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Abstract This paper establishes isomorphisms for Laplace, biharmonic and Stokes
operators in weighted Sobolev spaces. The Wm,p

α (Rn)-spaces are similar to stan-
dard Sobolev spaces Wm,p(Rn), but they are endowed with weights (1 + |x|2)α/2

prescribing functions’ growth or decay at infinity. Although well established in Rn
[3], these weighted results do not apply in the specific hypothesis of periodicity.
This kind of problem appears when studying singularly perturbed domains (rough-
ness, sieves, porous media, etc) : when zooming on a single perturbation pattern,
one often ends with a periodic problem set on an infinite strip. We present a unified
framework that enables a systematic treatment of such problems in the context of
periodic strips. We provide existence and uniqueness of solutions in our weighted
Sobolev spaces. This gives a refined description of solution’s behavior at infinity
which is of importance in the multi-scale context. The isomorphisms are valid for
any relative integer m, any p in (1,∞), and any real α out of a countable set of
critical values for the Stokes, the bi-harmonic and the Laplace operators.

Keywords periodic infinite strip; weighted Sobolev spaces; Hardy inequality;
isomorphisms; Laplace operator; Stokes equations; Green function; boundary
layers;

1 Introduction

In [11,24,25], the first author studied blood-flow in stented arteries using homoge-
nization techniques. Blood flows were modeled through Laplace or Stokes equations
(which is plausible since the Reynolds number in arteries is relatively small) and
the stent device was introduced as a thin singular perturbation between separated
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domains. Asymptotic expansions separate scales and lead to microscopic boundary
layer problems. These can be seen as a zoom on minimal periodic patches of the
stent device, where the macroscopic effects are experienced as boundary condi-
tion at infinity. Thus the boundary layer problems are defined on infinite periodic
strips with obstacles. In a great number of articles [21,20,1,23,27], the analysis of
such problems is done in various ways, mostly in the Hilbertian context, out of a
generic frame. The aim of this paper is to provide an adequate framework for a
systematic analysis of these problems. To that end, we follow the ideas developed
in [17,3,4] : since the operators we are investigating are linear, we first solve them
in periodic strips without obstacles in order to focus only on the solutions’ behav-
ior at infinity. Then using techniques from [4], we combine the latter results and
solve the associated exterior problems. This will be done in a forthcoming paper.

Thus in this paper we consider the Stokes problem{
−∆u +∇π = f in Rn,

div u = g in Rn,
(1)

where the velocity field u : Rn 7→ Rn, the pressure π : Rn 7→ R and the data
f : Rn 7→ Rn and g : Rn 7→ R are L-periodic with respect to the first n − 1
directions, that is, for any y = (y ′, yn) ∈ Rn,

u(y ′ + L, yn) = u(y ), π(y ′ + L, yn) = π(y ), (2)

and

f (y ′ + L, yn) = f (y ), g(y ′ + L, yn) = g(y ), (3)

where L = (Lj)j∈{1,...,n−1} is a vector of positive real numbers.
We shall also consider the biharmonic problem:

−∆2u = f in Rn, (4)

where, for any y ∈ Rn,

u(y ′ + L, yn) = u(y ) and f(y ′ + L, yn) = f(y ). (5)

This problem is closely related to the Stokes problem.
In order to be able to define functional spaces on the strip Πk=n−1

k=1 [0, Lk)×R,

we follow the ideas developed in [22,33]. We identify the strip Πk=n−1
k=1 [0, Lk)× R

with the set G := Πk=n−1
k=0 (R/LkZ) × R, which together with addition as group

operation and the canonical quotient topology inherited from Rn yields a locally
compact abelian group. The Haar measure associated to G is, modulo some nor-
malization, the product of Lebesgue’s measures associated to each direction. The
Stokes problem (1)–(3) can be rephrased in G as:{

−∆u +∇π = f in G,

div u = g in G.
(6)

Similarly the biharmonic problem (4)–(5) can be rewritten as:

−∆2u = f in G. (7)
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Since the solutions of (6) and (7) correspond to boundary layer, their behavior
at infinity in the yn-direction are of importance: rescaled properly, they provide
averaged feed-backs on the macroscopic scale (see [11] and references therein).
Therefore we choose to solve (6) and (7) in weighted Sobolev spaces in order to
describe behaviors of the solutions and of the data (polynomial growth or decay).
To this aim, the weights, when adapted to our problem, are polynomial functions
at infinity and regular bounded functions in the neighborhood of the origin : they
are powers of ρ(y ) := (1 + y2n)1/2. The literature on weighted Sobolev spaces is
wide [18,4,16,15,10,9,7,30,5,6] and deals with various types of domains. To our
knowledge, this type of weights has not been applied to problems (6), (7) and (8)
in the context of periodic strips.

This paper combines various tools from several fields mixing Fourier analysis
on locally compact abelian groups [22,33], functional analysis with Muckenhoupt
weights [13,34], weighted Sobolev spaces techniques for the whole space [3,2,29].
We prove these results in the framework of Wm,p

α (G) spaces as defined in [3], for
p ∈ (1,∞) and α in R out of a discrete set of critical values. The core of the
paper are the isomorphisms of the Laplace operator for any relative integer m,
any p ∈ (1,∞) any weight α : for a given data f we look for u solving

−∆u = f in G. (8)

Firstly, these results are obtained on a starting interval of weights α ∈ (−1/p, 1/p′)
for which we prove Theorem 3. Then, using induction arguments, higher regularity
is obtained combined with a natural weight shift. Calderón-Zygmund-type results
from [34] provide another set of regularity results, the weight index α being kept
in the initial interval. The combination of these latter steps extends then the first
isomorphisms to the general non critical case as stated in Theorem 5.

Composing isomorphisms of the Laplace operator, we provide similar results
for the poly-harmonic operator ∆m, m being any given positive integer. For sake
of simplicity these results are shown in detail for the bi-harmonic operator.

At this stage, one solves the Stokes problem (6) : eliminating the divergence
equation, the pressure is computed using isomorphisms of the Laplace operator,
then the velocity is obtained through another use of these isomorphism, the gra-
dient of the pressure becoming part of the right hand side in the first equation
of (6). The biharmonic operator is used in order to characterize the kernel of the
Stokes operator.

The structure of the paper follows lines explained above. First in Section 2,
we define the differentiable structure on our locally compact abelian group. Then
in Section 3, we set up the weighted function spaces and establish their basic
properties. In Section 4, we construct isomorphisms of the Laplace operator, in
Sections 5 and 6 we then use the latter results in order to provide isomorphisms
for the biharmonic and the Stokes operators. Finally, in the appendix, we provide
some results on distributions with compact support defined on the Pontryagin’s
dual group Ĝ.
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2 Fourier analysis on the LCA-group G

As in [34], we briefly define the structure inherent to periodic strips. We denote
ΞG the canonical quotient mapping

ΞG : Rn → G, ΞG(y ) := ([y1], . . . , [yn−1], yn), (9)

where [yj ] ∈ R/LjZ is the equivalence class of yj ∈ R, for j ∈ {1, . . . , n− 1}.
Let λ ∈ Nn, be a multi-index an n-uple of nonnegative integers λj , we denote

Dyj = ∂j the partial derivative with respect to the j-th coordinate, then Dλ :=

Πn
j=1D

λj

y
λj
j

denotes the differential operator of order |λ| =
∑n
j=1 λj . For m ∈ N ∪

{∞} let us define

Cm(G) := {u : G→ C, such that ∃ũ ∈ Cm(Rn) and ũ = u ◦ ΞG}

the space of m-times differentiable functions on G. We define the derivatives via

Dλu = Dλũ|Πn−1
k=1 [0,Lk)×R,

where λ ∈ Nn with |λ| ≤ m and we identified G with Πn−1
k=1 [0, Lk)× R. We define

C(G) the space of C0(G) functions that vanish when |yn| → ∞ and D(G) := C∞0 (G),
the set of infinitely many differentiable functions with compact support. The
Schwartz-Bruhat space associated to G reads

S(G) := {u ∈ C∞(G) such that nj(u) <∞, ∀j ∈ N∗}

where we set the semi-norm nj(u) := supy ∈G(1 + |yn|2)j/2|Dj(u)| and Dju :=

(Dλu)|λ|≤j (see [36]). The corresponding dual is well defined with respect to the

weak-* topology and denotes S′(G), the space of tempered distributions on G.
This allows to define the derivatives of elements of S′(G) via the primal space :

< DλT, u >= (−1)|λ| < T,Dλu >, u ∈ S(G), λ ∈ Nn

and proves that they are also tempered distributions. The Pontryagin dual of G
is identified with Ĝ := Πk=n−1

k=1 (2π/LkZ)× R. It is also a locally compact abelian

group see [32, Theorem 1.2.6]. By default Ĝ is equipped with the compact-open
topology which in this case coincides with the product of discrete topologies on
each 2π/LkZ and the Euclidian topology on R. The Haar measure on Ĝ is simply
the product of counting measures on 2π/LkZ for each k ∈ {1, . . . , n − 1} and
Lebesgue’s measure on R. The associated differentiable structure similar to the
group G is then

C∞(Ĝ) :=
{
u ∈ Ĝ→ C such that u(k, ·) ∈ C∞(R), ∀k ∈ Π`=n−1

`=1 (2πZ/L`)
}

where we define the derivatives Dλu(k, ζ) = Dλζλu(k, ζ) together with the norms

n̂j(u) := supη∈Ĝ(1 + |η|)j |Dju(η)| where Dju := (Dλξλu)λ≤j . The Schwartz space

on Ĝ then reads

S(Ĝ) := {u ∈ C∞(Ĝ) s.t. n̂j(u) <∞, ∀j ∈ N∗}
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and again this provides the correct setting in order to define the associated dual
space. For more details see [22,34] and references therein. By the same arguments
as in [19, Theorem 1.5.2], one can prove that E ′(Ĝ), the set of tempered distribu-
tions with compact support in Ĝ is identical to the dual space of C∞(Ĝ) with the
topology defined by the semi norms m̂j,K(u) := supη∈K |D

ju(η)| where K ranges

over all compact sets of Ĝ, and j over all non-negative integers.
We are in the position to define the Fourier transform FG : L1(G)→ C(Ĝ) as

FG(u)(k, ξ) :=
1

|Σ|

∫
Σ

∫
R
u(y ′, yn) exp(−iy ′ · k− iynξ)dyndy ′

where we denote Σ := Πn−1
`=1 (0, L`) and |Σ| its Lebesgue measure. Several remarks

are to be made, FG maps L1(G) into C(Ĝ) by the Riemann-Lebesgue lemma.
One proves [12] that FG : S(G)→ S(Ĝ) is a homeomorphism. The corresponding
inverse Fourier transform reads F−1

G : L1(Ĝ)→ C(G) where

F−1
G (u)(y ′, yn) :=

∑
k∈Πk=n−1

k=1 (2π/LkZ)

∫
R
u(k, ξ) exp(iy ′ · k + iynξ)dyndy

′.

By the Pontryagin duality theorem, there exists also a Fourier transform FĜ :

S(Ĝ) → S(G), which again has an inverse denoted F−1

Ĝ
: S(G) → S(Ĝ). We

have the correspondence F−1
G (FG(f))(y ) = f(y ) = FĜ(FG(f))(−y ) for all y ∈ G

and every f ∈ S(G). One is able to define the Fourier and the inverse Fourier
transforms of a tempered distribution by duality FG : S′(G) → S′(Ĝ) and F−1

G :

S′(Ĝ)→ S′(G) as

< FG(T ), ϕ >=< T,FĜ(ϕ) >, ∀ϕ ∈ S(Ĝ)

and

< F−1
G (T ), ϕ >=< T,F−1

Ĝ
(ϕ) >, ∀ϕ ∈ S(G).

For all T ∈ S′(G) there is a correspondence between derivation and multiplication
in the frequency domain : FG(DλT ) = i|λ|ηλFG(T ) for any λ ∈ Nn and η =
(k, ξ) ∈ Ĝ.

3 Properties of the weighted Sobolev spaces

Definition 1 We define the weight function with respect to the normal coordinate

ρ(y) :=
√

1 + y2n.

Proposition 2 The sequence (Uk)k∈Z defined as

Uk := Πj=n−1
j=1

([
0, rk,j

)
∪ (Lj − rk,j , Lj)

)
×
(
−2k, 2k

)
, rk,j := min(2k, Lj),

together with A = 2 and θ(k) = k + 1, forms a local base of 0 ∈ G i.e.

i) ∪k∈ZUk = G

ii) Uk ⊂ Uk′ if k < k′



6 V. Milǐsić, U. Razafison

iii) there exist a positive constant A and a mapping θ : Z→ Z such that for all k ∈ Z
and all x ∈ G , k < θ(k), Uk −Uk ∈ Uθ(k), and µ(x +Uθ(k)) < Aµ(x +Uk). The

set difference stems for U − V := {z ∈ G ; ∃u ∈ Uand v ∈ V, z = u− v}.

This proposition shows that the structure of G is compatible with Assumptions
1.1 in [33].

Definition 3 Let p ∈ (1,∞). A weight w ∈ L1
loc(G) belongs to the Muckenhoupt class

Ap(G) iff

Ap(w) := sup
U∈G

(
1

µ(U)

∫
U

wdµ

)(
1

µ(U)

∫
U

w−
p′
p dµ

) p
p′

<∞

where the supremum runs over all base sets U ∈ G.

Proposition 4 For any p ∈ (1,∞) and any real number α ∈ (−1/p, 1/p′), the weight

ραp(y) is of Muckenhoupt type Ap(G).

Proof : As the weight ρ is constant with respect to y ′, the Muckenhoupt criterion
reduces to check whether ραp(yn) is in Ap(R). This is true under the assumption
that α ∈ (−1/p, 1/p′) by using Lemma 2.3 (v) p. 258 [13].

For α ∈ R, we introduce the weighted space :

Lpα(G) ≡W 0,p
α (G) := {u ∈ Lploc(G) s.t. ραu ∈ Lp(G)},

which is a Banach space equipped with its natural norm

‖u‖Lpα(G) = ‖ραu‖Lp(G).

Proposition 4 allows to use [34, Lemma 3.1] and claim that D(G) is dense in
Lpα(G) for α ∈ (−1/p, 1/p′). This yields the general density result stated below.

Lemma 5 For any real number α, D(G) is dense in Lpα(G).

Proof : The proof is obvious considering that for any α, the mapping u ∈ Lpα(G) 7→
ργu ∈ Lpα−γ(G) is an isomorphism for any real γ. Then using the previous density

result established in the range α ∈ (−1/p, 1/p′), the claim is proved.

For any integer m > 0, any p ∈ (1,∞) and any real number α, we now define
the weighted Sobolev space

Wm,p
α (G) :=

{
u ∈ S′(G); ∀λ ∈ Nn : 0 ≤ |λ| ≤ m, ρα−m+|λ|Dλu ∈ Lp(G)

}
,

which is a Banach space endowed with its natural norm

‖u‖Wm,p
α (G) =

 ∑
0≤|λ|≤m

‖ρα−m+|λ|Dλu‖pLp(G)

1/p

.

We define the semi-norm

|u|Wm,p
α (G) =

 ∑
|λ|=m

‖ραDλu‖pLp(G)

1/p

.
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For detailed studies on this functional space defined in the whole Rn, the reader
can refer to [3,17,18]. Among several properties, we have the following algebraic
and topological inclusions :

Wm,p
α (G) ⊂Wm−1,p

α−1 (G) · · · ⊂ Lpα−m(G). (10)

The mapping

u ∈Wm,p
α (G) 7→ Dλu ∈Wm−|λ|,p

α (G) (11)

is continuous for λ ∈ Nn. Using the fact that for any λ, γ ∈ R,

|Dλyλnρ
γ | ≤ Cργ−λ, (12)

the mapping
u ∈Wm,p

α (G) 7→ ργu ∈Wm,p
α−γ(G) (13)

is an isomorphism for any α, γ ∈ R.

Lemma 6 For any (m, p, α) ∈ N× (1,∞)×R, D(G) is dense in Wm,p
α (G).

Proof : The ideas of the proof come from [3] and [28]. Let u be in Wm,p
α (G).

(i) We first approximate u by functions with compact support in the yn-direction.
As this is a standard procedure, we refer to [18] p. 230–231 for further details.

(ii) We define ω, the y ′-periodic transform of a test function ϕ ∈ D(Rn)

ωϕ(y ) :=
∑

k∈Πn−1
`=1 L`Z

ϕ(y1 − k1, . . . , yn−1 − kn−1, yn), ∀y ∈ G.

A simple computation shows that for any ϕ ∈ D(Rn),

‖ωϕ‖Lpα(G) ≤ c(|supp ϕ|)‖ϕ‖Lpα(Rn). (14)

There exists a function θ ∈ D(Rn−1) such that ωθ = 1. Indeed, for any
non-negative function ϕ ∈ D(Rn−1) whose support contains at least one
period Σ, one can choose θ := ϕ/(ωϕ). Such a function is called a y ′-periodic
partition of unity. Let (αj)j∈N be a sequence such that αj ∈ D(Rn), αj ≥ 0,∫
Rn αj(x )dx = 1 and the support of αj is included in the closed ball of radius
rj > 0 and centered at 0 where rj → 0 as j → ∞. It is well known that as
j →∞, αj converges in the distributional sense to the Dirac measure. We set
w(y ) = θ(y ′)ũ(y ), where ũ denotes the periodic extension of u in Rn. Then
w belongs to Wm,p

α (Rn) and has a compact support. Moreover, since ωθ = 1,
we have ωw = ω(θũ) = (ωθ)u = u. We define ϕj = w ∗αj . Then ϕj belongs to
D(Rn) and converges to w in Wm,p

α (Rn) as j tends to∞. Let ψj := ωϕj , then
ψj belongs to D(G) and thanks to (14), ψj converges to ω w = u in Wm,p

α (G)
as j tends to ∞.

Definition 7 If j ∈ Z then we denote by Pj the set of polynomials of degree less

or equal to j that only depend on the yn-direction, with the convention that if j < 0
then Pj = {0}. For any integer m ≥ 1, we denote by P∆

m

j the set of polyharmonic

polynomials of order m of Pj . In particular, P∆j is the space of harmonic polynomials

of Pj .
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Remark 8 Observe that since polynomials of Pj only depend on the yn direction, their

degree cannot exceed 2m− 1. In other words, for any integer m ≥ 1, we have

P∆
m

j = Pmin(j,2m−1).

Proposition 9 Let m ≥ 0 be an integer, p ∈ (1,∞) and α be real numbers. We

introduce the integer

q(m, p, α) =

{
bm− 1/p− αc if 1/p+ α /∈ Z,
m− 1/p− α− 1 otherwise,

where b·c denotes the floor part of its argument. Then Pq(m,p,α) is the biggest set of

polynomials included in Wm,p
α (G),

Proposition 10 For any α ∈ R and p ∈ (1,∞), one has the continuous embedding

S(G) ↪→ Lpα(G) ↪→ S′(G).

where we identify u ∈ Lpα(G) with Tu ∈ S′(G) via < Tu, ψ >:=
∫
G
uψdy for all

ψ ∈ S(G).

Proof : If α < −1/p then a simple application of Hölder’s inequality leads to

‖ϕ‖Lpα(G) ≤ c sup
y ∈G

|ϕ(y )| ≤ c n0(ϕ)

which proves the continuous injection in this case. Otherwise, if α ≥ −1/p, then
for any ϕ ∈ S(G), we can write

‖ϕ‖p
Lpα(G)

=

∫
G

|ϕ(y )|pραp(y )dy ≤ sup
y ∈G

(1 + ρ(y ))jp|ϕ(y )|p
∫
G

ραp−jp(y )dy

≤ c nj(ϕ)p
∫
G

ραp−jp(y )dy ,

the latter integral is finite as soon as j := bα+ 1/pc+ 1 > α+ 1/p, which ends the
proof of the first continuous injections for all α ∈ R. Using these injections one has
directly that∣∣∣∣∫

G

u(y )ϕ(y )dy

∣∣∣∣ ≤ ‖u‖Lpα(G)‖ϕ‖Lp′−α(G)
≤ c‖u‖Lpα(G)nj(ϕ)

for a certain j to be chosen accordingly. Thus u is a linear continuous form on
S(G) and the latter continuous injection is proved.

Corollary 1 Let (m, p, α) ∈ N× (1,∞)×R then

S(G) ↪→Wm,p
α (G) ↪→ S′(G).

Definition 11 Let α ∈ R, m be a negative integer, and p ∈ (1,∞), then the Sobolev

space Wm,p
α (G) is defined as the dual space of W−m,p

′

−α (G), where p′ is the conjugate

of p.

Corollary 2 Let α ∈ R, m be a negative integer, and p ∈ (1,∞), then elements of

Sobolev spaces Wm,p
α (G) are tempered distributions.
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Theorem 1 Let m ≥ 1 be an integer, p ∈ (1,∞) and α be real numbers such that

1/p+α /∈ {1, . . . ,m}. Then there exists a constant C > 0, depending only on m, p and

n such that

∀u ∈Wm,p
α (G), ‖u‖Wm,p

α (G)/Pq′(m,p,α)
≤ C|u|Wm,p

α (G)

where q′(m, p, α) = min(q(m, p, α),m− 1). In other words, the semi-norm | · |Wm,p
α (G)

defines a norm on Wm,p
α (G)/Pq′(m,p,α) that is equivalent to the quotient norm.

The proof follows the same lines as in [3, Theorem 8.3 p 598]. As a direct conse-
quence of Theorem 1, we can prove isomorphism results on the gradient and the
divergence operator. To that end, let us define the spaces

V := {ϕ ∈ D(G)n, divϕ = 0} and Hp,α := {v ∈ Lpα(G)n, div v = 0}.

Given a Banach space B and a closed subspace X of B, we denote by B′⊥X (or
more simply X⊥, if there is no ambiguity as to the duality product), the subspace
of B′ orthogonal to X, i.e.

B′⊥X = X⊥ = {f ∈ B′ : ∀v ∈ X,< f, v >= 0} = (B/X)′,

the space X⊥ being also called the polar space of X in B′ and possibly denoted
X0.

Proposition 12 Let p ∈ (1,∞) and α be real numbers such that 1/p + α 6= 1. Then

the operators defined by

∇ : W 1,p
α (G)/Pq′(1,p,α) → Lpα(G)n⊥Hp′,−α (15)

and

div : Lpα(G)n/Hp,α →W−1,p
α (G)⊥Pq′(1,p′,−α) (16)

are isomorphisms.

Proof : The gradient operator defined by (15) is linear, continuous and its kernel is
reduced to Pq′(1,p,α). Actually, thanks to Proposition 9, this means that if α < 1/p′

then q′(1, p, α) = 0 otherwise q(1, p, α) < 0 which implies that Pq′(1,p,α) = {0}.
Since 1/p+α 6= 1, then thanks to Theorem 1, the semi-norm | · |W 1,p

α (G)
is a norm

on the quotient space W 1,p
α (G)/Pq′(1,p,α). Thus the gradient is an isomorphism

from W 1,p
α (G)/Pq′(1,p,α) onto its range Rg and Rg is a closed subspace of Lpα(G).

Hence by the Closed Range Theorem Rg = (ker(div ))0, where div is the operator
defined by

div : Lp
′
(G)→ (W 1,p

α (G)/Pq′(1,p,α))
′.

We deduce that Rg = (Hp′,−α)0, so that the gradient operator defined by (15)
is an isomorphism and through duality and transposition the divergence operator
defined by (16) is also an isomorphism.

In the remaining part of this section, our aim is to characterize tempered
distributions by means of their gradients.
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Lemma 13 Let p ∈ [1,∞) and α ∈ R. If f ∈ Lploc(G)n such that

〈f ,v〉 = 0 ∀v ∈ V,

then there exists p ∈ Lploc(G) such that f = ∇p.

Proof : For every y in Rn we associate the periodic extension of f reading :

f̃(y ) := f(ΞG(y )), a.e. y ∈ Rn.

where the restriction operator ΞG was introduced in (9). As f ∈ Lploc(G)n, then
for any K ⊂ Rn compact set, one can write:∫

K

|f̃(y )|pdy =
∑

k∈Πn−1
`=1 L`Z

∫
(G+

∑n−1
`=1 k`e`)∩K

|f̃(y )|pdy ≤ C(|K|)
∫
K′
|f(y )|pdy

where K′ ⊂ G is a compact set. Then f̃ belongs to Lploc(R
n)n and as a consequence

f̃ also belongs to L1
loc(Rn)n. Let now ϕ̃ be in D(Rn)n and satisfy div ϕ̃ = 0 in Rn.

Recalling that ω is the y ′-periodic transform defined in Lemma 6, then ωϕ̃ ∈ V
and is a y ′-periodic function. Moreover one has∫

Rn
f̃(y )ϕ̃(y )dy =

∑
k∈Πn−1

`=1 L`Z

∫
G+

∑n−1
`=1 k`e`

f̃(y )ϕ̃(y )dy =

∫
G

f(y )ωϕ̃(y )dy = 0.

Thanks to [14, Lemma III.1.1. p. 144], there exists p̃ ∈ W 1,1
loc (Rn) s.t. ∇p̃ = f̃

almost everywhere in Rn. Thanks to [14, Lemma II.6.1. p. 81], p̃ ∈ W 1,p
loc (Rn).

Then defining p := p̃|Πn−1
`=1 (0,L`)×R proves that p belongs to Lploc(G).

Hereafter we adapt to our case arguments from [26]. We define Xp,α the closure of
V for the Lpα(G) norm. We also define Ap,α := X⊥p′,−α, the annihilator of Xp′,−α.

Lemma 14 For any p ∈ [1,∞), and α ∈ R, Ap,α ≡ {∇p ∈ Lpα(G)n, p ∈ Lploc(G)}

Proof : Since f ∈ Lpα(G)n, integrations by part are well defined so that if f = ∇p,
then we can write

〈f ,u〉 = 〈∇p,u〉 = −〈p,div u〉 = 0, ∀u ∈ V.

this proves the inclusion of the gradients in the annihilator set. Thanks to the
previous Lemma one has the converse claim.

Proposition 15 The tempered distribution u ∈ S′(G) satisfies ∆u = 0 in G if and

only if u ∈ P∆1 .

Proof : It is clear that if u ∈ P∆1 , then ∆u = 0. Conversely, let u ∈ S′(G) satisfy
∆u = 0. Applying the Fourier transform, one has

|η|2 FG(u)(η) = 0, a.e. η ∈ Ĝ,

which implies that the transform is compactly supported in {0} ⊂ Ĝ. Then by
Theorem 11 (see Appendix) there exists q ∈ N such that

< FG(u), ψ >E′(Ĝ)×E(Ĝ)
=

q∑
r=0

crD
r
ξrψ(0), ∀ψ ∈ E(Ĝ).
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Now we prove that F−1
G (FG(u)) is a polynomial. Indeed,〈

F−1
G (FG(u)) , ϕ

〉
S′(G)×S(G)

=
〈
FG(u),F−1

Ĝ
(ϕ)
〉
S′(Ĝ)×S(Ĝ)

=

p∑
r=0

cr
(
Drξr (FG(ϕ)(−η)))

∣∣
η=0

=
1

|Σ|

p∑
r=0

cr

(
Drξr

∫
G

ϕ(y ) exp(iη · y )dy

)∣∣∣∣
η=0

=
1

|Σ|

p∑
r=0

cr

∫
G

ϕ(y )(iyn)r exp(iη · y )dy

∣∣∣∣
η=0

=

∫
G

{
1

|Σ|

p∑
r=0

cr(iyn)r
}
ϕ(y )dy .

Since the polynomial should be harmonic and in S′(G) it shall belong by definition
to P∆1 .

Lemma 16 Let p ∈ (1,∞) and α ∈ (−1/p, 1/p′) be real numbers. Moreover, assume

that q ∈ Lploc(G) is such that ∆q = 0 and ∇q ∈ Lpα(G)n. Then ∇q = 0.

Proof : Since ∇q ∈ Lpα(G) then ∇q ∈ S′(G). As q is harmonic, ∇q is harmonic thus
by Proposition 15, ∇q is either constant or proportional to yn. Since neither yn
nor constants belong to Lpα(G)n for α ∈ (−1/p, 1/p′), the gradient is zero.

Corollary 3 If p ∈ (1,∞) and α ∈ (−1/p, 1/p′), then Hp,α ∩Ap,α = {0}.

Proposition 17 If p ∈ (1,∞) and α ∈ (−1/p, 1/p′), there exists a bounded operator

Θp,α from Lpα(G)n onto Hp,α such that Θp,αu = u for all u ∈ Hp,α.

Proof : In a first step we give a formal picture of the rigorous proof below : inspired
by [26, Proposition 1.5, p. 119], we aim at solving, in the sense of distributions
−∆q = div u, so that we use the Fourier transform and write that FG(q) = −iη ·
FG(u)/|η|2. Formally, the Fourier transform of ∇q can be computed as :

FG(∇q) = m(η)FG(u), with m(η) :=
η ⊗ η
|η|2

where ⊗ denotes the tensorial product in Rn. But as we want to avoid circular
arguments about the resolution of the Laplace problem and since we are interested,
for Helmholtz decomposition issues, into the gradient of q, in what follows, g will
denote a rigorous computation of the formal quantity ∇q. As m is a bounded
function but is not continuous near the origin, the transference principle applies
[34,8], but after a suitable regularization.

We define the matrix :

m† : Ĝ→Mn(C), m† := (1−mP (η))(η ⊗ η)/|η|2,

where mP (η) := 1{0}(k) for all η := (k, ξ) ∈ Ĝ and we define the corresponding
continuous equivalent to m†:

M† : Rn−1 ×R→Mn(C), M†(ζ) = M†(κ, ξ) := (1− ϕ(|κ|))(ζ ⊗ ζ)/|ζ|2

where ϕ ∈ C∞0 (R) and ϕ(0) = 1 and suppϕ ∈ (−1
2 ,

1
2 ). The symbol M† vanishes

in a neighborhood of κ = 0, and since it is bounded and continuous, it is a
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Mikhlin multiplier. We define P , the mean value operator with respect to y ′ and
its complement :

(Pψ)(yn) :=
1

|Σ|

∫
Σ

ψ(y ′, yn)dy ′, P†ψ = ψ − Pψ, ∀ψ ∈ D(G).

Then we set
g = Punen + F−1

G

(
m†FG(P†u)

)
=: g + g†

one has trivially that ‖g‖Lpα(G) ≤ ‖u‖Lpα(G), and since m† and M† are well defined,

Proposition 5.3 [34] shall be used giving :∥∥g†∥∥Lpα(G)
≤ c
∥∥P†u∥∥Lpα(G)

≤ c′‖u‖Lpα(G),

where we used the decomposition of Lpα(G) provided in Lemma 5.6 [34]. At this
stage, using the Fourier transform, it is easy to check that div g = div u in S′(G).
Indeed, one has :

< div g, ψ > = − < g,∇ψ >= − < g + g†,∇ψ >

= − < Pun, ∂nψ > − < m†FG(P†u),F−1

Ĝ
(∇ψ) >

=< ∂nPun, ψ > + < m†FG(P†u), iηF−1
G (ψ) >

Now since m† ∈ C
∞(Ĝ), it is trivial to prove that < m†FG(P†u), iηF−1

G (ψ) >=<

FG(P†u), im†ηF
−1
G (ψ)) > and whence as m†η = (1−mP )η, this gives in turn

< div g, ψ >=< ∂nPun, ψ > + < (1−mP )FG(P†u), iηF−1
G (ψ) >

=< ∂nPun, ψ > − < (1−mP )FG(P†u),F−1

Ĝ
(∇ψ) >

=< ∂nPun, ψ > − < FG(P†u),F−1

Ĝ
(∇ψ) >=< ∂nPun, ψ > − < P†u,∇ψ >,

where the brackets are intended in the S′(G) or the S′(Ĝ) senses, and we have used
that (1 −mP )FG(P†u) = FG(P†u) since FG(P†u)(k = 0, ξ) = 0, which is indeed
the case since FG(P†u) = FG(u)−FG(Pu) = (1−mP )FG(u) (see (19) p.14 [34]).
Now one defines Θp,αu = u− g and the claim follows.

Theorem 2 If p ∈ (1,∞) and α ∈ (−1/p, 1/p′) then

i) there is a Helmholtz decomposition of Lpα(G)n = Hp,α ⊕Ap,α
ii) the space V is dense in Hp,α.

Proof : i) By our construction of Θp,α, one has that D(G)n ⊂ Hp,α ⊕ Ap,α ⊂
Lpα(G)n, which proves that Hp,α ⊕ Ap,α is dense in Lpα(G)n. As the projector
Θp,α : Lpα(G)n → Hp,α(G) is a bounded linear operator and Hp,α, Ap,α are
closed, Hp,α ⊕Ap,α is closed. Thus i) holds.

ii) By i), Hp,α = Lpα(G)n/Ap,α. Hence

H ′p,α = (Lpα(G)n/Ap,α)
′
= A⊥p,α ⊂ Hp′,−α.

The latter inclusion holds. Indeed, suppose that u ∈ A⊥p,α then it belongs to

Lp
′

−α(G) and one writes :

< div u, ϕ >S′(G)×S(G)= − < u,∇ϕ >
Lp
′
−α(G)×Lpα(G)

= 0, ∀ϕ ∈ S(G),
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since ϕ ∈ S(G), ∇ϕ ∈ Lpα(G) and thus ∇ϕ ∈ Ap,α by Lemma 14. Thus div u =

0 and since u ∈ Lp
′

−α(G) one concludes that u ∈ Hp′,−α.
The subset Xp′,−α is total in Hp′,−α if and only if the only continuous linear
functional that vanishes on Xp′,−α is the 0 functional. Thus suppose that
there exists w ∈ (Hp′,−α)′ s.t. for any v ∈ Xp′,−α, < w,v >= 0 (where

the brackets are understood in the Lpα(G), Lp
′

−α(G) duality), this means that

w ∈ X⊥p′,−α = Ap,α, but since (Hp′,−α)′ ⊂ Hp,α then w ∈ Hp,α ∩ Ap,α = {0},
which ends the proof.

Proposition 18 Assume that p ∈ (1,∞) and α ∈ (−1/p, 1/p′) are real numbers. Let

u ∈ S′(G) be such that ∇u ∈ Lpα(G)n. Then u ∈ W 1,p
α (G) and there exists c > 0

independent on u such that

‖u‖W 1,p
α (G)/R ≤ c‖∇u‖Lpα(G)n .

Proof : If u ∈ S′(G) and ∇u ∈ Lpα(G)n, then for all ϕ ∈ V one has

< ∇u, ϕ >= − < u,divϕ >= 0

where the brackets are to be understood in the S′(G),S(G)-duality sense. The left
hand side of the previous equality is nevertheless an integral as well since ∇u is
in Lpα(G). Since α ∈ (−1/p, 1/p′), and thanks to Theorem 2, V is dense in Hp′,−α
and we see that ∇u ∈ Lpα(G)⊥Hp′,−α. Moreover, under the assumptions on α, we

have q′(1, p, α) = 0. Thus by Proposition 12, there exists w ∈W 1,p
α (G)/R such that

∇w = ∇u. Since these functions differ at most by a constant ([35], Theorem VI,
Chap. 2) and, under the assumptions on α, constants are in W 1,p

α (G), u belongs
to the latter space and the quotient norm provides the estimates.

4 The Laplace operator

In this section, we solve the Laplace problem

−∆u = f in G.

We begin by characterizing the kernel.

Proposition 19 Let m ≥ 0 be an integer, α be a real number. A function u ∈
Wm,p
α (G) satisfies ∆u = 0 in G if and only if u ∈ P∆q(m,p,α).

Proof : In view of Remark 8, it is clear that if u ∈ P∆q(m,p,α), then ∆u = 0. Con-

versely, if u ∈ Wm,p
α (G), by Corollary 1, u ∈ S′(G). Proposition 15 implies then

that u is a polynomial in P∆1 , as it is also in Wm,p
α (G), it is necessarily in P∆q(m,p,α).

In order to establish the first isomorphism result for the Laplace operator, we
compute the fundamental solution of the Laplace equation in G.

Proposition 20 The fundamental solution of the Laplace equation in G reads:

Φ(y) =
∑

k∈Πn−1
`=1

2π
L`

Z

exp(−|k||yn|+ i(k, y ′))

2|k| − 1

2
|yn| ,
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Proof : The Fourier transform of the fundamental solution is: FĜ(Φ)(η) = 1/|η|2

for all η ∈ Ĝ. Inverting this expression yields formally:

Φ(y ) =
∑

k∈Πn−1
`=1

2π
L`

Z,

∫
R

exp(iξyn)

(|k|2 + ξ2)
dξ exp(i(k, y ′)).

Then separating the case k ≡ 0 from the rest provides the result using residue
calculus as in [31, example 1, Chap. IX, p. 58].

Lemma 21 The fundamental solution Φ is in S′(G).

Proof : A simple computation gives that |yn| ∈ L1
loc(G) is a tempered distribution

since for any ϕ ∈ S(G), one has

|< |yn|, ϕ >| ≤ c1
∫
G

|yn|
(1 + |yn|2)j/2

dy nj(ϕ)

the integral being bounded for j ≥ 3. We define Φk̃(y ) := exp(−|k̃|yn + i(k̃, y ′)))/

(2|k̃|) for any k̃ ∈ Πn−1
`=1

2π
L`

Z : it is a tempered distribution. Moreover, one has that

Φ̂k̃(η) := FG(Φk̃)(k, ξ) =
1{k=k̃}(k)

|k|2 + ξ2
.

A simple computation shows that Φ̂k̃ is indeed in L1(Ĝ), and thus, below, the

duality bracket in (S′(Ĝ),S(Ĝ)) becomes an integral with respect to the Haar
measure associated to Ĝ. Let now M be a positive real number large enough,
define ZM := {k̃ ∈ Πn−1

`=1
2π
L`

Z s.t. k̃ 6= 0 and |k̃| < M} and

ΦM (y ) :=
∑

k̃∈ZM

Φk̃(y ).

Then applying the Fourier transform,

Φ̂M (η) := FG(ΦM )(η) =
∑

k̃∈ZM

1{k=k̃}(k)

|k|2 + ξ2
.

The previous arguments show that Φ̂M ∈ L1(Ĝ), but the bound is not uniform with
respect to M , since it behaves as

∑
k∈ZM |k|

−1. Nevertheless for any ϕ̃ ∈ S(Ĝ), we
have 〈

Φ̂M , ϕ̃
〉
S′(Ĝ),S(Ĝ)

=
∑

k∈ZM

∫
R+

ϕ̃(k, ξ)

|k|2 + ξ2
dξ

≤ n̂j(ϕ̃)
∑

k∈ZM

(1 + |k|)−j
∫
R+

1

|k|2 + ξ2
dξ ≤ c2n̂j(ϕ̃).

For j sufficiently large with respect to n, the constant c2 does not depend on M .
This ends the proof since the Fourier transform is homeomorphic between S′(G)
and S′(Ĝ).
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Lemma 22 If f ∈ S(G), then Φ ∗ f ∈ S′(G). Moreover if f ∈ D(G) then

< Φ ∗ f, ϕ >S′(G)×S(G)=< f,Φ ∗ ϕ >E′(G)×E(G), ∀ϕ ∈ S(G).

Proof : The proof of the first part is obvious and relies on the Fourier transform:

indeed Φ̂ ∗ f = Φ̂f̂ and as the product Φ̂f̂ is again in S′(Ĝ), then so it is for the
inverse transform giving the result. Moreover, one has :

< Φ ∗ f, ϕ >=< Φ ∗ ϕ, f >, ∀ϕ ∈ S(G), ∀f ∈ S(G).

Indeed, since ΦM belongs to L1(G), it allows to convert the brackets into sums and
integrals and use Lebesgues : one obtains the second result for any fixed M . Then
passing to the limit necessitates the same arguments as in the previous Lemma.
Since f and ϕ are both in E(G) so are the respective convolutions with Φ. Moreover,
if we suppose that f ∈ D(G) then it is also in E ′(G) and thanks to these arguments,
the result follows, and the bracket can be transformed :

< Φ ∗ ϕ, f >S′(G)×S(G)=< f,Φ ∗ ϕ >E′(G)×E(G) .

We can now state the first isomorphism result.

Theorem 3 Let p ∈ (1,∞) and α ∈
(
−1/p, 1/p′

)
be real numbers. Then the Laplace

operator defined by

W 1,p
α (G)/R ∆7→W−1,p

α (G)⊥R

is an isomorphism.

Proof : We adapt ideas from [3, Theorem 5.1, p. 586–587]. The operator is clearly
linear and continuous, thanks to Proposition 19, it is also injective. Hereafter we
prove surjectivity. Given f ∈ W−1,p

α (G)⊥R an obvious candidate could be Φ ∗ f ,
the problem is that neither Φ nor f are not compactly supported : the latter
convolution does not make sense a priori.

i) Thanks to Proposition 12, there exists v ∈ Lpα(G) s.t. div v = f and

‖v‖Lpα(G) ≤ c‖f‖W−1,p
α (Z)

where the constant is independent on v. Now since D(G) is dense in Lpα(G),
there exists a sequence vj ∈ D(G) s.t. vj → v in Lpα(G).

ii) Set fj = div vj , and ψj = Φ ∗ fj , for all i = 1, . . . , n and ϕ ∈ D(G) we have :

< ∂iψj , ϕ >S′(G)×S(G)= − < Φ ∗ fj , ∂iϕ >S′(G)×S(G)

= − < fj , ∂i(Φ ∗ ϕ) >E′(G)×E(G)=< vj ,∇∂i(Φ ∗ ϕ) >E′(G)×E(G),

the change in the sense of duality brackets is justified by Lemma 22. Then
thanks to Proposition 4, ρ−p

′α(y2) is a Muckenhoupt weight, we apply the
weighted Calderon-Zygmund inequality from the proof of Theorem 1.1 p. 15-
16 [34], and one has∣∣< ∂iψj , ϕ >

∣∣ ≤ ∥∥vj∥∥Lpα(G)
‖∇∂i(Φ ∗ ϕ)‖

Lp
′
−α(G)

≤ c
∥∥vj∥∥Lpα(G)

‖∆(Φ ∗ ϕ)‖
Lp
′
−α(G)

≤ c′‖f‖
W−1,p
α (G)

‖ϕ‖
Lp
′
−α(G)

So that ∇ψj is uniformly bounded with respect to j in Lpα(G).
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iii) We can apply Proposition 18, so there exists constants (cj(ψj))j∈N and c > 0
s.t.

ψj + cj ∈W 1,p
α (G),

∥∥ψj + pj
∥∥
W 1,p
α (G)

≤ c‖f‖
W−1,p
α (G)

.

From this it follows that ψj + pj converges weakly to some function u in

W 1,p
α (G) and it solves (8) so that the mapping is indeed surjective.

In order to extend Theorem 3 to other values of α, we first prove a regularity
result.

Proposition 23 Let ` be a non-negative integer, p ∈ (1,∞) and α ∈ (−1/p, 1/p′) be

real numbers. Then the Laplace operator defined by

W 1+`,p
α+` (G)/R ∆7→W−1+`,p

α+` (G)⊥R (17)

is an isomorphism.

Proof : Owing to Theorem 3, the claim is true for ` = 0. Assume that it is true for
` = k and let us prove that it is still true for ` = k+1. The Laplace operator defined
by (17) is clearly linear and continuous. It is also injective : if u ∈W 2+k,p

α+k+1(G) and

∆u = 0 then u ∈ P∆b1−1/p−αc ≡ R since α ∈ (−1/p, 1/p′). To prove that it is onto,

let f be given in W k,p
α+k+1(G)⊥R. According to (10), f belongs to W−1+k,p

α+k (G)⊥R.

Then the induction assumption implies that there exists u ∈W 1+k,p
α+k (G) such that

∆u = f . Next, we have

∆(ρ∂iu) = ρ∂if + ∂iu∆ρ+ 2∇ρ · ∇(∂iu). (18)

Using , (10), (11), (12), and (13), all the terms of the right-hand side belong to

W−1+k,p
α+k (G). This implies that ∆(ρ∂iu) also belongs to W−1+k,p

α+k (G). In order to
apply again the induction argument, it remains to prove that ∆(ρ∂iu) is orthogonal

to constants. Let us first note that ∆(ρ∂iu) also belongs to W−2+k,p
α+k−1 (G). Moreover,

since u belongs to W 1+k,p
α+k (G) implies that ρ∂iu belongs W k,p

α+k−1(G), then, for any

ϕ ∈W 2−k,p′
−α−k+1(G), we can write

〈∆(ρ∂iu), ϕ〉
W−2+k,p
α+k−1 (G)×W 2−k,p′

−α−k+1(G)
= 〈ρ∂iu,∆ϕ〉Wk,p

α+k−1(G)×W−k,p
′

−α−k+1(G)
.

Since R ⊂W 2−k,p′
−α−k+1(G), we can take ϕ ∈ R which implies that ∆ϕ = 0. It follows

that ∆(ρ∂iu) is indeed orthogonal to constants. Thanks to the induction assump-

tion, there exists v in W 1+k,p
α+k (G) such that

∆v = ∆(ρ∂iu).

Hence, the difference v−ρ∂iu is a constant. Since the constants are in W 1+k,p
α+k (G),

we deduce that ρ∂iu belongs to W 1+k,p
α+k (G) which in turn implies that u belongs

to W 2+k,p
α+k+1(G).

We continue by establishing a new family of isomorphism using Calderón-
Zygmund’s inequality and Theorem 1.
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Proposition 24 Let p ∈ (1,∞), α ∈ (−1/p, 1/p′) be real numbers and m ≥ 2 be an

integer. Then the Laplace operator defined by

Wm,p
α (G)/Pm−1

∆7→Wm−2,p
α (G)/Pm−3

is an isomorphism.

Proof : The mapping defined in the claim is bounded linear and injective. Again
as in the proof of Theorem 3, as α ∈ (−1/p, 1/p′), the weights are of Muckenhoupt
type and one can apply the weighted Calderón-Zygmund estimates giving :

∀u ∈Wm,p
α (G), ∀λ ∈ Nn : |λ| = m− 2, ∀i, j = 1, . . . , n∥∥∥∂i∂jDλu∥∥∥

Lpα(G)
≤ c
∥∥∥∆Dλu∥∥∥

Lpα(G)
≤ c‖∆u‖

Wm−2,p
α (G)/Pm−3

.

Moreover, using again the assumption on α, we have m − 1 < m − 1/p − α < m.
Then thanks to Theorem 1, the semi-norm | · |Wm,p

α (G) is a norm on the quotient

space Wm,p
α (G)/Pm−1. This yields

‖u‖Wm,p
α (G)/Pm−1

≤ c‖∆u‖
Wm−2,p
α (G)/Pm−3

which shows that the range of the operator is a closed subspace of the target
quotient space. The Closed Range Theorem and the injectivity of the adjoint
operator imply that the range is the whole target space.

A direct consequence of this result is the

Proposition 25 Let p ∈ (1,∞), α ∈ (−1/p, 1/p′) be real numbers and m ≥ 2 be an

integer. Then the Laplace operator defined by

Wm,p
α (G)/P1

∆7→Wm−2,p
α (G)

is an isomorphism.

We can now extend Theorem 3 to other values of α.

Theorem 4 Let p ∈ (1,∞), α ∈ (−1/p, 1/p′) be real numbers and ` ≥ 1 be an integer.

Then the Laplace operators defined by

W 1,p
α−`(G)/P1

∆7→W−1,p
α−` (G) (19)

and

W 1,p′

−α+`(G)
∆7→W−1,p′

−α+`(G)⊥P1 (20)

are isomorphisms.

Proof : Let us recall that due to Proposition 25, the mapping

Wm,p
α (G)/P1

∆7→Wm−2,p
α (G)

is an isomorphism. Now through duality and transposition, the mapping

W−m+2,p′

−α (G)
∆7→W−m,p

′

−α (G)⊥P1
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is an isomorphism. Next, using the same arguments as in the proof of Proposition
23, we are able to show that for any integer ` ≥ 1, the mapping

W−m+2+`,p′

−α+` (G)
∆7→W−m+`,p′

−α+` (G)⊥P1

is an isomorphism. Choosing ` = m − 1 yields the isomorphism result defined by
(20) which through duality and transposition also enables to obtain the one defined
by (19).

Summarizing Theorems 3 and 4, we deduce

Theorem 5 For p ∈ (1,∞) and any α ∈ R satisfying

α+ 1/p /∈ Z and α− 1/p′ /∈ Z, (21)

the mapping

W 1,p
α (G)/P∆b1−1/p−αc

∆7→W−1,p
α (G)⊥P∆b1−1/p′+αc (22)

is an isomorphism. As a consequence, for any m ∈ Z and for any α ∈ R satisfying

(21), the mapping

Wm+2,p
α (G)/P∆bm+2−1/p−αc

∆7→Wm,p
α (G)⊥P∆b−m−1/p′+αc (23)

is an isomorphism.

5 The biharmonic operator

Here we consider the polyharmonic problem : given f , we look for u solution of

∆2u = f in G.

Proceeding as in Proposition 19, we can prove the following characterization
of the kernel of the biharmonic operator.

Proposition 26 Let α a real number. A function u ∈ Wm,p
α (G) satisfies ∆2u = 0 in

G if and only if u ∈ P∆
2

bm−1/p−αc.

We first have the following isomorphism result.

Theorem 6 Let p ∈ (1,∞) and α ∈ (−1/p, 1/p′) be real numbers. Then the bihar-

monic operator defined by

∆2 : W 2,p
α (G)/P1 7→W−2,p

α (G)⊥P1

is an isomorphism.
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Proof : Since α ∈ (−1/p, 1/p′), applying Proposition 24 for m = 2, we see that the
Laplace operator defined by

W 2,p
α (G)/P1 → Lpα(G) (24)

is an isomorphism. Then using duality and transposition we also see that

Lp
′

−α(G)→W−2,p′

−α (G)⊥P1

is an isomorphism. Since α ∈ (−1/p, 1/p′) implies that −α ∈ (−1/p′, 1/p), it follows
that the Laplace operator defined by

Lpα(G)→W−2,p
α (G)⊥P1 (25)

is also an isomorphism. Composing (24) and (25) proves the statement.

Proposition 27 Let p ∈ (1,∞) and α be real numbers satisfying (21). Then the

biharmonic operator defined by

∆2 : W 2,p
α (G)/P∆

2

b2−1/p−αc 7→W−2,p
α (G)⊥P∆

2

b2−1/p′+αc (26)

is an isomorphim.

Proof : Thanks to Theorem 6, the statement is already proved for α ∈ (−1/p, 1/p′).
Assume now that α < −1/p.
The biharmonic operator defined above is clearly linear and continuous. Its

injectivity follows from Proposition 26.
Let us prove that the compatibility condition is necessary. For any u ∈W 2,p

α (G)
and ϕ ∈ S(G), we can write

|〈∆2u, ϕ〉S′(G)×S(G)| ≤
∫
G

|∆u||∆ϕ| dy

≤ ‖∆u‖Lpα(G)‖∆ϕ‖Lp′−α(G)

≤ ‖∆u‖Lpα(G)|ϕ|W 2,p′
−α (G)

.

But if α < −1/p, then the semi-norm |·|
W 2,p′
−α (G)

is a norm onW 2,p′

−α (G)/Pb2−1/p′+αc.

Moreover if α < −1/p the spaces Pb2−1/p′+αc, P∆b2−1/p′+αc and P∆
2

b2−1/p′+αc coin-

cide. Hence ∆2 belongs to W−2,p
α (G)⊥P∆

2

b2−1/p′+αc.

Let now prove that the operator is onto. Take f in W−2,p
α (G)⊥P[2−1/p′+α].

Then thanks to the isomorphism result of the Laplace operator defined by (23),
there exists v ∈ Lpα(G) such that ∆v = f in G. Since α < −1/p, there are no poly-
nomials in the space P[−1/p′+α], then using again (23), there exists u ∈ W 2,p

α (G)

such that ∆u = v in G which implies that ∆2u = f in G. As a consequence the
operator defined by (26) is an isomorphism if α < −1/p. Then using duality and
transposition it is also an ismorphism if α > 1/p′ which ends the proof.

As a consequence we have the following general result.

Theorem 7 Let p ∈ (1,∞) and α be real numbers satisfying (21) and ` ∈ Z. Then

the biharmonic operator defined by

∆2 : W 2+`,p
α (G)/P∆

2

b2+`−1/p−αc 7→W−2+`,p
α (G)⊥P∆

2

b2−`−1/p′+αc

is an isomorphim.



20 V. Milǐsić, U. Razafison

6 The Stokes equation

This section is devoted to the Stokes problem: given f and g, we look for a pair
(u, π) satisfying {

−∆u +∇π = f in G,

div u = g in G.
(27)

For any integer k, we introduce the space of polynomials

Nk = {(θ, λ) ∈ P∆
2

k × P∆k−1, div θ = 0, −∆θ +∇λ = 0}.

Proposition 28 Let m ≥ 0 be an integer and α a real number. A pair (u, π) ∈
Wm+1,p
α (G)×Wm,p

α (G) satisfies

−∆u +∇π = 0 and div u = 0 in G, (28)

if and only if (u, π) ∈ Nbm+1−1/p−αc.

Proof : Let the pair (u, π) belong to Wm+1,p
α (G)×Wm,p

α (G) and suppose it satisfies
(28). Taking the divergence of the first equation of (28) implies that ∆π = 0 and
therefore π is a polynomial of P∆bm−1/p−αc. As a consequence, we have ∆2u =

∆(∇π) = 0 which implies that u belongs to P∆
2

bm+1−1/p−αc.

We first look for solutions in W 1,p
α (G)× Lpα(G).

Theorem 8 Let α be a real number satisfying (21). Let f ∈ W−1,p
α (G), g ∈ Lpα(G)

satisfy the compatibility condition

∀(θ, λ) ∈ Nb1−1/p′+αc, 〈f,θ〉
W−1,p
α (G)×W 1,p′

−α (G)
+ 〈g, λ〉

Lpα(G)×Lp
′
−α(G)

= 0. (29)

Then the Stokes equations (27) have a unique solution (u, π) ∈ (W 1,p
α (G) × Lpα(G))/

Nb1−1/p−αc.

Proof : Let us introduce the Stokes operator

T : (u, π) 7→ (−∆u +∇π,−div u).

The statement amounts to prove that the operator

T : (W 1,p
α (G)× Lpα(G))/Nb1−1/p−αc 7→ (W−1,p

α (G)× Lpα(G))⊥Nb1−1/p′+αc.

is an isomorphism.
We assume first α < 1/p′.

The operator T defined above is clearly linear and continuous. Its injectivity
follows from Proposition 28.

Let us show that the compatibility condition is necessary. Note that under

the assumtion α < 1/p′, there are no polynomials in Lp
′

−α(G) and the polyno-

mials of W 1,p′

−α (G) are at most constants. Then (29) is reduced to show that
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f ∈W−1,p
α (G)⊥Pb1−1/p′+αc. Consider now (u, π) ∈W 1,p

α (G)×Lpα(G). Then −∆u+

∇π ∈W−1,p
α (G) and for any θ ∈ Pb1−1/p′+αc, we have

〈−∆u +∇π,θ〉
W−1,p
α (G)×W 1,p′

−α (G)

= 〈u,−∆θ〉
W 1,p
α (G)×W−1,p′

−α (G)
− 〈π,div θ〉

Lpα(G)×Lp
′
−α(G)

= 0

since θ is at most a constant vector. This shows that the compatibility condition
is necessary.

Let us now show that the operator T is onto. Let f ∈ W−1,p
α (G) and g ∈

Lpα(G). Then this implies that div f + ∆g belongs to W−2,p
α (G). Since α < 1/p′,

the degree of polynomials in Pb2−1/p′+αc is at most one. Hence ∆g belongs to

W−2,p
α (G)⊥Pb2−1/p′+αc. Then since f ∈ W−1,p

α (G)⊥Pb1−1/p′+αc, it follows that

div f + ∆g ∈ W−2,p
α (G)⊥Pb2−1/p′+αc. Thanks to the isomorphism result (23) of

the Laplace operator, there exists π ∈ Lpα(G) such that

∆π = div f +∆g in G.

It follows that f−∇π ∈W−1,p
α (G)⊥Pb1−1/p′+αc. Thanks again to (23), there exists

u ∈W 1,p
α (G) such that

−∆u +∇π = f in G.

As a consequence divu− g ∈ Lpα(G) and satisfies

∆(div u− g) = 0 in G.

Therefore divu − g = λ ∈ P∆[−1/p−α]. Let γ(yn) =
∫ yn
0

λ(s)ds, then γ belongs to

Pmin(2,b1−1/p−αc) ⊂ P∆
2

b1−1/p−αc. Let now θ be a polynomial such that θj = 0

for any j = 1, . . . , n − 1 and θn = γ. Then θ belongs to P∆
2

b1−1/p−αc and satisfies

div θ = λ. Thus (u − θ, π) satisfies (27) and as a consequence, the operator T is
onto.

Through duality the operaor T is also an isomorphism if α > −1/p and this
ends the proof.

Using again regularity and duality arguments, we have the following statement.

Theorem 9 Let α be a real number satisfying (21) and m be an integer. Let f ∈
Wm,p
α (G), g ∈Wm+1,p

α (G) satisfy the compatibility condition

∀(θ, λ) ∈Nb−m−1/p′+αc,

〈f,θ〉
Wm,p
α (G)×W−m,p

′
−α (G)

+ 〈g, λ〉
Wm+1,p
α (G))×W−m−1,p′

−α (G)
= 0.

Then the Stokes equations (27) has a unique solution (u, π) ∈ (Wm+2,p
α (G)

× Wm+1,p
α (G)) /Nbm+2−1/p−αc.
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A Compactly supported distributions, E′(Ĝ)

Theorem 10 If u ∈ E ′(Ĝ) of order p, then for any test function ψ ∈ E(Ĝ) s.t. Dj
ξj
ψ(η) = 0

for all points η in the support of u and all j ∈ {0, . . . , p}, one has < u,ψ >= 0, where the

brackets denote the duality in E ′(Ĝ), E(Ĝ).

Proof : As the support of u is compact in Ĝ there exists a finite collection of integers J ⊂ N and
finite sequence of compact intervals (K(j))j∈J s.t. suppu ∈ {(kj ,K(j))j∈J}, we denote the set

of all S := {(kj)j∈J}, a finite subset of Πn−1
`=1 (2π Z/L`). Let Kε(j) := {ζ ∈ R s.t. d(ζ,K(j)) ≤

ε}. We define the smooth cut-off function

χε(k, ξ) :=
1

ε

{∫
K2ε(j)

ϕ((ξ − ζ)/ε)dζ if k ∈ S
0 otherwise

where ϕ ∈ C∞0 (R) s.t. ϕ ≥ 0,
∫
R ϕ(ξ)dξ = 1 and suppϕ ⊂ B(0, 1). Then it is clear that

χε(kj , ·) = 1 in Kε(j) and that suppχε(kj , ·) ⊂ K3ε(j). One has then < u,ψ >=< u,ψχε >
since ψ(1− χε) = 0 in a neighborhood of suppu. Hence

| < u,ψ > | ≤ C sup
η∈Ĝ,j≤p

∣∣∣Dj
ξj

(ψχε)
∣∣∣

which by arguments similar to Theorem 1.5.4 [19] is bounded uniformly by ε, and thus tends
to 0, as ε→ 0. Indeed, for any fixed kj using

∣∣ψ(kj , ξ
′)
∣∣ ≤ 1

(p+ 1)!
sup

t∈(0,1)

∣∣∣Dp+1

ξp+1ψ(kj , ξ + t(ξ′ − ξ))
∣∣∣ |ξ′ − ξ|(p+1)

for all ξ ∈ R and similar estimates for all derivatives of higher order, it implies that supξ′∈K3ε

|Dqψ(kj , ξ
′)| ≤ cj,qε

p+1−q . On the other hand supξ∈K3ε(j)
|Dq′χε(kj , ξ)| ≤ c′

j,q′ε
−q′ , which

together with the Leibnitz formula gives that

| < u,ψ > | ≤ c sup
j∈J

sup
ξ∈K3ε(j)

(
p
q

)
cj,qε

p+1−qc′j,p−qε
−(p−q) ≤ cε.

Theorem 11 If u ∈ E ′(Ĝ) s.t. suppu ⊂ {0} then for any ϕ ∈ E(Ĝ), there exists a p ∈ N s.t.
< u,ϕ >=

∑p
r=0 cr∂

r
ξrϕ(0).

Proof : Let p be the order of u. Set ψ(k, ξ) = ϕ(k, ξ) −
∑p
r=0 ∂

r
ξrϕ(k, 0) ξ

r

r!
it is a smooth

function s.t. any derivative in direction ξ vanishes up to order p. Since u is compactly supported,
one defines χ(k, ξ) = 1k=0 which is in C∞(Ĝ). Applying the previous result it comes <
u,ψ >=< u, χψ >= 0. Then using that u is linear, one recovers :

< u,ϕ >=< u, χk=0

p∑
r=0

∂rξrϕ(k, 0)
ξr

r!
>=

p∑
r=0

< u, χk=0
ξr

r!
> ∂rξrϕ(0),

which gives the definition of the constants (cr)r∈{0,...,p}.
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bornés. PhD thesis, Université de Pau et des Pays de l’Adour, 2004.

30. U. Razafison. The stationary Navier-Stokes equations in 3D exterior domains. An approach
in anisotropically weighted Lq spaces. J. Diff. Eq., 245(10):2785–2801, 2008.

31. M. Reed and B. Simon. Methods of modern mathematical physics. II. Fourier analysis,
self-adjointness. Academic Press [Harcourt Brace Jovanovich Publishers], New York, 1975.

32. W. Rudin. Fourier analysis on groups. Wiley Classics Library. John Wiley & Sons, Inc.,
New York, 1990. Reprint of the 1962 original, A Wiley-Interscience Publication.

33. J. Sauer. Extrapolation theorem on locally compact abelian groups, preprint.
34. J. Sauer. Weighted resolvent estimates for the spatially periodic Stokes equations. Ann.

Univ. Ferrara : 1–22, 2014.
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