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Half-factorial sets in finite abelian groups: a survey

Wolfgang Alexander Schmid∗

Abstract

A monoid is called half-factorial if every non-unit element has a factorization
into irreducible elements and the length of such a factorization is uniquely deter-
mined by the element. A subset of an abelian group is called a half-factorial set if
the monoid of all zero-sum sequences in the set is a half-factorial monoid. In this
survey recent results on half-factorial sets in finite abelian groups are discussed,
with an emphasize on results that concern the maximal possible cardinality of
half-factorial sets. These results are complemented with some conjectures and
speculations. Moreover, it is sketched how these results are motivated by and can
be applied to problems in (commutative) algebra, in particular in the study of
Krull monoids and thus Dedekind domains, and in algebraic number theory.

1 Introduction

The study of half-factorial sets in (finite) abelian groups is motivated by and can be ap-
plied to arithmetical problems in Krull monoids, thus in particular in Dedekind domains
and in the rings of integers of algebraic number fields. First, we present some (infor-
mal) definitions and examples. Then, we sketch this connection and mention a further
application of half-factorial sets. In Sections 2 and 3 we give complete definitions and
explain this connection in detail.

A monoid, as a domain, is called factorial, if every non-unit has an essentially unique
factorization into irreducible elements (atoms). That is, if a = u1·. . .·ul and a = u′1·. . .·u

′
l′

are factorizations of a into atoms, then l = l′ and there exists a permutation τ such that
for each 1 ≤ i ≤ l the elements ui and u′τ(i) are associates. We call l the length of the
factorization. A monoid is called half-factorial if every non-unit has a factorization into
atoms and the length of such a factorization is uniquely determined by the element.
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If D is a Dedekind domain, or more generally a Krull domain, then the multiplicative
monoid (D \ {0}, ·) is a Krull monoid. It is well known that the ring of integers of an
algebraic number field is factorial if and only if its class group is trivial. The analogous
statement for Krull monoids is true as well. The class group is viewed as a measure for
the deviation of the ring from factoriality.

A first result on half-factoriality, without already using this term, is due to L. Car-
litz [2]. He proved that the ring of integers of an algebraic number field is half-factorial
if and only if its class group has at most two elements (cf. Theorem 3.2). In contrast to
the aforementioned result on factoriality, this result does not have an exact analog for
Krull monoids. On the one hand, every Krull monoid whose class group has at most two
elements is half-factorial. On the other hand, indeed for every finite abelian group G
there exists a half-factorial Krull monoid, even a Dedekind domain, whose class group
is isomorphic to G. Krull monoids with infinite class group exist as well. In particular,
it is known that every finitely generated group and every Warfield group is isomorphic
to the class group of some half-factorial Krull monoid (see [19]).

Answering a question of W. Narkiewicz (cf. [40]), L. Skula [50] and A. Zaks [53] gave a
characterization of half-factorial Krull monoids (cf. Theorem 4.1). In [53] the term “half-
factorial” was initially used. Meanwhile, the study of half-factorial domains and monoids
is a main subject in non-unique factorization theory, and this characterization result has
become a key tool in it. We refer to the articles by S.T. Chapman and J. Coykendall [5],
S.T. Chapman, M. Freeze, and W.W. Smith [6] (where also generalizations of the concept
“half-factorial” are discussed), and J. Coykendall [10], the references given there, and the
recent articles [19, 34]. For an exposition of non-unique factorization theory in general
see for instance the collections [1] and [4].

Whether a Krull monoid is half-factorial just depends on its class group and the
subset of classes containing primes. Note that this subset can be almost arbitrary for
general Krull monoids, the only condition is that it generates the class group (as a
monoid). In contrast, it is well known that every class in the class group of the ring
of integers of an algebraic number field contains primes (that is, prime ideals); and the
aforementioned result of L. Carlitz makes use of this property.

Thus, to decide whether a Krull monoid is half-factorial, it suffices to decide this
for some (auxiliary) Krull monoid with isomorphic class group and subset of classes
containing primes.

The following class of auxiliary monoids, called block monoids, has been introduced
by W. Narkiewicz [39]. Let (G,+, 0) be an abelian group and G0 ⊂ G. Let S =
(g1, . . . , gn) be a (finite) sequence in G0; sequences that just differ in the ordering of
the terms are identified, so an alternative common name for a sequence, in the present
sense, is “multiset”. If

∑n
i=1 gi = 0 ∈ G, then S is called a zero-sum sequence. The set

of all sequences in G0, with concatenation as operation, is a monoid; and the subset of
zero-sum sequences is a submonoid. This submonoid is called the block monoid over G0,
and is denoted by B(G0).

A block monoid is itself a Krull monoid. If H is a Krull monoid with class group G
and subset of classes containing primes G0 ⊂ G, then the arithmetic of H and B(G0) are
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strongly connected. Indeed, various arithmetical invariants of H and B(G0) are equal.
In particular, H is half-factorial if and only if B(G0) is half-factorial; more generally, all
invariants defined via lengths of factorizations are equal (cf. Theorem 3.1). However,
note that in general the class group of B(G0) is different from G.

Now, a subset G0 ⊂ G of an abelian group is called half-factorial if the block monoid
B(G0) is a half-factorial monoid.

In this survey we focus on results on half-factorial sets in finite abelian groups.
We emphasizes those results that concern the problem of determining the maximal
cardinality µ(G) of a half-factorial set in a finite abelian group G. And, we discuss the
according inverse problem, that is the problem to describe the structure of half-factorial
sets with cardinality µ(G). The problem of determining µ(G) was explicitly raised by
W. Narkiewicz [39] and originated in investigations on counting functions of algebraic
integers with certain factorization properties. Asymptotic formulae for these functions
involve the constant µ(G) and a constant that depends on the structure of half-factorial
sets with cardinality µ(G) (see Subsection 3.2 for further details and references).

The survey is organized as follows. In Section 2 we discuss, in more detail, some
basic definitions, in particular those of Krull monoids, block monoids, and half-factorial
sets. Having these at hand, we explain more concisely, in Section 3, how results on half-
factorial sets relate to the problem of half-factoriality of Krull monoids, and how they
can be applied to and are motivated by investigations on certain counting functions. In
Section 4 we state the characterization result of L. Skula and A. Zaks, and moreover
various consequences of it, which are frequently used tools. In Section 5 we discuss
the concept of weakly half-factorial sets, and results on half-factorial sets that can be
obtained by applying results on weakly half-factorial sets. In the remaining three sections
we discuss results for specific types of groups, namely elementary p-groups, cyclic groups,
and p-groups, respectively. We hardly present proofs; but for some results, where it seems
useful for the further discussion, we give (brief) outlines of the proofs.

2 Preliminaries

In this section we summarize terminology and definitions that we need in the remainder
of this survey. In particular, we explain the notions of Krull monoids and block monoids.
The terminology and notation we use is fairly standard in non-unique factorization
theory, cf. for instance the surveys [29, 7].

Throughout, we denote by Z the integers, by N and N0 the positive and non-negative
integers, respectively, and by P ⊂ N the prime numbers; by [m,n] = {z ∈ Z : m ≤ z ≤ n}
we denote the interval of integers.

2.1 Monoids and factorizations

A monoid H is a commutative cancellative semigroup with identity element 1H ∈ H, and
we use multiplicative notation throughout. The subgroup of units (invertible elements)
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of H is denoted by H×. A quotient group of H is denoted by q(H).
Two elements a, b ∈ H are called associates if there exists a unit ε ∈ H× such that

a = εb. A monoid is called reduced if its subgroup of units is trivial. Hred = H/H×

denotes the reduced monoid associated to H. Frequently, it is advantageous to study
factorization properties of H in the associated reduced monoid.

An element a ∈ H \ H× is called an atom (or irreducible) if a has no non-trivial
divisors, that is a = bc with b, c ∈ H implies b ∈ H× or c ∈ H×. The subset of atoms of
H is denoted by A(H). An element p ∈ H \H× is called prime if p | bc with b, c ∈ H
implies p | b or p | c. The subset of primes of H is denoted by P(H). Every prime is an
atom, that is, P(H) ⊂ A(H).

The monoid H is called atomic if every a ∈ H \H× is the product of (finitely many)
atoms, and it is called factorial if every a ∈ H \ H× is the product of (finitely many)
primes. If a = p1 · . . . · pl with primes p1, . . . , pl ∈ P(H), then this is (essentially)
the unique way to factor a into atoms; more precisely, if a = u1 · . . . · ul′ with atoms
u1, . . . , ul′ ∈ A(H), then l = l′ and there exists a permutation τ of [1, l] such that pi and
uτ(i) are associates for each i ∈ [1, l]. Thus, in a factorial monoid every non-unit has an
essentially unique factorization into atoms. H is factorial if and only if it is atomic and
A(H) = P(H).

If a = u1 · . . . · ul with atoms u1, . . . , ul ∈ A(H), then l is called the length of the
factorization of a. For a ∈ H \H× the set

LH(a) = {l ∈ N : a has a factorization of length l} ⊂ N

is called the set of lengths of a and for a ∈ H× set LH(a) = {0}. Note that in general sets
of lengths can be infinite. An atomic monoid is called a bounded factorization monoid
(BF-monoid), if LH(a) is a finite set for each a ∈ H.

A monoidH is half-factorial if |LH(a)| = 1 for every a ∈ H, that is, if each a ∈ H\H×

has a factorization into atoms and all factorizations of a have the same length.

2.2 Free monoids and Krull monoids

A monoid is called free if it is factorial and reduced. For a set P let F(P ) denote the free
abelian monoid with basis P , that is, F(P ) is the set of commutative formal products

{
∏

p∈P

pvp : vp ∈ N0 and vp = 0 for almost all p ∈ P}.

Let H be a monoid and F be a free monoid. A monoid homomorphism ϕ : H → F
is called a divisor homomorphism if

a |H b if and only if ϕ(a) |F ϕ(b).

A divisor homomorphism ϕ : H → F with the property that for every f ∈ F there exists
a set {a1, . . . , an} ⊂ H such that

f = gcd({ϕ(a1), . . . , ϕ(an)})
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is called a divisor theory. (Since F is a free monoid, every non-empty subset has a unique
greatest common divisor.)

A monoid H is called a Krull monoid if it posses a divisor theory. The divisor theory
of a Krull monoid is unique up to isomorphisms. There are several other characteriza-
tions of Krull monoids (see [30, Chapters 22 and 23]). We only mention the following
two:

• A monoid is a Krull monoid if and only if it posses a divisor homomorphism.

• A monoid is a Krull monoid if and only if it is is completely integrally closed and
v-noetherian.

Krull monoids are atomic and even BF-monoids. Let H be a Krull monoid and ϕ : H →
F a divisor theory. The class group of H is defined as Cl(H) = q(F )/q(im(ϕ)), that is,
the quotient group of F modulo the quotient group of im(ϕ). As usual, we use additive
notation for the class group. For f ∈ F we denote by [f ] ∈ Cl(H) the class containing
f , and the subset {[p] : p ∈ P(F )} ⊂ Cl(H) is referred to as the set of classes containing
primes. As mentioned in the Introduction, a Krull monoid is factorial if and only if
|Cl(H)| = 1.

2.2.1 Examples of Krull monoids

The notion of Krull monoids allows a unified treatment of quite different structures. The
main examples of Krull monoids are:

• Multiplicative monoids of Krull domains, thus in particular Dedekind domains and
rings of integers of algebraic number fields.

• Block monoids, that is the monoids of zero-sum sequences of subsets of abelian
groups (see Subsection 2.4).

• Monoids of certain isomorphy classes of modules under direct sum composition
(see for example [12, 13]).

In the theory of non-unique factorizations in an integral domain, almost always, only
the multiplicative monoid of this integral domain is of relevance. More precisely, if units
are negligible, then even only the associated reduced monoid of non-zero principal ideals
is responsible for the arithmetical properties of the integral domain.

We mention that the connection among the notions “Krull domain” and “Krull
monoid” is closer than already stated. It was proved by U. Krause [36] that a domain D
is a Krull domain if and only if its multiplicative monoid (D \ {0}, ·) is a Krull monoid.



46 W.A. Schmid

2.3 Some notation for finite abelian groups

In this subsection, we fix some notation for finite abelian groups.
Throughout, let (G,+, 0) be a finite abelian group. For a subset G0 ⊂ G we denote

by 〈G0〉 the subgroup generated by G0. A subset G0 ⊂ G \ {0} is called independent if,
for mg ∈ Z,

∑

g∈G0

mgg = 0 implies mgg = 0 for all g ∈ G0.

If we say that a set {e1, . . . , es} is independent, we tacitly assume that the ei’s are
distinct. For g ∈ G we denote by ord(g) ∈ N the order of the element.

For n ∈ N, let Cn denote a cyclic group with n elements. Suppose |G| > 1. Then
there exist uniquely determined integers 1 < n1| . . . |nr such that

G ∼= Cn1
⊕ · · · ⊕ Cnr

.

We denote by r(G) = r the rank of G and by exp(G) = nr the exponent of G. In case
|G| = 1, we set r(G) = 0 and exp(G) = 1.

The group G is called elementary if exp(G) is squarefree, and it is called a p-group
if exp(G) = pk for some p ∈ P and k ∈ N. Thus, elementary p-group means exp(G) =
p ∈ P.

2.4 Sequences and block monoids

In this subsection, we recall the definitions of sequences and block monoids, in a more
formal way than in the Introduction, and some additional terminology.

Let (G,+, 0) be an abelian group and G0 ⊂ G. An element S ∈ F(G0) is called a
sequence in G0. We refer to the divisors (in F(G0)) of S as subsequences of S.

For a sequence S =
∏

g∈G0
gvg , we denote by

• |S| =
∑

g∈G0
vg its length.

• σ(S) =
∑

g∈G0
vgg ∈ G its sum.

• k(S) =
∑

g∈G0

vg

ord(g)
its cross number.

Then, | · | : F(G0) → N0, σ : F(G0) → G, and k : F(G0) → Q≥0 are monoid ho-
momorphisms. The kernel of σ is called the block monoid over G0. It is denoted by
B(G0).

The embedding B(G0) ↪→ F(G0) is a divisor homomorphism, and thus B(G0) is a
Krull monoid. However, in general this embedding is not a divisor theory and possibly
G 6∼= Cl(B(G0)) or even 〈G0〉 6∼= Cl(B(G0)). Yet, under certain, not too restrictive,
conditions B(G0) ↪→ F(G0) is a divisor theory, G is the class group of B(G0) and G0 is
the set of classes containing primes; in particular, B(G) ↪→ F(G) is a divisor theory if
and only if |G| 6= 2 (see [27]).
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Clearly, B(G0) is atomic. The atoms of B(G0) are the minimal zero-sum sequences
in G0, that is, zero-sum sequences such that no proper non-trivial subsequence is a zero-
sum sequence. For notational convenience the set of atoms of B(G0) is denoted just by
A(G0).

Now, we recall the main definition of this survey.

Definition 2.1 Let G be an abelian group. A subset G0 ⊂ G is called a half-factorial
set if B(G0) is a half-factorial monoid. For G a finite abelian group, let

µ(G) = max{|G0| : G0 ⊂ G half-factorial}.

3 Applications of half-factorial sets

In this section we explain, in more detail, how half-factorial sets are related to half-
factorial Krull monoids, and how half-factorial sets can be applied in the study of the
counting functions mentioned in the Introduction, in particular we discuss the signifi-
cance of the constant µ(G) in this context.

3.1 Transfer and block homomorphisms

First, we recall the notion of transfer homomorphisms; it has been introduced by
F. Halter-Koch [29], also see [21] for recent developments. A monoid homomorphism
θ : H → B is called a transfer homomorphism if

• B = θ(H)B× and θ−1(B×) = H×, and

• if u ∈ H, b1, b2 ∈ B and θ(u) = b1b2, then there exist u1, u2 ∈ H such that u = u1u2

and θ(ui) is associated to bi for i ∈ [1, 2].

An important property of transfer homomorphisms is that they preserve sets of lengths,
more precisely (see [29]): Let θ : H → B be a transfer homomorphism. Then

LH(a) = LB(θ(a)),

for every a ∈ H.
Let H be a Krull monoid and ϕ : H → F(P ) a divisor theory. Further, let

G0 ⊂ Cl(H) denote the set of classes containing primes and π : F(P ) → F(G0) the
homomorphism defined by p 7→ [p].

Then β = π ◦ ϕ is called the block homomorphism of H. Since elements of H are
mapped to the zero-class, it follows that imβ ⊂ B(G0) and indeed the following holds.
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Theorem 3.1 Let H be a Krull monoid and G0 ⊂ Cl(H) the set of classes containing
primes. Then

β : H → B(G0)

is a (surjective) transfer homomorphism. In particular, H is a half-factorial monoid if
and only if G0 is a half-factorial set.

The origins of this theorem can be traced back to W. Narkiewicz [39], subsequent
formalizations and generalizations are mainly due to A. Geroldinger and F. Halter-Koch,
see for instance [17], the surveys [29, 7], or [20].

Thus, the problem of deciding whether a Krull monoid is half-factorial, and more gen-
erally the problem of determining the sets of lengths of its elements, can be transferred
to the associated block monoid and thus to a question on zero-sum sequences in abelian
groups. In particular, having this machinery at hand, the theorem of L. Carlitz [2] on
half-factorial rings of integers can be obtained quite easily. We state its generalization
due to L. Skula [50] and A. Zaks [53, 54].

Theorem 3.2 Let H be a Krull monoid such that every class contains a prime. Then
H is half-factorial if and only if |Cl(H)| ≤ 2.

Clearly, by Theorem 3.1 this result is equivalent to the statement: An abelian group
is a half-factorial set if and only if |G| ≤ 2.

The general approach of this survey is to investigate the block monoid B(G0) for
some subset G0 ⊂ G of some finite abelian group, without having in mind any specific
monoid or domain that actually has G as class group and G0 as set of classes containing
primes. This approach is justified by realization results asserting that for every abelian
group G and every subset G0 ⊂ G that generates G as a monoid there actually exists a
Krull monoid (in fact even a Dedekind domain) with class group isomorphic to G such
that G0 corresponds to the set of classes containing primes; see [9], the book [14], and
[26, 50, 27, 25] for generalizations and refinements.

3.2 Applications in algebraic number theory – asymptotic of
counting functions

In this subsection, we discuss the significance of half-factorial sets for quantitative results
in the arithmetic of algebraic number fields. It has been a main motivation for research
on half-factorial sets.

Let R be the ring of integers of an algebraic number field. Then R is a Dedekind do-
main (hence a Krull monoid) with finite class group G and every class contains infinitely
many primes.

In the sixties W. Narkiewicz [38] started a systematic investigation of problems of the
following type (also see [40, Chapter 9] and the references there). Let Z ⊂ R be a subset
defined by some phenomenon of non-unique factorization. Determine the asymptotic of
the counting function

Z(x) = |{aR : a ∈ Z, N (a) ≤ x}|, x→ ∞.
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We specifically discuss the functions Gk(x), for k ∈ N, defined by the sets

Gk(R) = {a ∈ R \ {0} : |L(a)| ≤ k}.

(Note that by Theorem 3.2 these functions are only of actual interest if |G| ≥ 3.) It is
known that (see [51] and [18])

Gk(x) ∼ Cx(log x)−1+µ(G)/|G|(log log x)ψk(G),

where µ(G) denotes, as defined in Subsection 2.4, the maximal cardinality of a half-
factorial set in G and ψk(G) depends only on k and the structure of half-factorial sets
with cardinality µ(G). For other counting functions of this type similar results are
known, but instead of problems related to half-factorial sets other (combinatorial) prob-
lems arise, see [28] for a unified approach.

We briefly outline how this result is obtained and emphasize in what way the expo-
nents arise. Let Gk(G) = {B ∈ B(G) : |L(B)| ≤ k} and let β : R \ {0} → B(G) denote
the block homomorphism. Then Gk(R) = β−1(Gk(G)). Now, there are two main steps
to determine the asymptotic formula for Gk(x).

First, for G0 ⊂ G and S ∈ F(G \G0), let Ω(G0, S) = S · F(G0) ∩ B(G). It is known
that if Ω(G0, S) 6= ∅, then

|{a ∈ H : β(a) ∈ Ω(G0, S)}| ∼

{

Cx(log x)−|G\G0|/|G|(log log x)|S| if G0 6= ∅

Cx(log x)−1(log log x)|S|−1 if G0 = ∅

for some C > 0, see [51] and [33] for more precise asymptotic results.
And, it is known that the set Gk(G) can be written as a finite union of Ω-sets, say

Gk(G) =
n

⋃

i=1

Ω(Gi, Si)

with Gi ⊂ G and Si ∈ F(G \Gi). This already yields that

Gk(x) ∼ C ′x(log x)A(log log x)B

with A = −1 + m/|G|, where m = max{|Gi| : i ∈ [1, n]}, and, provided some Gi is
non-empty, B = max{|Si| : |Gi| = m}.

Since B(G0) ⊂ Gk(G) if and only ifG0 is half-factorial, it can be shown thatm = µ(G)
and ψk(G) is the maximal t ∈ N with the property that there exists a half-factorial set
G0 ⊂ G with |G0| = µ(G) and a sequence S ∈ F(G \ G0) with |S| = t such that
∅ 6= Ω(G0, S) ⊂ Gk(G); see [18].

These counting functions were also studied for other structures, namely in abstract
settings, for holomorphy rings in functions fields over finite fields [31], and for non-
principal orders [22]. In all these cases, a similar asymptotic formula holds and the
invariant µ(G) appears as the exponent of the logarithmic factor.
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A very recent contribution to this subject is due to M. Radziejewski [44]. He investi-
gated oscillations of Gk(x) about its main term and, among others, proved the existence
of oscillations under the assumption that ψk(G) > 0. For k ≥ 2 and arbitrary G it was
subsequently proved by M. Radziejewski and the author [46] that in fact ψk(G) > 0
holds. Also, the positivity of ψ1(G) was proved for several types of groups; yet only
for groups where one has some understanding of the structure of half-factorial sets with
maximal cardinality in G.

4 General results on half-factorial sets

From this section on we present the subject of half-factorial sets in a purely group
theoretical setting. Throughout, let G denote an, additively written, finite abelian
group. First, we state the already mentioned characterization result for half-factorial
sets, due to L. Skula [50] and A. Zaks [53, 54], and then various frequently used results
on half-factorial sets.

Theorem 4.1 A subset G0 ⊂ G is a half-factorial set if and only if

k(A) = 1 for each A ∈ A(G0).

This characterization is the key tool in investigations of half-factorial sets in finite
abelian groups. By Theorem 3.1 it provides a characterization of half-factorial Krull
monoids with finite class group. For a characterization of arbitrary half-factorial monoids
see [35].

Next, we collect a variety of auxiliary results that can be proved using the charac-
terization result, details and further results of this flavor can be found in [15].

1. The setG0 ⊂ G is half-factorial if and only ifG0∪{0} is half-factorial. In particular,
if G0 is a half-factorial set with maximal cardinality |G0| = µ(G), then 0 ∈ G0.

2. Independent sets are half-factorial. (Indeed, they are even factorial, that is the
block monoid over an independent set is a factorial monoid.) Thus, every finite
abelian group has a half-factorial generating set. (As indicated in the Introduction,
the problem to decide whether this is also true for infinite abelian groups is open;
for recent results see [19].)

3. Subsets of half-factorial sets are half-factorial. In particular, if G′ ⊂ G is a sub-
group, then µ(G′) ≤ µ(G).

4. Let G = G′ ⊕G′′. If G′
0 ⊂ G′ and G′′

0 ⊂ G′′ are half-factorial sets, then G′
0 ∪G

′′
0 is

a half-factorial set. In particular, µ(G) ≥ µ(G′) + µ(G′′) − 1.
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In view of 3., we point out the result due to W. Gao and A. Geroldinger [15] that there
exist finite abelian groups G for which no half-factorial set with maximal cardinality
generates the group; in particular, in this case there exists a proper subgroup G′ ( G
with µ(G′) = µ(G). We discuss this surprising result in more detail in Section 8. For
now we only mention a result in the converse direction.

Theorem 4.2 ([15]) If G is cyclic or elementary, then every maximal, with respect to
inclusion, half-factorial subset is a generating set.

It is clear that every half-factorial set with maximal cardinality is maximal with
respect to inclusion, yet the converse is in general not true; cf. Section 6 for examples.

In the following lemma subsets that consist of independent elements and one or two
additional elements are considered. Among others, this lemma is an essential tool in the
proofs of the results given in Section 6.

Lemma 4.3 ([15]) Let {e1, . . . , er} ⊂ G an independent set with ord(e1) = · · · =
ord(er) = n, and let g = −

∑r
i=1 biei and g′ = −

∑r
i=1 b

′
iei with bi, b

′
i ∈ [0, n − 1] and

ord(g) = ord(g′). Further, let G0 ⊂ G be a half-factorial set with {g, e1, . . . , er} ⊂ G0.

1.
∑r

i=1 bi = n− gcd{n, b1, . . . , br}.

2. Assume g′ ∈ G0. Then bi = b′i and ord(biei) = ord(g) for some i ∈ [1, r] implies
g = g′.

We emphasize that 1. is in general only a necessary condition.
Outline of proof. The result is proved by applying the condition k(A) = 1 to suitable
atoms of B(G0). For instance, the sequence A′ = g

∏r
i=1 e

bi
i is an atom. Since ord(g) =

n/ gcd{n, b1, . . . , br}, the condition k(A′) = 1 is equivalent to the first statement. 2

We end this section by mentioning that for groups with |G| ≤ 95 all half-factorial
subsets have been determined (computationally) by M. Radziejewski [45].

5 Half-factorial sets via weakly half-factorial sets

The notion of a weakly half-factorial set was introduce, using different terminology, by
J. Śliwa [52] as a tool to investigate half-factorial sets. In this section, among others, we
state a recent result on weakly half-factorial sets (cf. Theorem 5.3) and some results on
half-factorial sets that can be obtained by applying this result.

Definition 5.1 Let G be a finite abelian group. A subset G0 ⊆ G is called weakly
half-factorial if k(A) ∈ N for each atom A ∈ A(G0); and

µ0(G) = max{|G0| : G0 ⊆ G weakly half-factorial}.
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Since half-factorial sets are characterized as those sets G0 ⊂ G for which k(A) = 1 for
each atom A ∈ A(G0), every half-factorial set is weakly half-factorial and µ(G) ≤ µ0(G).

Weakly half-factorial sets are in general easier to investigate than half-factorial ones,
mainly because of the following characterization in terms of characters of the group (see
[52] and also [15]).

Lemma 5.2 Let G be a finite abelian group with exp(G) = n. A subset G0 ⊆ G is
weakly half-factorial if and only if there exists a character χ : G→ Z/nZ such that

G0 ⊂ {g ∈ G : χ(g) =
n

ord(g)
+ nZ}.

For instance, this characterization almost directly yields that µ0(C
r
p) = 1 + pr−1,

since it implies that all non-zero elements of a weakly half-factorial set are contained in
the same affine hyperplane.

Very recently, M. Radziejewski and the author [47] determined µ0(G) and the struc-
ture of weakly half-factorial sets with maximal cardinality for arbitrary finite abelian
groups (previously, this was already known for groups of the form C r

n by a result of
W. Gao and A. Gerolginger [15]).

Theorem 5.3 Let G = ⊕r
i=1Cni

with n1 | · · · | nr. Further, let H = ⊕r−1
i=1Cni

and
e ∈ Cnr

a generating element. Then

µ0(G) =
∑

d|nr

r−1
∏

i=1

gcd(ni, d),

and G0 ⊂ G is a weakly half-factorial set with maximal cardinality if and only if there
exists an automorphism f of G such that

f(G0) =
⋃

d|n

{h+ exp(G)
d

e : h ∈ H and ord(h)|d}.

Moreover, every weakly half-factorial set that generates G and is maximal with respect
to inclusion has cardinality µ0(G).

A weakly half-factorial subset of G that is maximal with respect to inclusion does not
necessarily generate the group, and thus possibly has a cardinality smaller than µ0(G).
These weakly half-factorial sets were characterized in [47] as well.

It is clear that Theorem 5.3 yields the upper bound

µ(⊕r
i=1Cni

) ≤
∑

d|nr

r−1
∏

i=1

gcd(ni, d).

And, more information on half-factorial sets (for certain groups) can be obtained from
it. First, we recall the definition of the cross number of a group. Let G be a finite
abelian group, then K(G) = max{k(A) : A ∈ A(G)} denotes the cross number of G.
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By the very definition of weakly half-factorial sets and by the characterization of
half-factorial sets (cf. Theorem 4.1), it is clear that for groups with K(G) < 2 every
weakly half-factorial set is half-factorial. Thus, for groups with K(G) < 2, Theorem 5.3
yields the value of µ(G), and the structure of half-factorial sets with maximal cardinality.
Moreover, by results of U. Krause, C. Zahlten [37] and A. Geroldinger, R. Schneider [24]
all groups with K(G) < 2 are known. Indeed, these are precisely the groups occurring
in the following corollary.

The results stated in the following corollary were partly well known (for 1. cf. [50,
51, 53, 8, 23, 42] and for special cases of 2. cf. [52, 23, 46]). The approach via weakly
half-factorial sets presented in [47] provided a unified proof of these known results and
in addition some new results.

Corollary 5.4 Let p, q ∈ P with p < q and m,n ∈ N0.

1. µ(Cpmqn) = µ0(Cpmqn) = (m+ 1)(n+ 1).

2. µ(Cpm ⊕ Cpm+n) = µ0(Cpm ⊕ Cpm+n) = npm + pm+1−1
p−1

.

3. µ(C2 ⊕ C2qn) = µ0(C2 ⊕ C2qn) = 3(n+ 1).

And, in each of the cases the structure of half-factorial sets with maximal cardinality is
given by Theorem 5.3.

As mentioned above, for all groups not given in Corollary 5.4 actually K(G) ≥ 2.
Thus, one cannot extend this straightforward way of applying Theorem 5.3 to further
classes of groups. However, Theorem 5.3 is also a main tool to determine µ(G) for further
classes of groups; in particular, to obtain the following result that (partly) extends
Corollary 5.4.3.

Proposition 5.5 ([47]) Let p, q ∈ P distinct and G = Cp ⊕ Cpq.

1. If q ≡ 1 (mod p), then µ(G) = 2p+ 2.

2. If q 6≡ 1 (mod p), then µ(G) = 2p+ 1.

Outline of proof. We note that µ0(Cp ⊕ Cpq) = 2p + 2. Thus, in order to prove 1. it
suffices to show that a weakly half-factorial set with maximal cardinality is half-factorial.
To prove 2., one shows that a weakly half-factorial set with maximal cardinality is not
half-factorial, but the set obtained by removing the element with order q from it is
half-factorial. 2

In Section 7 we encounter an analog of the phenomenon that µ(Cp ⊕ Cpq) depends
on a congruence condition among divisors of the order of the group.

We conclude this section by remarking that for groups with large rank, which implies
large cross number, weakly half-factorial sets can be much larger than half-factorial sets;
for instance, µ0(C

r
p) = 1 + pr−1 whereas µ(Cr

p) ≤ 1 + rp/2 (cf. Theorem 6.1).
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6 Elementary p-groups

Elementary p-groups are a class of groups for which half-factorial sets are relatively well
understood. In particular, in this case the value of µ(G) and the structure of half-factorial
sets with maximal cardinality are known (cf. Subsection 6.1). Yet, a complete charac-
terization of all half-factorial sets is only known in special cases (cf. Subsection 6.2).

For an elementary p-group, since every non-zero element has order p, the character-
ization of a half-factorial set G0 simplifies to: |A| = p for every A ∈ A(G0) \ {0}.

6.1 Maximal cardinality and the inverse problem

In this subsection we present results on the maximal cardinality of half-factorial sets
and the according inverse problem. The following theorem was obtained for groups with
even rank by A. Geroldinger and J. Kaczorowski [23] and for odd rank by A. Plagne and
the author [41].

Theorem 6.1 For p ∈ P and r ∈ N,

µ(Cr
p) =

{

2 + r−1
2
p if r is odd,

1 + r
2
p if r is even.

The solution of the inverse problem was given in [41] as well.

Theorem 6.2 There exists an absolute constant c > 0 such that for G0 ⊂ Cr
p a half-

factorial set the following holds: If |G0| > µ(Cr
p) − cp, then there exists an independent

generating set {e1, . . . , er} ⊂ Cr
p , such that

G0 ⊂

b r
2c

⋃

i=1

{je2i−1 + (p+ 1 − j)e2i : j ∈ [1, p]} ∪ {er, 0}.

In particular, if µ(G) = |G0|, then

G0 =

b r
2c

⋃

i=1

{je2i−1 + (p+ 1 − j)e2i : j ∈ [1, p]} ∪ {er, 0}.

Outline of proofs. To show that the expressions on the right-hand side in Theorem 6.1 is
a lower bound and that the set on the right-hand side in Theorem 6.2 is half-factorial, one
repeatedly applies 4. of Section 4 and results on p-groups of rank 1 and 2 (cf. 1. and 2. of
Corollary 5.4; note however the difference in notation, in order to have a consistent
formulation of Theorem 6.2 and Theorem 6.3).

To obtain the upper bounds Lemma 4.3 and further results of this type are main tools.
A crucial point of the argument, in particular for the inverse result, is the following:
The half-factorial sets that are used to obtain the lower bounds consist, except the
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zero-element, of an independent generating set and elements that have two non-zero
coordinates with respect to this generating set. And indeed, if G0 is a half-factorial set
for which this is not the case, that is G0 contains some element that has three or more
non-zero coordinates with respect to some independent generating set contained in G0,
then for |G0| a (considerably) improved upper bound, namely by cp, for some c > 0,
smaller than the aforementioned lower bounds, can be obtained. 2

We point out that the property of elementary p-groups that every subset contains
an independent generating set (of the generated subgroup) is crucial for the proof. In
Section 8 we see, in more general situations, that for half-factorial sets that contain an
independent generating set good estimates for their cardinality are known.

Given the way Theorem 6.1 is stated, a natural question to address is the size of
the constant c. In [41] it was noted that Theorem 6.2 holds for “c = 1/12” and that it
cannot hold, in general, for “c=1”; and some further considerations were made there:

For p ∈ P and r ∈ N, let c0(p, r) denote the supremum of all c > 0 such that the
conclusion of Theorem 6.2 holds for the group Cr

p .

Then 1/6 ≤ lim infp→∞ c0(p, r) ≤ 1 for odd r ≥ 3 and 2/3 ≤ lim infp→∞ c0(p, r) ≤ 2
for even r ≥ 4. It is highly unlikely that equality holds at the lower bounds. Also, there
is no good evidence, known to the author, that supports that equality holds at the upper
bounds; yet this might be the case.

Moreover, c0(p, r) ≥ c0(p, r + 2) and

c0(p, 2r) ≥ c0(p, 2r + 1) ≥ c0(p, 2r + 2) − (p− 2)/p

for every r ∈ N. In the following subsection we give the values of c0(p, r) for r ≤ 2
and for p ≤ 7. Yet, the problem of determining c0(p, r) in general or, more modestly, to
determine for some fixed r the behavior of c0(p, r) as p→ ∞ is open.

6.2 Complete characterization in special cases

The results of the preceding subsection describe the structure of half-factorial sets with
(almost) maximal cardinality. Yet, in general there exist half-factorial subsets that are
not contained in a half-factorial set with maximal cardinality. For arbitrary elementary
p-groups a complete characterization of half-factorial sets is not known.

Let G denote an elementary p-group. In this subsection we present a complete
characterization of its half-factorial sets in case r(G) ≤ 2 or exp(G) ≤ 7, and a (partial)
conjecture for the general case.

6.2.1 Small rank

The case r(G) ≤ 2 is in fact already settled by the results mentioned in Section 5. We
recall that in this case every half-factorial subset is contained in a half-factorial subset
with cardinality µ(G); this set is uniquely determined up to automorphisms of the group.
In particular, this yields c0(p, 1) = c0(p, 2) = ∞ for every prime p.
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For r(G) ≥ 3, and general exponent, the problem of determining all half-factorial
subsets is open. It seems, to the author, that even for r(G) = 3 an explicit characteriza-
tion of all half-factorial sets could be quite complex. The fact that in this case K(G) > 2
and weakly half-factorial sets can differ considerably from half-factorial ones can be seen
as explanation for the seemingly rapid increase in difficulty.

6.2.2 Small exponent

For groups with small exponent Lemma 4.3 yields very restrictive conditions. These
conditions can be used, in combination with some more or less ad hoc considerations,
to give a complete characterization of all half-factorial sets in case exp(G) ≤ 7; for
exp(G) = 2 this was initially given by W. Narkiewicz [39] and the other cases were given
in [49], for exp(G) = 3 a slightly different characterization was obtained independently
by M. Radziejewski [43].

To state the result conveniently, we introduce some additional notation (cf. [48]). Let
G0 ⊂ G be a non-empty subset. The set G0 is called decomposable, if G0 has a partition
G0 = G′

0∪̇G
′′
0 with non-empty sets G′

0 and G′′
0 such that 〈G0〉 = 〈G′

0〉 ⊕ 〈G′′
0〉; and it is

called indecomposable otherwise. There exist a uniquely determined d ∈ N and (up to
order) uniquely determined indecomposable sets ∅ 6= G1, . . . , Gd ⊂ G0 such that

G0 =
˙⋃d

i=1
Gi and 〈G0〉 = ⊕d

i=1〈Gi〉.

Thus, in order to describe all half-factorial subsets, it suffices to determine all indecom-
posable half-factorial subsets.

Theorem 6.3 Let G be an elementary p-group, for some p ∈ {2, 3, 5, 7}, and G0 ⊂ G
an indecomposable half-factorial set. (The sets {e1, . . . , en} below are independent.)

1. If p = 2, then G0 = {g} for some g ∈ G.

2. If p = 3, then

• G0 = {g} for some g ∈ G or

• G0 = {je1 + (4 − j)e2 : j ∈ [1, 3]}.

3. If p = 5, then

• G0 = {g} for some g ∈ G,

• G0 ⊂ {je1 + (6 − j)e2 : j ∈ [1, 5]}, or

• G0 = {4(e1 + e2 + e3 + e4), e1, e2, e3, e4}.

4. If p = 7, then

• G0 = {g} for some g ∈ G,

• G0 ⊂ {je1 + (8 − j)e2 : j ∈ [1, 7]},
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• G0 ⊂ {5(e1 + e2 + e3), 4(e1 + e2), e1, e2, e3}, or

• G0 = {6
∑6

i=1 ei, e1, . . . , e6}.

It is of course more natural to express the result for p = 2 as: G0 ⊂ Cr
2 is half-

factorial if and only if G0 \ {0} is independent, which is the way it is stated in [39]. Yet,
to have a uniform description for all p ∈ {2, 3, 5, 7}, we choose this somewhat artificial
description.

We note that Theorem 6.3 yields

• c0(2, r) = c0(3, r) = ∞ for r ∈ N.

• c0(5, r) = ∞ for r = 3, and c0(5, r) = 1 for r ≥ 4.

• c0(7, 2r + 1) = 2/7 and c0(7, 2r + 2) = 8/7 for r ∈ N.

It seems conceivable to expect that when attempting to extend Theorem 6.3 to
further (small) primes one would face only a “natural” increase in complexity, but not
a jump in difficulty as for the rank. Indeed, in view of Theorem 6.3 and some other
evidence obtained in [49] and [41], the following conjecture could be true.

Conjecture 6.4 For every p ∈ P there exists some R(p) ∈ N such that for every r ∈ N

and every indecomposable half-factorial set G0 ⊂ Cr
p ,

r(〈G0〉) ≤ R(p).

In the absence of an example to the contrary, one can hope that the conjecture is even
true for R(p) = p−1; this would be best possible, since the set {−

∑p−1
i=1 ei, e1, . . . , ep−1}

is half-factorial for every p.
However, note that a statement analogous to Conjecture 6.4 cannot hold for arbitrary

finite abelian groups. Already in Cr
4 there exists, for every r′ ≤ r, an indecomposable

half-factorial subset such that the generated subgroup has rank r′ (cf. Section 8).
Provided the conjecture is true, the value of c0(p, r) depends for any (fixed) p ∈ P

and r ≥ r0(p) just on the parity of r.

7 Cyclic groups

In this section we consider half-factorial subsets of cyclic groups. We recall from Section 5
that, for each n ∈ N,

µ(Cn) ≤ τ(n),

where τ(n) denotes the number of divisors of n. More precisely, it is known that for
every half-factorial set G0 ⊂ Cn there exists some generating element g ∈ Cn such that
(cf. Section 5)

G0 ⊂ {dg : 1 ≤ d | n}.
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In the opposite direction S.T. Chapman [3] showed that any subset of {dg : 1 ≤ d | n}
that contains at most three non-zero elements is half-factorial; and in general “three” is
best possible.

Recall that
µ(Cn) = τ(n)

if n is divisible by at most two distinct prime numbers (cf. Corollary 5.4). But, this
equality does not hold for all n ∈ N; indeed A. Zaks [54] showed µ(C30) < 8.

The fact that G0 ⊂ {dg : 1 ≤ d | n} for every half-factorial set, in combination
with the characterization result (cf. Theorem 4.1), allows to reduce investigations on
half-factorial sets to investigations of sums of the form

∑

d∈D

add = kn

where D is a subset of the set of divisors of n and k, ad ∈ N0. Note that 1/ord(dg) = d/n
for 1 ≤ d | n. This lead to the definition of splittable sets in [54] (also cf. [15]), which
were then further investigated by P. Erdős and A. Zaks [11].

A way to obtain lower bounds for µ(Cn), for arbitrary n ∈ N, is to factor n =
∏r

i=1 ni,
where ni are prime powers or products of two prime powers, and then to apply 4. of
Section 4 to obtain (cf. [23])

µ(Cn) ≥
r

∑

i=1

µ(Cni
) − (r − 1) =

r
∑

i=1

τ(ni) − (r − 1).

Yet, this lower bound in general does not have the same order of magnitude as τ(n).
Very recently, A. Plagne and the author [42] showed that τ(n) is indeed the true

order of magnitude of µ(Cn).

Theorem 7.1 Let n ∈ N \ {1}. Then

1 +
1

2
τ(n) ≤ µ(Cn) ≤ τ(n).

Outline of proof. Let m = n/p′, where p′ denotes the largest prime divisor of n, and
let G0 = {0} ∪ {dg : 1 ≤ d | m}, where g ∈ Cn is a generating element. Note that
|G0| = 1 + τ(m) ≥ 1 + τ(n)/2. To obtain the lower bound, it suffices to show that G0

is a half-factorial set, which is the main step in the proof. 2

From the outline of the proof it can be seen that if the largest prime divisor of n
has multiplicity greater than one, then this construction yields a better lower bound.
Moreover, some further improvements can be obtained, for various n, by this method.
The point is that it is not essential to take m = n/p′, but one can choose any divisor
m of n that is not too “large”, in a somewhat technical sense given in [42]. Yet, for
squarefree numbers the lower bound of the theorem seems to be the limit of this(!)
method. However, several other results obtained in [42] suggest that if n is composite
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µ(Cn) might always exceed the lower bound 1 + τ(n)/2. Here, we only state a simple
result of this type. It is, moreover, another example for the phenomenon that the value
of µ(G) depends on congruence relations among the prime divisors of the order of the
group (cf. Proposition 5.5): For p ∈ P we have

µ(C6p) =

{

7 if p ≡ 2 (mod 3)

8 if p ≡ 1 (mod 3).

Other interesting constructions of half-factorial sets in cyclic groups were given by
W. Hassler [32]. Among others, he considered the problem when {ig : i ∈ [1, k]} ⊂ Cn,
for g ∈ Cn generating, is half-factorial and gave the following criterion.

Theorem 7.2 Let k, n ∈ N with k ≤ n and g ∈ Cn a generating element. Then the
following conditions are equivalent:

1. The set {ig : i ∈ [1, k]} ⊂ Cn is half-factorial.

2. lcm([1, k]) divides n.

8 p-groups

In preceding sections we already stated results on half-factorial subsets of certain p-
groups, namely for elementary p-groups and for p-groups with r(G) ≤ 2. For these
groups, among others, the value of µ(G) is known.

For arbitrary p-groups the problem seems to be significantly more difficult and less
is known. However, for the cardinality of generating half-factorial subsets of C r

pk a good

upper bound is known by the following result of W. Gao and A. Geroldinger [15]. For
the proof of this result it is essential to know that every generating subset of C r

pk contains

an independent generating subset (see [16]).

Proposition 8.1 Let p ∈ P and k, r ∈ N, and let G0 ⊂ Cr
pk a half-factorial generating

set. Then
|G0| ≤ 1 + r(pk − 1).

The following proposition gives a complete characterization of the generating half-
factorial sets of groups of the form Cr

4 .

Proposition 8.2 ([46]) Let r ∈ N and let G0 ⊂ Cr
4 be a generating set. The set G0

is half-factorial if and only if there exists an independent generating set {e1, . . . , er},
s, t ∈ N0 with r = 3s+ t and a map f from [1, t] to itself such that

G0 ⊂ {0} ∪
t

⋃

j=1

{ej, 2ej, 3ej + 2ef(j)}

∪
s−1
⋃

i=0

{e3i+t+1, e3i+t+2, e3i+t+3, 3(e3i+t+1 + e3i+t+2 + e3i+t+3)}.
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In particular, the maximal cardinality of a generating half-factorial set in C r
4 equals

1 + 3r.

Moreover, this proposition shows that Cr
4 contains indecomposable half-factorial sets

of every rank r′ ≤ r; in contrast to the results for elementary p-groups (cf. Section 6).
Also, it implies that the bound stated in Proposition 8.1 is best possible, for pk = 4.
Indeed, for even r the bound is optimal for any 2-power, which can be seen by repeatedly
applying 4. of Section 4 and Corollary 5.4.2 to obtain a generating half-factorial set with
cardinality (2k+1 − 1)r/2 − (r/2 − 1) = 1 + r(2k − 1).

It is subject of current research of M. Radziejewski and the author to generalize these
results. For instance, to obtain analogous results for other (small) prime powers, and
a description for non-generating half-factorial sets in C r

4 as well. Among others, some
preliminary results suggest the following: For even r and every p ∈ P, the half-factorial
subset of Cr

pk obtained, as above for Cr
2k , by repeatedly applying 4. of Section 4 and

Corollary 5.4.2, is a generating half-factorial subset of C r
pk with, for a generating subset,

maximal possible cardinality.
Finally, we state the result, mentioned in Section 4, that asserts the existence of

finite abelian groups in which no subset of maximal cardinality generates the group.

Theorem 8.3 ([15]) Let p ∈ P and k, s ∈ N with k ≥ 2 and p+k ≥ 6. No half-factorial

subset of C
(p+1)s

pk with maximal cardinality, µ(C
(p+1)s

pk ), is a generating set.

Outline of proof. By Proposition 8.1 one has the upper bound 1 + s(p+ 1)(pk − 1) for

the cardinality of a generating half-factorial set in C
(p+1)s

pk . Thus, in order to prove the
theorem, it suffices to construct a half-factorial set whose cardinality exceeds this bound.
The crucial step is to obtain such a set in case s = 1; the result for s > 1 then follows
by 4. of Section 4. This is achieved by making use of further results of [15] that yield the
existence of a half-factorial set with cardinality 1 + pp(k−1); which by the assumptions
on p and k is larger than 1 + (p+ 1)(pk − 1). 2
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