𝜉ℎ,𝑖,𝑗 , v·n𝑖⟩Γ𝑖,𝑗
.

This thus defines a discrete version of the operator ℳ𝑖 from (4), where in
particular we keep the same definition of the datum ℱℱℱ 𝑖, with only 𝑔ℎ,N in place
of 𝑔N. Proceeding similarly for the operator ℛ𝑖 of (6), the discrete version of the
Robin-to-Robin interface operator 𝒮RtR

𝑖 from (7) is, for 𝑖 ∈ J1, 𝒩 K,

𝒮RtR
ℎ,𝑖 (𝜉ℎ,𝑖,ℱℱℱ 𝑖) =

(︀
𝛽𝑗,𝑖uℎ,𝑖·n𝑖 + 𝜉ℎ,𝑖,𝑗 + 𝛽𝑖,𝑗uℎ,𝑖·n𝑖

)︀
𝑗∈𝐵𝑖 .

The discrete interface problem is now defined as in (9)–(10). Applying the
block-Jacobi iteration from Section 3.2 or the GMRES iteration from Section 3.3
gives rise to the discrete approximations 𝑝𝑘

ℎ,𝑖 and u𝑘
ℎ,𝑖 and their global counter-

parts
𝑝𝑘

ℎ|Ω𝑖
:= 𝑝𝑘

ℎ,𝑖, u𝑘
ℎ|Ω𝑖

:= u𝑘
ℎ,𝑖, ∀𝑖 ∈ J1, 𝒩 K.
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Remark 3.3. As noticed above in Remark 3.2, there is a continuity of the
normal traces of u𝑘

ℎ across the sides between two simplices in each subdomain Ω𝑖

but not across the interfaces in Γ𝑖 at each iteration of the DD algorithm. The
continuity of the normal traces of u𝑘

ℎ (and the pressure in the sense of Remark 4.3
below) will only be satisfied at convergence of the DD algorithm.

4 A posteriori error estimates
The purpose of this section is to bound the error between the weak solution of (1)
and the approximate solution obtained at step 𝑘 ≥ 1 of the domain decomposition
iteration with mixed finite element discretization (15) by indicators that are
completely computable from the approximate solution (𝑝𝑘

ℎ, u𝑘
ℎ). We define a

suitable postprocessing of the pressure in Section 4.1, introduce the concepts
of 𝐻1- and H(div, Ω)-conforming reconstructions in Section 4.2, and derive the
estimates in Section 4.3. Details of the reconstructions will be treated later in
Section 5.

We suppose henceforth for simplicity that 𝑔D ∈ P2(∪𝒩
𝑖=1ℰΓD

ℎ,𝑖 ) ∩ 𝐶0(ΓD) and
𝑔N ∈ P0(∪𝒩

𝑖=1ℰΓN

ℎ,𝑖 ) are respectively piecewise polynomials of total degree less
than or equal to 2 and 0 on the Dirichlet and Neumann boundaries. We introduce
the broken Sobolev space

𝐻1(𝒯ℎ) := {𝑣 ∈ 𝐿2(Ω); 𝑣|𝐾 ∈ 𝐻1(𝐾), ∀𝐾 ∈ 𝒯ℎ}.

For each interior edge (face if 𝑑 = 3) 𝑒 ∈ ( ∪
𝑗∈𝐵𝑖

ℰΓ𝑖,𝑗

ℎ ) ∪ ℰ int
ℎ,𝑖 such that the simplices

𝐾 and 𝐾′ share 𝑒 (the order of 𝐾, 𝐾′ is arbitrary but fixed once and for all),
we denote by n𝑒 the normal vector pointing from 𝐾 to 𝐾′. For a given function
𝑣, its jump and average are then defined respectively as:⎧⎪⎨⎪⎩

[[𝑣]] := 𝑣|𝐾 − 𝑣|𝐾′ and {{𝑣}} := 1
2(𝑣|𝐾 + 𝑣|𝐾′) if 𝑒 ∈ ( ∪

𝑗∈𝐵𝑖
ℰΓ𝑖,𝑗

ℎ ) ∪ ℰ int
ℎ,𝑖

[[𝑣]] := 𝑣|𝑒 − 𝑔D and {{𝑣}} := 1
2(𝑣|𝑒 + 𝑔D) if 𝑒 ∈ ℰΓD

ℎ,𝑖 .

We define the energy semi-norm on 𝐻1(𝒯ℎ) by

|||𝜙|||2 :=
∑︁

𝐾∈𝒯ℎ

|||𝜙|||2𝐾 :=
∑︁

𝐾∈𝒯ℎ

‖𝑆𝑆𝑆
1
2 ∇𝜙‖2

𝐾 𝜙 ∈ 𝐻1(𝒯ℎ)

and the energy norm on L2(Ω) by

|||v|||2⋆ :=
∑︁

𝐾∈𝒯ℎ

|||v|||2⋆,𝐾 :=
∑︁

𝐾∈𝒯ℎ

‖𝑆𝑆𝑆− 1
2 v‖2

𝐾 v ∈ L2(Ω).
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4.1 Postprocessing of the approximate solution

Following [6, 3, 47], we first construct a postprocessing 𝑝𝑘
ℎ,𝑖 of 𝑝𝑘

ℎ,𝑖, 𝑖 ∈ J1, 𝒩 K,
at each iteration 𝑘 ≥ 1 of the DD algorithm. This postprocessing is more regular
(piecewise polynomial of total degree less than or equal to 2 on each element that
we denote by P2(𝒯ℎ,𝑖)) than the piecewise constant 𝑝𝑘

ℎ, so that an application of
the piecewise gradient in the energy norm becomes reasonable.

Definition 4.1 (Postprocessing of 𝑝𝑘
ℎ ). Construct 𝑝𝑘

ℎ,𝑖 ∈ P2(𝒯ℎ,𝑖) such that

−𝑆𝑆𝑆∇𝑝𝑘
ℎ,𝑖|𝐾 = u𝑘

ℎ,𝑖|𝐾 , ∀𝐾 ∈ 𝒯ℎ,𝑖, (16a)
(𝑝𝑘

ℎ,𝑖, 1)𝐾 = (𝑝𝑘
ℎ,𝑖, 1)𝐾 , ∀𝐾 ∈ 𝒯ℎ,𝑖. (16b)

Remark 4.2. The postprocessing 𝑝𝑘
ℎ,𝑖 does not lie in the space 𝐻1(Ω), but it

follows easily from (15a), cf. [47], that 𝑝𝑘
ℎ,𝑖 is weakly continuous, ⟨[[𝑝𝑘

ℎ,𝑖]], 1⟩𝑒 = 0
for all 𝑒 ∈ ℰ int

ℎ,𝑖 . Similarly, on Dirichlet edges (faces) 𝑒 ∈ ℰΓD

ℎ,𝑖 , ⟨𝑝𝑘
ℎ,𝑖, 1⟩𝑒 =

⟨𝑔D, 1⟩𝑒.

Remark 4.3. For 𝑗 ∈ 𝐵𝑖, 𝑝𝑘
ℎ,𝑖 and 𝑝𝑘

ℎ,𝑗 are constructed separately and inde-
pendently in the two subdomains Ω𝑖 and Ω𝑗 . Hence, similarly to Remark 3.2,
⟨[[𝑝𝑘

ℎ]], 1⟩𝑒 = 0 for 𝑒 ∈ ℰΓ𝑖,𝑗

ℎ only holds at convergence.

4.2 Concept of 𝐻1- and H(div,Ω)-conforming
reconstructions

We introduce here the concepts of reconstructions needed in our a posteriori
analysis; concrete formulas are given in Section 5. On iteration 𝑘 ≥ 1, we
construct, in extension of [48, 38], three auxiliary objects 𝑠𝑘

ℎ, 𝑠𝑘
ℎ, and 𝜎𝑘

ℎ:

Concept 4.4 (Subdomain potential reconstructions). We will call a subdomain
potential reconstruction, for Ω𝑖, 𝑖 ∈ J1, 𝒩 K, any function 𝑠𝑘

ℎ,𝑖 constructed from
𝑝𝑘

ℎ,𝑖, u𝑘
ℎ,𝑖 such that

– it is subdomain 𝐻1(Ω𝑖)-conforming, i.e.,

𝑠𝑘
ℎ,𝑖 ∈ 𝐻1(Ω𝑖) ∩ 𝐶0(Ω𝑖),

𝑠𝑘
ℎ,𝑖|ΓD

𝑖
= 𝑔D|ΓD

𝑖
;

– it is built locally on each subdomain Ω𝑖 at the beginning of the DD algorithm,
discarding the influence of the domain decomposition error;

– the comparison of the flux given by this function with u𝑘
ℎ,𝑖 estimates the

discretization error in each subdomain.
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We set as usual 𝑠𝑘
ℎ|Ω𝑖

:= 𝑠𝑘
ℎ,𝑖.

Concept 4.5 (Potential reconstruction). We call a potential reconstruction any
function 𝑠𝑘

ℎ constructed from 𝑝𝑘
ℎ such that

– it is globally 𝐻1(Ω)-conforming, i.e.,

𝑠𝑘
ℎ ∈ 𝐻1(Ω) ∩ 𝐶0(Ω),

𝑠𝑘
ℎ|ΓD = 𝑔D;

– its comparison with 𝑠𝑘
ℎ,𝑖 estimates the domain decomposition error in the

sense that |||𝑆𝑆𝑆∇(𝑠𝑘
ℎ − 𝑠𝑘

ℎ)|||⋆ → 0 when 𝑘 → ∞.

Concept 4.6 (Equilibrated flux reconstruction). We will call an equilibrated
flux reconstruction any function 𝜎𝑘

ℎ constructed from 𝑝𝑘
ℎ, u𝑘

ℎ such that
– it is H(div, Ω)-conforming and locally conservative on the mesh 𝒯ℎ, i.e.,

𝜎𝑘
ℎ ∈ H(div, Ω), (17a)

(∇·𝜎𝑘
ℎ, 1)𝐾 = (𝑓, 1)𝐾 , ∀𝐾 ∈ 𝒯ℎ, (17b)

−(𝜎𝑘
ℎ·n, 1)𝑒 = (𝑔N, 1)𝑒, ∀𝑒 ∈

𝒩
∪

𝑖=1
ℰΓN

ℎ,𝑖 ; (17c)

– its comparison with u𝑘
ℎ can be used to estimate the DD error in the sense

that |||u𝑘
ℎ − 𝜎𝑘

ℎ|||⋆ → 0 when 𝑘 → ∞.

4.3 General a posteriori error estimates for 𝑝ℎ ∈ 𝐻1(𝒯ℎ) and
uℎ ∈ L2(Ω)

In this section, we present a general form of our a posteriori error estimates,
independent of the discretization method used in each subdomain and based
on the results given in [48] and [38]. Our main result bounds both the error
due to the discretization in the subdomains and the error due to the domain
decomposition iterations:

Theorem 4.7 (A posteriori error estimates for the flux). Let u ∈ H(div, Ω) be
the weak solution of the initial problem (1) and let u𝑘

ℎ ∈ L2(Ω) be an arbitrary
approximation, in particular u𝑘

ℎ can be the solution of the discrete problem (15)
at iteration 𝑘 of a DD iterative algorithm (block-Jacobi, GMRES, or other). Let
𝑠𝑘

ℎ be the subdomain potential reconstruction of Concept 4.4, 𝑠𝑘
ℎ the potential

reconstruction of Concept 4.5, and 𝜎𝑘
ℎ the equilibrated flux reconstruction of
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Concept 4.6. Then the following bound holds:

|||u − u𝑘
ℎ|||⋆ ≤ 𝜂𝑘 :=

:=𝜂𝑘
disc,u⏞  ⏟  {︃ ∑︁

𝐾∈𝒯ℎ

(𝜂𝑘
CR,𝐾)2

}︃ 1
2

+

{︃ ∑︁
𝐾∈𝒯ℎ

(𝜂𝑘
osc,𝐾)2

}︃ 1
2

+

{︃ ∑︁
𝐾∈𝒯ℎ

(𝜂𝑘
DDF,𝐾)2

}︃ 1
2

+

{︃ ∑︁
𝐾∈𝒯ℎ

(𝜂𝑘
DDP,𝐾)2

}︃ 1
2

⏟  ⏞  
:=𝜂𝑘

DD

, (18)

where

𝜂𝑘
CR,𝐾 := |||u𝑘

ℎ + 𝑆𝑆𝑆∇𝑠𝑘
ℎ|||⋆,𝐾 , constitutive relation, (19a)

𝜂𝑘
DDP,𝐾 := |||𝑆𝑆𝑆∇(𝑠𝑘

ℎ − 𝑠𝑘
ℎ)|||⋆,𝐾 , DD potential nonconformity, (19b)

𝜂𝑘
DDF,𝐾 := |||u𝑘

ℎ − 𝜎𝑘
ℎ|||⋆,𝐾 , DD flux nonconformity, (19c)

𝜂𝑘
osc,𝐾 := ℎ𝐾

𝜋
𝑐

− 1
2

𝑆𝑆𝑆,𝐾‖𝑓 − ∇·𝜎𝑘
ℎ‖𝐾 , data oscillation. (19d)

Here 𝑐𝑆𝑆𝑆,𝐾 is the smallest eigenvalue of the tensor 𝑆𝑆𝑆 in 𝐾. The discretization
error estimator (also called subdomain estimator) is denoted by 𝜂𝑘

disc,u and the
domain decomposition estimator (the interface estimator) is denoted by 𝜂𝑘

DD.

Proof. It follows readily from Therorem 3.1 in [38] that for the DD method
where the flux and the potential are not continuous on the interface, we have

|||u − u𝑘
ℎ|||⋆ ≤

{︃ ∑︁
𝐾∈𝒯ℎ

|||u𝑘
ℎ + 𝑆𝑆𝑆∇𝑠𝑘

ℎ|||2⋆,𝐾

}︃ 1
2

+

{︃ ∑︁
𝐾∈𝒯ℎ

(𝜂𝑘
DDF,𝐾)2

}︃ 1
2

+

{︃ ∑︁
𝐾∈𝒯ℎ

(𝜂𝑘
osc,𝐾)2

}︃ 1
2

.

The triangle inequality on the space 𝑙2 on R|𝒯ℎ| then completes the proof:{︃ ∑︁
𝐾∈𝒯ℎ

|||u𝑘
ℎ + 𝑆𝑆𝑆∇𝑠𝑘

ℎ|||2⋆,𝐾

}︃ 1
2

≤

{︃ ∑︁
𝐾∈𝒯ℎ

(𝜂𝑘
CR,𝐾)2

}︃ 1
2

+

{︃ ∑︁
𝐾∈𝒯ℎ

(𝜂𝑘
DDP,𝐾)2

}︃ 1
2

.

Similarly, [38, Therorem 3.1] readily yields an estimate for the potential:
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Corollary 4.8 (A posteriori error estimates for the potential). Let 𝑝 be the
weak solution of the problem (1) and let 𝑝𝑘

ℎ ∈ 𝐻1(𝒯ℎ) be an arbitrary approxima-
tion, in particular 𝑝𝑘

ℎ can be the postprocessing of 𝑝𝑘
ℎ solution of problem (15) at

iteration 𝑘 of a DD iterative algorithm given by Definition 4.1. Let u𝑘
ℎ = −𝑆𝑆𝑆∇𝑝𝑘

ℎ.
Let 𝑠𝑘

ℎ, 𝑠𝑘
ℎ, and 𝜎𝑘

ℎ be respectively given by Concepts 4.4, 4.5, and 4.6. Then the
following bound holds:

|||𝑝 − 𝑝𝑘
ℎ||| ≤ 𝜂𝑘 :=

𝜂𝑘
disc,𝑝⏞  ⏟  {︃ ∑︁

𝐾∈𝒯ℎ

(𝜂𝑘
NCP,𝐾)2

}︃ 1
2

+

{︃ ∑︁
𝐾∈𝒯ℎ

(𝜂𝑘
osc,𝐾)2

}︃ 1
2

+

{︃ ∑︁
𝐾∈𝒯ℎ

(𝜂𝑘
DDF,𝐾)2

}︃ 1
2

+

{︃ ∑︁
𝐾∈𝒯ℎ

(𝜂𝑘
DDP,𝐾)2

}︃ 1
2

⏟  ⏞  
𝜂𝑘

DD

, (20)

where the potential nonconformity estimator 𝜂𝑘
NCP,𝐾 is given by

𝜂𝑘
NCP,𝐾 := |||𝑝𝑘

ℎ − 𝑠𝑘
ℎ|||𝐾 (21)

and 𝜂𝑘
DDP,𝐾 , 𝜂𝑘

DDF,𝐾 , and 𝜂𝑘
osc,𝐾 are respectively given by (19b)–(19d).

The efficiency of these estimates, for the particular reconstructions of Section 5
below and under the stopping criteria as evoked in Section 6 below, could be
proven as in [48, 38, 18].

5 Potential and flux reconstructions for the
Robin DD in the mixed finite element
method

In this section, we propose concrete candidates for the reconstructions 𝑠𝑘
ℎ,𝑖, 𝑠𝑘

ℎ,
and 𝜎𝑘

ℎ of Concepts 4.4–4.6, so that Theorem 4.7 and Corollary 4.8 become
practical. Recall that 𝑝𝑘

ℎ,𝑖 is constructed from 𝑝ℎ,𝑖, uℎ,𝑖 of (15) by Definition 4.1.

5.1 Potential reconstruction

We start by 𝑠𝑘
ℎ, which is the simplest. Let 𝒯a := {𝐾 ∈ 𝒯ℎ; a ∈ 𝐾} be the set of

the elements 𝐾 that share the given vertex a from the set of vertices 𝒱ℎ, and
|𝒯a| its cardinality. The potential reconstruction is obtained as in [1, 29, 8]:
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Definition 5.1 (Potential reconstruction). At each iteration 𝑘, we build the
potential reconstruction 𝑠𝑘

ℎ by

𝑠𝑘
ℎ := ℐav(𝑝𝑘

ℎ),

where the averaging operator ℐav : P2(𝒯ℎ) ↦−→ P2(𝒯ℎ) ∩ 𝐻1(Ω) associates to
a piecewise 2-nd order discontinuous polynomial 𝑝𝑘

ℎ ∈ P2(𝒯ℎ) a piecewise 2-nd
order continuous polynomial 𝑠𝑘

ℎ. The value of 𝑠𝑘
ℎ is prescribed at each Lagrange

node of P2(𝒯ℎ) ∩ 𝐻1(Ω) a by the average of the values of 𝑝𝑘
ℎ at this node:

𝑠𝑘
ℎ(a) := ℐav(𝑝𝑘

ℎ)(a) := 1
|𝒯a|

∑︁
𝐾∈𝒯a

𝑝𝑘
ℎ|𝐾(a). (22)

At the Dirichlet boundary nodes aD ∈ ΓD, the value of ℐav(𝑝𝑘
ℎ) is set to 𝑔D(aD),

so that 𝑠𝑘
ℎ|ΓD = 𝑔D.

5.2 Subdomain potential reconstruction

As explained in Remarks 4.2 and 4.3, the mean values of the traces of the
postprocessed mixed finite element solution 𝑝𝑘

ℎ on the edges (faces if 𝑑 = 3)
belonging to the interface are not continuous during the DD algorithm, i.e.,
⟨[[𝑝𝑘

ℎ]], 1⟩𝑒 ̸= 0, ∀𝑒 ∈ ℰΓ𝑖,𝑗

ℎ . The purpose of this section is to construct a subdomain
potential reconstruction 𝑠𝑘

ℎ,𝑖 that is different from ℐav(𝑝𝑘
ℎ) of (22) in that it

respects this discontinuity at the beginning of the DD algorithm, but it approaches
ℐav(𝑝𝑘

ℎ) at convergence of the DD algorithm.

5.2.1 Notation

We begin by introducing some more notation. The set of vertices located on
the interface Γ𝑖,𝑗 is denoted by 𝒱Γi,j

ℎ ⊂ 𝒱ℎ, 𝑖 < 𝑗, 𝑖, 𝑗 ∈ J1, 𝒩 K. We denote the
set of vertices a ⊂ 𝜕Γ𝑖,𝑗 by 𝒱𝜕Γi,j

ℎ , and the set of vertices a ⊂ Γ𝑖,𝑗∖(𝜕Γ𝑖,𝑗) by
𝒱Γi,j∖(𝜕Γi,j)

ℎ . Let 𝐼a be the set of interfaces Γ𝑖,𝑗 that share the vertex a ∈ 𝒱𝜕Γi,j
ℎ :

𝐼a := {Γ𝑖,𝑗 : 𝑖 < 𝑗, 𝑖, 𝑗 ∈ J1, 𝒩 K, a ∈ 𝒱𝜕Γi,j
ℎ }, (23)

as shown in Figure 1 for the case of a decomposition of Ω into four subdomains,
where 𝐼a = {Γ1,2, Γ1,3, Γ2,4, Γ3,4}. Let |𝐼a| be the cardinality of this set and
𝐼𝑟

a the 𝑟th interface in 𝐼a sharing a.
Remark that 𝒯a =

𝒩
∪

𝑖=1
{𝐾 ∈ 𝒯ℎ,𝑖; a ∈ 𝐾} =

𝒩
∪

𝑖=1
𝒯 𝑖

a , where 𝒯 𝑖
a is the set of

all elements in the subdomain Ω𝑖 sharing the node a; we denote by |𝒯 𝑖
a | their
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Ω1 Ω2

Ω3 Ω4

Γ1,2

Γ1,3 Γ2,4

Γ3,4

a

Fig. 1: Intersection of the interfaces Γ1,2, Γ1,3, Γ2,4, and Γ3,4 at vertex a

number. We will also need �̃�𝑖, the set of subdomains other than Ω𝑖 that share
at least one vertex with Ω𝑖, and its cardinality |�̃�𝑖|.

5.2.2 Weights

We start by defining some weights at each iteration 𝑘 of the DD algorithm:

Definition 5.2 (Weights of edges (faces if 𝑑 = 3) belonging to the interface).
We define the weight of the edge (face) 𝑒 ∈ ℰΓ𝑖,𝑗

ℎ by

𝑤𝑘
𝑒 :=

(︂
|⟨[[𝑝𝑘

ℎ]], 1⟩𝑒|
⟨|[[𝑝𝑘

ℎ]]|, 1⟩𝑒

)︂𝛼

, 𝛼 ≥ 1.

Note that it follows immediately from |⟨[[𝑝𝑘
ℎ]], 1⟩𝑒| ≤ ⟨|[[𝑝𝑘

ℎ]]|, 1⟩𝑒 that

0 ≤ 𝑤𝑘
𝑒 ≤ 1.

Moreover, from what has been explained above, ⟨[[𝑝𝑘
ℎ]], 1⟩𝑒 → 0 when 𝑘 → ∞ on

all 𝑒 ∈ ℰΓ𝑖,𝑗

ℎ . Thus, 𝑤𝑘
𝑒 approaches 0 with increasing DD iterations. Conversely,

𝑤𝑘
𝑒 is typically close to 1 at the beginning of the DD algorithm.

Definition 5.3 (Weights of Lagrange nodes belonging to the interface). Using
the notation (23), we define the weight on the Lagrange node a ∈ 𝒱Γ𝑖,𝑗

ℎ located
on the interface (in two space dimensions for simplicity) by:

𝑤𝑘
a :=

⎧⎪⎪⎨⎪⎪⎩
1
2(𝑤𝑘

𝑒 + 𝑤𝑘
𝑒′) if a ∈ 𝒱Γ𝑖,𝑗∖(𝜕Γ𝑖,𝑗)

ℎ where 𝑒, 𝑒′ ∈ ℰΓ𝑖,𝑗

ℎ / 𝑒 ∩ 𝑒′ = a,

1
|𝐼a|

|𝐼a|∑︁
𝑟=1

𝑤𝑘
𝑒𝑟

if a ∈ 𝒱𝜕Γ𝑖,𝑗

ℎ where a ∈ 𝑒𝑟 ⊂ 𝐼𝑟
a,

where we recall that 𝐼𝑟
a is the 𝑟th interface in 𝐼a that shares a.
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We note that 𝑤𝑘
a has similar properties to 𝑤𝑘

𝑒 : it is close to 1 at the beginning of
the DD algorithm and approaches 0 during the DD iterations.

In the case of the standard averaging operator ℐav from (22), the weights are
distributed uniformly on each element 𝐾 ∈ 𝒯a sharing the node a, being equal
to 1

|𝒯a|
, see (22). Recall that for a given Lagrange node a on the interface, the

patch 𝒯a is a union of subdomains subpatches 𝒯 𝑖
a . For the subdomain potential

reconstruction in the sense of Concept 4.4, we now want to define weights so
that all elements sharing the same node on the interface do not have the same
weight during the iterations of the DD algorithm:

Definition 5.4 (Weights of Lagrange nodes on the interface for each patch 𝒯 𝑖
a ).

For each interface Lagrange node a ∈ 𝒱ℎ ∩ Γ𝑖, 𝑖 ∈ J1, 𝒩 K, define

𝑤𝑘
𝑖,a := 1

|𝒯 𝑖
a | + (1 − 𝑤𝑘

a)
∑︀

𝑗∈�̃�𝑖 |𝒯 𝑗
a |

. (24)

The construction (24) ensures that at the beginning of the DD iterations, 𝑤𝑘
𝑖,a ≈

1
|𝒯 𝑖

a |
, whereas on late DD iterations, 𝑤𝑘

𝑖,a ≈ 1
|𝒯a|

.

5.2.3 Construction of 𝑠𝑘ℎ,𝑖

We can now finally define:

Definition 5.5 (Subdomain potential reconstructions). At iteration 𝑘, for Ω𝑖,
𝑖 ∈ J1, 𝒩 K, the subdomain potential reconstruction 𝑠𝑘

ℎ,𝑖 is defined by

𝑠𝑘
ℎ,𝑖(a) := 𝑤𝑘

𝑖,a
∑︁

𝐾∈𝒯 𝑖
a

𝑝𝑘
ℎ,𝑖|𝐾(a) + 𝑤𝑘

𝑖,a(1 − 𝑤𝑘
a)

∑︁
𝑗∈�̃�𝑖

∑︁
𝐾∈𝒯 𝑗

a

𝑝𝑘
ℎ,𝑗 |𝐾(a) a ⊂ Γ𝑖, (25a)

𝑠𝑘
ℎ,𝑖(a) := 𝑠𝑘

ℎ,𝑖(a) otherwise. (25b)

Note that the sum of the weights in (25a) is equal to 1 for each node a. Indeed,
using property (24),

𝑤𝑘
𝑖,a|𝒯 𝑖

a | + 𝑤𝑘
𝑖,a(1 − 𝑤𝑘

a)
∑︁

𝑗∈�̃�𝑖

|𝒯 𝑗
a | = 𝑤𝑘

𝑖,a

⎛⎝|𝒯 𝑖
a | + (1 − 𝑤𝑘

a)
∑︁

𝑗∈�̃�𝑖

|𝒯 𝑗
a |

⎞⎠ = 1.

The construction of Definition 5.5 leads to a subdomain potential reconstruction
𝑠𝑘

ℎ,𝑖 where at the beginning of the DD method, the contribution of the elements
of 𝒯 𝑖

a in the subdomain Ω𝑖 is more important, with weights close to one, whereas
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the elements in 𝐾 ∈ 𝒯a∖𝒯 𝑖
a do not contribute as their weights are close to zero.

At DD convergence, all elements contribute with the same weights, so that 𝑠𝑘
ℎ,𝑖

converges to ℐav(𝑝𝑘
ℎ,𝑖)|Ω𝑖

as the DD iterations proceed.

5.3 Flux reconstruction

In this section, we show how to reconstruct a flux satisfying Concept 4.6, at each
iteration 𝑘 of the DD algorithm. We suppose that for all interface edges (faces)
𝑒 ⊂ Γ𝑖,𝑗 , n𝑒 has the same direction as the interface normal nΓ𝑖,𝑗

, where nΓ𝑖,𝑗

is set arbitrarily, pointing either from Ω𝑖 to Ω𝑗 , or from Ω𝑗 to Ω𝑖, with 𝑗 ∈ 𝐵𝑖,
𝑖 < 𝑗, 𝑖 ∈ J1, 𝒩 K. Note first that defining simply

𝜎𝑘
ℎ·n𝑒 =

{︃
{{u𝑘

ℎ·n𝑒}}, ∀𝑒 ∈ ∪
𝑗∈𝐵𝑖

ℰΓi,j
ℎ ,

u𝑘
ℎ,𝑖·n𝑒, ∀𝑒 ∈ ℰ int

ℎ,𝑖 ∪ ℰext
ℎ,𝑖 ,

(26)

we obtain the first required property (17a), 𝜎𝑘
ℎ ∈ H(div, Ω), as well as the third

property (17c). But the property (17b) does not hold in the elements having
an edge (if 𝑑 = 2) or a face (if 𝑑 = 3) on the interface Γ𝑖,𝑗 . This motivates the
forthcoming construction.

5.3.1 A simple coarse balancing problem

Following Remarks 3.3 and 4.3 and the observation (26), the is no mass balance
during the DD iterations with Robin transmission conditions. In order to restore
it, a possible solution would be to use a balancing DD method like those in [12, 34,
35], where one solves a coarse-grid problem with one unknown in each subdomain.
This allows to obtain the balancing in each subdomain. We choose, however,
to adopt here a new method that we find simple. It makes the connection
between subdomains in order to rebalance the flux independently of the number
of subdomains, and can also be applied in the case where at least one subdomain
does not touch the boundary. We will more precisely define one correction per
interface Γ𝑖,𝑗 to the averaged flux {{u𝑘

ℎ·n𝑒}}, plus some boundary corrections,
through a simple coarse balancing problem. This will lead to Neumann conditions
that are in equilibrium with the prescribed source term.

To explain in details our new idea, we first partition each subdomain Ω𝑖,
∀𝑖 ∈ J1, 𝒩 K, into two disjoint parts Ωext

𝑖 and Ωint
𝑖 such that Ωext

𝑖 ∪ Ωint
𝑖 = Ω𝑖.

The so-called band Ωext
𝑖 is made up of simplices that have an edge, a vertex, or

a face on any interface Γ𝑖,𝑗 , 𝑗 ∈ 𝐵𝑖, see Figure 2 for a decomposition of Ω into
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nine subdomains. We also denote Γ𝑏
𝑖 , 𝑏 ∈ 𝐵𝑖,ext, the intersections of 𝜕Ωext

𝑖 with
𝜕Ω𝑖 ∩ 𝜕Ω of nonzero (𝑑 − 1)-dimensional measure. Note that the cardinality of
the index set 𝐵𝑖,ext is always two in two space dimensions when |𝜕Ω𝑖 ∩ 𝜕Ω| ≠ 0;
we let 𝐵𝑖,ext empty when |𝜕Ω𝑖 ∩ 𝜕Ω| = 0.
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Fig. 2: DD with 9 subdomains (left) and the bands Ωext
𝑖 , 1 ≤ 𝑖 ≤ 9 (right)

We easily see from (15b) that in each band Ωext
𝑖 , 𝑖 ∈ J1, 𝒩 K, the misfit of

mass balance due to the averaging like in (26) is∑︁
𝑗∈𝐵𝑖

nΓ𝑖,𝑗
·n𝜕Ωext

𝑖

∑︁
𝑒⊂Γ𝑖,𝑗

∫︁
𝑒

1
2 [[u𝑘

ℎ·n𝑒]]d𝛾 = (𝑓, 1)Ωext
𝑖

− ⟨{{u𝑘
ℎ·n𝜕Ωext

𝑖
}}, 1⟩𝜕Ωext

𝑖
.

We now try to correct the averaged interface and original boundary normal fluxes
of (26) with one value 𝑐𝑘

Γ𝑖,𝑗
= 𝑐𝑘

Γ𝑗,𝑖
per interface Γ𝑖,𝑗 = Γ𝑗,𝑖 and one value 𝑐𝑘

Γ𝑏
𝑖

per the boundary part Γ𝑏
𝑖 of Γ𝑖, so that

𝑐𝑘
Γ𝑖,𝑗

≈ 0 for 𝑖, 𝑗 ∈ J1, 𝒩 K, 𝑖 < 𝑗 such that 𝑗 ∈ 𝐵𝑖, (27a)

𝑐𝑘
Γ𝑏

𝑖
≈ 0 for 𝑖 ∈ J1, 𝒩 K and 𝑏 ∈ 𝐵𝑖,ext, so that |𝜕Ωext

𝑖 ∩ 𝜕Ω| > 0. (27b)

We keep the same value of the flux u𝑘
ℎ·n𝜕Ωext

𝑖
∩𝜕Ωint

𝑖
located on the boundary

𝜕Ωext
𝑖 ∩ 𝜕Ωint

𝑖 . We require the following 𝒩 balancing conditions, one for each
band Ωext

𝑖 , to be satisfied:∑︁
𝑏∈𝐵𝑖,ext

𝑐𝑘
Γ𝑏

𝑖
+

∑︁
𝑗∈𝐵𝑖

(nΓ𝑖,𝑗
·n𝜕Ωext

𝑖
)𝑐𝑘

Γ𝑖,𝑗
= (𝑓, 1)Ωext

𝑖
−⟨{{u𝑘

ℎ·n𝜕Ωext
𝑖

}}, 1⟩𝜕Ωext
𝑖

. (28)

Equations (28), for 𝑖 ∈ J1, 𝒩 K, lead to a rectangular linear system for the
unknowns corrections 𝑐𝑘

Γ𝑖,𝑗
and 𝑐𝑘

Γ𝑏
𝑖
, with more equations than unknowns. We

thus look for the minimum norm solution of (28) in the least squares sense,
𝒩∑︁

𝑖=1

∑︁
𝑏∈𝐵𝑖,ext

(𝑐𝑘
Γ𝑏

𝑖
)2 +

𝒩∑︁
𝑖=1

∑︁
𝑗∈𝐵𝑖, 𝑖<𝑗

(𝑐𝑘
Γ𝑖,𝑗

)2 = min. (29)

In the example of Figure 2, there are 12 corrections 𝑐𝑘
Γ𝑖,𝑗

according to (27a) and 16
corrections 𝑐𝑘

Γ𝑏
𝑖

according to (27b) to be found. As there are 9 subdomains, there
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are 28 unknowns and 9 equations (28) to be satisfied here, in the least-squares
sense (29).

Conditions (28) immediately give mass balance in each band Ωext
𝑖 (and

consequently in each subdomain Ω𝑖):

Lemma 5.6. Adding the corrections 𝑐𝑘
Γ𝑖,𝑗

and 𝑐𝑘
Γ𝑏

𝑖
of (27) constructed via (28)–

(29) to the averaged fluxes {{u𝑘
ℎ·nΩext

𝑖
}} leads to mass balance in each band Ωext

𝑖 ,
∀𝑖 ∈ J1, 𝒩 K:∑︁

𝑏∈𝐵𝑖,ext

(︀
⟨u𝑘

ℎ·nΩext
𝑖

, 1⟩Γ𝑏
𝑖

+ 𝑐𝑘
Γ𝑏

𝑖

)︀
+ ⟨{{u𝑘

ℎ·nΩext
𝑖

}}, 1⟩𝜕Ωext
𝑖

∩𝜕Ωint
𝑖

+
∑︁

𝑗∈𝐵𝑖

(︀
⟨{{u𝑘

ℎ·nΩext
𝑖

}}, 1⟩Γ𝑖,𝑗
+ (nΓ𝑖,𝑗

·n𝜕Ωext
𝑖

)𝑐𝑘
Γ𝑖,𝑗

)︀
= (𝑓, 1)Ωext

𝑖
. (30)

5.3.2 Solving local Neumann problems in bands around the interfaces

Building on the key balancing property (30), we can now follow [38, Section 3.5.2]
and solve a well-posed local Neumann problem in each band Ωext

𝑖 . This will lead
to a flux reconstruction in the sense of Concept 4.6. The procedure is as follows:

Definition 5.7 (Spaces of local Neumann problem). For 𝑖 ∈ J1, 𝒩 K, define
𝑀ℎ,𝑖(Ωext

𝑖 ) as the restriction of 𝑀ℎ,𝑖 to Ωext
𝑖 and

Wℎ,𝑧,Ωext
𝑖

=

{︃
v𝑘

ℎ ∈ Wℎ,𝑖(Ωext
𝑖 );

v𝑘
ℎ·nΩext

𝑖
= 𝑧 + n𝜕Ωext

𝑖
·nΓ𝑖,𝑗

𝑐𝑘
Γ𝑖,𝑗

|Γ𝑖,𝑗 |
if 𝑧 ̸= ⋆, 0 else, on Γ𝑖,𝑗 , 𝑗 ∈ 𝐵𝑖,

v𝑘
ℎ·nΩext

𝑖
= 𝑧 +

𝑐𝑘
Γ𝑏

𝑖

|Γ𝑏
𝑖 |

if 𝑧 ̸= ⋆, 0 else, on Γ𝑏
𝑖 , 𝑏 ∈ 𝐵𝑖,ext,

v𝑘
ℎ·nΩext

𝑖
= 𝑧 if 𝑧 ̸= ⋆, 0 else on 𝜕Ωext

𝑖 ∩ 𝜕Ωint
𝑖

}︃
.

Definition 5.8 (Mixed finite element local Neumann problem in the bands Ωext
𝑖 ).

Find 𝜎𝑘
ℎ|Ωext

𝑖
∈ Wℎ,{{u𝑘

ℎ
·nΩext

𝑖
}},Ωext

𝑖
and 𝑞𝑘

ℎ ∈ 𝑀ℎ,𝑖(Ωext
𝑖 ) such that (𝑞𝑘

ℎ, 1)|Ωext
𝑖

=



A posteriori stopping criteria for DD in mixed formulations 23

0, ∀𝑖 ∈ J1, 𝒩 K, such that

(𝑆𝑆𝑆−1(𝜎𝑘
ℎ − u𝑘

ℎ), vℎ)Ωext
𝑖

− (𝑞𝑘
ℎ, ∇·vℎ)Ωext

𝑖
= 0, ∀vℎ ∈ Wℎ,⋆,Ωext

𝑖
, (31a)

(∇·𝜎𝑘
ℎ, 𝑤ℎ)Ωext

𝑖
= (𝑓, 𝑤ℎ)Ωext

𝑖
, ∀𝑤ℎ ∈ 𝑀ℎ,𝑖(Ωext

𝑖 ) such that (𝑤ℎ, 1)|Ωext
𝑖

= 0.

(31b)

5.3.3 Construction of 𝜎𝑘
ℎ

We finally set, for all 𝑖 ∈ J1, 𝒩 K,

𝜎𝑘
ℎ :=

{︃
𝜎𝑘

ℎ|Ωext
𝑖

on Ωext
𝑖 by Definition 5.8,

u𝑘
ℎ|Ωint

𝑖
on Ωint

𝑖 .
(32)

This is our flux reconstruction 𝜎𝑘
ℎ satisfying all conditions of Concept 4.6.

6 Numerical results
In this section, we give some numerical illustrations of the a posteriori error
estimators of Theorem 4.7 and Corollary 4.8, in two space dimensions.

6.1 A homogeneous, anisotropic medium

We set Ω =]0, 1[×]0, 1[ and consider 𝑥 = 0 as the Neumann boundary ΓN, 𝑦 = 0
and 𝑦 = 1 as the Dirichlet boundaries ΓD, and 𝑥 = 1 as the Robin boundary, in

extension of (1), together with the diffusion tensor 𝑆𝑆𝑆 =
(︂

3 2
2 3

)︂
. We choose the

right-hand side 𝑓 and the values of the boundary conditions so that the exact
solution is given by 𝑝(𝑥, 𝑦) = sin(2𝜋𝑥) sin(2𝜋𝑦). We consider Ω divided into 9
regular subdomains, as in Figure 2, left. The number of triangles in the whole
domain Ω is 115 200. The Robin parameters of the DD algorithm are optimized
following [22]. We consider the mixed finite element discretization (15) in two
cases:

6.1.1 Solution with block-Jacobi

We first consider the block-Jacobi DD solver of Section 3.2. In Figure 3, we plot
the evolution of the estimators 𝜂𝑘

DD and 𝜂𝑘
disc,𝑝 of Corollary 4.8 and of their sum
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Fig. 3: Example 1: error component estimates with the block-Jacobi solver

𝜂𝑘 as a function of the number of the block-Jacobi DD iterations. The original
DD stopping criterion is when the jump of the Robin condition measured in
the 𝐿2 norm on the interface has been reduced below 10−12, which is satisfied
after 209 iterations. At the beginning we see that 𝜂𝑘

DD dominates up to roughly
35 iterations and then gets smaller compared to 𝜂𝑘

disc,𝑝 and then vanishes. The
stopping criterion for the iterative solver that we propose instead is to stop when
the domain decomposition error does not contribute significantly to the overall
error, i.e., 𝜂𝑘

DD ≤ 𝛾𝜂𝑘
disc,𝑝, with 𝛾 ≈ 0.1. Here, we can stop at iteration 47, and

avoid 162 unnecessary iterations. Thus, we can spare 77,5 % of the total number
of iteration.
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Fig. 4: Example 1: energy error and total estimator (left) and the effectivity index (right)
with the block-Jacobi solver

We also plot the energy error and the total estimator as a function of the
number of iterations, see Figure 4 on the left. Consequently, we can obtain the

effectivity index 𝐼𝑘
eff := 𝜂𝑘

|||𝑝 − 𝑝𝑘
ℎ|||

from Corollary 4.8 defined as the ratio of
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the estimated and the actual error at the iteration 𝑘 of the DD algorithm, see
Figure 4 on the right. We observe that the effectivity index approaches the
optimal value of 1.

Discussion of the estimates at iteration 47

At iteration 47, the solution 𝑝47
ℎ does not present any visual discontinuity, see

Figure 5. Figure 6 shows that the element contributions of 𝜂𝑘
disc,𝑝 are about the

size of 5e-4 and are distributed rather uniformly over the whole domain, while
𝜂𝑘

DD is about 10−3 and is distributed only around the interfaces. We can see in
Figure 7 (left) that the total error estimator distribution is very close to the
distribution of the estimator 𝜂𝑘

disc,𝑝, up to the error on the interface. Finally, we
see that the energy error distribution shown on Figure 7 (right) matches well
with the total error estimator distribution, see Figure 7 (left) (again, up to the
error on the interface).

Fig. 5: Example 1: pressure at the 47th iteration with the block-Jacobi solver

6.1.2 Solution with GMRES

We take the same example as before but using the GMRES solver of Section 3.3
now. One particular advantage of the GMRES solver is that it typically takes
fewer iterations than the block-Jacobi for the same original DD stopping criteria
(when the residual given by the jump of the Robin condition is lower than 1e-12
on the interface), and which is verified here after 61 iterations. As shown in
Figure 8 (left), 𝜂𝑘

DD dominates up to roughly 12 iterations and then gets small
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Fig. 6: Example 1: the two components of the a posteriori estimates 𝜂𝑘disc,𝑝 (left) and 𝜂𝑘DD

(right) on each element 𝐾 of 𝒯ℎ, at the 47th iteration with the block-Jacobi solver

Fig. 7: Example 1: the total error estimator (left) and the distribution of the energy error
(right) at the 47th iteration with the block-Jacobi solver

compared to 𝜂𝑘
disc,𝑝. Using the stopping criterion 𝜂𝑘

DD ≤ 0.01𝜂𝑘
disc,𝑝, we can stop

the DD algorithm at iteration 17, and thus save 44 unnecessary iterations. Thus,
we can spared 72 % of the total number of iterations. We finally plot the energy
error and the total estimator as a function of the number of iterations, see
Figure 8 (right). Consequently, we can obtain the effectivity index 𝐼𝑘

eff at each
iteration of the DD algorithm, which is again close to the optimal value of 1.

6.2 A heterogeneous, isotropic medium

The second example focuses on the approximation of problem (1) where Ω =
]0, 1[×]0, 1[, 𝜕Ω is the Dirichlet boundary, 𝑝(𝑥, 𝑦) = 𝑥(1 − 𝑥)𝑦(1 − 𝑦) is the exact
solution, and where the diffusion tensor is

𝑆𝑆𝑆 =
{︂

15 − 10 sin(10𝜋𝑥) sin(10𝜋𝑦)𝐼𝐼𝐼 , 𝑥, 𝑦 ∈ (0, 1/2) or 𝑥, 𝑦 ∈ (1/2, 1),
15 − 10 sin(2𝜋𝑥) sin(2𝜋𝑦)𝐼𝐼𝐼 , otherwise,

(33)
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Fig. 8: Example 1: error component estimates (left) and energy error and total estimator
(right) with the GMRES solver

where 𝐼𝐼𝐼 is the (2 by 2) identity matrix. We consider a domain decomposition of
Ω into 4 subdomains Ω =

4
∪

𝑖=1
Ω𝑖. The interface problem is solved with GMRES

of Section 3.3.
In this example, we can see from Figure 9 that we can stop after 6 iterations,

and so save 34 unnecessary iterations. We also plot the energy error and the
total estimator as a function of the number of iterations, see Figure 10. We again
observe that the effectivity index is close to the optimal value of 1, see Figure 10.
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Fig. 9: Example 2: error component estimates with the GMRES solver

Discussion of the estimators at iteration 6

At iteration 6, we remark that the DD error is located on the interface, see
Figure 11 (right). We can see in Figure 12 (left) that the total error estimator
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Fig. 10: Example 2: energy error and total estimator (left) and the effectivity index (right)
with the GMRES solver

distribution is very close to the error distribution of 𝜂𝑘
disc,𝑝 in Figure 11 (left).

Finally, we see that the energy error distribution Figure 12 (right) matches well
with the total error estimator distribution, see Figure 12 (left).
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Fig. 11: Example 2: the two components of the a posteriori estimates 𝜂𝑘disc,𝑝 (left) and
𝜂𝑘DD (right) on each element 𝐾 of Ω at the 6th iteration of the GMRES solver
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