
Numerical methods for the VaR computation

Mohamed Ben Alaya

January 13th, 2014

1 Elementary Introduction to Scilab
Scilab (contraction of Scientific Laboratory) is a free software developed jointly by INRIA

and ENPC. You can download it from

http ://scilabsoft.inria.fr/

The purpose of these notes is to help you begin to use Scilab. You should worked at the computer
and freely experiment with examples. It is adapted for numerical computation that allows you to
quickly perform all resolutions and graphical representations commonly encountered in applied
mathematics. Nevertheless, Scilab is not a computer algebra system, such as Maple, it can
calculate

det

(
1 3
−4 2

)
but not

det

(
a 3
−4 2

)
Scilab works like MATLAB with essentially one kind of object a rectangular numerical matrix
with possibly complex entries. All variables are represented by matrices : scalars are matrices,
the row vectors are matrices, column vectors are matrices.

The Scilab instructions can be directly typed in the Scilab window to see how they are
executed. However, they may also be written in a file filename.sce, then executed by the
instruction exec("filename.sce","c").

Every line starting with // is a line of comments and is not executed by Scilab. You can also
put the comment in the same line of an instruction after the symbol //. Successive instructions
are separated by carriage return.

1.1 Scalars, vectors and matrices

A=[1,2,3;4,5,6;7,8,9] // define a matrix with 3 rows and 3 columns

The variable A is a matrice 3× 3. A matrice with only one row or one column is a vector and a
1×1 matrice is a scalar. The elements of a matrix can be referenced by their indices. Semicolons
may also be used at the end of an instruction (in a file or in Scilab console). In this case it
means that the result(s) is(are) not displayed. Conversely use comma (,) to get the display.

1

x=[-1.3 sqrt(3) 3*4/5];
x(5)=abs(x(-1));
x

Note that the dimension of x has been automatically adjusted. In Scilab, objects are never
declared or allocated explicitly ; they have a dynamic type and their sizes can dynamically
change according to applied operators or functions. We have to use a correct dimension for our
instruction.

r=[10,11,12];
B=[A;r]

y=[x,r]

We can extract a submatrix from a given matrix.

A(:,3) // extracts the third column of A
A(2,:) // extracts the second row of A
A(:,2:3) // extracts a submatrix using columns from 2 to 3.

Scilab contains usual operations for matrices. The operation A + B stands for the addition of
matrices A and B, A− B the subtraction, A ∗ B the multiplication, A/B the division, A′ the
transpose of A and An the power n of A. Besides, add a scalar λ to a matrix A returns a matrix
with the scalar λ is added to all the terms of A. Similarly, multiply A by λ returns a matrix
with terms of A are multiplied by the scalar λ.

x=[1 2 3 4];
x+1
2*x
sum(x)

We can apply a function to a matrix.

x=[1 4 9 16];
sqrt(x)

Operators whose name starts with the dot symbol "." generally stand for term-by-term ope-
rations. For example, C = A. ∗ B is the term-by-term multiplication of matrix A and matrix
B, which is the matrix C with entries C(i, j) = A(i, j) ∗ B(i, j). Similarly, C = A./B is the
term-by-term division of matrix A by matrix B .

A
A./A
A.*A
sqrt(ans)

By default the result is assigned to the variable ans (“answer”) which contains the last compu-
tation non assigned.

2

1.2 Some useful commands

In a session all variables are global and stored.

x=ones(1,100); // x is not displayed
x // the vector x is well defined

To avoid confusion with variable names you can use commands who and whos. In fact, using
Scilab commands who and whos, you can get the name and size of dynamic objects present in
the current session and you can use the command clear to destroy some variables and free the
corresponding memory.

a=[1,2]; A=[1,2;3,4]; // a and A are assigned
1+1 // the default variable \verb+ans+ is assigned
who // you get all variables
whos() // you get more détails
clear a
who // the variable x has disappeared
clear
who // all variables a, A and \verb+ans+ have disappeared
xbasc() // clear the current window and the associated recorded graphics instructions

Available memory for a Scilab session can be controlled through the use of the stacksize
command which return the available memory (number of double) and maximum number of
variables. We can increase Scilab available memory using the command stacksize(n) where n
is an integer. For more details, use help. To access the online help, click on help in the menu
bar, or type in the console help. See also the command apropos(key) it looks for Scilab help
files containing keywords key in their short description section.

help help
help apropos
apropos matrix // help files containing keywords matrix
help matrix // help for function matrix

The " :" operator allows to define vectors of numbers whose coordinates are in arithmetic
sequence. We give the "beginning value" :step : "ending value". It is possible that "ending
value" is not reached. If the step is not mentioned, its default value is 1.

3:10 // define a row vector of integers
//which increments in steps of 1 from 3 and 10

1:2:10// increments in steps of 2 from 1 to 10

Two iterative control structures exist in Scilab. They are the for loop and the while iterator.

for k=1:6 // increments in steps of 1 from 1 to 6
x(k)=2*k
x(k)=x(k)+1
end

3

The while iterator is especially useful when it is not known ahead of time how many iterations
are to be performed. It has the following syntax :

y=1 ;
while y<14
y=2*y
end

The plot2d command generates two-dimensional graphs. Given vectors x = [x1, ..., xn] and
y = [y1, ..., yn], plot2d(x,y) will plot the points (x1, y1), ..., (xn, yn). There are several options
for connecting the points, which can be specified using optional calling arguments. The default
in plot2d is to connect them with a straight line. We can also choose the color.

// graphiques
r=rand(1,100)
plot2d(r)
xbasc()
plot2d(1:100,r,-5)
s=rand(1,100);
xbasc()
plot2d(r,s,-2)

To plot an histogram we use the command histplot for example the following program gene-
rates a random vector with a uniform distribution and plots this vector as an histogram.

// histogram
r=rand(1,100)
xbasc()
histplot(10,r)
xbasc()
histplot(0:0.2:1,r)

1.3 Scilab function

One may define a Scilab function interactively. However, it is more practical and flexible
to write the Scilab code in a file with a text editor. One can mix Scilab instructions and func-
tions definitions in a same file. The beginning of a Scilab function is function [<arguments de
retour>]=<nom>(<arguments d’ent r ´ee>) and the code ends with the keyword endfunction.

function [x] = s_normal(s,mu,sigma)
// simulation of normal random number
// s = number of simulations
//--------------------
x=[];
y=rand(2,s);
for i=1:s do ;

4

x=[x,mu + sigma*sqrt(-2*log(y(1,i)))*cos(2*%pi*y(2,i))];
end;
x=x’;

By convention Scilab script file names are terminated with the suffix sce but if the script
contains only function definitions then the sci is used. In that case the command getf can
be used instead of exec to load the functions. The file extensions Une fonction est chargée en
tapant sous Scilab sci and sce are just conventions since Scilab functions exec and getf do
not check file name suffixes. getf("nom_du_fichier.sce","c").

// load the function s_normal
getf("filename.sce","c")
// use of the function s_normal
s_normal(100,-1,5)

2 Simulation
From a mathematical point of view, we suppose that the function rand(m,n) generates

a m × n matrix with independent identically distributed (i.i.d.) random variables with uni-
form distribution on the interval [0, 1]. More precisely, we suppose that the coefficients of the
generated matrix are the realisation of these random variabales.

2.1 Simulation of a discrete distribution

We consider a random variable with a distribution supported by a finite set E

E = {xi, i = 1 · · ·n} et P(X = xi) = pi, i = 1 · · ·n.

Let U be a random variable with uniform distribution on the interval [0, 1]. It is easy to prove
that the random variable Y defined below has the same distribution as X :

Y =
n∑
i=1

xi1[mi−1,mi[(U) avec mi =
i∑

j=1

pj i = 1 · · ·n et m0 = 0.

– Simulate a sample of size n with a Bernoulli distribution for different parameter p.
– Simulate a sample of size n with an uniform distribution on {1, 2, 3, 4, 5, 6}
– Simulate a sample of size n with a binomial distribution for different parameter n and p.

Simulation of the binomial distribution B(n, p) One can use properties of the distri-
bution of a random variable X. Let X be a binomial random variable with parameters p and
n

P(X = k) = Ck
np

k(1− p)n−k.
Let Ui i = 1, · · · , n be n independent random variables with uniform distribution on the
interval [0, 1]. If we put

Y =
n∑
i=1

1{Ui<p},

5

then the random variable Y represents the number of successes in a sequence of n independent
yes/no experiments, each of which yields success with probability p. Hence Y and X have the
same distribution and we can use this representation to simulate a binomial distribution.

2.2 Simulation of a distribution with a probability density f

Let X be a random variable with distribution function F , F (x) = P(X ≤ x). We suppose
F continuous and strictly increasing which is the case when f = F ′ is a positive probability
density function, f > 0. Hence F is invertible and if we put Y = F−1(U) where F−1 is the
inverse of F then the random variable Y has the same distribution as X.

- Simulate a sample of size n with a Cauchy distribution for parameter 1.
- Simulate a sample of size n with an exponentiel distribution for parameter 1.
- Simulate a sample of size n with a probability density function 3x21[0,1].

Simulation of an exponentiel distribution with parameter λ > 0 The probability
density function of an exponential distribution is λe−λx1x≥0. Let U be a random variable with

uniform distribution on the interval [0, 1] and put X = −1

λ
log(U) then show that X has un an

exponentiel distribution with parameter λ.

2.3 Simulation of a Gaussian distribution

Our aim now is to simulate a random variable with standard Gaussian distribution called
also standard normal distribution and denoted by N (0, 1). The probability density function
of a standard Gaussian distribution is 1√

2π
e−x

2/2. One relies on the Box-Müller method, which
is probably the most efficient method to simulate couples of independent bi-variate normal
distributions.

1. Let R and θ be two independent random variables and put X = R cos(θ) and Y =
R sin(θ). Show that if R2 has an exponentiel distribution with parameter 1

2
and θ has

a uniform distribution on the interval [0, 2π] then the couple (X, Y) has a probability
density function 1

2π
e−

x2+y2

2 .
2. Let (U1, U2) be a couple of independent random variables with a uniform distribution on

the interval [0, 1] and deduce that (
√
−2 log(U1) cos(2πU2),

√
−2 log(U1) sin(2πU2)) is a

couple of independent random variable with standard Gaussian distribution N (0, 1).
Our aim now is to simulate a correlated Gaussian random variables, more precisely we will

simulate a centred Gaussian couple with covariance matrix
(

1 ρ
ρ 1

)
. Let

(
G1

G2

)
be R2-valued

satndardN
(

0,

(
1 0
0 1

))
Gaussian vector and show that

(
X
Y

)
=

(
1 0

ρ
√

1− ρ2

)(
G1

G2

)
has N

(
0,

(
1 ρ
ρ 1

))
distribution. Simulate a sample of size n with this Gaussian distribution

for different parameter ρ.

vecteur_gaussien.sce

6

function [] = gaussian_vector(rho)
if abs(rho) >1

disp(’the correlation must be between -1 and 1!’)
disp(’aborting...’)
return

end
xbasc();
n=1000;
u1=rand(1,n);
u2=rand(1,n);
g1= ... // complete
g2= ... // complete
A=[1,0;rho,sqrt(1-rho^2)];
z=A*[g1;g2];
x=z(1,:);
y=z(2,:);
plot2d(x,y,-1)

endfunction

Remark The matrix L =

(
1 0

ρ
√

1− ρ2

)
is the Cholesky decomposition of M =

(
1 ρ
ρ 1

)
(i.e. LLT = M and L is lower triangular). More general, this method allows us to simulate
a centred Rd-valued Gaussian vector with covariance matrix Γ since we have its Cholesky
decomposition L the lower triangular matrix satisfying LLT = Γ. In fact, if G is a centred
Rd-valued standard Gaussian vector LG has the distribution N (0,Γ).

If X is positive definite, then R = chol(X) produces an upper triangular matrix R such that
R’*R = X.

chol(X) uses only the diagonal and upper triangle of X. The lower triangular is assumed to
be the (complex conjugate) transpose of the upper. Thanks to Scilab the function chol provides
the Cholesky decomposition of symmetric positive definite matrix. This function returns LT .
The algorithm to calculate the Cholesky decompsition L of a symmetric positive definite matrix
A is given by

pour k = 1..size faire
Lk,k =

√
Ak,k −

∑
j<k L2

k,j

pour i = k + 1..size faire

Li,k =
Ai,k −

∑
j<k Lk,jLi,j
Lk,k

2.4 Strong Law of Large Number

The basic principle of the so-called Monte Carlo method is to implement on a computer the
Strong Law of Large Number (SLLN). Let (Y1, . . . , Yn) be a sample of size n with a uniform
distribution on the interval [0, 1]. By using the function cumsum, calculate the vector Ȳ =
(Ȳ1, . . . , Ȳn) of empirical means where Ȳi = 1

i

∑i
k=1 Yk then plot the function i 7−→ Ȳi.

7

2.5 Central Limit Theorem

The rate of convergence in the Strong Law of Large Number is ruled by the Central Limit
Theorem. We consider a sample (Z1, . . . , Zn) with Zi sont i.i.d random variables with the
same law as

√
12p

(
1
p

∑p
i=1 Ui −

1
2

)
, the random variables (Ui, i ≤ p) are i.i.d with uniform

distribution on the interval [0, 1]. Use the following function to plot the histogram of (Zi, i ≤ n)
with nc classes. Vary n, p, nc we can take p = 1, p = 12with large and small values of nc. We
will take n of order 1000.

TCL.sce

function [] = tcl(n, p, nc)
xbasc();
X=rand(n,p);
Z=sqrt(12/p)*(sum(X,’c’) - p/2); // sum of columns, centred and

// renormalised
histplot(nc,Z)
C=[-5:1/1000:+5];
plot2d(C,exp(-C.^2/2)/sqrt(2*%pi),3) // plobability density of standad distribution

endfunction

Exercice : Let (Y1, . . . , Yn) be a sample of size n-échantillon, thanks to Central Limit Theo-
rem, built an asymptotic confidence interval [Ȳn − rn, Ȳn + rn] where rn is a function of our
simulations rn = rn(Y1, . . . , Yn). In the case of uniform distribution on the interval [0, 1] calcu-
late the radius rn. For 1 ≤ i ≤ n, plot the evolution of i 7−→ Ȳi, the upper bound i 7−→ Ȳi + ri
and the lower bound i 7−→ Ȳi − ri with different colors.

2.6 Kernel density estimation

We aim to estimate the probability density function of the distribution of a sample with
size n. The first approach to estimate the probability density is to use a normalized histogram.
More precisely, divide the sample space into a number of bins and approximate the density p
at the center of each bin by the fraction of points in the data that fall into the corresponding
bin by the size of the sample normalized by the bin width

p(x) ≈ 1

n

#points in the same bin
bin width

.

The histogram is a very simple form of density estimation but has several drawbacks. A more
efficient method is given by the non parametric kernel density estimatior. Let f be a probability
density function and (X1, · · · , Xn) be a sample size of i.i.d random variables with porbability
density f . We introduce a family of kernel (Kh)h>0 satisfying :

Kh(x) ≥ 0 pour tout h > 0 et x ∈ R......∫
RKh(x)dx = 1 pour tout h > 0
Kh −−→

h→0
δ0.

8

We usually use the kernelKh(x) = K(x/h) whereK is the Gaussian kernelK(x) =
1√
2π

exp(−x2/2)

or the Epanechnikov’s kernel K(x) =
3

4
(1 − x2)I]−1,1[(x). We estimate the probability density

f by the function

f̂n(x) =
1

nhn

n∑
i=1

K

(
x−Xi

hn

)
.

The parameter (hn)n is called the bandwidth and a judicious choice is of order n−1/5.
We consider two independent standard Gaussian random variables X and Y . Let Z equal

to X with probability 1
3
and aY + b with probability 2

3
with a > 0 and b ∈ R. The probability

density of Z is given by

f(x) =
2

3a
√

2π
e−

1
2(x−b

a)
2

+
1

3
√

2π
e−

x2

2 .

Use the following program to study the kernel estimator where the exact density appears
in red.

noyau.sce

clear;
// nc the number of classes in the histogram
// n the size of the sample
// hn of the bandwidth of order n^(-1/5)
function [] = estim_noyau(n,nc,hn)

xbasc();
a=1;
b=3;

// two independent uniform random variables
U=rand(n,1);
V=rand(n,1);

// two independent Gaussian random variables
X = sqrt(-2*log(U)).*cos(2*%pi*V);
Y = sqrt(-2*log(U)).*sin(2*%pi*V);

// Z = X with proba 1/3 and aY+b with proba 2/3
epsilon = rand(n,1);
Z = (a*Y+b).*(epsilon > 1/3) + X .* (epsilon <= 1/3);

// histogram of the simulate variable, nc=number of classes
histplot(nc,Z)

// estimation of the density by the kernel method,
// Epanechnikov’s kernel :

C=[min(Z)-1:1/n:max(Z)+1];
for i=1:length(C)

B(i)=1/(n*hn)*3/4*sum((1-((C(i)-Z)/hn).^2).*(-1<(C(i)-Z)/hn).*((C(i)-Z)/hn<1));
end

9

plot2d(C,B,2)
// the exact density

f = (2/(3*a) * exp(-((C-b)/a).^2/2) + 1/3 * exp(-C.^2/2))/sqrt(2*%pi);
plot2d(C,f,5);

endfunction

3 Value at Risk
We consider a portfolio such as for instance a collection of stocks, bonds or risky loans or

the overall position of a financial institution. The value of the portfolio at time t is denoted
V (t). Given a time horizon ∆t the profit over the interval [t, t+∆t] is given by V (t+∆t)−V (t)
and its distribution is called the profit-and-loss distribution (P& L). The loss over the interval
is then

L[t,t+∆t] = −(V (t+ ∆t)− V (t))

and its distribution is called the loss distribution. Typical values of ∆t is one day (or 1/250
years as we have approximately 250 trading days in one year), ten days, one month or one year.
We may introduce a discrete parameter n = 0, 1, 2, · · · and use tn = n∆t as the actual time
and use the notation Ln+1 = −(Vn+1 − Vn) where we write Vn for V (n∆t).

Example Consider a portfolio of d stocks with (S1
t , · · · , Sdt) their price at time t. If the

portfolio contain H i
t units of stock number i then the value of the portfolio at time t

Vt =
d∑
i=1

H i
tS

i
t .

In financial statistics one often tries to find a statistical model for the evolution of the stock
prices for example a model for Sn+1,i−Sn,i. Hence we can be able to compute the loss distribution
Ln+1.

Remark Similarly, we can consider the portfolio return V (t+∆t)−V (t)
V (t)

as interest variable.
We modelize our loss function by a random variable. In order to control the risk related to

the portfolio variation we define a function from a set of random variables to the real numbers.
It is called a risk measure. In 1988 the first Basel Accord on Banking Supervision initiated an
important step toward an international minimal capital standard and in 1996 an amendment
to Basel I prescribes a so-called standardized model for market risk with an option for lager
banks to use internal Value-at-Risk models.

Value at Risk The aim is to introduce the widely used risk measure known as Value-at-Risk.
For a loss function L, the Value at Risk with confidence level α ∈]0, 1[is

VaRα(L)
def
= inf{m ∈ R | P(L ≤ m) ≥ α}

10

Intuitively, saying the VaR95% of a portfolio is 100 means that the loss function L will be
larger than 100 with probability less then 5%. The VaRα informs us about the risk at a given
level α, but not give us the distribution of the loss random variable L.

Recall The distribution function F of the random variable L is defined by F (x) = P(L ≤ x).
The function F is always nondecreasing, "càdlàg" (French acronym for right continuous with
left left limits) and limx→+∞ F (x) = 1, limx→−∞ F (x) = 0. One can always associate to F its
canonical left inverse called also the generalized inverse defined on the open unit interval (0, 1)
by

F−(u)
def
= inf{x ∈ R | F (x) ≥ u}

In statistics the α-quantile of the random variable L, called also the quantile of order α,
written ξα is the number F−(α). When F is increasing and continuous on the real line then F
has an inverse function denoted by F−1 and F−1 = F−. Clearly, we can replace R by any interval
[a, b] ∈ R. In the discrete case, when L takes finitely many values in E = {x1, · · · , xn} ⊂ R
with x1 < x2 < · · · < xn, the "càdlàg" distribution function F is a step function defined by

F (x) = P(L = x1) + · · ·+ P(L = xk), ∀x ∈ [xk, xk+1[, k ∈ {1, · · · , n− 1}.

Then, one checks that the generalized inverse distribution function is given by

∀u ∈ (0, 1), F−(u) = xk if P(L = x1) + · · ·+P(L = xk−1) < u ≤ P(L = x1) + · · ·+P(L = xk).

Hence, VaRα(L) is the quantile of order α of ξα and when F is invertible then

P(L ≤ VaRα) = α and P(L > VaRα) = 1− α.

Hence VaRα(L) is given by the smallest number such that the probability that the loss L exceeds
this number is no larger than 1 − α. Common confidence levels α are 95%, 99% and 99.9%,
depending on the application.

3.1 Value at Risk of a log-normal distribution

A positive random variable X is called Log-normal if logX ∼ N (µ, σ2). Estimate the Value
at Risk for different confidence level (1%, 5%, 10%) of a log-normal distribution. Plot the
distribution function called also the cumulative distribution function of a random variable with
log-normal distribution. For simulation, we will take µ = −1 and σ2 = 0.09.

stacksize(2*10^8);
N=1000; // number of simulation
moyenne=-1;
sigma2=0.09;
Y=grand(1,N,’nor’,moyenne,sigma2) ;
// simulation of Gaussian variable
Z=sort(exp(Y));
// decreasing sort of the simulated realizations of a Log-Normal r.v.

11

values= Z(?:-1:1);// ? the first argument is the symbol dollar

// increasing sorting

// the VaR is quantile
alpha=0.99;
quantile=values(int(alpha*N));
disp(’VaR_(’+string(alpha) +’)(Z)=’+string(quantile))

alpha=0.95;
quantile=values(int(alpha*N));
disp(’VaR_(’+string(alpha) +’)(Z)=’+string(quantile))

alpha=0.90; // level
quantile=values(int(alpha*N));
disp(’VaR_(’+string(alpha) +’)(Z)=’+string(quantile))

xset(’window’,10) ; xbasc(); plot2d(values,linspace(0,1,N));
plot2d(values,alpha*ones(values),style=5);
xtitle(’Empirical cumulated distribution of a Log-Normal random variable
L:...log(L) ~ N(’ +string(moyenne) +’,’ +string(sigma2)+ ’)’)

xset(’window’,11) ; xbasc(); histplot(10,Z);
xtitle(’Empirical histogram of a Log-Normal random variable L:: ...
log(L) ~ N(’ +string(moyenne) +’,’ +string(sigma2)+ ’)’)

3.2 Comparison of the VaR under different laws

Compare the quantiles of the normal law and Laplace law and note that the parametric
method is sensitive to the choice of parametric distribution family.

stacksize(2*10^8);
N=10000; // number of simulation
moyenne=1;
sigma2=9;
Y1=grand(1,N,’nor’,0,1) ;
Y2=grand(1,N,’exp’,1);
epsilon=2*grand(1,N,’bin’,1,0.5)-1 ;
Y2=epsilon.*Y2;
Y2=Y2/sqrt(2);
Y1=sqrt(sigma2)*Y1+moyenne;
Y2=sqrt(sigma2)*Y2+moyenne;
// simulation of Gaussian distribution
Z1=sort(Y1);
Z2=sort(Y2);

12

// decreasing sort of the simulated realizations of Normal r.v.
values1= Z1($:-1:1);
values2= Z2($:-1:1);
// increasing sorting
// the VaR is a quantile
alpha=0.99;
quantile1=values1(int(alpha*N));
quantile2=values2(int(alpha*N));
disp(’VaR_(’+string(alpha) +’)(Z1)=’+string(quantile1))
disp(’VaR_(’+string(alpha) +’)(Z2)=’+string(quantile2))

alpha=0.95;
quantile1=values1(int(alpha*N));
quantile2=values2(int(alpha*N));
disp(’VaR_(’+string(alpha) +’)(Z1)=’+string(quantile1))
disp(’VaR_(’+string(alpha) +’)(Z2)=’+string(quantile2))

alpha=0.90; // level
quantile1=values1(int(alpha*N));
quantile2=values2(int(alpha*N));
disp(’VaR_(’+string(alpha) +’)(Z1)=’+string(quantile1))
disp(’VaR_(’+string(alpha) +’)(Z2)=’+string(quantile2))

xset(’window’,10) ; xbasc();
plot2d(values1,linspace(0,1,N));
plot2d(values2,linspace(0,1,N),5);
plot2d(values1,alpha*ones(values1),style=5);
plot2d(values2,alpha*ones(values2),style=5);
xtitle(’Empirical cumulated distribution of a Normal random variable and Laplace’)

xset(’window’,10) ; xbasc();
alpha=[0.01:0.01:0.99]
plot2d(alpha,values1(int(alpha*N)), 5);

3.3 Parametric method and confidence interval

Exercice : recall the parametric method to built an estimator ξ̂α of a quantile ξα α ∈]0, 1[,
based on µ̂ the estimator of the mean µ and σ̂ the estimator the standad deviation σ of the a
random variable L. Using the Monte Carlo approach, built an empirical confidence interval to
ξα, according to a sample (ξ̂1

α, · · · , ξ̂Mα) of size M ∈ N with the same distribution of ξ̂α obtai-
ned by simulation of the couples ((µ̂1, σ̂1), · · · , (µ̂M , σ̂M)). Illustrate these results by numerical
simulations.

13

3.4 Nonparametric method

Using the order statistics of the sample we can estimate the quantile of order α by the
empirical quantile.

3.4.1 Exact confidence interval

We have the following result.

Theorem 1 Let L be a random variable with continue cumulative distribution function F and
generalized inverse F−1(p) = inf{x ∈ R : F (x) ≥ p}. Let (Lk)1≤k≤n be a sample of size n
with the same distribution as the random variable L and (L(k))1≤k≤n the corresponding order
statistics. We let L(0) = −∞ and L(n+1) = ∞. We have for all 0 ≤ k− ≤ k+ ≤ n and all
p ∈]0, 1[,

P(L(k−) ≤ F−1(p) ≤ L(k++1)) = P(k− ≤ B(n, p) ≤ k+).

Exercice : To built a confidence intervall with level confidence x for the quantile F−1(p)
we determine k+ and k− such that P(B(n, p) > k+) ≤ x̄/2 and P(B(n, p) < k−) ≤ x̄/2 with
x̄ = 1−x. To determine k+ we search for the smallest k such that P(B(n, p) > k) ≤ x̄/2. This is
also the first k at which FB(n,p)(k) ≤ 1− x̄/2. So it is exactly the number of i ∈ {0, · · · , n} with
FB(n,p)(i) < 1− x̄/2. We determine k− similarly. Develop a program providing us a confidence
interval to V aRα of a lost function L. Illustrate this result by numerical simulations.

3.4.2 Empirical confidence interval

Let L be a random variable and (L1, · · · , Ln) be a sample of size n ∈ N with the same
distribution as L. We can built an empirical confidence interval to the quantile ξα, α ∈]0, 1[,
according to the following central limit theorem for the empirical estimator ξ̂α.

Theorem 2 Let L be a random variable with probability density f . We assume that f is conti-
nuous at point ξα and f(ξα) > 0. The empirical estimator ξ̂α satisfies

√
n

σα
(ξ̂α − ξα)

loi−→
n→∞
N (0, 1) avec σα =

√
α(1− α)

f(ξα)
.

Exercice :

1. Built a confidence interval for V aRα for a given level. Illustrate this result by numerical
simulations. For a large value of n, n ≥ 30 in practice, we can use the central limit theorem
above and approximate f by the kernel method.

2. Plot the empirical mean and the empirical median with respect to the size of the sample for
a standard Gaussian random variable N (0, 1). Built the associated empirical confidence
intervals of these both estimators and plot their upper and lower bounds in the same
graph with different colors.

14

3.5 Value at Risk of financial model

We consider a financial model with d assets. We assume that the ith asset price is given

by the Black and Scholes model and it is solution to
dSit
Sit

= rdt + σdW i
t , S

i
0 = xi. with W i

t a

Brownian motion. In numerical simulations we will take xi = 100 + (−1)i ∗ i, the interest rate
r = 0.05, the volatility σ = 0.3 and d = 10. Finally, we will suppose the different Brownian
motion independent.

1. Simulate the process (S1
t , . . . , S

d
t) at points tk = kδt, tk ∈ [0, T], with δt = 1/250 and

T = 4.
2. For each day tk ∈]0, T] the return on the ith asset is given by

, Ri
t =

Sitk−1
− Sitk

Sitk−1

and the portfolio return

Rt =
d∑
i=1

pir
i
t.

with
∑n

i=1 pi = 1. In numerical simulations we will take p1 = · · · = pd = 1/d, simulate R
at points tk = kδt.

3. The historical VaR with level 99% of the portfolio is the quantile of the portfolio returns
Rtk at points tk = kδt. For example, let k ∈ {1, · · · , 1000}, we consider the order statistic
R(1), · · · , R(1000) and V aRhist

0.99 = R(10). Similarly, calculate V aRhist
0.95.

15

