Master : Economie et Finance Internationales, spécialité : Ingénieries Financières et Modélisation (IFIM), Université Paris13. Processus stochastiques à temps discret (2012-2013)

Feuille d'exercices 1

Exercice 1 Soit X une variable aléatoire de loi de Poisson de paramètre $\lambda > 0$ (i.e. $\mathbb{P}(X = k) = e^{-\lambda} \frac{\lambda^k}{k!}$, $k \geq 0$). Donner l'espérance et la variance de X. $\frac{1}{1+X}$ est une variable intégrable, calculer $\mathbb{E}(\frac{1}{1+X})$.

Exercice 2 On considère une variable aléatoire, X, de loi géométrique de paramètre p, $0 . On a, pour tout <math>k \in \mathbb{N}^*$, $\mathbb{P}(X = k) = p(1 - p)^{k-1}$. Calculer $\mathbb{E}(t^X)$, pour tout $t \in]0,1[$. Donner l'espérance et la variance de X.

Exercice 3 On pose 20 question à un candidat. Pour chaque question 5 réponses sont proposées dont une seule est la bonne. Le candidat choisit au hasard une des réponses proposées. On lui attribue un point par bonne réponse. Soit X le nombre de points obtenus. Quelle est la loi de X? En déduire $\mathbb{E}(X)$ et Var(X).

Exercice 4 Soit U une variable aléatoire de loi uniforme sur l'intervalle [0,1] (sa densité de probabilité, f_U , est définie par $f_U(x) = \mathbf{1}_{[0,1]}(x)$). On pose $X = -\frac{1}{\lambda}\ln(U)$, $\lambda > 0$, et on désigne par F_X la fonction de répartition de X et par f_X sa densité.

- 1. Déterminer la fonction de répartition F_X de la variable aléatoire X et en déduire sa densité f_X . Identifier la loi de X.
- 2. Donner $\mathbb{E}(X)$ et Var(X). On rappelle que $\int_0^{+\infty} x^n e^{-x} dx = n!, \ \forall n \in \mathbb{N}$.

Exercice 5 Soit X une variable aléatoire de loi normale de moyenne m et de variance σ^2 , on rappelle que la densité de X est :

$$f_X(x) = \frac{1}{\sqrt{2\pi}\sigma} \exp\{-\frac{(x-m)^2}{2\sigma^2}\}.$$

On pose $Y = \frac{|X-m|}{\sigma}$. Trouver la loi de Y et calculer son espérance et sa variance.

Exercice 6 Soit X la variable aléatoire de densité :

$$f(x) = \frac{x^n}{n!} e^{-x} \mathbf{1}_{[\mathbf{0}, +\infty[}(\mathbf{x}) \quad o\grave{u} \ \mathbf{n} \in \mathbb{N}.$$

- 1. Calculer $\mathbb{E}(X)$ et Var(X).
- 2. Soit a > 0, on pose $X_a = e^{-aX}$, calculer $\mathbb{E}(X_a)$ en fonction de a et de n.