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Abstract. Let G be an abelian group. A subset G0 of G is called half-
factorial, if the block monoid over G0 is a half-factorial monoid. In this article
we investigate half-factorial sets in elementary p-groups. In particular, we de-
termine the half-factorial subsets of elementary 3-, 5- and 7-groups. Moreover,
we investigate minimal non-half-factorial sets (sets that are not half-factorial,
but every proper subset is half-factorial) in elementary p-groups.

1. Introduction

Let G be an abelian group and G0 ⊂ G. Then G0 is called half-factorial, if the
block monoid B(G0) is a half-factorial monoid. A main reason for the relevance
of this notion is that if D is a Krull domain (monoid) with divisor class group
G and G0 ⊂ G denotes the set of classes containing prime divisors, then D is
half-factorial if and only if G0 ⊂ G is a half-factorial set. However, there are also
other applications of half-factorial sets. For example the asymptotic behavior of
certain counting functions in algebraic number fields depends on the maximal
cardinality of half-factorial sets in the class group (and the structure of these
sets) cf. [7].

Another type of sets that is studied along with half-factorial sets are minimal
non-half-factorial sets, i.e., sets that are not half-factorial but each proper subset
is half-factorial. These sets play a crucial role in investigations on distances in
sets of lengths cf. [5] and [14]. For more information on the applications of
half-factorial sets, we refer to [4] and the references given there.

In this article we shall be interested in half-factorial and minimal non-half-
factorial sets in elementary p-groups (i.e. finite dimensional vector spaces over Fp

the field with p elements). In particular, we study µ(G), the maximal cardinality

of a half-factorial set in G, a constant introduced by J. Śliwa (cf. [16, Lemma
1]). The problem of determining µ(G) for arbitrary (finite) abelian groups is wide
open (cf. [4] for several results). Even in case G is a cyclic group the value of µ(G)
is not known (cf. [10] for recent results on half-factorial sets in cyclic groups).
However, if G is cyclic of prime power order, then not only µ(G) is known but
even the structure of all half-factorial sets (this result was obtained in slightly
different formulations by various authors cf. Proposition 3.4.1 for the result and
[4, Corollary 5.4] for a proof and detailed references).
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If G is an elementary p-group with r(G) = r, then

1 + br
2
cp + 2(

r

2
− br

2
c) ≤ µ(G) ≤ 1 +

r

2
p,

thus if r is even or p = 2, then µ(G) = 1 + r
2
p ([9, Theorem 8]). Moreover, if

p = 2, then the structure of half-factorial sets is known ([12, Problem II]).
We will determine the structure of half-factorial sets with (maximal) cardinality

µ(G) in elementary p-groups with even rank (cf. Theorem 3.1). Moreover, we will
investigate the structure of half-factorial and minimal non-half-factorial sets in
elementary 3, 5 and 7-groups (cf. Proposition 6.2, 6.3 and 6.5). Combining these
results with known ones, we give a result on µ(G) and the structure of minimal
non-half-factorial sets in elementary p-groups where the rank or the exponent is
small (cf. Theorem 3.2).

2. Preliminaries

In this section we fix notations and recall some results, in particular for monoids
and abelian groups. The notations mostly will be consistent with the usual ones
in factorization theory (cf. the survey articles [11] and [2] in [1]).

Let R denote the real numbers, Q the rational numbers, Z the integers, N the
set of positive integers, N0 = N ∪ {0} and P ⊂ N the set of prime numbers. For
p ∈ P let Fp denote the field with p elements. For m,n ∈ Z we set [m,n] = {z ∈
Z | m ≤ z ≤ n}.

For a set M we denote by |M | ∈ N0 ∪ {∞} its cardinality. For x ∈ R let
dxe = min{z ∈ Z | x ≤ z} and bxc = max{z ∈ Z | x ≥ z}.

A monoid H is a commutative cancellative semigroup with identity element
(1H = 1 ∈ H) and we usually use multiplicative notation.

Let H be a monoid. We denote by H× the group of invertible elements of H.
Let H1, H2 ⊂ H be submonoids. Then we write H = H1×H2, if for each a ∈ H,
there exist uniquely determined b ∈ H1 and c ∈ H2, such that a = bc.

An element u ∈ H \H× is called irreducible (or an atom), if for all a, b ∈ H,
u = ab implies a ∈ H× or b ∈ H×. We denote by A(H) ⊂ H the set of atoms. H
is called atomic, if every a ∈ H \H× has a factorization into a product of atoms.

Let a ∈ H \ H× and a = u1 · . . . · uk be a factorization of a into atoms
u1, . . . , uk ∈ A(H). Then k is called the length of the factorization. The monoid
H is called half-factorial monoid, if it is atomic and for every a ∈ H \ H× any
two factorizations of a into atoms have the same length.

Let G be an additively written abelian group and G0 ⊂ G a subset. Then
〈G0〉 < G denotes the subgroup generated by G0, where 〈∅〉 = {0}.

The set G0 (respectively its elements) is called independent, if 0 /∈ G0, ∅ 6= G0

and given distinct elements e1, . . . , er ∈ G0 and m1, . . . , mr ∈ Z, then
∑r

i=1 miei =
0 implies that m1e1 = · · · = mrer = 0. If we say that {e1, . . . , er} is independent,
then we will assume that the elements e1, . . . , er are distinct.

An element g ∈ G is called torsion element, if there exists some n ∈ N such that
ng = 0. If g is a torsion element, then we denote by ord(g) = min{n ∈ N | ng = 0}
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its order. G is called abelian torsion group, if all elements of G are torsion
elements. For n ∈ N let Cn denote a cyclic group with n elements.

Let p ∈ P, then we call G elementary p-group, if there exists some r ∈ N such
that G ∼= Cr

p . We denote by exp(G) = p the exponent of G and by r(G) = r
the rank of G. Clearly, elementary p-groups are torsion groups and each non-
zero element has order p. An elementary p-group is in a natural way a vector
space over the field Fp. Elements are independent if and only if they are linearly
independent over Fp, subgroups are subspaces and the rank equals the dimension
as Fp vector space. A main advantage when dealing with elementary p-groups
instead of arbitrary (finite) abelian groups is that each generating set contains
an independent generating set (a basis).

Let F(G0) denote the free abelian monoid with basis G0. An element S =∏l
i=1 gi ∈ F(G0) is called a sequence in G0. It has a uniquely determined rep-

resentation S =
∏

g∈G0
gvg(S) where vg(S) ∈ N0 for each g ∈ G0 and vg(S) = 0

for all but finitely many. For g ∈ G0 we call vg(S) the multiplicity of g in S. A
sequence T is called subsequence of S, if T divides S (in F(G0)). We denote by

• |S| = l ∈ N0 the length of S.

• k(S) =
∑l

i=1
1

ord(gi)
the cross number of S.

• σ(S) =
∑l

i=1 gi ∈ G the sum of S.

Note that the sequence 1, the identity element of F(G0), has length 0, cross
number 0 and sum 0 ∈ G. If we consider | · |, vg, σ and k as maps from
F(G0) to (N0, +), G and (Q≥0, +) respectively, then these maps define monoid-
homomorphisms.

The sequence S is called a zero-sum sequence (a block), if σ(S) = 0, and S
is called zero-sumfree, if σ(T ) 6= 0 for all subsequences 1 6= T of S. A zero-
sum sequence 1 6= S is called minimal zero-sum sequence, if for each proper
subsequence T (i.e. with T 6= S), T is zero-sumfree. The empty sequence is the
only zero-sum sequence that is zero-sumfree, but it is not a minimal zero-sum
sequence.

The set B(G0) consisting of all zero-sum sequences in G0 is a submonoid of
F(G0), called the block monoid over G0. It is an atomic monoid (in fact even a
Krull monoid cf. [2, Section 2.1.d]) and its atoms are just the minimal zero-sum
sequences. If G1 ⊂ G0, then B(G1) ⊂ B(G0) is a submonoid. For ease of notation,
we will write A(G0) instead of A(B(G0)).

Next we repeat the definitions of the main objects of this article.

Definition 2.1. Let G be an abelian group and G0 ⊂ G.

(1) G0 is called half-factorial, if B(G0) is a half-factorial monoid.
(2) G0 is called minimal non-half-factorial, if G0 is not half-factorial and each

G1 ( G0 is half-factorial.
(3) If G is finite, then µ(G) = max{|G′

0| | G′
0 ⊂ G half-factorial}.

If G is an infinite abelian group, then there exists some infinite half-factorial
subset (cf. [4, Proposition 3.4] and [8] for further results on half-factorial sets in
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infinite groups). The main tool for investigations on half-factorial sets in abelian
torsion groups is the following result obtained independently by several authors
(cf. [15, Theorem 3.1], [16, Lemma 2] and [18, Proposition 1]). A proof in the
terminology of this article can be found in [2, Proposition 5.4].

Lemma 2.2. Let G be an abelian torsion group and G0 ⊂ G. Then G0 is half-
factorial if and only if k(A) = 1 for each A ∈ A(G0).

Since the sequence 0 is the only minimal zero-sum sequence in which 0 occurs
with positive multiplicity, it follows that if G is an elementary p-group, then
statement k(A) = 1 for each A ∈ A(G0) is equivalent to |A| = p for each A ∈
A(G0) \ {0} (cf. [9, Lemma 1]).

By Lemma 2.2 it is obvious that subsets of half-factorial sets are half-factorial.
Next we summarize several properties of half-factorial sets that will be used fre-
quently in the sequel and can also be obtained using Lemma 2.2.

Lemma 2.3. Let G be an abelian torsion group.

(1) Independent sets are half-factorial.
(2) G0 ⊂ G is half-factorial if and only if G0 ∪ {0} is half-factorial.
(3) Let G = G′ ⊕G′′, G′

0 ⊂ G′ and G′′
0 ⊂ G′′. Then G′

0 ∪G′′
0 is half-factorial

if and only if G′
0 and G′′

0 are half-factorial. In particular, if G is finite,
then µ(G) ≥ µ(G′) + µ(G′′)− 1.

(4) Let G be an elementary p-group and G0 ⊂ G be half-factorial with |G0| =
µ(G). Then 〈G0〉 = G.

Proof. 1.,2. and 3. are proved in [4, Lemma 3.1]. 4. was obtained in [9, 13,
Lemma 1]. ¤

Note that 4. does not hold in general cf. [4, Corollary 6.5] for an example.

By Lemma 2.3.3 it is sufficient to study half-factorial sets that cannot be de-
composed into sets that lie in different direct summands of the group. Since every
subset of an elementary p-group can be decomposed into such sets, this simpli-
fies the investigation of half-factorial sets considerably. To make this statement
precise we recall the notions of components, decomposable and indecomposable
sets (cf. [13] in particular Definition 3.8 and Proposition 3.10).

Let G0 ⊂ G be a subset of torsion elements. G0 is decomposable, if G0 has a
partition G0 = G1∪̇G2 with non-empty sets G1, G2, such that 〈G0〉 = 〈G1〉⊕〈G2〉
(equivalently B(G0) = B(G1)×B(G2)). Otherwise G0 is indecomposable. A non-
empty subset G1 ⊂ G0 is called a component of G0, if 〈G0〉 = 〈G1〉 ⊕ 〈G0 \G1〉.
Proposition 2.4. [13, Proposition 3.10] Let G be an abelian group and G0 ⊂ G
a non-empty and finite subset of torsion elements. Then there exist a uniquely
determined d ∈ N and (up to order) uniquely determined indecomposable sets
∅ 6= G1, . . . , Gd ⊂ G0 such that

G0 =
⋃̇d

i=1
Gi and 〈G0〉 =

d⊕
i=1

〈Gi〉.
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Remark 2.5. By Lemma 2.3 and Proposition 2.4 it follows immediately that
if G is an abelian group and G0 ⊂ G a non-empty and finite subset of torsion
elements then

• G0 is half-factorial if and only if each indecomposable component of G0 is
half-factorial.

• G0 is indecomposable if G0 is minimal non-half-factorial.

By Lemma 2.3.1 we know that independent sets are half-factorial, in fact they
are even factorial (cf. [13, Proposition 3.3]). Thus it is natural to investigate sets
that consist of independent elements and one additional element. This property
together with a certain minimality condition leads to the definition of simple sets
(cf. [13, Section 4]).

Definition 2.6. Let G be an abelian group. A non-empty set G0 ⊂ G \ {0} of
torsion elements is called simple, if there exist some g ∈ G0 such that G0 \ {g} is
independent, g ∈ 〈G0 \ {g}〉, but g /∈ 〈G1〉 for any G1 ( G0 \ {g}.

We give a brief summary of results on simple sets in elementary p-groups.

Lemma 2.7. [13, Lemma 4.4] Let G be an elementary p-group.

(1) Let G1 ⊂ G be independent, g ∈ G \ G1 and G0 = G1 ∪ {g}. Then the
following conditions are equivalent:
(a) G0 is indecomposable.
(b) G0 is simple.
In particular, if G0 is minimal non-half-factorial, then G0 is simple.

(2) Let G0 ⊂ G be simple. Then for every h ∈ G0 the set G0 \ {h} is inde-
pendent, h ∈ 〈G0 \ {h}〉 and h /∈ 〈G1〉 for every G1 ( G0 \ {h}.

(3) Every simple set is either half-factorial or minimal non-half-factorial.

Proposition 2.8. Let G be an elementary p-group, G0 ⊂ G a simple set and
g ∈ G0 such that G1 = G0 \ {g} is independent, say G1 = {e1, . . . , er}. Then
g = −∑r

i=1 biei with uniquely determined bi ∈ [1, p − 1]. For every j ∈ N
there exists some uniquely determined minimal (with respect to divisibility) block
Wj = Wj(G1, g) ∈ B(G0) with vg(Wj) = j, namely

Wj = gj

r∏
i=1

evi
i

where vi ∈ [0, p − 1] with vi ≡ jbi mod p for each i ∈ [1, r]. In particular,
W1 = g

∏r
i=1 ebi

i and Wp = gp. Moreover, for A(G0) the following holds:

{W1,Wp} ∪ {ep
i | i ∈ [1, r]} ⊂ A(G0) ⊂ {Wj | j ∈ [1, p]} ∪ {ep

i | i ∈ [1, r]}.
For proofs and further results on simple sets cf. [13, Section 4], in particular

Theorem 4.7.
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3. Main Results

In this section we state the two main results of this article and we recall known
results that will settle several special cases.

Theorem 3.1. Let G be an elementary p-group with even rank r and G0 ⊂ G
a half-factorial set with maximal size |G0| = µ(G). Then there exist independent
elements e1, . . . , er ∈ G, such that

G0 =
⋃̇ r

2

i=1
{je2i−1 + (p + 1− j)e2i | j ∈ [1, p]} ∪ {0}.

Theorem 3.2. Let G be an elementary p-group such that exp(G) ≤ 7 or r(G) =
r ≤ 2.

(1) If G0 ⊂ G is minimal non-half-factorial, then G0 is simple.
(2) µ(G) = 1 + b r

2
cp + 2( r

2
− b r

2
c).

In Section 6 we will also describe explicitly the structure of half-factorial sets
in such elementary p-groups.

There is known no elementary p-group in which the assertions of Theorem 3.2
do not hold.

Next we state a result on half-factorial and minimal non-half-factorial sets in
elementary 2-groups that was obtained in [12, Problem II], for convenience we
give a proof.

Proposition 3.3. Let G be an elementary 2-group and G0 ⊂ G\{0} a non-empty
set.

(1) The following statements are equivalent:
(a) G0 is half-factorial.
(b) G0 is independent.

(2) The following statements are equivalent:
(a) G0 is minimal non-half-factorial.
(b) G0 is simple.

Proof. Let G0 ⊂ G \ {0} and e1, . . . , er ∈ G0 independent elements that generate
〈G0〉.

1. By Lemma 2.3.1 it suffices to prove that (a) implies (b). Suppose that
G0 is half-factorial and assume to the contrary that there exists some g ∈ G0 \
{e1, . . . er}. Clearly g =

∑
i∈I ei with some I ⊂ [1, r] and |I| ≥ 2. We get

A = g
∏

i∈I ei ∈ A(G0) and k(A) = |I|+1
2

> 1, hence by Lemma 2.2 G0 is not
half-factorial.

2. Let G0 be a simple set. Then G0 is not independent hence by 1. G0 is not
half-factorial and by Lemma 2.7.3 it is minimal non-half-factorial.

Conversely, let G0 be minimal non-half-factorial. Then 1. implies that there
exists some g ∈ G0 \ {e1, . . . er}. Since g ∈ 〈e1, . . . , er〉, we infer by 1. that
{g, e1, . . . , er} is not half-factorial, hence G0 = {g, e1, . . . , er}. Since G0 is minimal
non-half-factorial, G0 is indecomposable and thus simple by Lemma 2.7.1. ¤
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The following result describes the structure of half-factorial and minimal non-
half-factorial sets for cyclic groups of prime power order. The first part of this
result was obtained in different formulations by various authors (cf. [4, Corollary
5.4] and the references given there), the second part was first obtained in [6,
Proposition 6].

Proposition 3.4. Let G be a cyclic group of prime power order, G0 ⊂ G a
non-empty set and g ∈ G0 a generating element of 〈G0〉 with ord(g) = pk.

(1) G0 is half-factorial if and only if G0 ⊂ {pig | i ∈ [0, k]}.
(2) If G0 is minimal non-half-factorial, then G0 is simple and the converse

holds for |G| = p.

The rest of this article is mainly devoted to the proofs of Theorem 3.1 and
Theorem 3.2. Note that for elementary 2-groups and cyclic groups all assertions
have been settled by Proposition 3.3 and Proposition 3.4.

4. Auxiliary Results

Several results of this section will be important tools in the proofs of the main
results. However, some investigations (e.g., Proposition 4.11) go beyond the needs
of these proofs and give further insight in the structure of half-factorial sets in
elementary p-groups.

We fix some notation. Until the end of the article, let G be an elementary
p-group for some odd prime p ∈ P. Let

Z(p) = {x ∈ Q | x =
z

s
with z, s ∈ Z and p - s}

denote the localization of Z at (p) = pZ. Then

πp :

{
Z ↪→ Z(p) → Z(p)/pZ(p)

z 7→ z + pZ(p)

is an epimorphism with ker(πp) = pZ. For z ∈ Z with p - z let z−1 ∈ Z(p)

denote its multiplicative inverse, and for z ∈ Z(p) let [z]p ∈ [0, p − 1] be defined
by z + Z(p) = [z]p + Z(p).

We start with some results that will be used frequently in the sequel. Lemma
4.1 was proved in [16, Lemma 1] (cf. also [17, 5.]) and Proposition 4.2.2 in [9,
Lemma 1]. In [4, Lemma 3.6] similar results are obtained, without the condition,
that the order of the elements is prime.

Lemma 4.1. Let r ∈ N, {e1, . . . , er} ⊂ G independent and g = −∑r
i=1 biei

with bi ∈ [0, p − 1] for each i ∈ [1, r]. If {g, e1, . . . , er} is half-factorial, then∑r
i=1 bi = p− 1.

Proof. Clearly, W1 = g
∏r

i=1 ebi
i is an atom with cross number

k(W1) =
1

p
+

r∑
i=1

bi

p
.
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From Lemma 2.2 we have k(W1) = 1, which implies the assertion. ¤

Proposition 4.2. Let r ∈ N, {e1, . . . , er} ⊂ G independent and g = −∑r
i=1 biei

with bi ∈ [0, p− 1] for each i ∈ [1, r]. Further let b1 6= 0 and h = −∑r
i=1 b′iei 6= 0,

with b′i ∈ [0, p− 1] for each i ∈ [1, r]. Then

h = −c1g −
r∑

i=2

ciei

with c1 = [−b−1
1 b′1]p ∈ [0, p− 1] and ci = [c1bi + b′i]p ∈ [0, p− 1] for each i ∈ [2, r]

and we have:

(1) If {g, h, e1, . . . , er} is half-factorial, then
∑r

i=1 ci = p− 1.
(2) If {g, h, e1, . . . , er} is half-factorial and b1 = b′1, then g = h.
(3) If

∑r
i=1 ci 6= p−1, then there exists a simple subset of {g, h, e1, . . . , er} that

is minimal non-half-factorial. In particular,
∑r

i=1 ci 6= p − 1, if b1 = b′1
and g 6= h.

Proof. That h ∈ 〈g, e2, . . . , er〉 and the values of the ci’s follows by linear algebra.
1. Since {g, e2, . . . , er} is independent, we can apply Lemma 4.1 with the set

{h} ∪ {g, e2, . . . , er} and obtain the assertion.
2. Since b1 = b′1, we get c1 = p − 1 and by 1. this gives c2 = · · · = cr = 0,

hence g = h.
3. As in 1. we apply Lemma 4.1 with the set {h} ∪ {g, e2, . . . , er} and obtain

that {h}∪{g, e2, . . . , er} is not half-factorial. Thus there exists some minimal non-
half-factorial subset, which is simple by Lemma 2.7.1. If b1 = b′1, then c1 = p− 1
and since g 6= h there exists some j ∈ [2, r] with cj 6= 0. ¤

4.1. Simple Half-factorial Sets. In this subsection we investigate simple half-
factorial sets. Throughout the whole subsection, let r ≥ 2, {e1, . . . , er} ⊂ G inde-
pendent and G0 = {g, e1, . . . , er} a simple half-factorial set, where g = −∑r

i=1 biei

with bi ∈ [1, p− 1] for each i ∈ [1, r].
Next we state an easy lemma on certain functions that we will use frequently

in the sequel.

Lemma 4.3. Let c, d, e ∈ R with c > 0 and let m,n ∈ N with m < n. Further let

f :

{
R>0 → R
x 7→ c

x
+ dx + e

.

Then

max{f(x) | x ∈ [m,n]} = max{f(m), f(n)}.
Proof. Without restriction we assume e = 0. Since c > 0, we may assume c = 1.

Assume to the contrary there exists some k ∈ [m + 1, n− 1] with

f(k) = max{f(x) | x ∈ [m, n]} > max{f(m), f(n)}.
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Without restriction let k be minimal with this property. We get f(k− 1) < f(k)
and f(k + 1) ≤ f(k), hence

1

k − 1
+ d(k − 1) <

1

k
+ dk

and
1

k + 1
+ d(k + 1) ≤ 1

k
+ dk.

We add up the two inequalities and get 1
k−1

+ 1
k+1

+2dk < 2
k
+2dk, which implies

2

k − 1
k

<
2

k
,

a contradiction. ¤
Lemma 4.4. For each j ∈ [1, r]

r∑
i=1

[b−1
j bi]p = p− [b−1

j ]p.

Proof. Without restriction we may suppose j = 1. We apply Proposition 4.2
with h = −∑r

i=1 b′ie1 = e1. Then h = −c1g −
∑r

i=2 ciei with c1 = [b−1
1 ]p and

ci = [b−1
1 bi]p for each i ∈ [2, r]. Since G0 = {g, h, e1, . . . , er} is half-factorial,

Proposition 4.2.1 implies that
∑r

i=1 ci = p− 1 hence
r∑

i=1

[b−1
1 bi]p = 1 +

r∑
i=2

ci = 1− c1 + (p− 1) = p− [b−1
1 ]p.

¤
Next we give an example of a simple set G′

0 = {g, e1, . . . , er} which is not
half-factorial but

r∑
i=1

bi = p− 1 and
r∑

i=1

[b−1
j bi]p = p− [b−1

j ]p

for each j ∈ [1, r]. Thus the conditions derived in Lemma 4.1 and Lemma 4.4 are
not sufficient to characterize half-factoriality.

Example 4.5. Let p = 19, r = 3 hence 〈e1, e2, e3〉 ∼= (Z/19Z)3 and let G′
0 =

{−8e1 − 5e2 − 5e3, e1, e2, e3}. Then G′
0 is simple,

∑r
i=1 bi = 8 + 5 + 5 = p− 1,

[8−18]19 + [8−15]19 + [8−15]19 = 1 + 3 + 3 = 19− [8−1]19

and
[5−18]19 + [5−15]19 + [5−15]19 = 13 + 1 + 1 = 19− [5−1]19.

However,
W3 = g3e5

1e
15
2 e15

3 ∈ A(G′
0)

and k(W3) = 2, hence G′
0 is not half-factorial.

Lemma 4.6. Let b1 ≥ · · · ≥ br, b1 > 1 and k = b p
b1
c.
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(1) k = b p
bk
c and if k < r, then k < b p

bk+1
c.

(2) r + 2 ≤ k + bk.

Proof. 1. Since b1 > 1 we get k + 1 = d p
b1
e. Using the notation of Proposition

2.8, we consider the block Wk+1 = gk+1
∏r

i=1 e
[(k+1)bi]p
i ∈ B(G0). We assert that

Wk+1 is an atom. This follows by [13, Theorem 4.7 and Corollary 4.9], yet for
convenience we give a proof.

Clearly, ep
i - Wk+1 thus, by Proposition 2.8, it suffices to show that Wj - Wk+1

for each j ∈ [1, k]. By definition of k it is obvious that Wj = W j
1 for each

j ∈ [1, k] and it remains to verify that W1 - Wk+1. Again by definition of k we
get ve1(Wk+1) = (k + 1)b1 − p < b1 = ve1(W1), which implies W1 - Wk+1 and thus
Wk+1 is an atom.

Since G0 is half-factorial we obtain by Lemma 2.2 that |Wk+1| = p. We set
s = max{i ∈ [1, r] | k = b p

bi
c}. Clearly, [(k + 1)bi]p = (k + 1)bi − p, if i ∈ [1, s]

and [(k + 1)bi]p = (k + 1)bi, if i ∈ [s + 1, r]. We get

p = |Wk+1| = k + 1 +
r∑

i=1

[(k + 1)bi]p = k + 1 +
r∑

i=1

(k + 1)bi − sp = (k + 1)p− sp,

where the last equality follows from Lemma 4.1 and the fact that G0 is half-
factorial. This gives k = s and the result is obvious from the definition of s.

2. Since G0 is half-factorial, we get
∑r

i=1 bi = p− 1. From this we get

k∑
i=1

bi = p− 1−
r∑

k+1

bi ≤ p− 1− r + k.

Moreover,
k∑

i=1

bi ≥
k∑

i=1

bk = kbk = b p

bk

cbk > p− bk,

hence we get p− bk < p− 1− r + k and r + 2 ≤ k + bk. ¤
Proposition 4.7. For r we have:

(1) r ≤ p− 1.
(2) r /∈ [p+1

2
, p− 2].

(3) If p ≥ 13, then r 6= p−3
2

.

Proof. 1. By Lemma 4.1 we have r ≤ ∑r
i=1 bi = p− 1.

2. For p = 3 the assertion is obvious. Let p ≥ 5 and assume to the contrary
that r ∈ [p+1

2
, p − 2]. After a suitable renumeration we may suppose that b1 ≥

· · · ≥ br. If b1 = 1, then p − 1 =
∑r

i=1 bi = r, a contradiction. If b1 ≥ p+1
2

, then

p−1 =
∑r

i=1 bi ≥ p+1
2

+ r−1 ≥ p, a contradiction. This implies that b1 ∈ [2, p−1
2

]

and we set k = b p
b1
c. Then Lemma 4.6 implies that bk ∈ [2, p−1

2
] and

p + 5

2
≤ r + 2 ≤ b p

bk

c+ bk ≤ p

bk

+ bk.
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Let f : R>0 → R be defined via f(x) = p
x

+ x for every x ∈ R>0. Then Lemma
4.3 implies that

max{f(x) | x ∈ [2,
p− 1

2
]} = max{f(2), f(

p− 1

2
)}.

However, f(2) < p+5
2

and f(p−1
2

) < p+5
2

, a contradiction.

3. Let p ≥ 13 and assume to the contrary that r = p−3
2

. After a suitable
renumeration we may suppose that b1 ≥ · · · ≥ br and arguing as in 2. we infer
that b1 ∈ [3, p+3

2
].

Let b1 = p+3
2

. Then b2 = · · · = br = 1 and for d = [(p+3
2

)−1]p we consider

Wd = gde1
1

r∏
i=2

ed
i .

Clearly, Wd is an atom and since d ∈ [3, p − 2], we obtain that |Wd| > p and
k(Wd) > 1, a contradiction to G0 half-factorial.

Let b1 = p+1
2

. Then b2 = 2 and b3 = · · · = br = 1. We consider

W p+1
2

= g
p+1
2 e

[( p+1
2

)2]p
1 e1

2

r∏
i=3

e
p+1
2

i .

W p+1
2

is an atom and since r ≥ 3 we get that |W p+1
2
| > p, a contradiction.

Let b1 ∈ {p−3
2

, p−1
2
}. Then b p

b1
c = 2, hence by Lemma 4.6 we have b2 > p

3
.

Since p− 1− b1 − b2 =
∑r

i=3 bi,

p− 1− b1 − b2 < p− 1− p− 3

2
− p

3
=

p

6
+

1

2

and
∑r

i=3 bi ≥ p−3
2
− 2 = p

2
− 7

2
, we get p

6
+ 1

2
> p

2
− 7

2
respectively p < 12, a

contradiction.
Let b1 ∈ [3, p−5

2
] and k = b p

b1
c. If p = 13, then either b1 = 3, k = 4 and thus

b4 = 3 contradicting
5∑

i=1

bi = 12

or b1 = 4, k = 3 and thus b3 = 4 again contradicting
∑5

i=1 bi = 12.
Therefore suppose p ≥ 17. Then by Lemma 4.6 bk ∈ [3, p−5

2
] and r + 2 = p+1

2
≤

p
bk

+ bk. Let f : R>0 → R be defined as in 2. and we have

max{f(x) | x ∈ [3,
p− 5

2
]} = max{f(3), f(

p− 5

2
)}.

However, f(3) < p+1
2

and f(p−5
2

) < p+1
2

, a contradiction.
Consequently, we have that all possible choices of b1 lead to a contradiction,

hence r 6= p−3
2

. ¤
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Remark 4.8. The bound p ≥ 13 in Proposition 4.7.3 is optimal. For p = 11 and
g = −4e1 − 4e2 − e3 − e4 the set {g, e1, . . . , e4} is half-factorial, since

{ge4
1e

4
2e3e4, g

3e1e2e
3
3e

3
4, g

11} ∪ {e11
1 , . . . , e11

4 }
is the set of atoms and each has cross number 1.

Now we will give further examples of half-factorial sets that are simple.

Lemma 4.9. Suppose that r | p− 1. Then

{−
r∑

i=1

p− 1

r
ei, e1, . . . , er} and {re1 −

r∑
i=2

ei, e1, . . . , er}

are simple and half-factorial sets.

Proof. Clearly, both sets are simple, and it remains to show that they are half-
factorial.

Setting k = p−1
r

, g = −∑r
i=1 kei and G0 = {g, e1, . . . , er} we infer that, using

the notation of Proposition 2.8,

A(G0) = {W1+νr | ν ∈ [0, k]} ∪ {ep
i | i ∈ [1, r]}.

This follows by [3, Theorem 2.1] and [13, Theorem 4.7], yet we give a proof.
By Proposition 2.8 it suffices to show that Wj is an atom if and only if j ∈

{1 + νr | ν ∈ [0, k]}. Note that [(1 + νr)k]p = k − ν for each ν ∈ [0, k] and that
[jk]p ≥ k for each j ∈ [1, p] \ {1 + νr | ν ∈ [0, k]}.

Therefore W1 | Wj for each j ∈ [1, p] \ {1 + νr | ν ∈ [0, k]} and Wj is not an
atom. Conversely, W1+ν′r is an atom for each ν ′ ∈ [0, k], since W1+νr - W1+ν′r for
each ν ∈ [0, ν ′ − 1].

Since for every ν ∈ [0, k] the atom

W1+νr = g1+νr

r∏
i=1

ek−ν
i

has cross number k(W1+νr) = 1
p
|W1+νr| = 1

p
(1 + νr +

∑r
i=1(k− ν)) = 1, it follows

that G0 is half-factorial.
To consider the second set, we set g′ = re1 −

∑r
i=2 ei. Since {g′, e2, . . . , er} is

independent and

e1 = −p− 1

r
g′ −

r∑
i=2

p− 1

r
ei,

the set {g′, e1, . . . , er} is half-factorial because {g, e1, . . . , er} is half-factorial. ¤
In the following two results we will investigate properties of sets that have a

subset that is simple and half-factorial with large cardinality, i.e. r = p − 1
respectively r = p−1

2
.

Proposition 4.10. Let r = p − 1 and G0 ⊂ G′
0 ⊂ G. Further let r′ = r(〈G′

0〉)
and {er+1, . . . , er′} ⊂ G′

0 a set such that 〈G′
0〉 = 〈e1, . . . , er′〉.

(1) g = −∑r
i=1 ei.
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(2) If h = −∑r′
i=1 b′iei /∈ G0 with b′i ∈ [0, p− 1] and b′j 6= 0 for some j ∈ [1, r],

then {g, h, e1, . . . , er′} has a simple, minimal non-half-factorial subset.
(3) If G0 is not a component of G′

0, then G′
0 has a simple, minimal non-half-

factorial subset.
(4) If G′

0 is half-factorial, then G0 is an indecomposable component of G′
0.

Proof. 1. Since r | p − 1 we get by Lemma 4.9 that {−∑r
i=1 ei, e1, . . . , er} is

half-factorial and by Lemma 4.1 we have p − 1 =
∑r

i=1 bi ≥ r = p − 1 hence
b1 = · · · = br = 1.

2. If {h, e1, . . . , er′} is not half-factorial, then there exists a minimal non-half-
factorial subset which is simple by Lemma 2.7.1.

Thus we suppose that {h, e1, . . . , er′} is half-factorial. Hence
∑r′

i=1 b′i = p−1 by
Lemma 4.1 and since p−1 = r and h 6= g there exists some k ∈ [1, r] with b′k = 0.
After a suitable renumeration we may suppose that k = 2 and b′1 = max{b′i |
i ∈ 1, r]} > 0. We set bi = 0 for each i ∈ [r + 1, r′] and apply Proposition

4.2 with the independent set {e1, . . . , er′}. We have h = −c1g −
∑r′

i=2 ciei with
c1 = [−b−1

1 b′1]p = [−b′1]p = p− b′1, ci = [p− b′1 + b′i]p for each i ∈ [2, r] and ci = b′i
for each i ∈ [r + 1, r′]. We show that

∑r′
i=1 ci 6= p − 1 and hence by Proposition

4.2.3 there exists a simple, minimal non-half-factorial subset of {g, h, e1, . . . , er′}.
If b′1 ≤ p

2
, then

∑r′
i=1 ci ≥ c1+c2 = p−b′1+[p−b′1+b′2]p = 2(p−b′1) ≥ p. If b′1 > p

2
,

then we have b′1 > max{b′i | i ∈ [2, r]}. Consequently, [p− b′1 + b′i]p = p− b′1 + b′i
for each i ∈ [2, r] and

r′∑
i=1

ci = (p− 1)(p− b′1) +
r′∑

i=2

b′i.

Since h /∈ G0, we get b′1 6= p− 1, hence
∑r′

i=1 ci ≥ p.
3. Suppose G0 is not a component of G′

0. We assert that there exists some

h = −∑r′
i=1 b′iei ∈ G′

0 \G0 with b′i ∈ [0, p−1] and b′j 6= 0 for some j ∈ [1, r]. Then
{g, h, e1, . . . , er′} and hence G′

0 has a simple, minimal non-half-factorial subset by
2..

Since G0 is not a component of G′
0 we have G0 6= G′

0 and hence G′
0 \ G0 6= ∅.

Let h′ ∈ G′
0 \ G0. Clearly, there exist b′i(h

′) ∈ [0, p − 1] for every i ∈ [1, r′]
such that h′ = −∑r′

i=1 b′i(h
′)ei. Assume that for every h′ ∈ G′

0 \ G0 we have
b′1(h

′) = · · · = br(h
′) = 0. This implies that 〈e1, . . . , er〉 ∩ 〈G′

0 \G0〉 = {0}. Since
〈G0〉 = 〈e1, . . . , er〉, we get that G0 is a component of G′

0, a contradiction. Hence
there exists some h ∈ G′

0 \ G0 and some j ∈ [1, r] such that b′j(h) 6= 0, which
proves the assertion.

4. Since G0 is simple we get by Lemma 2.7.1 that G0 is indecomposable. Thus
it suffices to show that G0 is a component of G′

0. Assume to the contrary that
G0 is not a component. Then by 3. there exists some non-half-factorial subset of
G′

0, a contradiction to G′
0 half-factorial. ¤
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Proposition 4.11. Let p ≥ 13, r = p−1
2

and G0 ⊂ G′
0 ⊂ G. Further let r′ =

r(〈G′
0〉) and {er+1, . . . , er′} ⊂ G′

0 a set such that 〈G′
0〉 = 〈e1, . . . , er′〉.

(1) Let H = {−∑r
i=1 2ei} ∪ {(r + 1)eν −

∑r
i=1 ei | ν ∈ [1, r]}. Then g ∈ H

and {h, e1, . . . , er} is simple and half-factorial for every h ∈ H.

(2) If h = −∑r′
i=1 b′iei /∈ G0 with b′i ∈ [0, p− 1] and b′j 6= 0 for some j ∈ [1, r],

then {g, h, e1, . . . , er′} has a simple, minimal non-half-factorial subset.
(3) If G0 is not a component of G′

0, then G′
0 has a simple, minimal non-half-

factorial subset.
(4) If G′

0 is half-factorial, then G0 is an indecomposable component of G′
0.

Proof. 1. Lemma 4.9 implies that {h, e1, . . . , er} is simple and half-factorial for
every h ∈ H.

Recall that g = −∑r
i=1 bi with bi ∈ [1, p− 1] and after a suitable renumeration

we may suppose that b1 ≥ · · · ≥ br. Since
∑r

i=1 bi = p− 1 and r = p−1
2

we obtain

that b1 ∈ [2, p+1
2

]. If b1 = 2, then b2 = · · · = br = 2 and g ∈ H. If b1 = p+1
2

, then
b2 = · · · = br = 1 and g ∈ H.

Assume to the contrary that b1 ∈ [3, p−1
2

]. Setting k = b p
b1
c we apply Lemma

4.6 and obtain that bk ∈ [3, p−1
2

] and

p + 3

2
≤ b p

bk

c+ bk <
p

bk

+ bk.

Let f : R>0 → R be defined via f(x) = p
x

+ x for every x ∈ R>0. Then Lemma
4.3 implies that

max{f(x) | x ∈ [3,
p− 3

2
]} = max{f(3), f(

p− 3

2
)}.

However, f(3) < p+3
2

and f(p−3
2

) < p+3
2

. Thus bk = p−1
2

, k = 2 and
∑r

i=1 bi >
b1 + b2 = p− 1, a contradiction. Hence, we have g ∈ H.

2. If g = −∑r
i=1 2ei, then e1 = p−1

2
g − ∑r

i=2 ei, {g, e2, . . . , er} is inde-

pendent and {g, e1, . . . , er} = {p−1
2

g − ∑r
i=2 ei, g, e2 . . . , er}. Moreover, h =

−c1g −
∑r′

i=2 ciei with suitable ci ∈ [0, p − 1] and by Proposition 4.2 we obtain
c1 = [−2−1b′1]p and cj = [c12+b′j]p for each j ∈ [2, r] hence there exists a j′ ∈ [1, r]

such that cj′ 6= 0. Thus it suffices to consider the case where g = p−1
2

e1−
∑r

i=2 ei.
If {h, e1, . . . , er′} is not half-factorial, then there exists a minimal non-half-

factorial subset which is simple by Lemma 2.7.1.
Thus we suppose that {h, e1, . . . , er′} is half-factorial and decide three cases:
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Case 1: b′i 6= 0 for each i ∈ [2, r]. Proposition 4.7, Proposition 4.10.1 and the
first part of this Lemma imply that

h ∈{−
∑
i∈I

2ei | [2, r] ⊂ I ⊂ [1, r′] and |I| = r}∪

{(r + 1)eν −
∑
i∈I

| [2, r] ⊂ I ⊂ [1, r′], |I| = r and ν ∈ I \ {1}}∪

{−
∑
i∈I

ei | [2, r] ⊂ I ⊂ [1, r′] and |I| = p− 1}.

If h ∈ {−∑
i∈I ei | [2, r] ⊂ I ⊂ [1, r′] and |I| = p− 1}, then we apply Proposi-

tion 4.10.2 with the simple, half-factorial set {h, ei | i ∈ I} and obtain that there
exists a simple, minimal non-half-factorial subset of {g, h, ei | i ∈ I}.

If h ∈ {(r + 1)eν −
∑

i∈I ei | [2, r] ⊂ I ⊂ [1, r′], |I| = r and ν ∈ I \ {1}}, then
bi = b′i 6= 0 for some i ∈ [2, r] and clearly g 6= h. Thus by Proposition 4.2.3 there
exists a simple, minimal non-half-factorial subset of {g, h, e1, . . . , er}.

If h = −∑
i∈I 2ei with I = [1, r], then by Proposition 4.2 h = −c1g−

∑r
i=2 ciei

with c1 = [−(p+1
2

)−12]p = p− 4 and ci = [(p− 4)1 + 2]p = p− 2 for each i ∈ [2, r].
Thus

∑r
i=1 ci 6= p− 1 and by Proposition 4.2.3 be obtain again a simple, minimal

non-half-factorial subset.
If h = −∑

i∈I 2ei with I = [2, r] ∪ {j} and j ∈ [r + 1, r′], then {h, g, e1} is
independent and ej = rh + g + (r + 1)e1 = −(r + 1)h − (p − 1)g − re1. Thus
we apply Lemma 4.1 and obtain that the simple set {ej} ∪ {h, g, e1} is not half-
factorial and hence by Lemma 2.7.3 minimal non-half-factorial.

Case 2: b′i = 0 for each i ∈ [2, r]. Since b′j 6= 0 for some j ∈ [1, r] we have
b′1 6= 0, and since {h, e1, . . . , er′} is half-factorial and h 6= e1 we have b′k 6= 0 for
some k ∈ [r + 1, r′].

We apply Proposition 4.2 with the independent set {e1, . . . , er′} and obtain

h = −c1g −
∑r′

i=2 ciei with c1 = [−(r + 1)−1b′1]p 6= 0, ci = [c1bi + b′i]p = c1 for
each i ∈ [2, r] and ci = b′i for each i ∈ [r + 1, r′]. We consider the independent
set G1 = {g, e2, . . . , er} ∪ {ei | i ∈ [r + 1, r′] and ci 6= 0}, then {h} ∪G1 is simple.
Since |G1| > r = p−1

2
be obtain, applying Proposition 4.7 and 4.10.1, that either

{h} ∪G1 is not half-factorial or

|G1| = p− 1 and h = −
∑

g′∈G1

g′.

If {h}∪G1 is not half-factorial, we are done since {h}∪G1 is simple and hence
minimal non-half-factorial.

Thus we may suppose that |G1| = p− 1 and h = −∑
g′∈G1

g′. Since e1 ∈ 〈G1〉
we infer by Proposition 4.10.2 that {e1} ∪ {h} ∪ G1 has a simple, minimal non-
half-factorial subset. Clearly, this set is a subset of {g, h, e1, . . . , er′}.

Case 3: There exist µ, ν ∈ [2, r], such that b′µ 6= 0 and b′ν = 0. After a suitable
renumeration we may suppose that µ = 2, b′2 = max{b′i | i ∈ [2, r]} and ν = 3.
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Recall that b2 = 1 6= 0. Hence we may apply Proposition 4.2, replacing e2

instead of e1, and obtain

h = −c′1g − c′2e1 −
r′∑

i=3

c′iei,

with c′1 = [−b−1
2 b′2]p = p− b′2, c′2 = [c′1b1 + b′1]p, c′i = [c′1bi + b′i]p = [p− b′2 + b′i]p for

each i ∈ [3, r] and c′i = b′i for each i ∈ [r + 1, r′].
If b′2 ≤ p

2
, then

r′∑
i=1

c′i ≥ c′1 + c′3 = (p− b′2) + [p− b′2 + b′3]p = 2(p− b′2) > p− 1.

Thus by Proposition 4.2.3 there exists a simple, minimal non-half-factorial subset
of {g, h, e1, . . . , er′}.

If p − 3 ≥ b′2 > p
2
, then b′2 > max{b′i | i ∈ [3, r]}. Thus (p − b′2 + b′i) < p and

c′i = [p− b′2 + b′i]p = p− b′2 + b′i for each i ∈ [3, r]. Consequently,

r′∑
i=1

c′i ≥ c′1 +
r∑

i=3

c′i = (p− b′2) +
r∑

i=3

(p− b′2 + b′i) ≥ 3 + 3(r − 2) = 3
p− 3

2
> p− 1

and by Proposition 4.2.3 there exist a simple, minimal non-half-factorial subset.
If b′2 = p− 2, then h = 2e2 − el with l ∈ [1, r′] \ {2}. If l > r, then

h = −e1 − el − 2g −
r∑

i=3

2ei.

Thus the set {h}∪{e1, g, e3, . . . , er, el} is simple and since |{e1, g, e3, . . . , er, el}| =
r+1 = p+1

2
we obtain by Proposition 4.7.2 that it is not half-factorial. If l ∈ [3, r],

then we apply Proposition 4.2 and obtain a simple, minimal non-half-factorial
subset. Suppose that l = 1. We note that

2r2 − r = (p− 1)
p− 1

2
− p− 1

2
= (p− 2)

p− 1

2
≡ 1 mod p.

Thus e2 = [r2]ph+ rg +
∑r

i=3 rei = −(p− [r2]p)− (r +1)g− (r +1)
∑r

i=3 ei. Since
{h, g, e3, . . . , er} is independent and (r + 1)(r − 1) > p − 1 we obtain applying
Lemma 4.1 that the simple set {e2} ∪ {h, g, e3, . . . , er} is not half-factorial.

Since h 6= e2 we obtain b′2 6= p− 1.
3. and 4. are proved analogously to 3. and 4. in Proposition 4.10. ¤

5. Large Half-Factorial Sets - Proof of Theorem 3.1

In this section we give the proof for the result on µ(G) for elementary p-groups
mentioned in the introduction (cf. Proposition 5.3). Having this at hand we will
be able to prove Theorem 3.1.

The results formulated in this section are mainly reformulations of the proof
of Theorem 8 in [9]. Therefore we only give brief or no proofs and refer to [9]
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for detailed arguments. An exception is Proposition 5.3.1, since the arguments
of this proof are inevitable for the proof of Theorem 3.1. We start with a result
on groups with rank less or equal than 2.

Proposition 5.1. Let G0 ⊂ G.

(1) If r(〈G0〉) ≤ 1, then G0 is half-factorial if and only if

G0 ⊂ {0, g} with some g ∈ G.

(2) If r(〈G0〉) = 2 and {e1, e2} ⊂ G0 independent, then G0 is half-factorial if
and only if

G0 ⊂ {je1 + (p + 1− j)e2 | j ∈ [1, p]} ∪ {0}.
Proof. 1. follows immediately by Proposition 3.4.

2. Suppose that r(〈G0〉) = 2 and e1, e2 ∈ G0 are independent. By Lemma 4.1
G0 is a subset of the set on the righthand side. That

H = {je1 + (p + 1− j)e2 | j ∈ [1, p]}
is half-factorial, is proved in [9, Proof of Theorem 8]. ¤
Corollary 5.2. (1) If r(G) = 1, then µ(G) = 2.

(2) If r(G) = 2, then µ(G) = p + 1.

Proposition 5.3. Let r(G) = r and let G0 ⊂ G \ {0} be a half-factorial set.

(1) |G0| ≤ r
2
p.

(2) If |G0| = r
2
p, then there exists an independent subset with r elements.

Moreover, if {e1, . . . , er} ⊂ G0 is independent and g ∈ G0 \ {e1, . . . , er},
then g = −biei − bjej with distinct i, j ∈ [1, r] and bi, bj ∈ [1, p − 2] such
that bi + bj = p− 1.

(3) There exists a half-factorial set G′
0 ⊂ G\{0} with |G′

0| = b r
2
cp+2( r

2
−b r

2
c).

(4) 1 + b r
2
cp + 2( r

2
− b r

2
c) ≤ µ(G) ≤ 1 + r

2
p.

(5) If r is even then µ(G) = 1 + r
2
p.

Proof. 1. Without restriction let r(〈G0〉) = r. Let {e1, . . . , er} ⊂ G0 be an
independent set and let G1 = G0 \ {e1, . . . , er}. Lemma 4.1 gives that

G1 = {−
r∑

i=1

biei ∈ G1 | bi ∈ [0, p− 2], at least two of the bi’s distinct to 0},

hence

|G1| ≤ 1

2

r∑
j=1

|{−
r∑

i=1

biei ∈ G1 | bi ∈ [0, p− 2], bj 6= 0}|

≤ 1

2

r∑
j=1

|{bj ∈ [0, p− 2] | bj 6= 0}|

=
1

2
r(p− 2),
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where the second inequality follows again by Proposition 4.2.2. Since |G0| =
|G1|+ r, the statement follows.

2. We note that if |G0| = r
2
p, then r is even (note that by our general assump-

tion p is odd) and by Lemma 2.3.4 there exists some independent subset of G0

with r elements.
We use the same notation as in 1.. From 1. we get

|G1| = 1

2

r∑
j=1

|{−
r∑

i=1

biei ∈ G1 | bi ∈ [0, p− 2], bj 6= 0}|,

hence for each g = −∑r
i=1 biei ∈ G1 exactly two of the bi’s are not equal to 0.

Thus g = −biei − bjej for distinct i, j ∈ [1, r] and the other conditions follow
immediately by Lemma 4.1.

3., 4. and 5. The existence of the half-factorial set G′
0 and the lower bound in

4. is obtained by decomposing the group G into subgroups of rank 1 and 2, and
applying Lemma 2.3.3 and Corollary 5.2. The upper bound in 4. follows by 1.
and if r is even, they are equal which proves 5.. ¤
Proof of Theorem 3.1. For elementary 2-groups the assertion follows from Propo-
sition 3.3.

Let G be an elementary p-group with p ∈ P odd, r = r(G) even and G0 ⊂ G\{0}
a half-factorial subset with |G0| = µ(G) − 1 = r

2
p. By Proposition 5.3.2 there

exists an independent subset {e1, . . . , er} ⊂ G0, and we have to show that after
suitable renumeration

G0 =
⋃̇ r

2

i=1
{je2i−1 + (p + 1− j)e2i | j ∈ [1, p]} ∪ {0}.

Let G1 = G0 \ {e1, . . . , er} and g ∈ G1. By Proposition 5.3.2 we may suppose
after renumeration that g = −b1e1 − b2e2 with b1, b2 ∈ [1, p− 2].

It suffices to prove, that if h ∈ G1, with h = −b′1e1− b′jej and b′1, b
′
j ∈ [1, p− 1],

then j = 2. Assume to the contrary j ∈ [3, r]. Without restriction we assume
j = 3. By Proposition 4.2

h = −c1g − c2e2 − c3e3,

with c1 = [−b′1b
−1
1 ]p, c2 = [c1b2]p and c3 = [b′3]p. The set {g, e2, . . . , er} ⊂ G0 is

independent and ci ∈ [1, p − 1] for each i ∈ [1, r]. This contradicts Proposition
5.3.2. ¤

6. Proof of Theorem 3.2

In this section we give a proof of Theorem 3.2. This theorem determines µ(G)
and the structure of minimal non-half-factorial sets for elementary p-groups with
r(G) ≤ 2 or exp(G) ≤ 7. We will prove several preparatory results.

First we give a result that will settle the case of rank less or equal than 2.
In Proposition 3.3 we investigated already elementary 2-groups. Therefore it
remains to consider elementary p-groups with p ∈ {3, 5, 7}. This will be done in
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Proposition 6.2, 6.3 and 6.5, where we describe the structure of half-factorial sets
in 3, 5 and 7-groups in detail.

Proposition 6.1. Let G0 ⊂ G be a minimal non-half-factorial set. If r(〈G0〉) ≤ 2,
then G0 is simple.

Proof. Suppose that r(〈G0〉) = 1. Then Proposition 5.1.1 implies that there exist
two distinct non-zero elements, say g, e ∈ G0 \ {0}. Again by Proposition 5.1.1,
{g, e} is not half-factorial, hence G0 = {g, e}. Since r(〈G0〉) = 1, it follows that
g ∈ 〈e〉 and G0 is simple.
Suppose that r(〈G0〉) = 2. Then Proposition 5.1.2 implies that G0 contains two
independent elements e1, e2 and some element g = a1e1 + a2e2 with a1, a2 ∈ [1, p]
and a1 6= p + 1 − a2. Again by Proposition 5.1.2, {g, e1, e2} is not half-factorial
hence G0 = {g, e1, e2} and G0 is simple. ¤

Using the notion of components, we can formulate the result on half-factorial
sets of elementary 2-groups (Proposition 3.3) in the following way: A subset G0

of an elementary 2-group is half-factorial if and only if for each indecomposable
component G1 ⊂ G0 we have |G1| = 1. In the sequel we will determine the
indecomposable components of half-factorial sets in elementary 3, 5 and 7-groups.

Proposition 6.2. Let G be an elementary 3-group and G0 ⊂ G a non-empty
subset.

(1) G0 is simple and half-factorial if and only if G0 = {−e1 − e2, e1, e2} with
independent elements {e1, e2}.

(2) There are equivalent:
(a) G0 is half-factorial.
(b) For each indecomposable component G1 of G0 either |G1| = 1 or

G1 = {−e1 − e2, e1, e2}, with independent elements {e1, e2} ⊂ G1.
(3) If G0 is minimal non-half-factorial, then G0 is simple.

Proof. 1. Clearly, the considered sets are simple and {−e1 − e2, e1, e2} is half-
factorial by Lemma 4.9.

Conversely, let G0 be simple and half-factorial. Proposition 4.7 implies that
|G0| = 3 and by Lemma 4.1 the assertion follows.

2. A set with these indecomposable components is half-factorial, since 1. gives
that each indecomposable component is half-factorial (cf. Remark 2.5).
Conversely, let G0 ⊂ G half-factorial and let G1 be an indecomposable component.
Either |G1| = 1 or there exists a simple subset G2 ⊂ G1 with |G2| ≥ 2. By 1.
we get that G2 = {−e1 − e2, e1, e2} with independent elements {e1, e2}, and by
Proposition 4.10.4 we get that G2 is an indecomposable component of G1, hence
G2 = G1.

3. By Lemma 2.7.3 it suffices to prove that every indecomposable non-half-
factorial set has some subset that is simple and non-half-factorial.

Let G0 ⊂ G be indecomposable non-half-factorial and let {e1, . . . , er} ⊂ G0 be
a maximal independent set. Let g ∈ G0 \ {e1, . . . , er}. Clearly g = −∑r

i=1 biei
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with bi ∈ [0, 2]. By 1. we get that either {g, e1, . . . , er} is not half-factorial or
g = −ei − ej with i, j ∈ [1, r]. In the first case the statement is obvious, hence
we may suppose after a suitable renumeration that g = −e1 − e2. Since G0 is
indecomposable (cf. Remark 2.5) and {g, e1, e2} 6= G0 we obtain that {g, e1, e2}
is not an indecomposable component of G0 and the assertion follows applying
Proposition 4.10.3. ¤
Proposition 6.3. Let G be an elementary 5-group and G0 ⊂ G a non-empty
subset.

(1) G0 is simple and half-factorial if and only if either
• G0 = {je1 + (6− j)e2, e1, e2} with independent elements {e1, e2} and

j ∈ [2, 4] or
• G0 = {−e1 − e2 − e3 − e4, e1, e2, e3, e4} with independent elements
{e1, . . . , e4}.

(2) There are equivalent:
(a) G0 is half-factorial.
(b) For each indecomposable component G1 of G0 either |G1| = 1 or G1 ⊂

{je1 + (6− j)e2 | j ∈ [1, 5]} with independent elements {e1, e2} ⊂ G1

or G1 = {−e1 − e2 − e3 − e4, e1, e2, e3, e4} with independent elements
{e1, e2, e3, e4} ⊂ G1.

(3) If G0 is minimal non-half-factorial, then G0 is simple.

Proof. 1. Clearly, the considered sets are simple. By Lemma 4.9 and Proposition
5.1.2 all these sets are half-factorial.
Conversely, let G0 ⊂ G be simple and half-factorial. Let g ∈ G0, such that
G0 \ {g} = {e1, . . . , er} is independent. By Proposition 4.7 we obtain r ∈ {2, 4}
and by Lemma 4.1 the set G0 has the form as claimed.

2. A set with these indecomposable components is half-factorial, since Proposi-
tion 5.1 and Lemma 4.9 give that each indecomposable component is half-factorial
(cf. Remark 2.5). Conversely, let G0 ⊂ G half-factorial and let G1 be an inde-
composable component. Either |G1| = 1 or there exists a simple subset G2 ⊂ G1

with |G2| ≥ 2. We choose G2 such that the cardinality of G2 is maximal.
By 1. we get that |G2| ∈ {3, 5}. If |G2| = 5, then G2 = {−e1 − e2 − e3 −

e4, e1, e2, e3, e4} with independent elements {e1, e2, e3, e4}. By Proposition 4.10.4
we get G2 = G1.

Suppose |G2| = 3. Then G2 = {je1+(6−j)e2, e1, e2} with independent elements
{e1, e2} and j ∈ [2, 4]. We set h = je1+(6−j)e2. By Proposition 5.1.2, it remains
to prove that G1 ⊂ 〈{e1, e2}〉. Assume to the contrary there exists some r ≥ 3
and elements {e3, . . . , er} ⊂ G1, such that {e1, . . . , er} is independent. For each
element g ∈ G1 \ {e1, . . . , er}, we get g = kem + (6− k)en with m,n ∈ [1, r] and
k ∈ [2, 4]. Since G1 is indecomposable, there exist some h′ ∈ G1 \ {e1, . . . , er}
such that h′ = j′em +(6− j′)en with m ∈ [1, 2], n ∈ [3, r] and j′ ∈ [2, 4]. Without
restriction we assume m = 1 and n = 3. Clearly {h′, e2, e3} ⊂ G1 is independent
and by Proposition 4.2.

h′ = −c1h− c2e2 − c3e3,
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with c1 = [−jj′−1]p ∈ [1, 4], c2 = j − 1 ∈ [1, 4] and c3 = [c1(j
′ − 1)]p ∈ [1, 4]. The

set {h′, h, e2, e3} is simple, 1. gives that it is not half-factorial, a contradiction.
Consequently, G1 ⊂ 〈{e1, e2}〉 and G1 ⊂ {je1 + (6− j)e2 | j ∈ [1, 5]}.

3. It suffices to prove that every indecomposable non-half-factorial set has some
subset, which is simple and non-half-factorial. Let G0 ⊂ G be indecomposable
non-half-factorial and let

{e1, . . . , er} ⊂ G0

be a maximal independent set in G0. Let g ∈ G0 \ {e1, . . . , er}. Clearly g =
−∑r

i=1 biei with bi ∈ [0, 4]. We get that either {g, e1, . . . , er} is not half-factorial
or g is of the form given in 1.. In the first case the statement is obvious. For
g = −e1 − e2 − e3 − e4 the statement follows by Proposition 4.10.3. For g =
je1 + (p + 1 − j)e2 the statement follows by Proposition 4.2.3 and the proof of
2.. ¤
Lemma 6.4. Let G be an elementary 7-group, {e1, . . . , er} ⊂ G an independent
set and g = −∑r

i=1 biei with bi ∈ [1, 6]. Then G0 = {g, e1, . . . , er} is half-factorial
if and only if

• r = 2 and b1 + b2 = 6 or
• r = 3 and b1 = b2 = b3 = 2 or
• r = 3 and bi = 4, bj = bk = 1 with {i, j, k} = {1, 2, 3} or
• r = 6 and b1 = · · · = b6 = 1.

Proof. Suppose G0 is half-factorial. By Proposition 4.7.1 we have r ∈ [2, 6].
If r = 2 or r = 6, then it is obvious by Lemma 4.1, that b1, . . . , br have the

values as claimed.
Suppose r = 3 and we may assume after a suitable renumeration that b1 ≥

b2 ≥ b3. We need to verify that for b1 = 3, b2 = 2 and b3 = 1 the set G0 would
not be half-factorial. Assume to the contrary b1 = 3, b2 = 2 and b3 = 1. Then we
obtain

∑3
i=1[b

−1
1 bi]p = 1+3+5 6= 7−5, which gives by Lemma 4.4 a contradiction

to G0 half-factorial.
By Proposition 4.7.2 we obtain that, since G0 is half-factorial, r /∈ [4, 5].
Conversely, if r and b1, . . . , br are as given by the Lemma, then we obtain by

Lemma 4.9 and Proposition 5.1.2 that G0 is half-factorial. ¤
Proposition 6.5. Let G be an elementary 7-group and G0 ⊂ G a non-empty
subset.

(1) G0 is simple and half-factorial if and only if either
• G0 = {je1 + (8− j)e2, e1, e2} with {e1, e2} independent and j ∈ [2, 6]

or
• G0 = {−2(e1 + e2 + e3), e1, e2, e3} with {e1, e2, e3} independent or
• G0 = {−∑6

i=1 ei, e1, . . . , e6} with {e1, . . . , e6} independent.
(2) There are equivalent:

(a) G0 is half-factorial.
(b) For each indecomposable component G1 of G0 either

• |G1| = 1 or
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• G1 ⊂ {je1+(8−j)e2 | j ∈ [1, 7]} with {e1, e2} ⊂ G1 independent
or

• G1 ⊂ {−2(e1+e2+e3),−4(e1+e2), e1, e2, e3} with {e1, e2, e3} ⊂
G1 independent or

• G1 = {−∑6
i=1 ei, e1, . . . , e6} with {e1, . . . , e6} ⊂ G1 indepen-

dent.
(3) If G0 is minimal non-half-factorial, then G0 is simple.

Proof. 1. Clearly, the considered sets are simple. From Lemma 6.4 we get that
all the sets are half-factorial.
Conversely, let G0 ⊂ G be simple and half-factorial. Let g ∈ G0 such that
G0 \ {g} = {e1, . . . , er} is independent. We get g = −∑r

i=1 biei with bi ∈ [1, 6]
for each i ∈ [1, r]. From Lemma 6.4 we get that

• r = 2 and b1 + b2 = 6 or
• r = 3 and b1 = b2 = b3 = 2 or
• r = 3 and bi = 4, bj = bk = 1 with {i, j, k} = {1, 2, 3} or
• r = 6 and b1 = · · · = b6 = 1.

If b1 + b2 = 6, then there exists some j ∈ [2, 6], such that

−b1e1 − b2e2 = je1 + (8− j)e2.

If g = −4ei− ej − ek, we note that ei = −2(g + ej + ek) and since {g, e2, e3} ⊂ G0

is independent, we get that G0 can be written in the given way.
2. Let G0 ⊂ G be half-factorial and let G1 be an indecomposable component.

Either |G1| = 1 or there exists some simple set G2 ⊂ G1 with |G2| ≥ 2. We choose
G2 such that the cardinality of G2 is maximal. By Lemma 6.4 |G2| ∈ {3, 4, 7}. If
|G2| = 7, then G2 = G1 by Proposition 4.10.4.

Suppose |G2| = 4. Then we get by 1. that G2 = {g, e1, e2, e3} with g =
−2(e1 + e2 + e3) and {e1, e2, e3} independent.
We show that r(〈G1〉) = 3. Assume to the contrary r(〈G1〉) = r > 3. Then
there exist elements {e4, . . . , er} ⊂ G1 such that {e1, . . . , er} is independent and
since G1 is indecomposable, there exists some element h = −∑r

i=1 b′iei ∈ G1 with
b′i ∈ [0, p− 1] for each i ∈ [1, r] and b′j 6= 0 for some j ∈ [1, 3] and b′k 6= 0 for some
k ∈ [4, r]. Let I = {i ∈ [1, r] | b′i 6= 0}. Since {h} ∪ {ei | i ∈ I} is a simple set, we
get |I| ≤ 3. We decide two cases.
Case 1: |I ∩ [1, 3]| = 1. We may suppose 1 ∈ I. Applying Proposition 4.2 we get

h = −c1g − c2e2 − c3e3 −
∑

i∈I\{1}
ciei

with ci ∈ [1, 6] for each i. Consequently, the set {h, g, e2, e3} ∪ {ei | i ∈ I \ {1}}
is a simple set with cardinality 3 + |I| ∈ {5, 6}, a contradiction.
Case 2: |I ∩ [1, 3]| = 2. Without restriction let I = {1, 2, 4}. From Lemma 6.4 we
get that either h = −2(e1 +e2 +e4) or h = −4ei−ej−ek with {i, j, k} = {1, 2, 4}.
By Proposition 4.2 we get, that h = −2(e1 + e2 + e4) gives a contradiction. We
consider h = −4ei − ej − ek. It suffices to consider i = 1 and i = 4. If i = 4,
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we get h = −3g − 6e3 − 4e4, a contradiction by Lemma 6.4. If i = 1, we get
h = −3g − 3e1 − 6e3 − e4, a contradiction.

Consequently, we get r(〈G1〉) = 3. Let h ∈ G1 \ {g, e1, e2, e3} with h =
−∑3

i=1 b′ie
′
i and b′i ∈ [0, 6]. Without restriction we assume b′1 ≥ b′2 ≥ b′3. If b′3 6= 0,

we get by Lemma 6.4 that b′1 = 4 and b′2 = b′3 = 1. This gives e2 = −3g−2h− e3,
a contradiction by Lemma 6.4. If b′3 = 0, we get by Lemma 4.1 and Proposition
4.2, that either b′1 = 5 and b′2 = 1 or b′1 = b′2 = 3. For b′1 = 5 and b′2 = 1, we get
h = −g − 3e2 − 2e3, a contradiction by Lemma 6.4. For b′1 = b′2 = 3, we get that

{gh2e1e2e
2
3, gh4e2

3, g
2he4

3, g
4h2e3}

is the set of all atoms in A({g, h, e1, e2, e3}) for which the multiplicity of g
and of h is positive. All these atoms have cross number 1. Clearly, for each
A ∈ A({g, h, e1, e2, e3}) with vg(A) = 0 or vh(A) = 0, we get k(A) = 1. Thus
{g, h, e1, e2, e3} is half-factorial by Lemma 2.2. Since neither for h′ = −3(e1 + e3)
nor for h′ = −3(e2 + e3) the set {g, h, h′, e1, e2, e3} is half-factorial, we get
that G1 ⊂ {−2(e1 + e2 + e3),−3(e1 + e2), e1, e2, e3} with independent elements
{e1, e2, e3} ⊂ G1.

Suppose |G2| = 3. From Lemma 6.4 we get that G2 = {g, e1, e2} with inde-
pendent {e1, e2} and g = −b1e1 − b2e2 and bi ∈ [1, 6] for each i ∈ [1, 2]. We
prove r(〈G1〉) = 2. Assume to the contrary r(〈G1〉) > 2. Then there exist ele-
ments e3, h ∈ G1 such that {e1, e2, e3} is independent and h = −b′jej − b′3e3 with
b′j, b

′
3 ∈ [1, 6] and j ∈ [1, 2]. We may suppose j = 1. By Proposition 4.2, we get

h = −c1g − c2e2 − c3e3

with ci ∈ [1, 6] for each i. The set {h, g, e2, e3} is simple with cardinality 4, a
contradiction. Consequently, r(〈G1〉) = 2 and G1 ⊂ {je1+(p+1−j)e2 | j ∈ [1, 7]}
with independent elements {e1, e2} ⊂ G1 by Proposition 5.1.2.

Conversely, every set with these indecomposable components is half-factorial,
since Lemma 4.9, Proposition 5.1 and what we proved in the first part gives that
each indecomposable component is half-factorial (cf. Remark 2.5).

3. By Lemma 2.7.3 it suffices to prove that every indecomposable non-half-
factorial set has a subset that is simple and non-half-factorial. Let G0 ⊂ G
be indecomposable non-half-factorial and let {e1, . . . , er} ⊂ G0 be a maximal
independent set in G0. Let g ∈ G0 \ {e1, . . . , er}. Clearly g = −∑r

i=1 biei with
bi ∈ [0, 6]. We get that either {g, e1, . . . , er} is not half-factorial or g is of the form
given in Lemma 6.4. In the first case the statement is obvious. Otherwise the
statement follows from Proposition 4.10.3 respectively from the proof of 2.. ¤
Proof of Theorem 3.2. Let G be an elementary p-group.

If r(G) ≤ 2, then the statements are obvious by Lemma 5.1 and Proposition
6.1. If exp(G) = 2, then the statements are obvious by Proposition 3.3.

For p ∈ {3, 5, 7} the first part of the theorem is just Proposition 6.2.3 re-
spectively 6.3.3 and 6.5.3. The statement on µ(G) follows immediately from the
explicit description of the half-factorial sets given in Proposition 6.2.2 respectively
6.3.2 and 6.5.2. ¤
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