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Abstract We consider the functionµ(G), introduced by W. Narkiewicz, which
associates to an abelian groupG the maximal cardinality of a half-factorial subset
of it. In this article, we start a systematic study of this function in the case where
G is a finite cyclic group and prove several results on its behaviour. In particular,
we show that the order of magnitude of this function on cyclic groups is the same
as the one of the number of divisors of its cardinality.
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1 Introduction

A monoidH (a commutative, cancellative semigroup with unit element) is called
atomicif each non-unita∈ H has a factorizationa = u1 · . . . ·uk with irreducible
elements (atoms)ui ∈H. The integerk is called thelengthof the factorization. An
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atomic monoidH is calledhalf-factorial, if for each non-unita∈ H all factoriza-
tions ofa have the same length. Half-factoriality is a central topic in the theory of
non-unique factorization (cf. [3] for a survey and [5,7,12,21] for recent results).

A main tool in this subject, and in particular in this article, are block monoids,
introduced in [24]. For a subsetG0 of an (additive) abelian groupG the block
monoid overG0, denotedB(G0), is defined as the monoid of all zero-sum se-
quences inG0.

If H is a Krull monoid, for example the multiplicative monoid of a Krull or
a Dedekind domain, with class groupG andG0 ⊂ G denotes the set of classes
containing primes, thenH is half-factorial if and only ifB(G0) is half-factorial.
A subsetG0 of an abelian group is called half-factorial, ifB(G0) is half-factorial.
(See for instance [17,4], and [18] for the algebraic theory of Krull monoids.)

The following problem has been posed by W. Narkiewicz [24, Problem II]:
Determine, forG a finite abelian group,

µ(G) = max{|G0| : G0 ⊂G half-factorial}.

The interest in this constant came from the role it plays when investigating the
following counting function: For the monoid of non-zero principal ideals of the
ring of integers of an algebraic number field and a positive integerk, let Gk(x) be
defined as the number of elements with norm not exceedingx and factorizations
of at mostk different lengths. Then

Gk(x)� x(logx)−1+µ(G)/|G|(log logx)ψk(G),

whereG denotes the class group,µ(G) is defined as above, andψk(G) just de-
pends onk and the structure of half-factorial sets ofG with cardinalityµ(G); in
fact also more precise asymptotic results as well as analogous results for other
monoids are known (cf. [25, Chapter 9] or [31,20,11,16,14,13,27,28]).

The problem of determiningµ(G) for finite abelian groups in general, and
even for cyclic groups, is wide open. Apart some special results (in particular for
small groups) and the results on cyclic groups we mention below, the value of
µ(G) is so far only known in the case whereG is an elementaryp-group (see [14,
26]).

In this article we focus on the investigation ofµ(G) for finite cyclic groups.
In the remainder of this section we recall, to the best of our knowledge, what was
known so far onµ(G) for cyclic groups. Letn be a positive integer. It is well
known (see [32], also cf. Preliminaries) that

µ(Z/nZ)≤ τ(n), (1.1)

whereτ(n) denotes the number of (positive) divisors ofn.
If m> 1 is a positive integer, thenµ(Z/mnZ) > µ(Z/nZ) (see [10]). If addi-

tionally, m andn are coprime, then (see [14])

µ(Z/mnZ)≥ µ(Z/mZ)+ µ(Z/nZ)−1. (1.2)

If n is a prime power or the product of two primes, then it is known that equal-
ity holds in (1.1) (see [30,31,35] and [14]).

However, it is also known that equality does not always hold in (1.1); namely
this was proved for 30, 105, and 210 (see [36] and [6]). Recently, M. Radziejewski
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[29] investigated (computationally) half-factorial sets for groups of small order,
his results for cyclic groups can be (roughly) summarized as follows: Equality in
(1.1) holds for alln≤ 105 except 30, 60, 66, 84, 90, 102, 105, and for thesen the
differenceτ(n)−µ(Z/nZ) equals 1.

By combining (1.2) with the results for prime powers and products of two
primes, the following general lower bound was established in [14]: Letn be de-
composed as a product of prime powers,n = ∏r

i=1qαi
i ∏s

j=1 t j with pairwise dis-
tinct primesq1, . . . ,qr , t1, . . . , ts and with integersα1, . . . ,αr ≥ 2, then

µ(Z/nZ)≥ 1+
⌊

3s
2

⌋
+

r

∑
i=1

αi . (1.3)

Half-factorial sets, consisting of “small” residue classes that were constructed
by W. Hassler [19] yield other interesting lower bounds forµ(Z/nZ), for instance

µ(Z/nZ)≥ |{d : d|n and 1≤ d≤
√

2n/τ(n)}|. (1.4)

It is not clear how to derive from his construction a good explicit lower bound
for µ(Z/nZ). Some information on the distribution of the divisors of the integer
n is available (see the article [8], where the so-called arcsine-law for the reparti-
tion of divisors is originally proved; see also [34]); however these are mean-value
results, which would only yield a result foralmost all integers. And, in any case
it cannot lead to the lower bound we obtain in Theorem 2.1, where we show that
µ(Z/nZ) > τ(n)/2 and thus thatτ(n) is the true order of magnitude ofµ(Z/nZ).
Moreover, we obtain several further results onµ(Z/nZ), which, among others,
explain the exceptions to equality in (1.1) that we mentioned above. We outline
them in the following section.

2 New results

One of our main results is a new lower bound forµ(Z/nZ) that shows thatτ(n)
is the true order of magnitude ofµ(Z/nZ).

Theorem 2.1 Let n= qα1
1 qα2

2 · · ·qαr
r with distinct primes q1 < · · ·< qr and positive

integersα1, . . . ,αr . Thenµ(Z/nZ)≥ 1+Cτ(n) with C= αr/(αr +1); and if r> 1
and(q1, . . . ,qr) 6= (2,3,5), then the inequality holds for C= αr−1/(αr−1 +1) as
well.
In particular, for any n,

µ(Z/nZ)≥ 1+
1
2

τ(n).

The proof of this theorem, in Section 5, relies on a technical result (Lemma
5.1), which shows that in a lot of special cases the bound given by Theorem 2.1
can be improved. As an example for this, we obtain the following result.

Theorem 2.2 Let k,n be positive integers and k6= 1. Then

lim
ν→∞

µ(Z/kνnZ)
τ(kνn)

= 1.
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There is however a case in which no improvement on the lower bound of The-
orem 2.1 can be expected by this method, namely the case of squarefree integers.

At first glance, in view of the results mentioned in the Introduction, it could
seem “numerically evident” thatµ(Z/nZ) is even much closer toτ(n) than proved
by Theorem 2.1, and thatµ(Z/nZ) < τ(n) is rather an exceptional phenomenon.
However, we shall see that this is not the case and try to understand how large the
gapτ(n)−µ(Z/nZ) respectively how small the ratioµ(Z/nZ)/τ(n) can be.

Looking at the known exceptions to equality in (1.1), we notice that all of them
have (at least) three distinct prime divisors. (Yet, not everyn with three distinct
prime divisors is an exception, the smallest example being 42.) The following
theorem, to be proved in Section 6, shows that indeed there exists no exception
with less than three distinct prime divisors, which explains to a certain extent why
“small” exceptions are “rare”.

Theorem 2.3 If n ∈ N is a product of at most two prime powers, then a subset
G0 ⊂ Z/nZ is half-factorial if and only if G0 ⊂ {dg: 1≤ d | n} for some (gener-
ating) element g∈ Z/nZ; in particular,

µ(Z/nZ) = τ(n).

In view of Theorem 2.1, we concentrate our further investigations on square-
free integers, the seemingly most natural type of integers to study in the perspec-
tive to find integersn for which µ(Z/nZ)/τ(n) is “small”.

We start, in Section 7, with investigating integers that are the product of three
distinct primes. Here, our main result is the following theorem, which (in this
case) improves the lower bound forµ(Z/nZ).

Theorem 2.4 If n ∈ N is a product of three distinct primes, then

µ(Z/nZ) ∈ {7,8}= {τ(n)−1,τ(n)}.

Moreover, each of the two values,7 and8, is taken byµ(Z/nZ) for infinitely many
n∈ N that are a product of three distinct primes.

In fact, we obtain more precise results. Among others, we determine the value of
µ(Z/pqrZ) for r from certain congruence classes modulopq; from our investiga-
tions it seems conceivable to believe that the value ofµ(Z/pqrZ) depends only,
at least for sufficiently larger, on the congruence class ofr modulo pq. More-
over, we show, for some special subsets ofN, that the values, 7 and 8, occur with
the same frequency (cf. Proposition 7.5). In particular, our results explain all the
exceptions toµ(Z/nZ) = τ(n) mentioned in the Introduction (cf. Remark 7.6).

We continue with the case of products of four primes and establish the follow-
ing result.

Theorem 2.5 If n ∈ N is a product of four distinct primes, then

µ(Z/nZ) ∈ [12,16] = [τ(n)−4,τ(n)].

Moreover, each of the two statements

µ(Z/nZ) ∈ {12,13} andµ(Z/nZ) ∈ {14,15,16}

holds for infinitely many n∈ N that are a product of four distinct primes.
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In Remark 8.4, after the proof of this result, we discuss possible improvements
to it.

Theorems 2.4 and 2.5 could indicate that one can replace the factor 1/2, oc-
curring in Theorem 2.1, by a 3/4 but not, in general, by anything larger. However,
this remains far from being proved. At least our study is a good indication that the
following conjecture could be true:

Conjecture 2.6The lower bound infn∈N µ(Z/nZ)/τ(n) > 1/2 holds.

By Theorems 2.1 and 2.5 we know that 1/2≤ infn∈N µ(Z/nZ)/τ(n)≤ 13/16.
In Section 9, we continue our investigations on “small values” ofµ(Z/nZ).

Up to now, the maximal known value for the differenceτ(n)−µ(Z/nZ) was only
1, and Theorem 2.5 yields examples forτ(n)−µ(Z/nZ) = 3. The following result
provides examples where the differenceτ(n)− µ(Z/nZ) is arbitrarily large; the
proof of this theorem relies on a recursive construction and thus can be used to
obtain explicit examples.

Theorem 2.7 There exists a sequence of integers(ni)i∈N such thatτ(ni) tends to
+∞ andτ(ni)−µ(Z/niZ)� logτ(ni).

3 Preliminaries

We denote byZ the set of integers, byN the set of positive integers, and byN0 =
N∪{0}. We define the sequence(pi)i∈N as the ordered sequence of primesp1 =
2, p2 = 3 and so on. In this article,[a,b] means the set of integersi ∈ Z such that
a≤ i ≤ b. Forx a residue class modulon or an integer, the notation[x]n means the
integer in[0,n−1] congruent tox modulon.

We focus on finite cyclic groups; for convenience of notation we will mainly
consider the groups of residue classesZ/nZ and denote bym the residue class of
m modulon. We denote byDn ⊂ Z/nZ the set of residue classes modulon that
contain a positive divisor ofn.

Next, we recall some notation and results for block monoids and half-factorial
sets (cf. for instance [4,10]). LetG be an additively written (finite) abelian group
G andG0 ⊂ G a subset. By asequence(in G0) we mean an element ofF (G0),
the free abelian monoid with basisG0, in other words a multiset. As usual, we use
multiplicative notation for sequences, that is

S=
l

∏
i=1

gi = ∏
g∈G0

gvg ∈F (G0),

wheregi ∈G0 andvg∈N0. We refer to the divisors of a sequence assubsequences.
The identity element ofF (G0) is called the empty sequence. ForSa sequence and
T | Sa subsequence, we denote byT−1S the codivisor ofT with respect toS.

Moreover,vg(S) = vg is called themultiplicity of g in S, σ(S) = ∑l
i=1gi the

sumof S, andk(S) = ∑l
i=11/ord(gi) thecross numberof S. A sequenceS is called

a zero-sum sequence, if σ(S) = 0 ∈ G, and a sequence is calledzero-sumfreeif
σ(T) 6= 0 for each non-empty subsequenceT of S.

Recall that the block monoidB(G0) is defined as{S∈F (G0) : σ(S) = 0}. It
is an atomic monoid; its set of atoms is denoted byA (G0).
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A key result for the investigation of half-factorial subsets of finite abelian
groups is the following characterization of half-factorial sets (see [30,31,35] and
[4] for a proof in the terminology used in this article): ForG a finite (or torsion)
abelian group, a subset /06= G0 ⊂G is half-factorial if and only if

{k(A) : A∈A (G0)}= {1}. (3.1)

Investigations on half-factorial sets in cyclic groups are considerably simpli-
fied by the following result (see [32,10]), which we use frequently.

Lemma 3.1 Let n∈ N and G0 ⊂ Z/nZ.

(a) If G0 is a half-factorial set, then there exists an automorphism f: Z/nZ →
Z/nZ such that f(G0)⊂Dn.

(b) If there exists an automorphism f: Z/nZ→Z/nZ such that f(G0)⊂Dn, then
k(A) ∈ N for each A∈A (G0).

Clearly, part (a) of this lemma implies (1.1).
For an atomA = ∏d∈Dn

d
vd ∈A (Dn), here and throughout we tacitly assume

thatd is chosen in[1,n], the cross number is given by

k(A) = ∑
d∈Dn

vd
d
n

=
1
n ∑

d|n
vd d.

Given asum(a weighted sum over the divisors ofn) of the form

∑
d|n

vd d resp. ∑
d∈Dn

vd
d
n

(3.2)

with coefficientsvd ∈N0, then asubsum(of this sum), is defined as a sum∑d|nwdd

resp.∑d∈Dn
wd

d
n with coefficientswd ∈ [0,vd]; that is, a subsum corresponds to

the cross number of a subsequence. This terminology and notation goes back to
A. Zaks [35,36].

A further tool in our investigations will be the “rolling”-method, introduced
in [23]; the following lemma is a modification of [23, Lemma 4] (we have more
restrictive assumptions and thus a stronger conclusion). It develops the following
basic fact: LetA∈ A (G0) be an atom and letS | A be a subsequence, thenA′ =
σ(S)S−1A is an atom. Of course, to be able to apply this reduction process in
investigations on half-factorial sets, the underlying set and the cross number must
remain unchanged.

In order to state the lemma conveniently, we introduce the following notation:
Let G0 ⊂Dn andg∈G0. Then

r(g,G0) = min

(
{ord(g)}∪

{
ord(g)
ord(h)

: h∈G0\{g} with ord(h)|ord(g)
})

.

Lemma 3.2 Let n∈ N and G0 ⊂ Dn ⊂ Z/nZ. For each A∈ A (G0) there exists
some A′ ∈A (G0) with k(A) = k(A′) and either

A′ = gord(g) for some g∈G0 or vg(A′) < r(g,G0) for each g∈G0.
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Proof Let A∈A (G0). If vg(A) < r(g,G0) for eachg∈G0, then the result follows
trivially. Thus, supposeh∈ G0 with maximal order such thatvh(A)≥ r(h,G0). If
r(h,G0) = ord(h), the result follows trivially as well.

Assumer(h,G0) < ord(h), and letf ∈G0 with r(h,G0) = ord(h)/ord( f ). Then
f = r(h,G0)h, and we setA∗ = f vh−vr(h,G0)A, wherev ∈ N such thatvh(A) =
vr(h,G0)+w for somew∈ [0, r(h,G0)−1]. Now, vg(A∗) < r(g,G0) for eachg∈
G0 with ord(g)≥ ord(h). Thus, iterating this argument, we obtain the result.ut

4 Auxiliary number-theoretical results

First, we introduce some notation. ForA = {a1, . . . ,as} a subset of an (addi-
tive) group andh an integer, we define the set ofh-multiples ofA ash ·A =
{ha1, . . . ,has}. We also defineΣ(A ) as the set of all sums of elements (with rep-
etition allowed) ofA . If the number of repetitions of theai ’s is bounded then we
shall write

ΣK1,...,Ks(a1, . . . ,as) = {k1a1 +k2a2 + · · ·+ksas : k1, . . . ,ks∈ N0,ki ≤ Ki}.

If gcd(a1, . . . ,as) = 1, then it is very well known thatΣ(A ) contains all suf-
ficiently large integers. The largest integer not inΣ(A ) is called theFrobenius
numberof the set; it is denotedF(A ) = F(a1,a2, . . . ,as).

For coprime positive integersa andb, it is well known (cf. the seminal article
by J.J. Sylvester [33]) that

F(a,b) = ab−a−b, (4.1)

which easily yields that

[ab−a−b+1,ab−1]⊂ Σb−1,a−1(a,b). (4.2)

We will need a slight development related to this.

Proposition 4.1 Let a and b be two coprime positive integers.

(a) Σb−1,a−2(a,b) ⊃ [ab− a− b+ 1,ab− 1] \ {(a− 1)b+ k1a: 0 ≤ k1 ≤ b(b−
1)/ac}.
In particular, the setΣb−1,a−2(a,b) contains the interval[ab−a,ab−1] with
at most one exception.

(b) If b 6≡ 1 (mod a), then ab−1∈ Σb−1,a−2(a,b).

Proof By (4.2), we may write

Σb−1,a−2(a,b)∩ [ab−a−b+1,ab−1]

⊃
(
Σb−1,a−1(a,b)\{(a−1)b+k1a: 0≤ k1 ≤ b−1}

)
∩ [ab−a−b+1,ab−1]

= [ab−a−b+1,ab−1]\{(a−1)b+k1a: 0≤ k1 ≤ b(b−1)/ac},

since(a−1)b+k1a∈ [ab−a−b+1,ab−1] with k1 ≥ 0 implies 0≤ k1 ≤ b(b−
1)/ac. This proves (a) except the “in particular”-statement; yet it follows easily,
since two different elements in[ab−a,ab−1] that are not inΣb−1,a−2(a,b) would
differ by at leasta.
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If ab− 1 6∈ Σb−1,a−2(a,b), then by (a) the integerab− 1 can be written in
the form (a− 1)b+ k1a for some integerk1 (such that 0≤ k1 ≤ b(b− 1)/ac),
which implies thatab− 1≡ (a− 1)b (mod a) or, equivalently,b≡ 1 (mod a).
This proves (b). ut

The following result will be of use in Section 8.

Lemma 4.2 Let a, b, and c be integers, such that ab and c are coprime. Then

abc−1∈ Σb−1,c−1,a−1(c,ab,bc).

Proof We noticeΣb−1,a−1(c,bc) = c· [0,ab−1] and thusΣb−1,c−1,a−1(c,ab,bc) =
Σab−1,c−1(c,ab). By (4.2) we have[abc−ab−c+1,abc−1]⊂ Σab−1,c−1(c,ab),
which implies the result. ut

Here is another combinatorial lemma, which is needed in the sequel.

Lemma 4.3 Let n∈ N and a,b∈ [1,n−1] andβ ∈ [1,n−1] with gcd(β ,n) = 1.
Let A = {1, . . . ,a} ⊂ Z/nZ and B = {1, . . . ,b} ⊂ Z/nZ. We assume that(β ·
A )∩B = /0.

(a) Then a+b≤ n−1.
(b) If β 6= n−1, then a+b≤ n−2. Moreover, if a+b = n−2, then either a= 1

andβ = n−2, or b= 1 andβ = (n−1)/2.

Proof Sinceβ is invertible modulon, obviously the setsβ ·A andB are included
in {1, . . . ,n−1}, therefore(β ·A )∩B = /0 implies|A |+ |B| ≤ n−1, that is (a).

We now supposeβ 6= n− 1. Without restriction we assume thata≤ b, oth-
erwise we consider the situation for[β−1]n instead. Since(β ·A )∩B = /0, we
haveb < [ jβ ]n for each j ∈ [1,a]. Therefore, if there exists somej ∈ [1,a] with
[ jβ ]n < n/2, then we havea+ b ≤ 2b ≤ 2[ jβ ]n− 2 ≤ n− 3. Thus we assume
[ jβ ]n≥ n/2 for eachj ∈ [1,a], and obtain[ jβ ]n = jβ −( j−1)n for eachj ∈ [1,a];
in particular

[aβ ]n = aβ − (a−1)n = n− (n−β )a≤ n−2a,

where equality holds if and only ifβ = n−2. Sinceb < [aβ ]n, we getb+2a < n,
that isb+a≤ n−2 with equality if and only ifa = 1. This finishes the proof of
(b). ut

We end the section with a lemma on primes.

Lemma 4.4 For any s∈ N\{1,3}, we have

s−2

∑
j=0

(
s

∏
k= j+2

1
1−1/pk

)
< ps−1.
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Proof For s∈ {2,4} the statement is clearly true. Thus, lets≥ 5 and assume the
statement is true fors−1. We have

s−2

∑
j=0

(
s

∏
k= j+2

pk

pk−1

)
=
(

ps

ps−1

)(
1+

s−3

∑
j=0

(
s−1

∏
k= j+2

pk

pk−1

))
<

ps

ps−1
(1+ ps−2)

= 1+ ps−2 +
1+ ps−2

ps−1
≤ ps−1,

where we used the induction hypothesis and the fact thatps≥ ps−1 +2. ut

For larger values ofs this lemma can be strengthened. We only remark that bound-
ing the left-hand expression by(s− 1)∏s

k=2
1

1−1/pk
= s−1

2 ∏s
k=1

1
1−1/pk

and then
using Mertens’ formula (cf. for instance [34]), one obtains, for sufficiently large
s, an upper bound of, say, 0.9slogs; note thateγ < 1.8, whereγ denotes Euler’s
constant. Thus, the left-hand expression can be bounded byps−c(s) with c(·) in-
creasing and unbounded (in fact of linear order).

5 Lower bounds for µ(Z/nZ)

In this section we prove Theorems 2.1 and 2.2. The following technical lemma
is the main tool in these proofs. First, we introduce some notation. Form =
qν1

1 qν2
2 · · ·qνs

s with distinct primesq1 < · · ·< qs andνi ∈ N, let

P(m) =
s−2

∑
j=0

(
s

∏
k= j+2

1
1−1/qk

)
.

Lemma 5.1 Let m= qν1
1 qν2

2 · · ·qνs
s with distinct primes q1 < · · · < qs andνi ∈ N.

Let` > 1 an integer and n= m`. Further, letE = {d : d|m} ⊂Z/nZ. If P(m) < `,
thenE is half-factorial. Moreover,µ(Z/nZ)≥ 1+ τ(m).

Proof We denote

Iα1,...,αk = {(n1, . . . ,nk) ∈ Nk
0 such that 0≤ ni ≤ αi for 1≤ i ≤ k},

so thatE = {qi1
1 qi2

2 · · ·q
is
s with (i1, i2, . . . , is) ∈ Iν1,ν2,...,νs}.

Let us consider an atom inA (E ),

A = ∏
(i1,i2,...,is)∈Iν1,ν2,...,νs

qi1
1 qi2

2 · · ·q
is
s

ai1,i2,...,is
,

with non-negative integersai1,i2,...,is. By (3.1), in order to prove thatE is half-
factorial, we have to show that

k(A) = ∑
(i1,i2,...,is)∈Iν1,ν2,...,νs

ai1,i2,...,is

ord
(

qi1
1 qi2

2 · · ·q
is
s

) = 1,
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or equivalently

∑
(i1,i2,...,is)∈Iν1,ν2,...,νs

ai1,i2,...,isq
i1
1 qi2

2 · · ·q
is
s = n. (5.1)

But, by Lemma 3.1(b) we havek(A)∈N, thus it is enough, in order to prove (5.1),
to show that

S= ∑
(i1,i2,...,is)∈Iν1,ν2,...,νs

ai1,i2,...,isq
i1
1 qi2

2 · · ·q
is
s < 2n. (5.2)

By Lemma 3.2, and computingr(·,E ), we may assume, for each 1≤ j ≤ s, that

ai1,i2,...,is ≤ q j −1 if i j < ν j , (5.3)

andaν1,ν2,...,νs ≤ `−1.
Now, we introduce the following partition of the set of indicesIν1,ν2,...,νs:

Iν1,ν2,...,νs = Iν1−1,ν2,...,νs∪
(
{ν1}× Iν2−1,ν3,...,νs

)
∪
(
{(ν1,ν2)}× Iν3−1,ν4...,νs

)
∪·· ·∪ ({(ν1,ν2, . . . ,νs−1)}× Iνs−1)∪{(ν1,ν2, . . . ,νs)}.

Then the sumScan be splitted intoS= S0 +S1 + · · ·+Ss where

S0 = ∑
(i1,i2,...,is)∈Iν1−1,ν2,...,νs

ai1,i2,...,isq
i1
1 qi2

2 · · ·q
is
s ,

Sj = ∑
(i1,i2,...,is)∈{(ν1,ν2,...,ν j )}×Iν j+1−1,ν j+2,...,νs

ai1,i2,...,isq
i1
1 qi2

2 · · ·q
is
s ,

for 1≤ j ≤ s−1, and finallySs = ∑(i1,i2,...,is)∈{(ν1,ν2,...,νs)}ai1,i2,...,isq
i1
1 qi2

2 · · ·qis
s .

For any 0≤ j ≤ s−1, using (5.3), we obtain (the empty product is considered
as 1)

Sj ≤ qν1
1 qν2

2 · · ·qν j
j ∑

(i j+1,i j+2,...,is)∈Iν j+1−1,ν j+2,...,νs−1,νs

(q j+1−1)q
i j+1
j+1q

i j+2
j+2 · · ·q

is
s

= qν1
1 qν2

2 · · ·qν j
j (q j+1−1)

(
ν j+1−1

∑
i j+1=0

q
i j+1
j+1

)(
s

∏
k= j+2

(
νk

∑
ik=0

qik
k

))

≤ qν1
1 qν2

2 · · ·qν j
j q

ν j+1
j+1

(
s

∏
k= j+2

(
qνk

k
1

1−1/qk

))

= m
s

∏
k= j+2

1
1−1/qk

;

in particularSs−1 ≤m.
Finally, Ss consists of one single term and, sinceaν1,ν2,...,νs ≤ `−1, we have

Ss = aν1,ν2,...,νsq
ν1
1 qν2

2 · · ·qνs−1
s−1 qνs

s ≤ (`−1)m.
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Summing everything together, we obtain

S≤
s−2

∑
j=0

(
s

∏
k= j+2

1
1−1/qk

)
m+m+(`−1)m= P(m)m+ `m.

Since by assumptionP(m) < `, we obtainS< 2n. ThusE is half-factorial.
To show the “moreover”-statement, it suffices to note that|E |= τ(m) and that

E ∪{n} is half-factorial as well. ut

Having this lemma at hand, we derive easily the lower bound in Theorem 2.1.

Proof (Theorem 2.1)First, we proveµ(Z/nZ)≥ 1+(αr/(αr +1))τ(n). We write
n = mqr . Sinceτ(m) = (αr/(αr +1))τ(n), it suffices to verify that the conditions
of Lemma 5.1 are fulfilled forn = mqr , that isP(m) < qr .

Note thatm= ∏s
i=1qνi

i , wheres= r, νi = αi for 1≤ i ≤ r−1 andνr = αr −1
in caseαr > 1, ands= r−1 andαi = νi for each 1≤ i ≤ s in caseαr = 1.

Sinceqk ≥ pk for anyk, we obtain

P(m) =
s−2

∑
j=0

(
s

∏
k= j+2

1
1−1/qk

)
≤

s−2

∑
j=0

(
s

∏
k= j+2

1
1−1/pk

)
andps≤ qs≤ qr . Therefore, it is enough to prove

s−2

∑
j=0

(
s

∏
k= j+2

1
1−1/pk

)
< ps;

and this follows by Lemma 4.4 and direct checking (fors∈ {1,3}).
Now, let r > 1 and(q1, . . . ,qr) 6= (2,3,5); and we may assumeαr−1 > αr .

The argument is analogous to the above. We writen = m′qr−1 and have to verify
P(m′) < qr−1. By the same reasoning as above, this follows forr 6= 3 by Lemma
4.4; and forr = 3 andq1q2q3 6= 30 it can be seen directly. ut

From the proof of Theorem 2.1 it follows that the best estimate forµ(Z/nZ) we
can obtain using this method is given by

1+max{τ(m′) : n = m′`′ andP(m′) < `′}.

In particular, the constantC in Theorem 2.1 could be replaced by max{αi/(αi +
1) : i ∈ [r − c(r), r]} for some increasing unboundedc(·) (cf. the discussion after
Lemma 4.4).

Clearly, if n has small prime divisors that occur with high multiplicity, one
obtains better lower bounds by “omitting” several small prime divisors rather than
a single large one that occurs with small multiplicity. A similar reasoning appears
in the following proof of Theorem 2.2.

Proof (Theorem 2.2)Clearly, P(m) just depends on the squarefree kernel ofm.
ThusP(kνn) = P(kn) for eachν ∈N. Let ν0 ∈N such thatkν0 > P(kn). Then, by
Lemma 5.1 withkν+ν0n = (kνn)kν0, we have

τ(kνn)≤ µ(Z/kν+ν0nZ)
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for everyν ∈ N0. The result follows, since (the last inequality by (1.1))

1 = lim
ν→∞

τ(kνn)
τ(kν+ν0n)

≤ lim
ν→∞

µ(kν+ν0n)
τ(kν+ν0n)

≤ 1.

ut

In view of the above discussion, we underline the fact that in the case of a
squarefree integern, from the method of this section, we cannot expect any im-
provement of the constant 1/2 in Theorem 2.1.

6 Products of at most two prime powers

In this section we begin our investigations onµ(Z/nZ) for special types of inte-
gers. As mentioned in the Introduction, it is known thatµ(Z/nZ) = τ(n) if n is a
prime power or the product of two primes. We extend this result to integers that
are the product of at most two prime powers (Theorem 2.3).

First, we recall a key tool for the proof; then the actual proof will be very short.
ForG a finite abelian group, the cross number ofG, denotedK(G) and introduced
by U. Krause [22], is defined as

K(G) = max{k(A) : A∈A (G)}.

Its value is (only) known for certain types of groups. We make use of a result by
A. Geroldinger and R. Schneider [15] that yields, as a special case,K(Z/nZ) for
n the product of two prime powers.

Proof (Theorem 2.3)The “only if”-part follows by Lemma 3.1(a). To prove the
“if”-part, it suffices to show thatDn is half-factorial. Thus, by (3.1) and Lemma
3.1(b), it suffices to assert thatk(A) < 2 for each atomA∈A (Dn).

Let n = pαqβ with distinct primesp andq, andα,β ∈ N0. By [15, Theorem
2] (with r ∈ {1,2} ands= 0), we know

k(A)≤ K(Z/nZ) =
1

pαqβ
+

pα −1
pα

+
qβ −1

qβ
,

which clearly is less than 2. The “in particular”-statement is obvious. ut

7 Products of three primes – Proof of Theorem 2.4

We first proveµ(Z/nZ) ∈ {7,8} for n the product of three distinct primes (cf.
the proof of Theorem 2.4, main part). We continue with several results that yield
the precise value forµ(Z/pqrZ) provided that the primesp, q, andr fulfil certain
conditions; in particular, these results show that each of the values, 7 and 8, occurs
for infinitely many triples of primes (cf. Corollary 7.3 and Proposition 7.4), which
completes the proof of Theorem 2.4. For special cases, such asn= 2·3· p, we will
even show that both values occur with the same frequency (cf. Proposition 7.5).
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Proof (Theorem 2.4, main part)Let n = pqr with p, q, andr distinct primes. We
show thatµ(Z/nZ) ∈ {7,8}, and by (1.1) it suffices to showµ(Z/nZ) ≥ 7. We
considerG0 = {1, p,q, r, pq,qr, pqr} ⊂Dn and prove that this set is half-factorial.
Let A = ∏d∈G0

d
ad ∈A (G0).

By (3.1) and Lemma 3.1(b), it suffices to showk(A) < 2. If A = d
ord(d)

for
somed ∈G0, this is obvious. Thus we assume, by Lemma 3.2, thatad < r(d,G0)
for eachd ∈ G0; that isa1 < p, ap < q, aq < p, ar < q, apq < r, aqr < p, and
apqr < 1.

We havenk(A) = a1 +app+aqq+ar r +apqpq+aqrqr +apqrpqr, and using
the above inequalities, we have

nk(A) ≤ (p−1)+(q−1)p+(p−1)q+(q−1)r +(r−1)pq+(p−1)qr

= 2n+ pq−q− r−1.

Sincepq−q− r−1 can be non-negative we cannot conclude directly thatk(A) <
2. However, we note that ifapq < r−1 oraqr < p−1, thenk(A) < 2. Also,aq = 0
yieldsk(A) < 2. Consequently, we assumeapq = r−1, aqr = p−1, andaq > 0.

By (4.2), the equationpX + rY = pr− 1 has an integral solution(X,Y) =
(a,b) with a∈ [0, r−1] andb∈ [0, p−1]. Thus, the sequenceS= q pqa qrb is a
subsequence ofA, and it is a zero-sum sequence withk(S) = 1. Hence, we have
eitherA = Sandk(A) = 1, orA 6= Sand a contradiction toA being an atom. ut

The following proposition and its corollary provide sufficient conditions, for
distinct primesp, q, andr, to fulfil µ(Z/pqrZ) = 7, and in particular show the
infinitude of triples of primes withµ(Z/pqrZ) = 7. Indeed, just to show the in-
finitude of such triples, we could also argue as in the proof of [9, Lemma 11];
however that argument was not designed for the present purpose (the aim there
was, in our terminology, to construct atomsA∈A (Dn) with large cross number)
and we would only get weaker results.

Proposition 7.1 Let p, q, and r be distinct primes and a,b,c∈N0 such that pq<
a+bp+cq< 2pq and pq is not a subsum, and r(a+bp+cq) ≡ −1 (mod pq).
Thenµ(Z/pqrZ) = 7.

Recall that “subsums” are defined in the paragraph after (3.2). In particular, the
conditionpq is not a subsum (ofa+bp+cq) simply means that the linear equation
pq= X + pY+qZ does not have an (integral) solution(X,Y,Z) ∈ [0,a]× [0,b]×
[0,c]. From now on we use this terminology extensively.

Proof By Theorem 2.4 it suffices to show thatDpqr is not half-factorial. We set
f = 2pq− (ap+bq+c) ∈ [1, pq−1] and considerB = 1 pqv ra prb qrc with

v =
f r−1

pq
∈ [1, r−1].

It is a zero-sum sequence with cross numberk(B) = 2.
By (3.1) it suffices to show thatB is an atom. Assume to the contrary there

exists someA∈A (Dpqr) with A | B andA 6= B. By Lemma 3.1(b) it follows that
k(A) = 1.
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Let A = 1
ε

pqw r i pr j qrk; note thatε ∈ {0,1}. Then

pqr = (pqr)k(A) = ε +wpq+ ir + jpr +kqr. (7.1)

Considering (7.1) modulor we obtainwpq≡−ε (mod r).
If ε = 1, since the unique solution ofpqX≡−1 (mod r) with X ∈ [0, r−1] is

v, it follows thatw = v. If ε = 0, we obtainwpq≡ 0 (mod r), that isw = 0.
However, by the conditions ona,b,c, we have thatS= ra prb qrc is zero-

sumfree, a contradiction. ut

Remark 7.2(a) Let all assumptions be as in Proposition 7.1. The proof of the
proposition yields immediately the slightly more precise statement that the set
{1, pq, r, pr,qr} ⊂ Z/nZ is not half-factorial. Moreover, ifa = 0, then even
the set{1, pq, pr,qr} is not half-factorial. (Thatb = 0 orc = 0 is impossible.)

(b) The proof of Proposition 7.1 shows that it is not necessary to assume thatp, q,
andr are prime, but that it suffices to assume thatpqandr are coprime.

We point out that the existence of a non-half-factorial subsetG0 ⊂ Dn with
|G0| = 4 is an extremal case, since any subset ofDn with three elements is half-
factorial (see [2]).

Corollary 7.3 Let n= pqr with distinct primes p, q, and r.

(a) If r ≡ −α−1 (mod pq) for someα ∈ [1,min{p− 1,q− 1}], then we have
µ(Z/nZ) = 7. In particular, for any two distinct primes p′ and q′ we have
µ(Z/p′q′r ′Z) = 7 for infinitely many primes r′.

(b) If p = 2 and r≡ (1−2 j)−1 (mod q) for some j∈ [1,(q−1)/2], then we have
µ(Z/nZ) = 7.

Proof To prove (a), it suffices to show that the conditions of Proposition 7.1 are
fulfilled. We note that by (4.1) for anyα ∈ [1,min{p−1,q−1}] there exist non-
negative integersa,b such thatap+bq= pq+α, and in fact necessarilya∈ [0,q−
1] andb∈ [0, p−1]. Thuspq is not a subsum ofap+bq. We haver(ap+bq) ≡
rα ≡−1 (mod pq), thus the conditions of Proposition 7.1 are fulfilled.

The “in particular”-statement follows immediately, since there exist infinitely
many primes congruent to−β−1 (mod p′q′) for everyβ ∈ [1,min{p′−1,q′−1}]
by Dirichlet’s theorem on primes in arithmetic progressions.

The proof of (b) is similar. Note that 2q is not a subsum of 2q < a+b2+cq<
4q if and only if a = 0, c = 1, andb∈ [(q+1)/2,q−1] (to avoid any confusion,
we keep our notations for weighted sums, even in this special case where it might
look strange). Thus,µ(Z/2qrZ) < 8 if r(q+ 2b) ≡ −1 (mod 2q) for someb ∈
[(q+1)/2,q−1], and the result follows. ut

Next we give, in casep = 2, a sufficient condition forµ(Z/pqrZ) = 8. It
yields, again by Dirchlet’s theorem on primes in arithmetic progressions, the in-
finitude of such triples of primes and thus completes the proof of Theorem 2.4.

Proposition 7.4 Let q and r be two distinct odd primes. If r≡ 1 (mod q), then
µ(Z/2qrZ) = 8.
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Proof We need to showD = D2qr = {1,2,q,2q, r,2r,qr,2qr} is half-factorial. Let
A = ∏d∈D d

ad ∈ A (D). By Lemma 3.1(b) and (3.1), we knowk(A) ∈ N and it
suffices to showk(A) < 2. By Lemma 3.2 we may assume without restriction that
vd(A) < r(d,D) for eachd ∈ D , that isa1 < 2, a2 < q, aq < 2, a2q < r, ar < 2,
a2r < q, aqr < 2, anda2qr = 0.

It follows easily, using the bounds on theai ’s, thatk(A) < 3. Thus it suffices
to prove thatk(A) 6= 2. Assume to the contraryk(A) = 2, that is

2qrk(A) = a1 +a22+aqq+a2q(2q)+ar r +a2r(2r)+aqr(qr) = 4qr.

We now show that 2qr is a subsum, which will be contradictory toA being an
atom.

We note thata1+a22+aqq+a2q(2q)≤ 2qr−1+q. Thereforear r +a2r(2r)+
aqr(qr)≥ 2qr, since the left-hand side in this expression is divisible byr, and we
may assumear = 0, aqr = 1, anda2r ∈ [(q+1)/2,q−1], since otherwise we get
immediately that 2qr is a subsum.

Thus
ar r +a2r(2r)+aqr(qr) = r(2q−1+2 j) (7.2)

with some j ∈ [1,(q− 1)/2], wherea2q = j + (q− 1)/2, anda1 + a22+ aqq+
a2q(2q) = r(2q+ 1−2 j). We consider (7.2) modulo 2q and obtain, sincer ≡ 1
(mod 2q), thata1 +a22+aqq≡ 1−2 j (mod 2q) and thusa1 +a22+aqq = 1−
2 j + 2q. It follows that a2q(2q) = (r − 1)(2q+ 1− 2 j). If aq = 1, we have the
subsumq+ r−1

2 (2q)+ qr = 2qr. If aq = 0, we havea1 = 1 anda2q ≥ (q−1)/2,

and thus the subsum 1+ q−1
2 2+ r−1

2 (2q)+qr = 2qr. ut

We apply the results we obtained so far to determineµ(Z/6pZ), µ(Z/10pZ),
andµ(Z/14pZ) for all primesp.

Proposition 7.5 Let n= pqr with distinct primes p, q, and r.

(a) If 6 | n, thenµ(Z/nZ) = 8 for n/6≡ 1 (mod 3) andµ(Z/nZ) = 7 for n/6≡ 2
(mod 3).

(b) If 10 | n, thenµ(Z/nZ) = 8 for n/10≡ 1 or 2 (mod 5) andµ(Z/nZ) = 7 for
n/10≡ 3 or 4 (mod 5).

(c) If 14 | n, thenµ(Z/nZ) = 8 for n/14≡ 1, 3 or 5 (mod 7) and µ(Z/nZ) = 7
for n/14≡ 2, 4 or 6 (mod 7).

Proof Part (a) and the majority of cases in (b) and (c) follow by Corollary 7.3 and
Proposition 7.4. In (b) it remains to consider the casen/10≡ 2 (mod 5) and in (c)
the casen/14≡ 3 or 5 (mod 7). The other being similar, we only give the details
for (b).

Thus, assumen = 10p with p prime andp≡ 2 (mod 5). We need to show
that the setDn is half-factorial. LetA = ∏d∈Dn

d
ad ∈ A (Dn). As in the proof

of Proposition 7.4, it suffices to showk(A) 6= 2, and we assume to the contrary
k(A) = 2. That is, we have

a1 +a22+a55+a1010+app+a2p(2p)+a5p(5p)+a10p(10p) = 20p.

We show that 10p is a subsum, which will be a contradiction.
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By Lemma 3.2 we may assumea1,a5,ap,a5p∈ [0,1], a2,a2p∈ [0,4], anda10∈
[0, p−1]. It follows that

app+a2p(2p)+a5p(5p) = kp

with 10≤ k≤ 14. Fork∈ {10,12,14} we obtain immediately 10p as a subsum.
If k = 11, thena1 + a22+ a55+ a1010= 9p. We consider the equation mod-

ulo 10 and obtain thata1 + a22+ a55≡ 63 (mod 10) and thusa1 + a22+ a55∈
{3,13}. If a1 +a22+a55 = 3, thena10 = 3

(
3p−1

10

)
, therefore 2+2

(
3p−1

10

)
10+

2(2p) = 10p is a subsum; ifa1 + a22+ a55 = 13, thena10 = 9p−13
10 , and 5+(

5p−5
10

)
10+5p = 10p is a subsum.

The argument fork = 13 is similar. ut

In the following remark we apply the results obtained in this section to give an
explanation for all exceptions toµ(Z/nZ) = τ(n) mentioned in the Introduction.

Remark 7.6For n∈ {30,66,102} we haveµ(Z/nZ) < τ(n) by Proposition 7.5,
sincen is of the form 6p with p congruent to−1 modulo 3; in contrast to 42 and
78. Forn = 105 this follows by Corollary 7.3 withp = 3, q = 5, andα = 2; and
for n= 84 by Remark 7.2 (b) withp= 3 andq= 4 since 7·5≡−1 (mod 12) and
3·3+2·4 = 12+5.

Finally, 60, 90, and 210 are exceptions, sinceD60, D90, andD210 contain the
non-half-factorial set 2·D30, 3·D30, and 7·D30, respectively (see Lemma 9.1 for
a less informal argument).

8 Products of four primes – Proof of Theorem 2.5

In this section we consider squarefree numbers with exactly four prime divisors;
we prove Theorem 2.5 and mention possible improvements to it (cf. Remark 8.4).
The proof of Theorem 2.5 is split into the following three auxiliary results.

Lemma 8.1 Let n= pqrs with distinct primes p, q, r, and s. Thenµ(Z/nZ)≥ 12.

Proof Assumep < q < r < s. We assert that the set

G0 = {1, p,q, r,s, pq, pr,qr,sr, pqr,sqr, pqrs} ⊂Dn ⊂ Z/nZ

is half-factorial.
Let A = ∏d∈G0

d
ad ∈A (G0). We havenk(A) = ∑d∈G0

ad d and need to show
thatk(A) = 1. By Lemma 3.1 we knowk(A) ∈ N, and we assume to the contrary
thatk(A)≥ 2.

By Lemma 3.2 we may assumea1,aq,ar ,aqr,asqr≤ p−1, ap,apr,asr ≤ q−1,
as,apq≤ r−1, apqr ≤ s−1, and finallyapqrs = 0, from which we obtain

nk(A)≤ 2n+2pqr+ pq−qr− (r +s+q+1).

This implies that(p−1)−asqr +(s−1)−apqr ≤ 2, since otherwise we get
k(A) < 2, a contradiction. We distinguish three cases:
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• Case A:asqr = p−2 andapqr = s−1.
By Proposition 4.1 we know that, for some integerx1,

S = {xpqr+ysqr: x≤ s−1 andy≤ p−2}
⊃ qr · ([ps− p, ps−1]\{x1}).

Sinceps−1 or ps−2 is in [ps− p, ps−1]\{x1}, we get thatn−qr = qr(ps−
1) or n−2qr belongs toS . It follows thataqr ≥ 2 would yieldn as subsum, a
contradiction toA being an atom. Thus we assumeaqr ≤ 1. However, using the
additional conditionsasqr = p−2 andaqr ≤ 1, we get the new bound

nk(A)≤ 2n+ pqr−sqr+qr + pq− (r +s+q+1)
≤ 2n− (r +s+q+1),

sinces− p−1≥ 4 andr > p. This is a contradiction tok(A)≥ 2.

• Case B:asqr = p−1 andapqr = s−1.
Similarly to the previous case we obtain, by (4.2),

S ′ = {xpqr+ysqr: x≤ s−1 andy≤ p−1}
⊃ qr · [ps− p−s+1, ps−1].

If aqr > 0, we get thatn is a subsum, a contradiction. Thus, we obtainaqr = 0.
Using this additional condition, we have the bound

nk(A)≤ 2n+ pqr+ pq− (r +s+q+1). (8.1)

We observe that we must haveasr 6= 0. Otherwise, we have

nk(A)≤ 2n+ pqr+ pq−sqr+sr− (r +s+q+1)
= 2n+ pq(r +1)−q(r−1)s− (r +s+q+1)

and we derive a contradiction tok(A) ≥ 2, sincep≤ q, q≤ r −1 andr + 1≤ s.
We distinguish the two subcasesapr = 0 andapr 6= 0.

Case B.1:apr = 0.
In this case, we getnk(A)≤ 2n+ pr + pq− (r +s+q+1). Therefore,asr ∈ {q−
2,q−1}.

If asr = q−1, then by applying Lemma 4.2 witha = p, b = q, andc = s we
obtain thatr(pqs− 1) is a subsum, thereforear = 0. Thennk(A) ≤ 2n+ pq−
(s+ q+ 1). Thus, we haveapq = r − 1. Now we apply Lemma 4.2 witha = s,
b= q, andc= p and obtain thatq(prs−1) is a subsum, which impliesaq = 0 and
consequentlynk(A) < 2n, a contradiction.

We can now assume thatasr = q−2. Therefore, we have the bound

nk(A)≤ 2n+ pr + pq−sr− (r +s+q+1).

We will refine the previous argument (using again (4.2)):

S ′′ = {xsr+ypqr+zsqr: x≤ q−2, y≤ s−1, z≤ p−1}
= r · ({xs: x≤ q−2}+q· {yp+zs: y≤ s−1, z≤ p−1}
⊃ r · (s· [0,q−2]+q· [ps−s, ps−1])
= qr(ps−s)+ r ·Σs−1,q−2(q,s)
⊃ qr(ps−s)+ r · ([qs−q,qs−1]\{x2})
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for somex2, by Proposition 4.1; and in factS ′′ containsr(pqs−1) or r(pqs−2).
This impliesar ≤ 1 and improves the estimate fornk(A) to

nk(A)≤ 2n+ pr + pq−sr− (r +s+q+1)− (p−2)r < 2n,

a contradiction.

Case B.2:apr 6= 0.
If there exist 1≤ x′ ≤ apr and 1≤ y′ ≤ asr such that

x′p+y′s≡ 0 (mod q), (8.2)

that isx′p+y′s= jq for some integerj, then we obtainn as subsum. This follows,
since j < p+s−1, and thusqr(pq− j) ∈S ′.

Thus we assume that there exists no solution to (8.2) and consider two distinct
subcases.

Case B.2.1:p 6≡ s (mod q).
This means thatβ = [−ps−1]q is different fromq−1. Writing A = {1, . . . ,apr}
andB = {1, . . . ,asr}, we are in a position to apply Lemma 4.3 inZ/qZ. This
implies thatapr +asr ≤ q−2. But, if apr +asr < q−2, then we can improve the
estimate in (8.1) to

nk(A)≤ 2n+ pqr+ pq− (r +s+q+1)− (q+1)pr < 2n

and are done.
Thus we may assume thatapr + asr = q−2. We are therefore in the equality

case of Lemma 4.3 and eitherapr = q−3 andasr = 1, orapr = 1 andasr = q−3.
If apr = q−3 andasr = 1, then we are done as well, since

nk(A)≤ 2n+ pqr+ pq− (r +s+q+1)−2pr− (q−2)sr

< 2n− (s− p)(q−2)r + pq,

in view of q < r and(s− p)(q−2)≥ 5(p−1) > p, a contradiction tok(A)≥ 2.
Thus we haveapr = 1 andasr = q− 3. Moreover,β ≡ −2 (mod q). This

implies thatp≡ 2s (mod q). Sincep+q< 2sandp 6= 2s−2q, we getp≤ 2s−3q.
On the other hand,nk(A) is bounded as follows:

nk(A)≤ 2n+ pq+2pr−2sr− (r +s+q+1).

We may thus assume thatpq+2pr > 2sr. Thus

2s<
pq
r

+2p < 3p≤ 6s−9q

ands> 9q/4. Therefore 2sr > 9qr/2 > pq+2pr, a contradiction.

Case B.2.2:p≡ s (mod q).
Notice that this impliess≥ p+2q since otherwises= p+q, and thereforep = 2
ands= q+2, which is not possible sinces≥ r +2≥ q+4.

Since there is no solution to (8.2), Lemma 4.3 shows thatapr + asr ≤ q−1.
This impliesasr = q−1 andapr = 0, since otherwise we would get

nk(A)≤ 2n+ pqr+ pq− (r +s+q+1)− (q−2)pr−sr

= 2n+ pq+2pr−sr− (r +s+q+1),
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andsr≥ (p+2q)r ≥ pq+2pr would implynk(A) < 2n.
Thus we haveasr = q−1 andapr = 0. Nownk(A)≤ 2n+ pq+ pr− (r +s+

q+1).
By applying Lemma 4.2 witha = p, b = q, andc = s, we obtain thatr(pqs−

1) is a subsum, and consequentlyar = 0. Thennk(A) ≤ 2n+ pq− (s+ q+ 1).
Therefore, we haveapq = r − 1. Now we apply again Lemma 4.2 witha = s,
b= q, andc= p to obtain thatq(prs−1) is a subsum, which impliesaq = 0. Then
nk(A) ≤ 2n− (s+ q+ 1) < 2n. This closes the proof of this subcase and thus of
Case B.

• Case C:asqr = p−1 andapqr = s−2.
We show that we can reduce this case to Case B. Again, by Proposition 4.1, for
some integerx3,

S ′′′ = {xpqr+ysqr: x≤ s−2 andy≤ p−1}
⊃ qr · ([ps− p, ps−1]\{x3})

The casex3 = ps− 1 is impossible by Proposition 4.1 since it impliesp ≡ 1
(mod s) and thereforep = 1, a contradiction. Thusaqr = 0, since otherwise we
obtainn as subsum.

Using the conditionsapqr = s−2 andaqr = 0, we getnk(A)≤ 2n+ pq− (s+
r +q+1). Thus, assumeapq = r−1, apr = q−1, andap > 0, since otherwise we
obtaink(A) < 2. We note that, in view of (4.2),

{xpq+ypr: x≤ r−1 andy≤ q−1}= p·Σr−1,q−1(q, r) 3 pqr− p.

Let a∈ [0, r−1] andb∈ [0,q−1] with apq+bpr = pqr− p. ThenS= p pqa prb

is a subsequence ofA. We note thatσ(S) = pqr ∈ G0 andk(S) = k(pqr) = 1/s.
Thus,A′ = pqrS−1A is an atom inG0 with k(A′) = k(A) ≥ 2. (cf. the discussion
preceding Lemma 3.2). We note thatvpqr(A′) = 1+vpqr(A) = s−1 andvsqr(A′) =
p−1. However, in Case B we showed that such an atom cannot exist. This settles
Case C and finishes the proof. ut

The following lemma shows thatµ(Z/pqrsZ) ≤ 13 for infinitely many 4-
tuples of distinct primesp, q, r, ands. For notational convenience we switch the
notation toq1, q2, q3, andq4 for the intervening primes.

Lemma 8.2 Let n= q1q2q3q4 with distinct primes q1,q2,q3, and q4. If for each
{i, j,k} ⊂ [1,4] with |{i, j,k}|= 3 the set

{1,qiq j ,qiqk,q jqk} ⊂ Z/qiq jqkZ

is not half-factorial, thenµ(Z/nZ)≤ 13. In particular, this is the case if q3 ≡−1
(mod q1q2) and q4 ≡−1 (mod q1q2q3).

Proof We have to show that the cardinality of each half-factorial subset ofZ/nZ is
not greater than 13. Equivalently, we have to show that ifG0 ⊂ Z/nZ with |G0|=
14, thenG0 is not half-factorial. By Lemma 3.1(a) we can restrict to considering
subsetsG0 ⊂Dn.

Let G0 ⊂ Dn with |G0| = 14, that is|D \G0| = 2. For v ∈ [0,4], let Dv =
{∏i∈I qi : I ⊂ [1,4], |I |= v} ⊂Dn. Clearly,Dn =

⋃4
i=0Dv.
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We distinguish three cases.
Case A:|G0∩D3|= 4. Since|D1|= 4, we haveG0∩D1 6= /0. We assume with-

out restrictionq1∈G0∩D1. We considerH0 = {q1,q1q2q3,q1q2q4,q1q3q4}⊂G0.
By assumption{1,q2q3,q2q4,q3q4} ⊂ Z/q2q3q4Z is not half-factorial. Conse-
quently,H0 is not half-factorial.

Case B:|G0∩D3|= 3. We assume without restrictionq2q3q4 /∈G0. If q1∈G0,
then{q1,q1q2q3,q1q2q4,q1q3q4} ⊂G0 and, as in Case A,G0 is not half-factorial.

Thus assumeq1 /∈G0. ThenH0 = {q2,q1q2q3,q1q2q4,q3q4} ⊂G0. We notice
thatH ′

0 = {q2,q1q2q3,q1q2q4,q2q3q4}, is not half-factorial, yet this is not a subset
of G0. However, since every atom inH0 has to containq3q4 with a multiplicity
that is divisible byq2, we can conclude, replacingq3q4

q2 by q2q3q4 thatH0 is not
half-factorial, sinceH ′

0 is not half-factorial.
Case C:|G0∩D3|= 2. We assumeG0∩D3 = {q1q2q3,q1q2q4}. We haveq1∈

G0 andq3q4 ∈G0. As in Case B we obtain that{q1,q1q2q3,q1q2q4,q3q4} ⊂G0 is
not half-factorial.

It remains to show the “in particular”-statement. It suffices to prove that for all
1≤ i < j < k≤ 4 the set

{1,qiq j ,qiqk,q jqk} ⊂ Z/qiq jqkZ

is not half-factorial. By Remark 7.2(a) this set is not half-factorial, ifqk ≡−α−1

(mod qiq j) wherebqi +cqj = α > qiq j with non-negativeb andc such thatqiq j is
not a subsum, that isb≤ q j −1 andc≤ qi−1. By (4.1) we know that we can write
α = qiq j +1 as such a sum. Since by the choice of the primes we haveqk ≡ −1
(mod qiq j) for all 1≤ i < j < k≤ 4, the result follows. ut

To prove Theorem 2.5 it remains to show the following.

Lemma 8.3 There exist infinitely many4-tuples of distinct primes p, q, r, and s
such thatµ(Z/pqrsZ)≥ 14.

Proof It suffice to consider a quite special situation; we prove, forn = 30p with
p≡ 1 (mod 30), thatµ(Z/nZ)≥ 14.

We show that the setG0 = {1,2,3,5,6,15,30, p,2p,3p,5p,6p,15p,30p} ⊂
Z/nZ is half-factorial. We note that by the proof of Theorem 2.4 the setH0 =
{1,2,3,5,6,15,30}⊂Z/30Z is half-factorial. By abuse of notation we writeG0 =
H0∪ p·H0.

As usual, it suffices to show for∑d∈G0
ad d = kn for some integerk≥ 2, and

ad ∈ [0, r(g,G0)−1], thatn is a subsum. It follows by the restriction on thead’s
that in fact onlyk = 2 is possible. We have

∑
d∈G0

ad d≡ ∑
d∈H0

ad d≡ 0 (mod p).

Thus

a30≡
p−1
30 ∑

d∈H0\{30}
ad d (mod p).
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Since∑d∈H0\{30}ad d≤ 57 we have

a30 =
p−1
30 ∑

d∈H0\{30}
ad d or a30 =

p−1
30 ∑

d∈H0\{30}
ad d− p.

If the former is the case, then∑d∈p·H0
ad d = kn− p∑d∈H0\{30}ad d. We note

that∑d∈p·H0
ad d = p∑d∈H0

apd d and therefore, since we havea30p = 0,

p ∑
d∈H0\{30}

(ad +apd)d = kn.

Since the setH0\{30} is a half-factorial subset ofZ/30Z, it follows that the sum
∑d∈H0\{30}(ad + apd)d = 30k has 30 as a subsum. Ford ∈ H0 \ {30} let bd ≤
ad + apd such that∑d∈H0\{30}bd d = 30 and further leta′d ≤ ad anda′pd ≤ apd

such thata′d +a′pd = bd. We set

a′30 =
p−1
30 ∑

d∈H0\{30}
a′d d.

Thena′30≤ a30 and

∑
d∈G0

a′d d = ∑
d∈H0\{30}

a′d

(
1+30

p−1
30

)
+ ∑

d∈p·H0

a′d d

= p ∑
d∈H0\{30}

(a′d +a′pd)d = 30p,

that is∑d∈G0
ad d hasn as a subsum.

Now, assumea30 = p−1
30 ∑d∈H0\{30}ad d− p. Similarly to above, we obtain

∑d∈H0\{30}(ad +apd)d = 30(k+1). Of course, the sum∑d∈H0\{30}(ad +apd)d =
30(k+ 1) has subsums with sum 30. Yet, in contrast to the previous case, we
cannot necessarily pass from such a subsum to a subsum of the original sum,
sincea′30, the coefficient of 30 defined to yield a total sum of 30p, might be larger
thana30. Specifically, we have to assert the following: There exista′d ≤ ad, for
eachd ∈G0\{30}, such that∑d∈H0\{30}(a

′
d +a′pd)d = 30 and

a′30 = [
p−1
30 ∑

d∈H0\{30}
a′d d]p ≤ a30.

If a′d = 0, or if a′pd = 0, for eachd∈H0, thena′30= 0 and we are done. Thus assume
that subsums of this form do not exist. We consider sums∑d∈H0\{30}bd d without
30 as subsum. We already mentioned that 57 is a (trivial) upper bound for such a
sum. Indeed, the maximal value of such a sum is 49= 2 ·5+4 ·6+15; the other
relevant values are 46= 2+5+4·6+15, 44= 5+4·6+15= 1+2·5+3·6+15,
and 41= 2+4·6+15. And, apart the stated ones, there is no way to obtain these
values as such a sum. Values smaller than 41 are of no interest, since we need to
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have two such sums that sum up to 90. Also, 43 is a possible value of such a sum,
yet irrelevant, since 47 is not attained.

So, we are reduced to consider four explicit cases, namely that∑d∈H0\{30}ad d
equals 49, 46, 44 (with a subcase), and 41, respectively. Having the explicit ex-
pressions for the sums, the remaining arguments are obvious. We only give the
case “41”.

Assume∑d∈H0\{30}ad d = 41. Then∑d∈H0\{30}apd d = 49 anda30 = −1+
11(p−1)/30≥ 10(p−1)/30. We havea6 = 4 anda6p = 4. The subsum defined
by a′6 = 1 anda′6p = 4 andad = 0 for all otherd’s, yieldsa′30 = 6(p−1)/30 and
thus fulfils all conditions. ut

Theorem 2.5 is now an immediate consequence of the preceding three lemmata
and the general upper bound ofτ(n) = 16.

In the following remark we state some further results onµ(Z/pqrsZ) that
yield in combination with the results obtained so far a refined form of Theorem
2.5.

Remark 8.4The following can be proved similarly to the results of this section.

(a) It can be seen, similarly to Lemma 8.2, that in factµ(Z/30pZ) = 14 for p≡ 1
(mod 30).

(b) Similarly to Lemma 8.3, one can obtainn, a product of four primes, for in-
stancen = 42p with p≡ 1 (mod 42), for which µ(Z/nZ)≥ 15.

9 The differenceτ(n)−µ(Z/nZ)

Up to now we only established results whereτ(n)−µ(Z/nZ)≤ 3. In the proof of
Theorem 2.7 we construct a family of integers for whichτ(n)− µ(Z/nZ) tends
to infinity. This is done by a recursive construction. We need the following lemma
that is somehow dual to (1.2).

Lemma 9.1 Let n be a positive integer, m a divisor of n and m′ = n/m.

(a) τ(n)−µ(Z/nZ)≥ τ(m)−µ(Z/mZ).
(b) If gcd(m,m′) = 1, then

τ(n)−µ(Z/nZ)≥ τ(m)−µ(Z/mZ)+ τ(m′)−µ(Z/m′Z).

Proof Let G0⊂Z/nZ a half-factorial set. As usual we assumeG0⊂Dn and more-
over we may assumen ∈ G0, otherwise we could consider the half-factorial set
G0∪{n}.

Let dm = τ(m)− µ(Z/mZ) and dm′ = τ(m′)− µ(Z/m′Z). To prove (a) we
have to show that|G0| ≤ τ(n)−dm. We considerGm

0 = m′ · (Z/nZ)∩G0. Since
m′ · (Z/nZ)∼= Z/mZ, it follows that|Gm

0 | ≤ τ(m)−dm. Thus, there exists a subset
Hm

0 ⊂Dn∩m′ ·(Z/nZ) with |Hm
0 |= dm such thatGm

0 ∩Hm
0 = /0. And, the statement

follows.
Analogously, we obtain a setHm′

0 ⊂ Dn∩m· (Z/nZ) with |Hm′
0 | = dm′ such

thatGm′
0 ∩Hm′

0 = /0. If gcd(m,m′) = 1, thenm· (Z/nZ)∩m′ · (Z/nZ) = {n}. Since
n∈G0, it follows thatHn

0 ∩Hm
0 = /0. AndG0∩ (Hm

0 ∪Hn
0) = /0 implies (b). ut
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We now come to the very proof of Theorem 2.7.

Proof (Theorem 2.7)We prove the following statement: For eachD ∈ N, there
exists an integern with τ(n)−µ(Z/nZ)≥ D andτ(n) = 23D.

ForD = 1 the statement is immediate, for example by Corollary 7.3. LetD≥ 2
and suppose there exists somen′ ∈ N such thatτ(n′)− µ(Z/n′Z) ≥ D− 1 and
τ(n′) = 23(D−1). Let p, q, and r be primes such thatpqr is coprime ton′ and
µ(Z/pqrZ)≤ 7; such primes exist by Corollary 7.3. We setn= pqrn′. By Lemma
9.1 and our hypothesis,τ(n) = 8 τ(n′) = 23(D−1)+3 and we have

τ(n)−µ(Z/nZ)≥ τ(n′)−µ(Z/n′Z)+ τ(pqr)−7≥ D−1+1.

ut

The use of products of four primes and of Lemma 8.2 instead of Corollary 7.3
yields a slightly better construction, but no improvement toτ(n)− µ(Z/nZ) �
logτ(n).
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