Mathematische Annalen manuscript No.
(will be inserted by the editor)

Alain Plagne - Wolfgang A. Schmid

On the maximal cardinality
of half-factorial sets in cyclic groups

Received: date / Revised: date

Abstract We consider the functiop (G), introduced by W. Narkiewicz, which
associates to an abelian groBghe maximal cardinality of a half-factorial subset

of it. In this article, we start a systematic study of this function in the case where
G is a finite cyclic group and prove several results on its behaviour. In particular,
we show that the order of magnitude of this function on cyclic groups is the same
as the one of the number of divisors of its cardinality.
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1 Introduction

A monoidH (a commutative, cancellative semigroup with unit element) is called
atomicif each non-unita € H has a factorizatiom = uy - ... - U with irreducible
elements (atoms), € H. The integek is called thdengthof the factorization. An
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atomic monoidH is calledhalf-factorial, if for each non-unita € H all factoriza-
tions ofa have the same length. Half-factoriality is a central topic in the theory of
non-unique factorization (cf. [3] for a survey and [5,7,12,21] for recent results).

A main tool in this subject, and in particular in this article, are block monoids,
introduced in [24]. For a subs&y of an (additive) abelian grou@ the block
monoid overGy, denoted%(Gp), is defined as the monoid of all zero-sum se-
qguences irGo.

If H is a Krull monoid, for example the multiplicative monoid of a Krull or
a Dedekind domain, with class gro®and Gy C G denotes the set of classes
containing primes, theH is half-factorial if and only if%(Gy) is half-factorial.
A subsetGg of an abelian group is called half-factorial #(Go) is half-factorial.
(See for instance [17,4], and [18] for the algebraic theory of Krull monoids.)

The following problem has been posed by W. Narkiewicz [24, Problem 11]:
Determine, foiG a finite abelian group,

1(G) = max{|Go|: Go C G half-factorial.

The interest in this constant came from the role it plays when investigating the
following counting function: For the monoid of non-zero principal ideals of the
ring of integers of an algebraic number field and a positive intkget Gy (x) be
defined as the number of elements with norm not exceedengd factorizations

of at mostk different lengths. Then

Gk(x) = x(logx) 1#(©/I%(loglogx) ¥(©),

whereG denotes the class group(G) is defined as above, ang(G) just de-
pends ork and the structure of half-factorial sets @fwith cardinality u(G); in

fact also more precise asymptotic results as well as analogous results for other
monoids are known (cf. [25, Chapter 9] or [31,20,11,16,14,13,27,28]).

The problem of determiningt(G) for finite abelian groups in general, and
even for cyclic groups, is wide open. Apart some special results (in particular for
small groups) and the results on cyclic groups we mention below, the value of
u(G) is so far only known in the case wheBeis an elementary-group (see [14,
26)).

In this article we focus on the investigation pfG) for finite cyclic groups.

In the remainder of this section we recall, to the best of our knowledge, what was
known so far onu(G) for cyclic groups. Letn be a positive integer. It is well
known (see [32], also cf. Preliminaries) that

W(Z/nZ) < 7(n), (1.2)

wheret(n) denotes the number of (positive) divisorsmof
If m> 1is a positive integer, them(Z/mrZ) > w(Z/nZ) (see [10]). If addi-
tionally, mandn are coprime, then (see [14])

W(Z/mnZ) > u(Z/m) + u(Z/nZ) - 1. (1.2)

If nis a prime power or the product of two primes, then it is known that equal-
ity holds in (1.1) (see [30,31,35] and [14]).

However, it is also known that equality does not always hold in (1.1); namely
this was proved for 30, 105, and 210 (see [36] and [6]). Recently, M. Radziejewski
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[29] investigated (computationally) half-factorial sets for groups of small order,
his results for cyclic groups can be (roughly) summarized as follows: Equality in
(1.1) holds for alln < 105 except 30, 60, 66, 84, 90, 102, 105, and for thmethe
differencet(n) — u(Z/nZ) equals 1.

By combining (1.2) with the results for prime powers and products of two
primes, the following general lower bound was established in [14]nlst de-
composed as a product of prime powers: M. g™ Mj-1tj with pairwise dis-
tinct primesqa, ..., qr,t1,. .., ts and with integersxs, ..., 0 > 2, then

w(zZ/nzZ) > 1+ PZSJ +iiai. (1.3)

Half-factorial sets, consisting of “small” residue classes that were constructed
by W. Hassler [19] yield other interesting lower boundsdgZ/nZ), for instance

w(Z/nZ) > |{d: djnand 1< d < \/2n/z(n)}|- (1.4)

It is not clear how to derive from his construction a good explicit lower bound
for u(Z/nZ). Some information on the distribution of the divisors of the integer
nis available (see the article [8], where the so-called arcsine-law for the reparti-
tion of divisors is originally proved; see also [34]); however these are mean-value
results, which would only yield a result faimost allintegers. And, in any case

it cannot lead to the lower bound we obtain in Theorem 2.1, where we show that
w(Z/nZ) > t(n)/2 and thus that(n) is the true order of magnitude gf(Z/nZ).
Moreover, we obtain several further results @(Z/nZ), which, among others,
explain the exceptions to equality in (1.1) that we mentioned above. We outline
them in the following section.

2 New results

One of our main results is a new lower bound fdZ/nZ) that shows that(n)
is the true order of magnitude gf(Z/nZ).

Theorem 2.1 Let n=qj*q5? - -- g% with distinct primes g< - - - < gr and positive

integersa, ..., 0. Thenu(Z/nZ) > 1+Ct(n) withC= oy /(04 +1); and ifr> 1
and (q,...,qr) # (2,3,5), then the inequality holds for € o4 _1/(0¢_1+ 1) as
well.
In particular, for any n,
1
wz/nz) > 1+ Er(n).

The proof of this theorem, in Section 5, relies on a technical result (Lemma
5.1), which shows that in a lot of special cases the bound given by Theorem 2.1
can be improved. As an example for this, we obtain the following result.

Theorem 2.2 Let k n be positive integers and=k 1. Then

i B(Z/RNZ)

=1.
v—eo  g(kVn)
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There is however a case in which no improvement on the lower bound of The-
orem 2.1 can be expected by this method, namely the case of squarefree integers.
At first glance, in view of the results mentioned in the Introduction, it could
seem “numerically evident” that(Z/nZ) is even much closer to(n) than proved
by Theorem 2.1, and that(Z/nZ) < t(n) is rather an exceptional phenomenon.
However, we shall see that this is not the case and try to understand how large the
gapt(n) — u(Z/nZ) respectively how small the ratjp(Z/nZ)/t(n) can be.

Looking at the known exceptions to equality in (1.1), we notice that all of them
have (at least) three distinct prime divisors. (Yet, not evewith three distinct
prime divisors is an exception, the smallest example being 42.) The following
theorem, to be proved in Section 6, shows that indeed there exists no exception
with less than three distinct prime divisors, which explains to a certain extent why
“small” exceptions are “rare”.

Theorem 2.3 If n € N is a product of at most two prime powers, then a subset
Go C Z/nZ is half-factorial if and only if @ C {dg: 1 < d | n} for some (gener-
ating) element g Z/nZ; in particular,

W(Z/nZ) = t(n).

In view of Theorem 2.1, we concentrate our further investigations on square-
free integers, the seemingly most natural type of integers to study in the perspec-
tive to find integers for which u(Z/nZ)/t(n) is “small”.

We start, in Section 7, with investigating integers that are the product of three
distinct primes. Here, our main result is the following theorem, which (in this
case) improves the lower bound fofZ/nZ).

Theorem 2.4 If n € N is a product of three distinct primes, then

w(Z/nz) € {7,8} = {r(n)—1,7(n)}.

Moreover, each of the two valuésands, is taken by (Z/nZ) for infinitely many
n € N that are a product of three distinct primes.

In fact, we obtain more precise results. Among others, we determine the value of
w(Z/pqrz) for r from certain congruence classes modptp from our investiga-
tions it seems conceivable to believe that the valug @/ pqgrZ) depends only,
at least for sufficiently large, on the congruence class nfmodulo pg. More-
over, we show, for some special subset&pthat the values, 7 and 8, occur with
the same frequency (cf. Proposition 7.5). In particular, our results explain all the
exceptions tqi(Z/nZ) = t(n) mentioned in the Introduction (cf. Remark 7.6).

We continue with the case of products of four primes and establish the follow-
ing result.

Theorem 2.5 If n € N is a product of four distinct primes, then
W(Z/nZ) € [12,16] = [t(n) — 4, 7(n)].
Moreover, each of the two statements
u(Z/nZ) € {12,13} andu(Z/nZ) € {14,15,16}

holds for infinitely many i N that are a product of four distinct primes.
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In Remark 8.4, after the proof of this result, we discuss possible improvements
to it.

Theorems 2.4 and 2.5 could indicate that one can replace the fg@pod-
curring in Theorem 2.1, by &/ but not, in general, by anything larger. However,
this remains far from being proved. At least our study is a good indication that the
following conjecture could be true:

Conjecture 2.6The lower bound infey tt(Z/nZ) /7(n) > 1/2 holds.

By Theorems 2.1 and 2.5 we know tha?1< infren t(Z/nZ) /T(n) < 13/16.

In Section 9, we continue our investigations on “small valuesfi@f./nZ).
Up to now, the maximal known value for the differend@) — u(Z/nZ) was only
1, and Theorem 2.5 yields examples fon) — i (Z/nZ) = 3. The following result
provides examples where the differend@) — u(Z/nZ) is arbitrarily large; the
proof of this theorem relies on a recursive construction and thus can be used to
obtain explicit examples.

Theorem 2.7 There exists a sequence of integargicn such thatr(n;) tends to
+oo andz(n) — u(Z/nZ) > logzt(n;).

3 Preliminaries

We denote byZ the set of integers, b the set of positive integers, and By =
NU {0}. We define the sequenép)icn as the ordered sequence of prinpgs=
2, p2 = 3 and so on. In this articléa, b] means the set of integerrg Z such that
a<i<h. Forxaresidue class modutoor an integer, the notatiow], means the
integer in[0,n— 1] congruent to« modulon.

We focus on finite cyclic groups; for convenience of notation we will mainly
consider the groups of residue clasggs’Z and denote byn the residue class of
m modulon. We denote byZ, C Z/nZ the set of residue classes modulthat
contain a positive divisor af.

Next, we recall some notation and results for block monoids and half-factorial
sets (cf. for instance [4,10]). L& be an additively written (finite) abelian group
G andGp C G a subset. By aequencéin Gp) we mean an element of (Gp),
the free abelian monoid with bagi, in other words a multiset. As usual, we use
multiplicative notation for sequences, that is

|
S=T[1g =[] 9"<cZ(Go),
i|:| I gelo

whereg; € Go andvy € No. We refer to the divisors of a sequencesabsequences
The identity element of7 (Gp) is called the empty sequence. Ba sequence and
T | Sa subsequence, we denotey!Sthe codivisor ofT with respect t&S.

Moreover,vgy(S) = Vg is called themultiplicity of gin S, 6(S) = 3|_; g the
sumof S, andk(S) = 5!_, 1/ord(gi) thecross numbeof S. A sequencéis called
a zero-sum sequencé ¢(S) = 0 € G, and a sequence is calledro-sumfreéf
o(T) # 0 for each non-empty subsequeficef S

Recall that the block monoiéB(Gy) is defined a§Se .#(Gyp): o(S) =0}. It
is an atomic monoid; its set of atoms is denoted§Go).
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A key result for the investigation of half-factorial subsets of finite abelian
groups is the following characterization of half-factorial sets (see [30,31,35] and
[4] for a proof in the terminology used in this article): F@ra finite (or torsion)
abelian group, a subsetdGy C G is half-factorial if and only if

{k(A): A€ o/ (Go)} = {1}. (3.1)

Investigations on half-factorial sets in cyclic groups are considerably simpli-
fied by the following result (see [32,10]), which we use frequently.

Lemma3.1 Letne Nand G C Z/nZ.

(a) If Go is a half-factorial set, then there exists an automorphisnZfnZ —
Z/nZ such that {Go) C Zh.

(b) If there exists an automorphism %/nZ — 7 /nZ such that {Gp) C %, then
k(A) € N for each Ac &7 (Go).

Clearly, part (a) of this lemma implies (1.1).
For an atomA = 5.4, d" € /(Zn), here and throughout we tacitly assume
thatd is chosen i1, n], the cross number is given by

d 1
din

deZn

Given asum(a weighted sum over the divisorsof of the form

ZVddresp. Z vdg (3.2)
dm ez

with coefficients/y € No, then asubsuniof this sum), is defined as a supg , wqd

resp.y g, wd% with coefficientswy € [0,vy]; that is, a subsum corresponds to
the cross number of a subsequence. This terminology and notation goes back to
A. Zaks [35, 36].

A further tool in our investigations will be the “rolling”-method, introduced
in [23]; the following lemma is a modification of [23, Lemma 4] (we have more
restrictive assumptions and thus a stronger conclusion). It develops the following
basic fact: LetA € &7 (Gp) be an atom and 18| A be a subsequence, théh=
c(S)S A is an atom. Of course, to be able to apply this reduction process in
investigations on half-factorial sets, the underlying set and the cross number must
remain unchanged.

In order to state the lemma conveniently, we introduce the following notation:
Let Gy C Zn andg € Gg. Then

(g, Go) — min ({ord(g)} U { g:ggﬁg . he Go\ {g} with ord(h)ord(g)}) .

Lemma 3.2 Letne Nand & C %, C Z/nZ. For each Ac <7/ (Gp) there exists
some Ae o7 (Gp) with k(A) = k(A') and either

A = g9 for some g= Go  or vg(A') < r(g, Go) for each ge Go.
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Proof LetA e o7 (Gp). If vg(A) < r(g,Go) for eachg € Gy, then the result follows
trivially. Thus, supposé € Gy with maximal order such that,(A) > r(h,Gop). If
r(h,Go) = ord(h), the result follows trivially as well.

Assumer(h, Gp) < ord(h), and letf € Gg with r(h,Gg) = ord(h) /ord(f). Then
f =r(h,Go)h, and we seA* = f'h~V"(NCo) A wherev € N such thatv,(A) =
vr(h,Go) +w for somew € [0, r(h,Gg) — 1]. Now, vg(A*) < r(g,Gop) for eachg €
Gp with ord(g) > ord(h). Thus, iterating this argument, we obtain the result

4 Auxiliary number-theoretical results

First, we introduce some notation. Faf = {a;,...,as} a subset of an (addi-
tive) group anch an integer, we define the set fmultiples of & ash- & =
{hay,...,has}. We also defin& (/) as the set of all sums of elements (with rep-
etition allowed) ofe/. If the number of repetitions of thg’s is bounded then we
shall write

ZKl,,,,ﬁKS(al, .. ,as) = {k1a1 +koap+---+Ksas: Ki,..., ks € No, ki < Ki}.

If gcd(ay,...,as) = 1, then it is very well known that («7) contains all suf-
ficiently large integers. The largest integer notfifier) is called theFrobenius
numberof the set; it is denoteli («7) = F (as,az, ..., as).

For coprime positive integesandb, it is well known (cf. the seminal article
by J.J. Sylvester [33]) that

F(a,b)=ab—a-—b, (4.2)
which easily yields that
[ab—a—b+1,ab—1] C Xy 15-1(ab). (4.2)
We will need a slight development related to this.

Proposition 4.1 Let a and b be two coprime positive integers.

(@) Xp-1a-2(ab) D jab—a—b+1ab—1\ {(a—1)b+ka: 0<ks < |[(b—
1)/al}.
In particular, the setZ,_1 5_2(a,b) contains the intervalab— a,ab— 1] with
at most one exception.

(b) Ifb#1 (moda), thenab-1¢€ X, 1, 2(ab).

Proof By (4.2), we may write

Xy 1a-2(a,b)njab—a—b+1ab—1]
O (Zp-1a1(@b)\{(a—1b+kia: 0< ks <b-—1})N[ab—a—b+1,ab—1]
= [ab—a—b+1,ab—1]\ {(a—1)b+kia: 0<ks < |[(b—1)/al},
since(a—1)b+kjae [ab—a—b-+1,ab— 1] with k; > 0 implies 0<k; < [(b—
1)/a]. This proves (a) except the “in particular’-statement; yet it follows easily,

since two different elements [ab—a, ab— 1] that are not ir,_1 5_»(a, b) would
differ by at least.
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If ab—1¢ Xy 14 2(a,b), then by (a) the integeab— 1 can be written in
the form (a— 1)b + kja for some integek; (such that 0< k; < |(b—1)/a]),
which implies thatab— 1 = (a—1)b (moda) or, equivalentlyb =1 (mod a).
This proves (b). a

The following result will be of use in Section 8.
Lemma 4.2 Let a, b, and ¢ be integers, such that ab and ¢ are coprime. Then
abc—1¢€ Xy 1c1a-1(c,ab,bc).

Proof We noticeXy_1 5-1(c,bc) =c-[0,ab— 1] and thusZy 1 ¢ 14-1(C,ab,bc) =
Yab-1c-1(c,ab). By (4.2) we havdabc—ab—c+1,abc— 1] C Zap 1¢-1(C,ab),
which implies the result. ]

Here is another combinatorial lemma, which is needed in the sequel.

Lemma4.3Letne Nandabe [1,n—1] andf € [1,n— 1] with gcd,n) = 1.
Leto = {1,...,a} C Z/nZ and Z = {1,...,b} C Z/nZ. We assume tha{ -
A )NAB=0.

(a) Thenat+-b<n-1
(b) If B #n—1, then a+-b < n— 2. Moreover, if at- b =n— 2, then either a=1
andf=n—-2,orb=1andf =(n—-1)/2.

Proof Sincef is invertible modulm, obviously the setg - .7 and% are included
in{1,...,n—1}, therefore( - &) N % = 0 implies|.«/| + | 2| < n—1, thatis (a).

We now suppos§ # n— 1. Without restriction we assume that< b, oth-
erwise we consider the situation fii—2], instead. Sincép - </)N.% = 0, we
haveb < [jB]n for eachj € [1,a]. Therefore, if there exists sonjec [1,a] with
[iB]n < n/2, then we havea+b < 2b < 2[jB],—2 < n—3. Thus we assume
[iB]n>n/2foreachj € [1,a], and obtairjf]n= jB — (j —1)nfor eachj € [1,4];
in particular

[@Bln=aB —(a—1L)n=n—(n—Bla<n-—2a,
where equality holds if and only B = n— 2. Sinceb < [a]n, we getb+2a < n,
that isb+ a < n— 2 with equality if and only ifa= 1. This finishes the proof of
(b). O
We end the section with a lemma on primes.

Lemma 4.4 For any se N\ {1,3}, we have

s-2 S 1
—— | <Ps-1-
J; k:|:|+21—1/pk ot
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Proof Fors e {2,4} the statement is clearly true. Thus, $et 5 and assume the
statement is true fas— 1. We have

s—-2 S Pk B Ps s—3 s—1 Pk
5 () = (20 (2 (a2
P (1+4ps2)

ps—1
1+ pso2

=1 -
+ Ps—2+ o1

<

S psflv

where we used the induction hypothesis and the factghat ps_1 + 2. a

For larger values af this lemma can be strengthened. We only remark that bound-
ing the left-hand expression bg— 1) [i_, 1175, = *5 i1 =17, @nd then
using Mertens’ formula (cf. for instance [34]), one obtains, for sufficiently large
s, an upper bound of, say,®logs; note thate” < 1.8, wherey denotes Euler’s
constant. Thus, the left-hand expression can be boundesd Ry with c(-) in-

creasing and unbounded (in fact of linear order).

5 Lower bounds for u(Z/nZ%)

In this section we prove Theorems 2.1 and 2.2. The following technical lemma
is the main tool in these proofs. First, we introduce some notation.ni-er
oy ay? - - - gye with distinct primesy < --- < gsandv; € N, let

s-2 S 1
=2, (” = w) |

Lemma 5.1 Let m= qy*qy? - - - g% with distinct primes g< --- < gsandv; € N.
Let/ > 1an integer and n= m¥. Further, let& = {d : d|m} C Z/nZ. If P(m) < ¢,
thené’ is half-factorial. Moreoveru(Z/nZ) > 1+ t(m).

Proof We denote

loy....oq = {(N1,...,N) € N§ such that 0< my < o for 1<i <k},
so thats = {qillqiz2 .- g with (1,02, .,is) € lyp vy, vs }-
Let us consider an atom i (&),
v:I_.iz,....is

—_—3
— 11 12 |
A= l_l g:d; ---gs )
(1,02, is E'vl,vz ..... Vs

with non-negative integers,, j, .- By (3.1), in order to prove thaf is half-

factorial, we have to show that

_ Ayip,..is _
k(A) = o Z 2. s =1
(ini2,--is)Elvy v, ..vs OFd (ql q; - ‘QS)
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or equivalently

ai]_,lz Isquilqlzz : Is_ . (51)

<i13i27~--7is)€|vl,v2 ..... Vs

But, by Lemma 3.1(b) we havd€A) € N, thus itis enough, in order to prove (5.1),
to show that

S= > By ... is010F -0 < 2n. (5.2)

(i1,i2;-0s)€Elvy vs,....vs
By Lemma 3.2, and computing-, &), we may assume, for each<lj < s, that
Ay in,is < Q) — it i <vj, (5.3)

anday, v, v < —1.
Now, we introduce the following partition of the set of indidgsy,, ...

i va,vs = i—1,v,..vs U ({Vl} X |V2*1-,V37~--7Vs) U ({(Vla V2)} X |V3*17V4--~7Vs)
U---U({(vi,vo, .., vse1) F X lygm1) U{(Va, vo,..., vs) |

Then the sunScan be splitted int&= S+ S, + - - - + S where

S= > a.l.z, isdia - g,

(102, is)€lvy —1v;...,

S] = z all 12,..., |5qlfq|22 IS

(Il 12,0 E{ V1,V2;..,Vj }XIVH»lflA,Vj 25, V8

|s

for1< J <s-1, and flnaIIySs Z(|1|2, Sis)€{(v1,vo,..., vs)}alllz, 7|sq1 q|22
For any 0< j < s—1, using (5.3), we obtain (the empty product is conS|dered

asl)

) 41 |J+2_” is

Sj < gytgp?---q 3 (@41 — D305 -0

(ij+1«,ij+2-,-~-,is)€|vj-+1—1‘v]-+2 ..... Vs 1.Vs

v Vit ij+1 > L
+
= argy? g (g1 —1 ( > qJ‘+1><|'| (quk>>
I]+17 k=j+2 ik:O
< dyay---qa)y ﬁ (qvk : )
= Y1 M2 j Hj+1 ALILP k 1*1/qk

=m Il e

k=j+

in particularSs_; <m.
Finally, S consists of one single term and, sir&g v, v < ¢ —1, we have

S=ay,v,,.. vsqi/ qu : q:s—l QSS <(—1)m
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Summing everything together, we obtain

s—2 s 1
S< —— | m+m+ (£ —1)m=P(m)m+¢m.
; (kllz 1-1/0

Since by assumptioR(m) < ¢, we obtainS < 2n. Thusé’ is half-factorial.
To show the “moreover”-statement, it suffices to note tfat= 7(m) and that
& U {n} is half-factorial as well. O

Having this lemma at hand, we derive easily the lower bound in Theorem 2.1.

Proof (Theorem 2.1first, we proveu(Z/nZ) > 1+ (o4 /(or +1))7(n). We write
n=mgq. Sincet(m) = (oy /(o + 1))t (n), it suffices to verify that the conditions
of Lemma 5.1 are fulfilled fon = mq, that isP(m) < g;.

Note thatm=[]3_, ¢, wheres=r,vi= i forL<i<r—1landv, = o — 1
in casea; > 1, ands=r —1 anda; = v; for each 1<i < sin caseo, = 1.

Sinceqgk > pk for anyk, we obtain

w5 (Mits) <2 (s

andps < gs < gr. Therefore, it is enough to prove

s—2 s 1
2 (ﬂﬂl/m) P

and this follows by Lemma 4.4 and direct checking @ar {1,3}).

Now, letr > 1 and(q,...,q) # (2,3,5); and we may assume;_1 > .
The argument is analogous to the above. We writen'q,_; and have to verify
P(m') < gr—1. By the same reasoning as above, this followsrfgr3 by Lemma
4.4; and for = 3 andg102q3 # 30 it can be seen directly. a

From the proof of Theorem 2.1 it follows that the best estimateufdét/nZ) we
can obtain using this method is given by

1+max{t(m): n=m¢ andP(m) < ¢'}.

In particular, the consta@ in Theorem 2.1 could be replaced by nax/(o; +
1):ie[r—c(r),r]} for some increasing unbounde) (cf. the discussion after
Lemma 4.4).

Clearly, if n has small prime divisors that occur with high multiplicity, one
obtains better lower bounds by “omitting” several small prime divisors rather than
a single large one that occurs with small multiplicity. A similar reasoning appears
in the following proof of Theorem 2.2.

Proof (Theorem 2.2Flearly, P(m) just depends on the squarefree kernehof
ThusP(kVn) = P(kn) for eachv € N. Let vg € N such thak*® > P(kn). Then, by
Lemma 5.1 withk¥*"on = (kVn)k*e, we have

7(kK'n) < w(Z/K"*Vonz)
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for everyv € Np. The result follows, since (the last inequality by (1.1))

v V+Vo
1— fim TR sk

v—o g(kVtVon) — v—e t(kVt+Von) =1

O

In view of the above discussion, we underline the fact that in the case of a
squarefree integar, from the method of this section, we cannot expect any im-
provement of the constany2 in Theorem 2.1.

6 Products of at most two prime powers

In this section we begin our investigations p(¥Z/nZ) for special types of inte-
gers. As mentioned in the Introduction, it is known tpd% /nZ) = =(n) if nis a
prime power or the product of two primes. We extend this result to integers that
are the product of at most two prime powers (Theorem 2.3).

First, we recall a key tool for the proof; then the actual proof will be very short.
For G a finite abelian group, the cross numbe&®fdenoted(G) and introduced
by U. Krause [22], is defined as

K(G) =maxk(A): Ae o/ (G)}.

Its value is (only) known for certain types of groups. We make use of a result by
A. Geroldinger and R. Schneider [15] that yields, as a special &4%2'nZ) for
n the product of two prime powers.

Proof (Theorem 2.3The “only if"-part follows by Lemma 3.1(a). To prove the
“if"-part, it suffices to show thatz, is half-factorial. Thus, by (3.1) and Lemma
3.1(b), it suffices to assert thiatA) < 2 for each atonh € 7 (Zn).

Let n = p%*qf with distinct primesp andq, anda:, B € No. By [15, Theorem
2] (with r € {1,2} ands= 0), we know

1 p*-1 ¢f-1
p'f T pr

k(A) < K(Z/nZ) =

which clearly is less than 2. The “in particular’-statement is obvious. a

7 Products of three primes — Proof of Theorem 2.4

We first proveu(Z/nz) € {7,8} for n the product of three distinct primes (cf.

the proof of Theorem 2.4, main part). We continue with several results that yield
the precise value fqu(Z/pqrZ) provided that the primep, g, andr fulfil certain
conditions; in particular, these results show that each of the values, 7 and 8, occurs
for infinitely many triples of primes (cf. Corollary 7.3 and Proposition 7.4), which
completes the proof of Theorem 2.4. For special cases, sutkas3- p, we will

even show that both values occur with the same frequency (cf. Proposition 7.5).
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Proof (Theorem 2.4, main parbet n = pgr with p, g, andr distinct primes. We
show thatu(Z/nZ) € {7,8}, and by (1.1) it suffices to show(Z/nZ) > 7. We

consideiGy = {1,p, 0,7, pa,dr, par} C %, and prove that this set is half-factorial.
LetA=lg.q,d° € #(Go).

By (3.1) and Lemma 3.1(b), it suffices to shaA) < 2. If A= d”*? for
somed € Gy, this is obvious. Thus we assume, by Lemma 3.2, #gat r(d, Go)
for eachd € Go; thatisa; < p, ap < g, aqg< P, & < g, apg <, ar < p, and
apgr < 1.

We havenk(A) = a1 +app+ aq0+ ar + apgPg+ aqrgr + apqrpgr, and using
the above inequalities, we have

nk(A) < (p—1)+(a-1)p+(p—a+(@-1)r+(r—1)pg+(p—1)qr
=2n+pg—q-r—-1

Sincepg— q—r — 1 can be non-negative we cannot conclude directlykfrar <
2. However, we note that é,q < r —1 oragr < p— 1, thenk(A) < 2. Also,aq =0
yieldsk(A) < 2. Consequently, we assuragy =r — 1, aq- = p— 1, andag > 0.
By (4.2), the equatiorpX +rY = pr —1 has an integral solutiofX,Y) =
(a,b) with a € [0,r — 1] andb € [0, p— 1]. Thus, the sequenc®= g pcf ar’ is a
subsequence @&, and it is a zero-sum sequence wif8) = 1. Hence, we have
eitherA = Sandk(A) = 1, orA # Sand a contradiction té being an atom. O

The following proposition and its corollary provide sufficient conditions, for
distinct primesp, g, andr, to fulfil u(Z/pqrz) = 7, and in particular show the
infinitude of triples of primes withu(Z/pqgrZ) = 7. Indeed, just to show the in-
finitude of such triples, we could also argue as in the proof of [9, Lemma 11];
however that argument was not designed for the present purpose (the aim there
was, in our terminology, to construct atols < (Z,) with large cross number)
and we would only get weaker results.

Proposition 7.1 Let p, g, and r be distinct primes andtac € Ng such that pg
a+bp+cq< 2pq and pq is not a subsum, anfar+bp+cg) = —1 (mod pg).
Thenu(Z/parz) =17.

Recall that “subsums” are defined in the paragraph after (3.2). In particular, the
conditionpgqis not a subsum (ad+ b p+cq) simply means that the linear equation
pg= X + pY + gZ does not have an (integral) solutifq,Y,Z) € [0,a] x [0,b] x

[0,c]. From now on we use this terminology extensively.

Proof By Theorem 2.4 it suffices to show th@d,q is not half-factorial. We set
f =2pg— (ap+bg+c) € [1, pg— 1] and consideB = 1 pg’ F pr gr¢ with
v=1""1 o
pq
It is a zero-sum sequence with cross nunmii@) = 2.
By (3.1) it suffices to show tha® is an atom. Assume to the contrary there
exists soméA € &7 (Zpqr) With A | B andA # B. By Lemma 3.1(b) it follows that
k(A) =1.
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Let A=1° pg" r' pri gr*; note thate € {0,1}. Then
par= (pgr)k(A) = e+wpqg+ir + jpr +Kkqr. (7.1)

Considering (7.1) modulowe obtainwpg= —e (modr).
If € =1, since the unique solution pigX= —1 (modr) with X € [0,r —1] is
v, it follows thatw = v. If ¢ = 0, we obtainvpg=0 (modr), that isw= 0.
However, by the conditions oa,b,c, we have thaS = r2 prP qrc is zero-
sumfree, a contradiction. O

Remark 7.2a) Let all assumptions be as in Proposition 7.1. The proof of the
proposition yields immediately the slightly more precise statement that the set
{1,pq,7,pr,qr} C Z/nZ is not half-factorial. Moreover, it = 0, then even
the set{1,pg, pr,qr} is not half-factorial. (Thab = 0 orc = 0 is impossible.)

(b) The proof of Proposition 7.1 shows that it is not necessary to assumg that
andr are prime, but that it suffices to assume thgiandr are coprime.

We point out that the existence of a non-half-factorial sul&ett 2, with
|Go| = 4 is an extremal case, since any subse®pfwith three elements is half-
factorial (see [2]).

Corollary 7.3 Let n= pqgr with distinct primes p, q, and r.

(@ If r = —a~! (mod pg) for somea € [1,min{p—1,q— 1}], then we have
W(Z/nZ) = 7. In particular, for any two distinct primes’mnd d we have
W(Z/p'qr'Z) = 7 for infinitely many primes'r

(b) Ifp=2andr=(1-2j)~t (modq) for some je [1,(q—1)/2], then we have
w(z/nz) =1.

Proof To prove (a), it suffices to show that the conditions of Proposition 7.1 are
fulfilled. We note that by (4.1) for angt € [1,min{p— 1,q— 1}] there exist non-
negative integera, b such thatp+bg= pg+ ¢, and in fact necessarigye [0,q—
1] andb € [0, p— 1]. Thuspqis not a subsum cp+ bg. We haver (ap+bqg) =
ra = —1 (mod pg), thus the conditions of Proposition 7.1 are fulfilled.

The “in particular’-statement follows immediately, since there exist infinitely
many primes congruenttef~* (mod p'q’) for everyp € [1,min{p' —1,q — 1}]
by Dirichlet’'s theorem on primes in arithmetic progressions.

The proof of (b) is similar. Note that@is not a subsum of@< a+b2+cq<
4qifand only ifa=0,c=1, andb € [(q+1)/2,q— 1] (to avoid any confusion,
we keep our notations for weighted sums, even in this special case where it might
look strange). Thus(Z/2qrZ) < 8 if r(g+2b) = —1 (mod 2j) for someb €
[(9+1)/2,9— 1], and the result follows. O

Next we give, in case = 2, a sufficient condition fou(Z/pqrZ) = 8. It
yields, again by Dirchlet’s theorem on primes in arithmetic progressions, the in-
finitude of such triples of primes and thus completes the proof of Theorem 2.4.

Proposition 7.4 Let g and r be two distinct odd primes. I& 1 (mod q), then
w(Z/2qrZ) = 8.
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Proof We need to show’ = %, = {1,2,19,2q,T, 2r,qr, 2qr } is half-factorial. Let
A=Tlgeyd° € &7(2). By Lemma 3.1(b) and (3.1), we knok(A) € N and it
suffices to showk(A) < 2. By Lemma 3.2 we may assume without restriction that
vg(A) < r(d,2) for eachd € 2, thatisay < 2,8 <, 8q < 2,8q <T, & < 2,
ayr < Q, 8gr < 2, andaggr = 0.

It follows easily, using the bounds on thgs, thatk(A) < 3. Thus it suffices
to prove thak(A) £ 2. Assume to the contrak(A) = 2, that is

2qrk(A) = a1 + a2+ aq0+ axq(209) + a1 +ax (2r) + agr(qr) = 4ar.

We now show that @ is a subsum, which will be contradictory ®obeing an
atom.

We note thaty + a2+ aq0+axq(20) < 2qr — 1+q. Thereforea, r +ay (2r)+
agr(qr) > 2qr, since the left-hand side in this expression is divisible bgnd we
may assumey = 0, aqr = 1, andayr € [(q+1)/2,q— 1], since otherwise we get
immediately that 8r is a subsum.

Thus

arr +az (2r) +agr(qr) =r(29—1+2j) (7.2)

with somej € [1,(q—1)/2], whereaxq = j+ (q—1)/2, anda; + a2+ aqq +
axq(2q) = r(29+1—2j). We consider (7.2) modulocgand obtain, since = 1
(mod 2), thata; + a2+ aqq=1—2j (mod 2y) and thusa; +a2+aqq=1—
2j + 2q. It follows that axq(2q) = (r —1)(29+ 1—2j). If ag = 1, we have the
subsumg + 51 (2q) +qr = 2qr. If aq =0, we haves; = 1 anday > (q—1)/2,
and thus the subsumd9:12 4 1(2q) +qgr = 2qr. O

We apply the results we obtained so far to determi(ig/6pZ), u(Z/10pZ),
andu(Z/14pz) for all primesp.

Proposition 7.5 Let n= pgr with distinct primes p, g, and r.

(@) If 6] n, thenu(z/nZ) =8forn/6=1 (mod 3 andu(Z/nZ)=7forn/6=2
(mod 3.

(b) If 10| n, thenu(Z/nZ) =8forn/10=1or 2 (mod 5 andu(Z/nZ) = 7 for
n/10=3o0r4 (mod 5.

(c) If 14| n, thenu(Z/nZ) =8forn/14=1,30r5 (mod 7) and u(Z/nz) =7
forn/14=2,40r 6 (mod 7).

Proof Part (a) and the majority of cases in (b) and (c) follow by Corollary 7.3 and
Proposition 7.4. In (b) it remains to consider the cage0= 2 (mod 5 and in (c)
the casen/14= 3 or 5 (mod 7). The other being similar, we only give the details
for (b).

gl'r)lus, assume = 10p with p prime andp =2 (mod 5. We need to show
that the setZy, is half-factorial. LetA = g, 0™ € &/ (%h). As in the proof
of Proposition 7.4, it suffices to shok(A) # 2, and we assume to the contrary
k(A) = 2. That is, we have

a1 + a2+ as5+ a1010+ app+ axp(2p) + asp(5p) + aiop(10p) = 20p.

We show that 1 is a subsum, which will be a contradiction.
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By Lemma 3.2 we may assurae, as, ap, asp < [0,1], az,a2p € [0,4], andag €
[0, p—1]. It follows that

app+azp(2p) +asp(5p) = kp

with 10 < k < 14. Fork € {10,12, 14} we obtain immediately 1as a subsum.

If k=11, thena; + a2+ asb+ a;010= 9p. We consider the equation mod-
ulo 10 and obtain tha; + a2+ as5 = 63 (mod 10 and thusa; + a2+ as5 €
{3,183} If & + 82 + 85 = 3, thenayo = 3 (%5* ), therefore 2+ 2 %5*) 10+
2(2p) = 10p is a subsum; ifa; + a2 + as5 = 13, thenajg = 9"%013, and 5+
(%) 10+ 5p = 10pis a subsum.

The argument fok = 13 is similar. a

In the following remark we apply the results obtained in this section to give an
explanation for all exceptions 10(Z/nZ) = t(n) mentioned in the Introduction.

Remark 7.6For n € {30,66,102} we haveu(Z/nZ) < t(n) by Proposition 7.5,
sincen is of the form @ with p congruent to—1 modulo 3; in contrast to 42 and
78. Forn = 105 this follows by Corollary 7.3 witlp = 3, g =5, anda = 2; and
for n= 84 by Remark 7.2 (b) witlp= 3 andg =4 since 75= -1 (mod 12 and
3:3+2-4=12+5.

Finally, 60, 90, and 210 are exceptions, siieg, Yy, and Z,10 contain the
non-half-factorial set 2230, 3- P30, and 7- Pz, respectively (see Lemma 9.1 for
a less informal argument).

8 Products of four primes — Proof of Theorem 2.5

In this section we consider squarefree numbers with exactly four prime divisors;
we prove Theorem 2.5 and mention possible improvements to it (cf. Remark 8.4).
The proof of Theorem 2.5 is split into the following three auxiliary results.

Lemma 8.1 Let n= pgrs with distinct primes p, g, r, and s. ThgZ/nZ) > 12.
Proof Assumep < q<r < s. We assert that the set
Go = {1,p,9,7,5, P9, PT,qT, ST, PO, SO, PATS} C Zn C Z/nZ

is half-factorial.

LetA= ﬂaeGoaad € o/ (Go). We havenk(A) = Y., a4 d and need to show
thatk(A) = 1. By Lemma 3.1 we know(A) € N, and we assume to the contrary
thatk(A) > 2.

By Lemma 3.2 we may assumae, aq, a,aqgr, asqr < P— 1, ap,apr,asr < q—1,
as,8pq < r—1,apqr < s—1, and finallyapgrs = 0, from which we obtain

nk(A) < 2n+2par+pg—ar— (r +s+q+1).

This implies that(p — 1) — asqr + (S— 1) — apgr < 2, since otherwise we get
k(A) < 2, a contradiction. We distinguish three cases:
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e Case Ailaggr = p— 2 andapgr = s— 1.
By Proposition 4.1 we know that, for some integer
& ={xpar+ysqgr: x<s—1andy < p—2}
Dar-([ps—p, ps— 1\ {x1}).
Sinceps—1orps—2isin[ps— p, ps— 1]\ {x1}, we get thah—qr = qr(ps—
1) or n—2gr belongs to.. It follows thatag > 2 would yieldn as subsum, a
contradiction toA being an atom. Thus we assumg < 1. However, using the
additional conditionsisqr = p— 2 andag, < 1, we get the new bound
nk(A) < 2n+ pgr—sqgr+qr+ pgq— (r +s+g+1)
<2n—(r+s+q+1),
sinces— p— 1> 4 andr > p. This is a contradiction te(A) > 2.
e Case Bagqr = p— 1 andapgr =s—1.
Similarly to the previous case we obtain, by (4.2),
" = {xpgr+ysqr: x<s—1andy < p—1}
oqr-[ps—p—s+1,ps—1].
If aqr > 0, we get thah is a subsum, a contradiction. Thus, we obtajn= 0.
Using this additional condition, we have the bound
nk(A) < 2n+par+pg—(r +s+q+1). (8.1)
We observe that we must haag # 0. Otherwise, we have

nk(A) < 2n+ pgr+ pg—sqr+sr— (r+s+q+1)
=2n+pq(r+1)—q(r—1)s—(r+s+q+1)
and we derive a contradiction tdA) > 2, sincep<g,q<r—landr+1<s
We distinguish the two subcasas = 0 anday, # 0.

Case B.1ap =0.
In this case, we gatk(A) < 2n-+ pr+ pg— (r +s+q+1). Thereforeas; € {q—
2,g-1}.

If agy = q— 1, then by applying Lemma 4.2 with= p, b= g, andc = swe
obtain thatr(pgs— 1) is a subsum, thereforg = 0. Thennk(A) < 2n+ pq—
(s+qg+1). Thus, we haveapq =r — 1. Now we apply Lemma 4.2 with ='s,
b= g, andc = p and obtain thagj(prs— 1) is a subsum, which implies = 0 and
consequentlyk(A) < 2n, a contradiction.

We can now assume that, = q— 2. Therefore, we have the bound

nk(A) < 2n+pr+ pg—sr—(r+s+g+1).
We will refine the previous argument (using again (4.2)):
S = {xsr+ypar+zsqr: x<q—-2,y<s—1 z<p-1}
=r-({xssx<q-2}+qg-{yp+zsy<s—1,z<p-1}
D r-(s:[0,9-2]+q-[ps—s,ps—1])
= ar(ps—s)+1-Zs-14-2(0,9)
D gr(ps—s)+r-([as—a,as— 1]\ {X2})
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for somexy, by Proposition 4.1; and in fac¥” containg (pgs— 1) or r(pgs—2).
This impliesa, < 1 and improves the estimate fiok(A) to

nk(A) <2n+pr+pg—sr—(r+s+q+1)— (p—2)r < 2n,
a contradiction.

Case B.2ayr #0.
If there exist 1< X' < apr and 1<y < ag such that

Xp+ys=0 (modq), (8.2)

that isx' p+Yy's= jq for some integei, then we obtaim as subsum. This follows,
sincej < p+s—1, and thugr(pg— j) € ¥".

Thus we assume that there exists no solution to (8.2) and consider two distinct
subcases.

Case B.2.1p#s (modq).
This means thgB = [—ps 1|4 is different fromq — 1. Writing o7 = {1,...,ap}
and# = {1,...,as}, we are in a position to apply Lemma 4.3 #ygZ. This
implies thatapr +asr < q— 2. But, if apr +asr < g— 2, then we can improve the
estimate in (8.1) to

nk(A) <2n+ par—+ pgq— (r+s+9g+1)—(g+1)pr < 2n

and are done.

Thus we may assume thag + asr = g — 2. We are therefore in the equality
case of Lemma 4.3 and eithag;, = q— 3 andagr = 1, orapr = 1 andagy = q— 3.

If apy = q— 3 andag; = 1, then we are done as well, since

nk(A) < 2n+ par+ pg— (r +s+q+1) — 2pr — (q—2)sr
<2n—(s—p)(d—2)r+pq,
in view of g < r and(s— p)(q—2) > 5(p—1) > p, a contradiction td(A) > 2.
Thus we haveapr = 1 andas; = q— 3. Moreover, = —2 (modq). This
implies thatp=2s (mod q). Sincep-+q < 2sandp # 2s— 2q, we getp < 25— 3q.
On the other handik(A) is bounded as follows:

nk(A) < 2n+ pg+2pr —2sr—(r +s+qg+1).
We may thus assume thptj+ 2pr > 2sr. Thus

2s< $+2p<3p§65—9q

ands> 9q/4. Therefore & > 9qr/2 > pg+ 2pr, a contradiction.

Case B.2.2p=s (mod Q).
Notice that this implies > p+ 2q since otherwise = p+ q, and thereforg = 2
ands= g+ 2, which is not possible since>r +2 > q+ 4.

Since there is no solution to (8.2), Lemma 4.3 shows #at-asr < gq—1.
This impliesasy = q— 1 anda,r = 0, since otherwise we would get

nk(A) < 2n+ pgr+ pg— (r+s+9+1)— (q—2)pr —sr
=2n+pgq+2pr—sr—(r+s+q+1),
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andsr > (p-+2q)r > pg+ 2pr would imply nk(A) < 2n.

Thus we havesr = q— 1 andapr = 0. Nownk(A) < 2n+ pg+ pr— (r +s+
q+1).

By applying Lemma 4.2 witla = p, b = g, andc = s, we obtain that (pgs—
1) is a subsum, and consequendly= 0. Thennk(A) < 2n-+ pgq— (s+q+1).
Therefore, we have,q =r — 1. Now we apply again Lemma 4.2 with= s,
b= q, andc = p to obtain that)(prs—1) is a subsum, which implie, = 0. Then
nk(A) < 2n—(s+q+1) < 2n. This closes the proof of this subcase and thus of
Case B.

e Case Casqr = p— 1 andapgr =s—2.
We show that we can reduce this case to Case B. Again, by Proposition 4.1, for
some integeks,

P {qurerSC]r: x<s—2andy< p— 1}
S ar-([ps—p, ps— 1]\ {xs})

The casexs = ps— 1 is impossible by Proposition 4.1 since it implips= 1
(mods) and thereforep = 1, a contradiction. Thuag, = 0, since otherwise we
obtainn as subsum.

Using the conditiongipgr = S— 2 andag, = 0, we getnk(A) < 2n+ pg— (s+
r+q-+1). Thus, assumapq =r —1,a, = q— 1, anda, > 0, since otherwise we
obtaink(A) < 2. We note that, in view of (4.2),

{xpg+ypr: x<r—landy<q-1}=p-X_14-1(0,r) > pgr—p.

Letac [0,r — 1] andb € [0,q— 1] with apg+ bpr = pgr— p. ThenS= p paf pr°

is a subsequence éf We note thaio (S) = par € G andk(S) = k(par) = 1/s.
Thus,A’ = parS A is an atom inGp with k(A') = k(A) > 2. (cf. the discussion
preceding Lemma 3.2). We note thgty (A') = 1+ vpgr(A) = s— 1 andvsgr(A) =

p— 1. However, in Case B we showed that such an atom cannot exist. This settles
Case C and finishes the proof. O

The following lemma shows that(Z/pqgrsZ) < 13 for infinitely many 4-
tuples of distinct primeg, g, r, ands. For notational convenience we switch the
notation toqs, gz, g3, andg, for the intervening primes.

Lemma 8.2 Let n= g1020304 With distinct primes ¢ 02,93, and g. If for each
{i,},k} C [1,4] with |{i, j,k}| = 3 the set

{1,005, %0k, 00k} C Z/0iQj0Z

is not half-factorial, theru(Z/nZ) < 13. In particular, this is the case iffg= —1
(mod g102) and gy = —1 (mod q10203).

Proof We have to show that the cardinality of each half-factorial subsgfnZ is
not greater than 13. Equivalently, we have to show th&it- Z/nZ with |Gg| =
14, thenGy is not half-factorial. By Lemma 3.1(a) we can restrict to considering
subsetssy C .

Let Go C Zn with |Gg| = 14, that is|Z \ Gg| = 2. Forv € [0,4], let 2" =
{l_liel i I C [154]7 “ ‘ = V} C %n. Clearlyf-@n = Ui4:0‘@v'
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We distinguish three cases.

Case A|GoN 23| = 4. Sincg 2| = 4, we haveGyN 21 # 0. We assume with-
out restrictiorty € GoN 2. We consideHo = {01, 010203, 10204, 010304 } € Go.
By assumption{1, 003, %20, Gz0a} C Z/020307Z is not half-factorial. Conse-
guently,Hg is not half-factorial.

Case Bi{Gon 23| = 3. We assume without restricti@agzag ¢ Go. If 01 € Go,
then{dr, i0203, id204, idzda} C Go and, as in Case A3 is not half-factorial.

Thus assumdz ¢ Go. ThenHp = {0, 010208, 10204, G30a} € Go. We notice
thatHy = {02, Ji0R03, Git0, G20z }, is not half-factorial, yet this is not a subset
of Gg. However, since every atom g has to contairgzgy with a multiplicity
that is divisible byg,, we can conclude, replaciggz® by tzz0z thatHy is not
half-factorial, sinceH() is not half-factorial.

Case C{GoN 23| = 2. We assum&pN Z° = {G10203, 010204 } - We have €
Gp andgztz € Gp. As in Case B we obtain thdfr, 010203, 010204, 0302 } C Go is
not half-factorial.

It remains to show the “in particular’-statement. It suffices to prove that for all
1<i< j<k<4the set

{1, 95, G0k, 0j0k} C Z/0i 0 OkZ

is not half-factorial. By Remark 7.2(a) this set is not half-factoriayifts —a 1
(mod giq;j) wherebg +cqj = o > g;q; with non-negativés andc such thatq; is
not a subsum, that Is< g; — 1 andc < g; — 1. By (4.1) we know that we can write
o = gigj + 1 as such a sum. Since by the choice of the primes we aze—1
(modgiq;) forall 1 <i < j < k < 4, the result follows. ad

To prove Theorem 2.5 it remains to show the following.

Lemma 8.3 There exist infinitely mang-tuples of distinct primes p, q, r, and s
such thatu(Z/pqrsz) > 14.

Proof It suffice to consider a quite special situation; we prove rfer 30p with
p=1 (mod 30, thatu(Z/nZ) > 14.

We show that the seBp = {1,2,3,5,6,15,30,P,2p,3p,5p, 6p, 15p,30p} C
Z/nZ is half-factorial. We note that by the proof of Theorem 2.4 thetget
HoU p-Ho.

As usual, it suffices to show fgf 5. as d = kn for some integek > 2, and
aq € [0,r(g,Go) — 1], thatn is a subsum. It follows by the restriction on thg's
that in fact onlyk = 2 is possible. We have

Z agd= z agd=0 (mod p).
deGy deHg

Thus
p—1
30 _ _
deHo\ {30}
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SincezaeHo\{e’—o} ag d < 57 we have

-1 -1
as0= "~ > ad or as0= o= > ad-p
30 4 30 . 4
deHo\ {30} deHo\ {30}
If the former is the case, thefy .4 @1 d = kn— P gcpy, (30, @ d- We note

thaty yep.H, @ d = P den, @pd d and therefore, since we hasgo, = 0,

P > (ag+ap)d=kn
deHo\ (30}

Since the seitlp\ {30} is a half-factorial subset & /30Z, it follows that the sum
¥ deto) (30} (Bd + @pa)d = 30k has 30 as a subsum. Fdre Ho \ {30} let by <
ag + apg such thaty g,y 135, ba d = 30 and further led); < ag andaj,y < apg
such thaey + a4 = by. We set

1
to=tgp Y d
deHo\ {30}

Thenaj, < azpand

Sdd= 5 a1t s s
_ _ . 30 .
deGq deHo\ {30} dep-Hg

=p > (ag+ap)d=30p,
deHo\ (30}

that isy 3., as d hasn as a subsum.
Now, assumeagg = p3;01 Y deHo\ (30} @& d — p. Similarly to above, we obtain

¥ deto\ (30} (3d +8pa)d = 30(k+ 1). Of course, the surlige\ (30; (3d +8pa)d =

30(k+ 1) has subsums with sum 30. Yet, in contrast to the previous case, we
cannot necessarily pass from such a subsum to a subsum of the original sum,
sinceay, the coefficient of 30 defined to yield a total sum of3énight be larger
thanagg. Specifically, we have to assert the following: There ea&fsK ag, for

eachd € Go \ {30}, such thaty .\ 35 (8 + a,q)d = 30 and

-1
agy = [L ag d]p < aso.

0 Gerioniao)

If &y =0, orifayy = 0, for eactd € Ho, thenag, = 0 and we are done. Thus assume
that subsums of this form do not exist. We consider s§s$, \ 130 b d without

30 as subsum. We already mentioned that 57 is a (trivial) upper bound for such a
sum. Indeed, the maximal value of such a sum is=4®B- 5+ 4.6+ 15; the other
relevantvalues are 462+5+4-6+15,44=5+4.-64+15=1+2-5+3-6+15,

and 41=2+4-6+ 15. And, apart the stated ones, there is no way to obtain these
values as such a sum. Values smaller than 41 are of no interest, since we need to



22 Alain Plagne, Wolfgang A. Schmid

have two such sums that sum up to 90. Also, 43 is a possible value of such a sum,
yet irrelevant, since 47 is not attained.

So, we are reduced to consider four explicit cases, namel§that 30, & d
equals 49, 46, 44 (with a subcase), and 41, respectively. Having the explicit ex-
pressions for the sums, the remaining arguments are obvious. We only give the
case “41".

AssumezaeHo\@} ag d = 41. ThenzaeHo\{@} apg d =49 andagy = —1+
11(p—1)/30> 10(p—1)/30. We havess = 4 andagp = 4. The subsum defined
by ag = 1 andag, = 4 andag = 0 for all otherd’s, yieldsag, = 6(p—1)/30 and
thus fulfils all conditions. a

Theorem 2.5 is now an immediate consequence of the preceding three lemmata
and the general upper bounddh) = 16.

In the following remark we state some further resultsiofZ/pqrsZ) that
yield in combination with the results obtained so far a refined form of Theorem
2.5.

Remark 8.4The following can be proved similarly to the results of this section.

(a) It can be seen, similarly to Lemma 8.2, that in fa¢¥./30pZ) = 14 forp=1
(mod 30.

(b) Similarly to Lemma 8.3, one can obtaim a product of four primes, for in-
stancen = 42p with p=1 (mod 42, for whichu(Z/nZ) > 15.

9 The differencet(n) — u(Z/nZ)

Up to now we only established results whete) — 11(Z/nZ) < 3. In the proof of
Theorem 2.7 we construct a family of integers for whidim) — 1 (Z/nZ) tends

to infinity. This is done by a recursive construction. We need the following lemma
that is somehow dual to (1.2).

Lemma 9.1 Let n be a positive integer, m a divisor of n anti-en/m.

(@) t(n) — u(Z/nZ) = (M) — u(Z/mz).
(b) If gcdm,m') =1, then

©(n) — w(Z/Z) > 7(m) — u(Z/mZ) + t(m) — u(Z/m'Z).

Proof LetGp C Z/nZ a half-factorial set. As usual we assuBgC 2, and more-
over we may assume € Gg, otherwise we could consider the half-factorial set
GoU {ﬁ}

Let dm = t(m) — p(Z/mZ) anddyy = t(m') — u(Z/mM'Z). To prove (a) we
have to show thalGo| < 7(n) — dm. We consideiG}' = v - (Z/nZ) N Go. Since
m - (Z/nZ) = 7/mZ, it follows that|GJ'| < t(m) —dm. Thus, there exists a subset
HY' C Zhnm - (Z/nZ) with [HJ'| = dm such thaGJ'NHE" = 0. And, the statement
follows.

Analogously, we obtain a seig{ C Innm-(Z/nZ) with |Hg{| = dyy such
thatGI' NHY' = 0. If gcd(m, ') = 1, thenm- (Z/nZ) Nt - (Z/nZ) = {n}. Since
ne Gy, it follows thatH) N"Hy' = 0. AndGo N (HF'UHG) = 0 implies (b). O



On the maximal cardinality of half-factorial sets in cyclic groups 23

We now come to the very proof of Theorem 2.7.

Proof (Theorem 2.7We prove the following statement: For eabhe N, there
exists an integem with t(n) — u(Z/nZ) > D andt(n) = 2%°.

ForD = 1 the statement is immediate, for example by Corollary 7.30Let2
and suppose there exists somes N such thatr(n') — u(Z/nZ) > D —1 and
7(n') = 230-1)_ Let p, q, andr be primes such thapgr is coprime ton’ and
w(Z/parz) < 7; such primes exist by Corollary 7.3. We set pqrn’. By Lemma
9.1 and our hypothesis(n) = 8 7(n') = 23(P-1+3 and we have

t(n) —w(Z/nZ) > t(n') — w(Z/NZ)+t(pgr) —7>D—1+1.
O

The use of products of four primes and of Lemma 8.2 instead of Corollary 7.3
yields a slightly better construction, but no improvementtn) — u(Z/nZ) >

logz(n).
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