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Abstract

We investigate the set of integral solutions, over a given number field,
of the equation X2 − dY 2 = 1, where d denotes some non-zero integer of
this field. We define an operation on this set such that it is an abelian
group and determine the structure of this abelian group in terms of the
number of complex and real embeddings of the number field, and the
number of positive embeddings of d.
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1 Introduction and main result

We want to investigate the set of integral solutions of equations of Pell type

X2 − dY 2 = 1, (†)

over a given number field K, where d denotes a non-zero algebraic integer of
K. Our investigations are motivated by a result of P. Shastri [2, Theorem 1.1]
(also cf. Remark 4.2) on integral solutions of the circle equation, that is, (†) in
the special case d = −1. In fact, the methods and results of [2] are, with small
modifications, sufficient to establish our result (Theorem 3). For a survey of
investigations on Pell type equations in number fields cf. Note 12 to Chapter 9
in [1].

The aim of this paper is to investigate the following set.

Definition 1. For a number field K with ring of integers OK and d ∈ OK \{0}
let

Cd
K = {(x, y) ∈ O2

K | x2 − dy2 = 1}.
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For (x1, y1), (x2, y2) ∈ Cd
K let the operation × be defined via

(x1, y1)× (x2, y2) = (x1x2 + dy1y2, x2y1 + x1y2).

We start with a simple lemma on the set Cd
K .

Lemma 2. Let K be a number field and d ∈ OK \ {0}. Then (Cd
K ,×) is an

abelian group.

Proof. Let (x1, y1), (x2, y2) ∈ Cd
K . First, we note that

(x1x2 + dy1y2)2 − d(x2y1 + x1y2)2 = x2
1(x

2
2 − dy2

2)− dy2
1(x2

2 − dy2
2) = 1.

Therefore, Cd
K is closed under the operation ×. Clearly, × is commutative and

a direct calculation shows that × is associative. The neutral element is (1, 0)
and the inverse of (x1, y1) is given by (x1,−y1).

Our aim is to describe the structure of Cd
K as abelian group. This is done in

Theorem 3. First, we recall resp. introduce some notation (cf. [1, Chapter 2.1]).
Let K be a number field. Then r1 denotes the number of real embeddings and
r2 the number of conjugated pairs of complex embeddings. For a ∈ K \ {0} let
ρ(a) ∈ {0, . . . , r1} denote the number of real embeddings Fi for which Fi(a) > 0,
that is, ρ(a) = (

∑r1
i=1 1 + εi(a))/2 where (ε1, . . . , εr1) = Sgn(a) is the image of

a under the signature map.
For an integral domain R let R× denote its group of (multiplicative) units.

For j a positive integer let Cj denote the cyclic group with j elements.

Theorem 3. Let K be a number field and d ∈ OK \ {0}. Then

Cd
K
∼=

{
Cj × Zρ(d)+r2 if

√
d /∈ K

Cj × Zr1+r2−1 if
√

d ∈ K
,

where j = 4 if
√
−d ∈ O×K , and j = 2 otherwise.

Remark 4. The theorem contains several interesting special cases.

1. For K = Q we have r1 = 1 and r2 = 0. Thus, we get the well known result
that X2−dY 2 = 1 has non-trivial solutions in Z if and only if d > 0, that
is, ρ(d) > 0 and d is not a square in Z.

2. For d = −1 we get Theorem 1.1 of [2], the starting point of our investi-
gations, which also provided the pattern for the proof of Theorem 3 (cf.
Section 1),

C−1
K

∼=

{
C4 × Zr2 if

√
−1 /∈ K

C4 × Zr2−1 if
√
−1 ∈ K

,

since ρ(−1) = 0,
√
−(−1) ∈ O×K , and if

√
−1 ∈ K, then the field K has

no real embeddings.
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3. For d ∈ Z \ {−1, 0} we have

Cd
K
∼=



C2 × Zr2 if d < −1 and
√

d /∈ K

C2 × Zr1+r2 if d > 0 and
√

d /∈ K

C2 × Zr1+r2−1 if d 6= 1 and
√

d ∈ K

C2 × Zr1+r2−1 if d = 1 and
√
−1 /∈ K

C4 × Zr2−1 if d = 1 and
√
−1 ∈ K

,

since
√
−d ∈ O×K implies d = 1, and ρ(d) = r1 or ρ(d) = 0 holds according

as d is positive or negative.

2 Auxiliary results

We establish two lemmata. First, we prove that Cd
K is isomorphic to a certain

subgroup of OK [
√

d]×. This will allow us to use tools from algebraic number
theory to investigate the structure of Cd

K .

Lemma 5. Let K be a number field and d ∈ OK \ {0}. Then the map

Φd
K :

{
Cd

K → Ok[
√

d]
(x, y) 7→ x +

√
dy

,

is injective and induces an isomorphism of the abelian groups (Cd
K ,×) and U =

{u ∈ OK [
√

d]× | u+u−1

2 ∈ OK and u−u−1

2
√

d
∈ OK}.

Proof. Let u ∈ Φd
K(Cd

K). Then u = x+
√

dy with x, y ∈ OK . From the definition
of Cd

K we get that (x+
√

dy)(x−
√

dy) = x2−dy2 = 1. Therefore, u ∈ OK [
√

d]×

and u−1 = x−
√

dy. Furthermore, we have

u + u−1

2
= x ∈ OK and

u− u−1

2
√

d
= y ∈ OK ,

and thus Φd
K(Cd

K) ⊂ U .
Conversely, for every u ∈ U we get (u+u−1

2 )2 − d(u−u−1

2
√

d
)2 = 1. Let

Ψ :

{
U → Cd

K

u 7→ (u+u−1

2 , u−u−1

2
√

d
)

.

Then Ψ ◦Φd
K is the identity on Cd

K and Φd
K ◦Ψ the identity on U . Thus, Φd

K is
injective and Φd

K : Cd
K → U is bijective. Via direct calculation we see

Φd
K((x1, y1)× (x2, y2)) = Φd

K((x1, y1))Φd
K((x2, y2)).

Thus, Cd
K and U are isomorphic.
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Lemma 6. Let K be a number field of degree n and let d ∈ OK with
√

d /∈ K.
Further, let L = K(

√
d). Then OK [

√
d] is an order of L and rank(OK [

√
d]×) =

rank(O×L ). In particular,

rank(OK [
√

d]×) = ρ(d) + n− 1.

Proof. Let {ω1, . . . , ωn} be an integral basis of OK . As [L : Q] = 2n and

{ω1, . . . , ωn,
√

dω1, . . . ,
√

dωn} ⊂ OK [
√

d]

is Q-independent, OK [
√

d] is an order of L. Therefore, by [2, Lemma 1.1], we
have rank(OK [

√
d]×) = rank(O×L ).

Let F : K → C be an embedding of K. It can be extended in two ways
F ′ and F ′′ to an embedding of L. Clearly, if F is complex, then F ′ and F ′′

are complex. Moreover, if F is real and F (d) < 0, then again F ′ and F ′′ are
complex. However, if F is real and F (d) > 0, then F ′ and F ′′ are real.

Thus, L has 2ρ(d) real and 2(n− ρ(d)) complex embeddings. Using Dirich-
let’s unit theorem (see for example [1, Theorem 3.6]) for OL, the result follows
immediately.

3 Proof of the main result

Now we are ready to prove Theorem 3.

Proof of Theorem 3. We have already established that Φd
K is an isomorphism

of abelian groups. Therefore, it suffices to investigate Φd
K(Cd

k). First, we prove
the result on the rank and then establish the result on the torsion elements.

1. If
√

d /∈ K, we consider the relative norm map NL/K , where L = K(
√

d).
This leads to the following homomorphism of abelian groups:

N ′
L/K :

{
OK [

√
d]× → O×K

x +
√

dy 7→ (x +
√

dy)(x−
√

dy)
.

From this it follows immediately that

Φd
K(Cd

K) = kerN ′
L/K .

As (O×K)2 ⊂ imN ′
L/K and using Dirichlet’s unit theorem again, we get

rank(imN ′
L/K) = rank(O×K) = r1 + r2 − 1. Consequently, as

rank(OK [
√

d]×) = rank(imN ′
L/K) + rank(kerN ′

L/K),

we get, using Lemma 6, that

rank(kerN ′
L/K) = ρ(d) + r2.
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2. If
√

d ∈ K, then OK [
√

d] = OK . Therefore, we know

Φd
K(Cd

K) = {u ∈ O×K | u + u−1

2
∈ OK and

u− u−1

2
√

d
∈ OK}

= {u ∈ O×K | u2 ∈ 1 + 2
√

dOK}.

This means that Φd
K(Cd

K) is equal to the kernel of the map

η :

{
O×K → (OK/2

√
dOK)×

u 7→ u2 + 2
√

dOK

.

Since (OK/2
√

dOK)× is finite, we get

rank(ker η) = rank(O×K) = r1 + r2 − 1.

Next, we establish the result concerning torsion elements. This means
we need to determine for which elements of finite order (roots of unity) ζ ∈
OK [

√
d]×

ζ + ζ−1

2
∈ OK and

ζ − ζ−1

2
√

d
∈ OK

holds. We know that ζ+ζ−1

2 ∈ OK if and only if ζ4 = 1 (cf. [2, Proof of the

main theorem]). Obviously, for ζ = ±1 we have ζ−ζ−1

2
√

d
∈ OK . It remains to

consider ζ = ±
√
−1.

Let ζ =
√
−1. We need to check whether

√
−1√
d
∈ OK . (‡)

We note that (‡) implies d ∈ O×K . Thus, (‡) is equivalent to
√
−d ∈ O×K . Since

the same argument holds for ζ = −
√
−1, the result concerning torsion elements

is established.
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