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Abstract

We present an iterative domain decomposition method for solving the

convection-diffusion equation. In order to have very fast convergence, we

use differential interface conditions of order 1 in the normal direction and

of order 2 in the tangential direction to the interface, which are optimized

approximations of Absorbing Boundary Conditions. These approximations

are different from the ones which are used when truncating an unbounded

domain. Numerical tests illustrate this approach.

1 Introduction

Domain decomposition methods are a collection of techniques based on the princi-
ple of Divide and Conquer. These methods have been developed for solving partial
differential equations over regions in 2D and 3D. They are naturally parallel and
adapted to multiprocessing technology. They are therefore getting more and more
popular. Their main advantage is the dramatic increase in the size of the problems
that can be treated by the combination of the Divide and Conquer approach and
parallel computing. Moreover, these algorithms are usually faster even when they
are implemented on monoprocessor computers.
The basic idea is to decompose the computational domain into small subregions.
The original problem is then reformulated as follows: Find functions in each sub-
domain such that:

• the partial differential equation is satisfied in each subdomain

• the functions match on the interfaces between the subdomains.
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Usually, the first requirement is met by using direct solvers whereas the second one
is enforced iteratively. There are many ways to write matching conditions on an
interface. For instance, for a second order scalar partial differential equation, the
set of jump conditions [u] = [∂u/∂n] = 0 (where n is a normal on an interface) is
equivalent to [u] = [∂u/∂n + αu] = 0 for any α. The jump conditions will also be
called interface conditions.
It turns out that the speed of convergence is very much sensitive on the interface
conditions. More precisely, Exact Absorbing Boundary Conditions (although not
used for truncating a domain) are optimal in terms of iteration counts. On the
other hand, they are non local operators which which are difficult to implement.
As for the truncation of unbounded domains, approximations have to be devised.
It turns out that the approximations which are good for truncating domains are
not suited to domain decomposition methods and vice-versa.

The chapter is organized as follows. In § 2, we recall two basic domain decom-
position methods. In § 3,we elaborate on these algorithms and show that the Exact
Absorbing Boundary Conditions (EABC) are the best interface conditions in terms
of iteration counts. In § 4.1, we analyze two approximation procedures of these
EABC’s: 1) one of the classical ones for truncating domains (i.e. the approach
initiated in [EM77]) and 2) the OO2 (Optimized of Order 2) method which is more
relevant to domain decomposition methods. In § 5, numerical tests are given for
various interface conditions. In § 6, we conclude.

2 Schwarz Methods for the Laplace Operator

2.1 The original Schwarz method

The first domain decomposition method was developed at the end of the 19th cen-
tury by the mathematician H. Schwarz. His goal was to study the Laplace operator
and not at all to develop numerical methods. At that time, the main tool for this
purpose was Fourier analysis and more generally the use of special functions. Ge-
ometries of the domain were essentially restricted to simple geometries: rectangles
and disks. His idea was to study the case of domains that are the union of simple
domains. Far example, let Ω = Ω1 ∪ Ω2 with Ω1 ∩ Ω2 6= ∅. We want to solve

−∆(u) = f in Ω
u = 0 on ∂Ω.

Ω
1

Ω
2

Fig. 1. Overlapping domain decomposition

H. Schwarz proposed the following algorithm (Multiplicative Schwarz Method,
MSM):
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Let (un
1 , un

2 ) be an approximation to (u|Ω1
, u|Ω2

) at step n of the algorithm, (un+1
1 , un+1

2 )
with

−∆(un+1
1 ) = f in Ω1

un+1
1 = 0 on ∂Ω1 ∩ ∂Ω

un+1
1 = un

2 on ∂Ω1 ∩ Ω2.

−∆(un+1
2 ) = f in Ω2

un+1
2 = 0 on ∂Ω2 ∩ ∂Ω

un+1
2 = un+1

1 on ∂Ω2 ∩ Ω1.

Problem in domain Ω1 has to be solved before problem in domain Ω2. This algo-
rithm is sequential.
A slight modification of the algorithm is the additive Schwarz method (ASM)

−∆(un+1
1 ) = f in Ω1

un+1
1 = 0 on ∂Ω1 ∩ ∂Ω

un+1
1 = un

2 on ∂Ω1 ∩ Ω2.

−∆(un+1
2 ) = f in Ω2

un+1
2 = 0 on ∂Ω2 ∩ ∂Ω

un+1
2 = un

1 on ∂Ω2 ∩ Ω1.

Problems in domains Ω1 and Ω2 may be solved concurrently. The ASM is a parallel
algorithm and is adapted to parallel computers. H. Schwarz proved the linear
convergence (un

1 , un
2 ) to (u|Ω1

, u|Ω2
) as n tends to infinity.

The benefit of these algorithms is the saving in memory requirements. Indeed, if
the problems are solved by direct methods, the the cost of the storage is non linear
with respect to the number of unknowns. By dividing the original problem into
smaller pieces the amount of storage can be significantly reduced.

2.2 Towards faster Schwarz methods

As far as CPU is concerned, the original algorithms ASM and MSM are very slow.
Another weakness is the need of overlapping subdomains. In order to remedy to
these drawbacks, it has been proposed [Lio90] to replace the Dirichlet interface
conditions on ∂Ωi\∂Ω, i = 1, 2 by Robin interface conditions (∂ni

+ α, where n is
the outward normal to subdomain Ωi). For example, the modified ASM reads

−∆(un+1
1 ) = f in Ω1,

un+1
1 = 0 on ∂Ω1 ∩ ∂Ω,

( ∂
∂n1

+ α)(un+1
1 ) = (− ∂

∂n2
+ α)(un

2 ) on ∂Ω1 ∩ Ω2,

−∆(un+1
2 ) = f in Ω2,

un+1
2 = 0 on ∂Ω2 ∩ ∂Ω

( ∂
∂n2

+ α)(un+1
2 ) = (− ∂

∂n1
+ α)(un

1 ) on ∂Ω2 ∩ Ω1.

Note that the normals n1 and n2 are opposite.
A good choice of the parameter α yields a much better convergence and the overlap
between subdomains is optional. The boundary conditions imposed on ∂Ωi\∂Ω,
i = 1, 2 are called interface (or matching) conditions.
Another major improvement to Schwarz methods comes from the use of Krylov type
methods (e.g. CG, GMRES, BICG, QMR, . . .) in order to enforce the continuity
relations on the interfaces. These methods come in replacement of the relaxation
procedure used in ASM or MSM.
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In order to use the various Krylov methods, it is necessary to identify the linear
system of equations that correspond to the interface conditions. We consider this
question in a more general setting than the Laplace operator. Let Ω be an open
set of R

d, L be a linear second order scalar partial differential operator with real
coefficients and whose principal symbol is elliptic. Let f : Ω −→ R, we consider
the following boundary value problem: find u such that

L(u) = f in Ω,
u = 0 on ∂Ω.

The domain is decomposed into two subdomains Ω1 and Ω2 such that Ω̄ = Ω̄1 ∪ Ω̄2

(with or without overlaps between the subdomains). The interface conditions on
Γi = ∂Ωi\∂Ω, i = 1, 2 are denoted by B1 and B2 respectively. They don’t need to
be specified in this section. The additive Schwarz method (ASM) reads

L(un+1
i ) = f in Ωi

un+1
i = 0 on ∂Ωi ∩ ∂Ω

Bi(u
n+1
i ) = Bi(u

n
j ) on Γi, 1 ≤ i 6= j ≤ 2.

(2.1)

We first identify the above ASM to a Jacobi method applied to interfacial quanti-
ties. Indeed, we denote by ui(f, µi), i = 1, 2 the solution to

L(ui) = f in Ωi

ui = 0 on ∂Ωi ∩ ∂Ω
Bi(ui) = µi on Γi.

With these notations, the ASM is equivalent to

un+1
1 = u1(f,B1(u

n
2 ))

un+1
2 = u2(f,B2(u

n
1 ))

(2.2)

Let us define interfacial quantities

µn
1 ≡ B1(u

n
2 ) and µn

2 ≡ B2(u
n
1 ).

From (2.2) we have

µn+1
1 ≡ B1(u

n+1
2 ) = B1(u2(f,B2(u

n
1 )))

µn+1
2 ≡ B2(u

n+1
1 ) = B2(u1(f,B1(u

n
2 )))

or by linearity of the operators,
(

µn+1
1

µn+1
2

)

−
(

B1(u2(0,B2(u
n
1 )))

B2(u1(0,B1(u
n
2 )))

)

=

(

B1(u2(f, 0)
B2(u1(f, 0)

)

.

We have just proved:

Lemma 2.1 The ASM (2.1) is a Jacobi method applied to the linear system of
equations

A

(

µ1

µ2

)

= b (2.3)

4



where A is a linear operator defined by

A

(

µ1

µ2

)

=

[

Id −
(

0 B1(u2(0, .))
B2(u1(0, .)) 0

)] (

µ1

µ2

)

(2.4)

and

b =

(

B1(u2(f, 0)
B2(u1(f, 0)

)

.

We shall call A the substructured operator associated to the ASM. When using
a Krylov type method for solving the above system of equations, a matrix vector
product corresponds to solving one boundary value problem in each subdomain.
These BVP’s are independent and the method is thus parallel.

3 The Best Interface Conditions for Domain De-

composition Methods: ABC’s

Our point in this section is to show that using Dirichlet to Neumann maps (DtN) in
the interface conditions is optimal for the convergence of additive and multiplicative
Schwarz methods.
More precisely, let Ω be an open set of R

n, n ≥ 1. Let L be a second order
partial differential equation whose principal symbol is elliptic (e.g. Laplace eq.,
convection-diffusion eq., Helmholtz eq.,. . .). We consider the following boundary
value problem:
Find u : Ω → R such that

L(u) = f in Ω
u = 0 on ∂Ω

(3.1)

where f is a given right hand-side.
In order to write a domain decomposition method for this problem, the domain Ω is
decomposed into 2 subdomains Ω1 and Ω2 such that Ω̄ = Ω̄1 ∪ Ω̄2 (with or without
overlaps between the subdomains). The interface conditions on Γi = ∂Ωi\∂Ω,
i = 1, 2 are denoted by B1 and B2 respectively. They will be chosen later. The
outward normal derivative on Γi is denoted by ni. The additive Schwarz method
reads

L(un+1
i ) = f in Ωi

un+1
i = 0 on ∂Ωi ∩ ∂Ω

Bi(u
n+1
i ) = Bi(u

n
j ) on Γi, 1 ≤ i 6= j ≤ 2.

(3.2)
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Ω1

Ω2

Ω1
c

Ω2
c

Γ1

Γ2

Fig. 2.

Remark 3.1 When B1 = B2 = Id, (3.2) is the classical Schwarz method. When
Bi = ∂ni

+ α, i = 1, 2, algorithm (3.2) has been proposed in [Lio90].

We now investigate the use of DtN maps in the interface conditions on Γi, i = 1, 2.
Let us denote the interior of the complementary set of Ωi by Ωc

i , i = 1, 2 (Ωc
i =

Ω\Ω̄i). Let DtN c
i be the map defined by:

Let u0 : Γi → R

DtN c
i (u0) ≡ ∂

∂nc
i

(v)|Γi

(3.3)

where nc
i is the outward normal to Ωc

i and v satisfies the following boundary value
problem

L(v) = 0 in Ωc
i

v = 0 on ∂Ωc
i\Γi

v = u0 on Γi.

The definition of B1 and B2 is

Bi =
∂

∂ni

+ DtN c
i , i = 1, 2 (3.4)

Let us notice that Bi is also an exact ABC (Absorbing boundary condition). Indeed,
if Supp f ⊂ Ωi, the solution to

L(v) = f in Ωi

v = 0 on ∂Ωi\Γi

Bi(v) = 0 on Γi.

is the restriction to Ωi of the solution u to (3.1).
Surprisingly enough, the use of Bi as an interface condition for a Schwarz method
is optimal.

Result 3.1 • The additive Schwarz method (3.2) with the interface conditions
Bi defined by (3.4) converges in two iterations

• This is optimal in the sense that no additive Schwarz method defined by (3.2)
can converge in less than two iterations.
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Proof Let us prove the convergence in two steps. By linearity, it is sufficient to
consider the homogeneous case f = 0 and to prove that u2

i = 0, i = 1, 2. First
we prove that whatever u0

2 is, we have B2(u
1
1) = 0. Since Ωc

2 ⊂ Ω1, we have by

definition of DtN c
2 that DtN c

2 (u1
1|Γ2

) =
∂u1

1

∂nc
2

, i.e. − ∂u1

1

∂nc
2

+ DtN c
2(u1

1|Γ2
) = 0. On Γ2,

we have nc
2 = −n2 so that we have proved that

B2(u
1
1) =

∂u1
1

∂n2
+ DtN c

2 (u1
1|Γ2

) = 0.

Similarly, we have B1(u
1
2) = 0.

It follows that u2
i = 0, i = 1, 2. Indeed, from (3.2) we have that u2

i satisfies a
homogeneous boundary value problem whose solution is zero.

We prove now the optimality of the interface conditions (3.4). Here, f is ar-
bitrary. At step 1, the value of u1

i (i = 1, 2) does not depend at all on the value
of f in Ωc

i . Convergence in one step would mean that the solution in Ωi does not
depend on the value of f in Ωc

i . This contradicts the assumption of ellipticity on
the principal symbol of L.

Remark 3.2 This type of result is also valid for a decomposition of Ω into more
than two subdomains. In [NRdS95], it is proved that for a decomposition into N
strips it is possible to define interface conditions that yield a convergence in N steps
and convergence into less than N steps is impossible.
In [Nie98], results and conjectures (negative) are given for an arbitrary decompo-
sition of Ω into subdomains.

4 Optimized Interface Conditions

We have seen in the previous section that, in terms of iteration counts, the optimal
interface conditions are the exact ABC (3.4). For the same reasons that for artificial
boundary conditions, we consider approximations that will be easier to implement.
Indeed, the Dirichlet-to-Neumann (DtN) operator arising from an elliptic operator
is a non local operator. As a result, the Interface Conditions (3.4) are difficult
to implement since it is necessary to use Fourier transform (or more generally de-
compositions on special functions) on the interfaces. Moreover, an explicit form of
the DtN is known only in special cases (constant coefficient operators, straight or
circled interfaces).
A first possibility developed in § 4.1 is to use ”off the shelf” approximate ABC as
interface conditions, i.e. the ones which are used on the boundary of a truncated
domain, see [EM77], [Hal82]. A second idea, see § 4.2, is to design interface condi-
tions related more closely to the domain decomposition method. We choose them
so that they are easy to implement and lead to the best possible convergence rate.
Both approaches are compared on a theoretical point of view in § 4.2.3.
The methodology that is developed in this section is general and has been success-
fully applied to Fluid Dynamics [Jap97], sound propagation [CN98], electromag-
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netic waves, porous media flows [WFNS98], . . . . As an example relevant to fluid
dynamics we consider the convection-diffusion equation.

4.1 Approximate ABC as Interface Conditions

The model equation is the convection-diffusion equation:

∂u

∂t
+ a.∇u − ν∆u = f (4.1)

This equation is important in itself in engineering or environnemental sciences for
instance. It models the transport and diffusion of species (pollutant in air or water,
electrons in semiconductor devices, . . .) in a given flow (with velocity field a) . It
is also a key ingredient in Navier-Stokes equations. An implicit scheme in time will
demand at each time step the solving of

L(u) ≡ u

∆t
+ a.∇u − ν∆u = f (4.2)

Far sake of simplicity, we consider the plane R
2 decomposed into two half-planes

Ω1 =] −∞, δ[×R and Ω2 =]0,∞[×R, δ ≥ 0.

Our results are based on Fourier analysis. We denote the Fourier transform f̂(k)
of f(y) : R −→ R by

f̂(k) = Fy(f)(k) :=

∫ ∞

−∞

e−Ikyf(y)dy

(I2 = −1) and the inverse Fourier transform of f̂(k) by

f(y) = F−1
y (f̂)(y) :=

1

2π

∫ ∞

−∞

eIky f̂(k)dk.

We shall use also the Fourier transform of a convolution operator of kernel h:

Λ(u)(y) :=

∫ ∞

−∞

h(y − z)u(z)dz.

By taking the Fourier transform of the above definition, we get

Fy(Λ(u))(k) = ĥ(k) û(k)

or equivalently with Λ̂(k) := ĥ(k),

Λ(u) = F−1
y (Λ̂(k)û(k)).

The function Λ̂(k) is called the (Fourier) symbol of the operator Λ. For example,
the symbol of the operator−∂yy is the polynomial k2. More generally, the symbol of
any constant coefficient differential operator is a polynomial in the Fourier variable
k and vice-versa.
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The symbol of the composition of two convolution operators is the product of their
symbols since

Λ1 ◦Λ2(u) = F−1
y (Λ̂1(k)Λ̂2(k)û(k)).

This will be denoted shortly by Fy(Λ1Λ2) = Λ̂1Λ̂2.
According to § 3, we compute DtN c

i , i = 1, 2 given by (3.3). By definition, we have
Ωc

1 =]δ,∞[×R. Let u0 : R → R be an arbitrary function, then DtN c
1 (u0)(y) =

− ∂v
∂x

(δ, y) where v satisfies

L(v) = 0 in Ωc
1 (4.3)

v → 0 as x → ∞ (4.4)

v(δ, y) = u0(y) ∀y ∈ R. (4.5)

We perform a Fourier transform of (4.3), in the y direction and get

v̂

∆t
+ ax

∂v̂

∂x
+ ayIkv̂ − ν(

∂2v̂

∂x2
− k2v̂) = 0.

For a given wavenumber k, v̂ solves an ODE whose general solution is

v̂(x, k) = α(k)eλ1(x−δ) + β(k)e−λ2(x−δ)

where

λ1(k) =
ax +

√

4ν
∆t

+ a2
x + 4Iaykν + 4k2ν2

2ν
(4.6)

and

λ2(k) =
−ax +

√

4ν
∆t

+ a2
x + 4Iaykν + 4k2ν2

2ν
. (4.7)

The solution is bounded at infinity so that α(k) = 0. The boundary condition (4.5)
yields

v̂(x, k) = û0(k)e−λ2(x−δ).

Finally, we have
DtN c

1(u0) = F−1
y (λ2(k)û0(k))

i.e. the symbol of the operator DtN c
1 is λ2. Similarly, we have

DtN c
2(u0) = F−1

y (λ1(k)û0(k))

i.e. the symbol of the operator DtN c
2 is λ1. The symbols are not polynomial in k

so that the DtN maps are not differential operators.

The optimal interface conditions (3.4) are pseudo-differential operators that
would be very difficult to use in practice. Following [EM77], [Hal82] the ”classical”
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approximations to (3.4) are obtained by taking a Taylor expansion of the symbols
in the vicinity of k = 0. In the physical space, we have at order 0:

∂

∂n1
+ DtN c

1 ' ∂n1
+

−ax +
√

a2
x + 4ν

∆t

2ν
,

∂

∂n2
+ DtN c

2 ' ∂n2
+

ax +
√

a2
x + 4ν

∆t

2ν
(4.8)

at order 1, we have

∂
∂n1

+ DtN c
1 ' ∂n1

+
−ax+

√
a2

x+ 4ν
∆t

2ν
+

ay√
a2

x+ 4ν
∆t

∂y

∂
∂n2

+ DtN c
2 ' ∂n2

+
ax+

√
a2

x+ 4ν
∆t

2ν
+

ay√
a2

x+ 4ν
∆t

∂y

(4.9)

and at order 2,

∂
∂n1

+ DtN c
1 ' ∂n1

+
−ax+

√
a2

x+ 4ν
∆t

2ν
+

ay√
a2

x+ 4ν
∆t

∂y − ν√
a2

x−
4ν
∆t

(1 +
a2

y

a2
x+ 4ν

∆t

)∂yy

∂
∂n2

+ DtN c
2 ' ∂n2

+
ax+

√
a2

x+ 4ν
∆t

2ν
+

ay√
a2

x+ 4ν
∆t

∂y − ν√
a2

x+ 4ν
∆t

(1 +
a2

y

a2
x+ 4ν

∆t

)∂yy

(4.10)
These interface conditions will be referred to as Taylor of order 0, 1 and 2

interface conditions. The new domain decomposition methods are obtained by
taking the above boundary conditions as interface conditions B1 and B2 in (2.1).
Numerical tests, see below § 5, show that when the flow is normal to the interface
the domain decomposition method based on the Taylor interface conditions has a
fast convergence. When the flow is tangential to the interface, results are poor.
This is due to the fact that the above interface conditions are not related to the
convergence rate of the domain decomposition method. It is shown in the next
section that it is possible to have much better convergence rates if other interface
conditions are used.

4.2 Analysis of the domain decomposition method and Op-

timized Interface Conditions

In order to design better interface conditions, we first analyze the convergence of
the domain decomposition method. Then optimized interface conditions will be
proposed.

4.2.1 Analysis of the domain decomposition method

The additive Schwarz method (2.1) is applied to a problem set on the plane R
2

decomposed into two half-planes Ω1 =] −∞, δ[×R and Ω2 =]0,∞[×R, δ ≥ 0. We
consider the case where the optimal (but integro-differential) interface conditions
(3.4) are replaced by partial differential operators

Bi =
∂

∂ni

+ DtN c
i,ap, i = 1, 2 (4.11)
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to be chosen later. The symbol of DtN c
i,ap is denoted by λi,ap, i = 1, 2. Both

symbols are polynomial since DtN c
i,ap is a differential operator in the y direction.

We compute now the convergence rate of the additive Schwarz method (2.1). By
linearity, it is sufficient to consider the convergence to zero in the homogeneous
case f = 0. In domain Ω1, the general form of ûn+1

1 (x, k) is

ûn+1
1 (x, k) = αn+1

1 (k) eλ1(k)x

and in domain Ω2,
ûn+1

2 (x, k) = αn+1
2 (k) e−λ2(k)x.

The interface conditions B1,2 in (2.1) yields respectively

(λ1 + λ2,ap) αn+1
1 = (−λ2 + λ2,ap) e−δλ2αn

2

(λ2 + λ1,ap) αn+1
2 = (−λ1 + λ1,ap) e−δλ1αn

1

Hence, we have

αn+1
1 (k) = ρ2(k)αn

2 (k), αn+1
2 (k) = ρ1(k)αn

1 (k)

where

ρi(k) :=

(−λi(k) + λi,ap(k)

λj(k) + λi,ap(k)

)

e−δλi(k), i = 1, 2, i 6= j. (4.12)

Thus, we have

Theorem 4.1 Let the plane R
2 be decomposed into Ω1 =] − ∞, δ[×R and Ω2 =

]0,∞[×R, δ ≥ 0. Let un+1
i denote the iterate of the ASM (3.2) with the interface

conditions Bi defined by (4.11).
Then, we have

max(|ûn
1 (δ, k) − û1(δ, k)|, |ûn

2 (0, k) − û2(0, k)|)
≤ max(|ρ1(k)|, |ρ2(k)|)n max(|û0

1(δ, k) − û1(δ, k)|, |û0
2(0, k) − û2(0, k)|), ∀k ∈ R.

Remark 4.1 This analysis shows that when the subdomains overlap (δ 6= 0) the
convergence rate tends to zero as k → ∞. This is at the expense of extra compu-
tations since the solution on the overlapping region is computed twice. Moreover,
overlapping decompositions might be more difficult to implement in practice.
In the non-overlapping case (δ = 0), since λi(k) is supposed to be a polynomial,
the convergence rate tends to one as k → ∞.

Remark 4.2 With the interface conditions of section 4.1, the convergence rate is
zero at k = 0. More precisely, with the Taylor of order l interface conditions, we
have |ρi(k)| = O(|k|l+1).

These remarks don’t say anything about a uniform bound (i.e. independent of k)
of the convergence rate. In [NN97], it is proved that a simple choice of the interface
conditions guarantees convergence:
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Lemma 4.1 Let the interface conditions (4.11) be chosen such that

λ1,ap =
a.n1

2ν
+ p(k)

λ2,ap =
a.n2

2ν
+ p(k)

where p(k) satisfies: <(p(k)) > 0 and sgn(=(p(k)) = sgn(ay k). Then, we have

max(|ρ1(k)|, |ρ2(k)|) < 1 ∀k ∈ R.

In the above expressions for λi, we have used the fact that a.n1 = −a.n2 = ax.
This gives a more intrinsic expression to the symbol of the interface conditions. Let
us remark that this does not contradict the fact that for δ = 0, the convergence
rate of the ASM tends to one as k tends to infinity. Let us notice that with the
choice made in this lemma, we have the following simple expression

ρi(k) =
−

√

4ν

∆t
+ a2

x + 4Iaykν + 4k2ν2

2ν
+ p(k)

√

4ν

∆t
+ a2

x + 4Iaykν + 4k2ν2

2ν
+ p(k)

, i = 1, 2.

So far in this section, we have only considered the ASM. As noticed in § 2.2,
the ASM may be seen as a Jacobi algorithm applied to the substructured problem
(2.3). This paves the way to the use of more efficient iterative solvers such as Krylov
methods. It is interesting in our case to see the relation between the convergence
rate of the ASM and the substructured formulation. It is easy to check the

Lemma 4.2 The Fourier symbol of the substructured operator A (2.3) is

Â(k) =

(

1 −ρ2(k)
−ρ1(k) 1

)

4.2.2 OO2 (Optimized of order 2) interface conditions

In this section, we present a procedure for designing optimized interface conditions
in the non overlapping case.
For sake of efficiency and simplicity in the implementation, the interface conditions
are sought in the form

B1 =
∂

∂n1

+ c1 + c2
∂

∂τ1

+ c3
∂2

∂τ
2
1

, B2 =
∂

∂n2

+ c4 + c5
∂

∂τ2

+ c6
∂2

∂τ
2
2

(4.13)

with ci ∈ R and where τi is the tangential derivative along the interface ∂Ωi.
We choose the coefficients ci:

• First according to Lemma 4.1, we take

c1 =
a.n1

2ν
+ c0, c4 =

a.n2

2ν
+ c0, c0 > 0,

12



c2 = −c5, sgn(ci) = sgn(a.τi), i = 2, 5

and
c3 = c6 > 0.

This ensures the convergence of the ASM. So we only have to determine
c0, c2, c3.

• Then, we choose c0 =
√

a2
x + 4ν

∆t
/2ν so that the interface condition is exact

for the lowest wave number (i.e. ρ1(0) = ρ2(0) = 0).

• Finally, we compute c2 and c2 by minimizing the maximum of the convergence
rate of the ASM k → ρ(k, c2, c3) on the interval |k| ≤ kmax where kmax is
a given constant, kmax > 0 (in the discrete case, kmax = π

h
where h is the

mesh size in y). The details of the optimization procedure can be found in
[Jap97]. Let us say that in practice, it is sufficient to solve a monodimensional
optimization problem expressed in terms of a wavenumber kint where the
convergence rate vanishes (see Figure 3). So, the OO2 conditions are easy to
use and not costly.

Remark 4.3 In the OO2 interface conditions, the minimization problem on c2 and
c3 is on a set of conditions which satisfy Lemma 4.1, i.e. on a set of conditions
which ensures (adding a condition on the sign of c2) the convergence of the Schwarz
algorithm. So an approximate minimization problem on the same set of conditions
will also ensure the convergence. In the case of 2 subdomains, the convergence
was proved by computing explicitly the convergence ratio. When the domain is
decomposed in N subdomains (strips) the convergence ratio is estimated in function
of the convergence ratio of the 2 subdomains case and the decomposition geometry.
The convergence is proved in [NN97].

Remark 4.4 We have considered so far the convergence rate of the ASM. One
might argue that when using Krylov type methods the optimization criterium should
be the condition number of the substructured operator (2.3). It turns out that both
criteria (minimizing the convergence rate of the additive Schwarz method and min-
imizing the condition number) are identical. Indeed, let us examine the condition
number of A. For a given wavenumber k, the eigenvalues of Â(k) are 1 ±√

ρ1 ρ2.
Therefore, the eigenvalues of A restricted to the frequency domain |k| ≤ |kmax|
(denoted AR) is the set {1±√

ρ1 ρ2, |k| ≤ |kmax|}. When λi,ap, i = 1, 2 are chosen
according to Lemma 4.1, ρ1 = ρ2 and |ρ1| < 1. It is easy to check that the con-

dition number of AR is κ(AR) =
1+max|k|≤kmax

|ρ1(k)|

1−max|k|≤kmax
|ρ1(k)| . Minimizing κ(AR) is thus

equivalent to minimizing maxk |ρ(k)|.

4.2.3 Behaviors of the convergence rates

In this section, we compare the convergence of the ASM endowed with either Taylor
interface conditions (4.8)-(4.9)-(4.10) or OO2 interface conditions. Let us first
notice that all of these interface conditions satisfy the conditions of Lemma 4.1 so

13



that the convergence rate is smaller than 1. Figure 3 illustrate the behavior of the
convergence rate with the different interface conditions.
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Fig. 3. Rate of convergence versus wave numbers k
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Moreover, when the mesh size tends to 0, the condition number is asymptotically
much better for OO2 than for Taylor order 0 or 2 interface conditions :

Theorem 4.2 Let Ω = R
2 be decomposed in 2 subdomains Ω1 = R

− × R and
Ω2 = R

+ ×R. Let ax ∈ R, ax 6= 0, ay = 0 and ∆t > 0 in (4.2). Let h be the mesh
size, and let (ρmax)IC be the maximum of ρ1 = ρ2 on 0 ≤ k ≤ π

h
with the interface

condition IC. Let α = 1 + 4ν
∆ta2 . Then, when h → 0 :

(ρmax)Taylor order 0 ≈ 1 − 2
π
α

1

2 ( |a|h
ν

)

(ρmax)Taylor order 2 ≈ 1 − 4
π
α

1

2 ( |a|h
ν

)

(ρmax)OO2 ≈ 1 − 8α
1

6 ( 1
4π

|a|h
ν

)
1

3

5 Numerical Results

The global domain Ω is decomposed in N non-overlapping subdomains. The in-
terface problem (2.4) is solved by a BICG-STAB algorithm. This involves solving,
at each iteration, N independent subproblems (one per subdomain) which can be
performed in parallel. Each subproblem is solved by a direct method. We denote

by h the mesh size. The CFL number is |a|∆t

h
. In most cases, it will be very large.

We compare the results obtained with the OO2 interface conditions, the Taylor
order 0 or 2 interface conditions and Dirichlet interface conditions (overlapping
subdomains).
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Remark 5.1 : The optimized coefficients in the OO2 method are computed in
an initialisation step, that is in the computation of the local matrix. They are
not computed again in the iterations of BICG-STAB. Moreover, each iteration of
BICG-STAB has the same cost for all the interface conditions (Taylor order 0,
Taylor order 2, OO2), because the use of order 2 conditions does not increase the
bandwidth of the local matrix. So, in the BICG-STAB algorithm, the CPU time is
proportional to the number of iterations.

The stopping criterion was the maximum error between the converged solution and
the iterative solution to be smaller than 10−6.

5.1 Flow in a square

We solve the following problem :

L(u) = 0, 0 ≤ x ≤ 1, 0 ≤ y ≤ 1

u(0, y) = 0,
∂u

∂x
(1, y) = 0, 0 ≤ y ≤ 1 (5.1)

u(x, 0) = 1,
∂u

∂y
(x, 1) = 0, 0 ≤ x ≤ 1

where L is as in (4.2). We consider a cartesian mesh with constant mesh size h.
The unit square is decomposed in Nx × Ny subdomains, where Nx (resp. Ny) is
the number of subdomains in the x (resp. y) direction. We consider two types
of convection velocity field : a shear velocity (ax = y, ay = 0) and a rotating
velocity (ax = − sin (π(y − 1

2 )) cos (π(x − 1
2 )), ay = cos (π(y − 1

2 )) sin (π(x − 1
2 ))).

The isovalues of the solution of problem (5.1) with the shear velocity are represented
in figure 4, and with the rotating velocity in figure 5.
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Fig. 4. Isovalues of the solution u, shear velocity
ax = y, ay = 0, ν = 1.d − 2, CFL = 1.d9, h = 1
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Fig. 5. Isovalues of the solution u, rotating velocity
ax = − sin (π(y − 1

2 )) cos (π(x − 1
2 )), ay = cos (π(y − 1

2 )) sin (π(x − 1
2 ))

ν = 1.d − 2, CFL = 1.d9, h = 1
241

We first consider an upwind finite difference scheme with a small overlap of size
h. The time step is taken very large (∆t = 109) so that it corresponds to a
stationary equation. For a decomposition into 16 × 1 subdomains, we give in
Table 1 the iteration count for two velocity fields: one normal to the interface and
one tangential to the interface.

Nb of iterations Dirichlet Taylor 0 Taylor 2 002
ay = 0, ax = y 60 137 15 15
ax = 0, ay = x 60 90 265 9

Table 1: Overlapping subdomains (δ = h) - ν = 10−2, CFL = 1.d9, h = 1/241

We now consider a finite volume discretization with no overlap between the sub-
domains (δ = 0). The Dirichlet interface conditions cannot be used anymore. In
Table 2, we take a decomposition in strips in order to observe the influence on the
convergence of the convection velocity angle to the interfaces. We observe that the
OO2 interface conditions give a significantly better convergence which is indepen-
dent of the convection velocity angle to the interfaces. One of the advantages is
that for a given number of subdomains, the decomposition of the domain doesn’t
affect the convergence. Particularly here, for 16 subdomains, the decomposition in
strips (table 2) or in squares (figure 6) doesn’t affect the convergence.
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Decomposition of the domain OO2 Taylor order 2 Taylor order 0
normal velocity to the interface 15 123 141

16× 1 subdomains
tangential velocity to the interface 21 not 86

1× 16 subdomains convergent

Table 2: Number of iterations versus the convection velocity’s angle
ax = y, ay = 0, ν = 1.d − 2, CFL = 1.d9, h = 1

241 , log10(Error) < 1.d − 6
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Fig. 6. Error versus the number of iterations

4× 4 subdomains, shear velocity
ax = y, ay = 0, ν = 1.d − 2, CFL = 1.d9, h = 1
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Figure 7 shows that the convergence with the OO2 interface conditions is signif-
icantly better for a more general convection velocity (the rotating velocity) and
decomposition (in 4 × 8 subdomains).
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4× 8 subdomains, rotating velocity

ax = − sin (π(y − 1
2 )) cos (π(x − 1

2 )), ay = cos (π(y − 1
2 )) sin (π(x − 1

2 ))
ν = 1.d − 2, CFL = 1.d9, h = 1

241

The convergence with the OO2 interface conditions, for the studied numerical cases,
is also nearly independent of the mesh size (see table 3). We practically fit to the
theoretical estimates of theorem 4.2.

grid 65× 65 129× 129 241× 241
OO2 25 26 30

Taylor order 0 76 130 224

Table 3: Number of iterations versus the mesh size
4× 4 subdomains, rotating velocity

ax = − sin (π(y − 1
2 )) cos (π(x − 1

2 )), ay = cos (π(y − 1
2 )) sin (π(x − 1

2 ))
ν = 1.d − 2, CFL = 1.d9, log10(Error) < 1.d − 6

The convergence with the OO2 interface conditions is also very little sensible to
the variations of the CFL, as it shown on table 4.

CFL = 1.d0 CFL = 1.d3 CFL = 1.d5 CFL = 1.d9
OO2 3 12 15 15

Taylor ordre 2 2 21 58 123
Taylor ordre 0 3 18 48 141
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Table 4: Number of iterations versus the CFL, 16× 1 subdomains
ax = y, ay = 0, ν = 1.d − 2, CFL = 1.d9, h = 1

241 , log10(Error) < 1.d − 6

Figure 8 shows the speed-up = CPU time (1 domain)
CPU time (N subdomains) of the method. Let imax

(resp. jmax) be the number of grid points in the x (resp. y) direction, for the global
domain. We note Nit the number of BICG-STAB iterations. For a decomposi-
tion of the domain in Nx × Ny subdomains, the total cost can be estimated by
: α1(

imax

Nx
)3 jmax

Ny
+ α2Nit(

imax

Nx
)2 jmax

Ny
, where α1 and α2 are constants. Figure 8

shows that for a small number of subdomains, the first term (arising from the LU
factorization of the local matrix) is predominant. Then, the second term (arising
from the BICG-STAB algorithm) become predominant. After 32 subdomains, the
estimate is no more valid, because of the communication costs which can not be
neglected.
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5.2 Flow around a cylinder, issued from a Navier-Stokes

computation

The convection velocity field is a Navier-Stokes incompressible flow, with Reynolds
number Re = 10000, around a cylinder. This velocity field is from a computation
performed with the AEROLOG software of the aerodynamic department at Matra
BAe Dynamics France. The domain is defined by Ω = {(x, y) = (r cos (θ), r sin (θ)), 1 ≤
r ≤ R, 0 ≤ θ ≤ 2π} with R > 1 given. We solve the following problem :

L(u) = 0 in Ω

u = 1 on {(x, y) = (cos (θ), sin (θ)), 0 ≤ θ ≤ 2π} (5.2)

u = 0 on {(x, y) = (R cos (θ), R sin (θ)), 0 ≤ θ ≤ 2π}

The grid is {(xi, yj) = (ri cos (θj), ri sin (θj)), 1 ≤ i, j ≤ 65}, and is refined
around the cylinder and in the direction of the flow (see figure 9). The isovalues
of the solution of problem (5.2) are represented in figure 10 (without the grid) and
in figure 11 (with the grid). We note Nmax the number of points on the boundary
of a subdomain multiply by the number of subdomains.
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4× 2 subdomains, Navier-Stokes flow velocity, ν = 1.d − 4, CFL = 1.d9
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Fig. 10. Isovalues of the solution u
Navier-Stokes flow velocity, ν = 1.d − 4, CFL = 1.d9
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Fig. 11. Grid and isovalues of the solution u
Navier-Stokes flow velocity, ν = 1.d − 4, CFL = 1.d9

The OO2 interface conditions give also significantly better convergence in that case
(figure 9). We observe in table 5 that the convergence is practically independent
of the viscosity ν.

OO2 Taylor order 2 Taylor order 0
ν = 1.d − 5 56 41 119
ν = 1.d − 4 43 121 374
ν = 1.d − 3 32 Nmax = 768 Nmax = 768

log10(Error) = −5.52 log10(Error) = −2.44

Table 5: Number of iterations versus the viscosity
4× 2 subdomains, Navier-Stokes flow velocity

ν = 1.d − 4, CFL = 1.d9, log10(Error) < 1.d − 6

Remark 5.2 Numerically, the convergence ratio of the method is nearly linear
upon the number of subdomains. So it is necessarily to send global information be-
tween subdomains, in order to have a convergence ratio independent of the number
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of subdomains. To tackle this problem, in [JNR98], a “low wave number” precon-
ditioner is applied to the OO2 method.

6 Conclusion

We have presented the 002 method for the convection-diffusion equation. Let us
mention that the OO2 approach is versatile and has been applied to various type of
equations and physical situations ([CN98] [WFNS98]). An interesting perspective
is the extension of this approach to systems of equations.
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de problèmes en mécanique des fluides. Technical Report 373, CMAP
(Ecole Polytechnique), 1997.

[JNR98] Caroline Japhet, Frédéric Nataf, and François-Xavier Roux. Extension
of a coarse grid preconditioner to non-symmetric problems. In Domain
decomposition methods, 10 (Boulder, CO, 1997), pages 279–286. Amer.
Math. Soc., Providence, RI, 1998.

[Lio90] Pierre Louis Lions. On the Schwarz alternating method. III: a variant
for nonoverlapping subdomains. In Tony F. Chan, Roland Glowin-
ski, Jacques Périaux, and Olof Widlund, editors, Third International
Symposium on Domain Decomposition Methods for Partial Differential
Equations , held in Houston, Texas, March 20-22, 1989, Philadelphia,
PA, 1990. SIAM.

[Nie98] F. Nier. Remarques sur les algorithmes de décomposition de do-
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