MINIMAL ZERO-SUM SEQUENCES IN $C_n \oplus C_n$

GÜNTER LETTL AND WOLFGANG A. SCHMID

ABSTRACT. Minimal zero-sum sequences of maximal length in $C_n \oplus C_n$ are known to have 2n - 1 elements, and this paper presents some new results on the structure of such sequences.

It is conjectured that every such sequence contains some group element n-1 times, and this will be proved for sequences consisting of only three distinct group elements.

We prove, furthermore, that if p is an odd prime then any minimal zero-sum sequence of length 2p - 1 in $C_p \oplus C_p$ consists of at most p distinct group elements; this is best possible, as shown by well-known examples. Moreover, some structural properties of minimal zero-sum sequences in $C_p \oplus C_p$ of length 2p - 1 with p distinct elements are established.

The key result proving our second theorem can also be interpreted in terms of Hamming codes, as follows: for an odd prime power q each linear Hamming code $\mathcal{C} \subset \mathbb{F}_q^{q+1}$ contains a non-zero word with letters only 0 and 1.

1. INTRODUCTION AND MAIN RESULTS

Many problems in graph theory, additive number theory and factorization theory translate into questions about zero-sum sequences in finite abelian groups. Thus the interest to investigate such sequences is large, and the reader is referred e.g. to [1, 7, 11] or the book [10, Chapter 5] for more details and literature.

In this paper we use notation and terminology from [6]. We denote by C_n an (additively written) cyclic group of order n. Let $n \ge 2$ be an integer and let $G = C_n \oplus C_n$. Extensive studies were made to investigate the structure of minimal zero-sum sequences in G. A sequence (or a multi-set) S in G is an element

$$S = \prod_{i=1}^{l} g_i \in \mathcal{F}(G)$$

of the free abelian (multiplicatively written) monoid generated by G. The *length* of S is denoted by |S| = l. Some $T \in \mathcal{F}(G)$ is called a *subsequence* of S if T divides S in $\mathcal{F}(G)$ (in symbols: $T \mid S$). The sequence S is called a *zero-sum sequence* if its sum $\sigma(S) = \sum_{i=1}^{l} g_i$ equals $0 \in G$, and it is called a *minimal* zero-sum sequence if additionally each proper non-trivial subsum does not equal 0.

The maximal length of a minimal zero-sum sequence in a finite abelian group is called Davenport's constant of the group. Among others, it is known that Davenport's constant of $C_m \oplus C_n$, where $m \mid n$, is equal to n + m - 1, in particular Davenport's constant of G equals 2n - 1 (see [15]). Given S as above, let $\operatorname{supp}(S) = \{g_1, \ldots, g_l\} \subset G$ denote the support of S, i.e. the set of group elements appearing in the sequence S, and for $g \in G$

²⁰⁰⁰ Mathematics Subject Classification. Primary 11B75, secondary 20D60, 94B05.

The second author was supported by the Austrian Science Fund FWF (Project P16770-N12).

let $v_g(S) = |\{i: 1 \le i \le l \text{ and } g_i = g\}|$ denote the multiplicity of the group element g in the sequence S. Further, let

$$\Sigma(S) = \left\{ \sum_{i \in I} g_i \colon \emptyset \neq I \subset \{1, \dots, l\} \right\}$$

denote the set of sums of all (non-empty) subsequences of S.

First, let us recall [5, Proposition 6.3.1] and [6, Proposition 4.1.2(b)].

Proposition 1. Let $n \ge 2$ be an integer, $G = C_n \oplus C_n$ and $S \in \mathcal{F}(G)$ be a minimal zero-sum sequence of maximal length, i.e., |S| = 2n - 1. Then one has:

- a) Any $g \in \text{supp}(S)$ has maximal order, i.e., ord(g) = n.
- **b)** For any $e_1 \in \text{supp}(S)$ with $\mathsf{v}_{e_1}(S) = n 1$, there exists some $e_2 \in G$ such that $\{e_1, e_2\}$ is a basis of G and

$$S = e_1^{n-1} \prod_{i=1}^n (a_i e_1 + e_2)$$

with $a_i \in \mathbb{Z}$ and $\sum_{i=1}^n a_i \equiv 1 \mod (n)$. In particular, all elements occurring in S apart e_1 lie in a single coset of $\langle e_1 \rangle$ which has order n.

Notice that any sequence $S \in \mathcal{F}(G)$, given as in Proposition 1.b), is a minimal zero-sum sequence. Thus, this result provides a classification of all minimal zero-sum sequences of maximal lengths in G containing some group element with multiplicity n - 1. According to [6, Definition 3.2], a natural number $n \in \mathbb{N}$ is said to have "Property B", if each minimal zero-sum sequence of maximal length in $C_n \oplus C_n$ contains some element with multiplicity n - 1. It is known that all $n \leq 6$ have Property B [6, Proposition 4.2] and that there are arbitrarily large n with Property B [6, Theorem 8.1]. A (positive) answer to the question whether actually all n have Property B, would allow progress on various other problems (cf. [5, 6, 9]).

It is easy to see that any minimal zero-sum sequence of maximal length in G contains at least 3 different group elements. We will prove that if such a sequence contains exactly 3 different elements, then it contains some element with multiplicity n - 1.

Theorem 1. Let $n \geq 2$ be an integer, $G = C_n \oplus C_n$ and $S = g_1^{\lambda_1} g_2^{\lambda_2} g_3^{\lambda_3} \in \mathcal{F}(G)$, with pairwise distinct $g_1, g_2, g_3 \in G$ and $n - 1 \geq \lambda_1 \geq \lambda_2 \geq \lambda_3 \geq 1$, be a minimal zero-sum sequence of maximal length, i.e., $|S| = \lambda_1 + \lambda_2 + \lambda_3 = 2n - 1$. Then

$$\lambda_1 = n - 1$$
 .

For the rest of this section we will concentrate on the case where n is prime. We denote by \mathbb{P} the set of rational primes. Then one has further information about the structure of minimal zero-sum sequences of maximal length (see [7, Corollary 6.3] and [6, Lemma 3.8.2]):

Proposition 2. For $p \in \mathbb{P}$ let $G = C_p \oplus C_p$ and $S \in \mathcal{F}(G)$ be a minimal zero-sum sequence of maximal length, i.e., |S| = 2p - 1. Then one has:

- **a)** Any two distinct elements of supp(S) generate G.
- **b)** $3 \le |\operatorname{supp}(S)| \le p+1.$

For $p \geq 3$ there are examples for minimal zero-sum sequences in $C_p \oplus C_p$ with length 2p-1 such that the support contains up to p different elements (see [5, Corollary 10.5.3]) and we will show that there exists no such sequence having a support with p+1 elements.

Theorem 2. Let p be an odd prime and $G = C_p \oplus C_p$. Then for every minimal zero-sum sequence $S \in \mathcal{F}(G)$ of maximal length |S| = 2p - 1 one has

$$|\operatorname{supp}(S)| \le p$$
.

This result supports the belief that Property B holds for $p \in \mathbb{P}$, since the former would be an easy consequence of the latter together with Proposition 1.b).

In the following result we obtain some information on the structure of any minimal zero-sum sequence S in $C_p \oplus C_p$ with maximal length containing p different elements. We recall that by Proposition 2 any two different elements in the support of S generate distinct cyclic subgroups of order p of $C_p \oplus C_p$, and thus there exists a unique cyclic subgroup of order p of $C_p \oplus C_p$ that is not generated by an element occurring in S.

Theorem 3. Let p be an odd prime, $G = C_p \oplus C_p$ and $S = \prod_{i=1}^p g_i^{\lambda_i} \in \mathcal{F}(G)$ a minimal zero-sum sequence of maximal length, i.e., $|S| = \sum_{i=1}^p \lambda_i = 2p - 1$, with pairwise distinct $g_1, \ldots, g_p \in G$, and suppose that

$$p-1 \ge \lambda_1 \ge \cdots \ge \lambda_m > \lambda_{m+1} = \cdots = \lambda_p = 1$$
.

Thus m denotes the number of indices i with $\lambda_i > 1$, and $2 \le m \le p - 1$. Then we have the following:

a) Let $H \subset G$ be the cyclic subgroup of order p different from $\langle g_i \rangle$ for each $1 \leq i \leq p$. Then

$$\{g_1,\ldots,g_m\}\subset g_1+H$$

- **b**) $m \le \sqrt{2p 2}$.
- c) Either $\lambda_1 = p 1$ or $\frac{1 + \sqrt{4p 3}}{2} \le \lambda_1 .$

Theorem 3 can be seen as a further small step towards proving that Property B holds for $p \in \mathbb{P}$. Note that if $p \in \mathbb{P}$ has Property B, the sequence in Theorem 3 would have parameters $\lambda_1 = p - 1$ and $\lambda_2 = m = 2$.

2. Proof of Theorem 1

First, we will show that the analog of Proposition 2.a) for composite n only holds for sequences S with $|\operatorname{supp}(S)| = 3$.

Lemma 1. Let $G = C_n \oplus C_n$ and $S = \prod_{i=1}^r g_i^{\lambda_i} \in \mathcal{F}(G)$ with pairwise distinct $g_1, \ldots, g_r \in G$ be a minimal zero-sum sequence of maximal length, i.e., $|S| = \sum_{i=1}^r \lambda_i = 2n - 1$. If for some $1 \leq j \leq r$ we have $\lambda_1 + \cdots + \lambda_j \geq n$, then $\{g_1, \ldots, g_j\}$ generates G.

If three natural numbers $\lambda_i \leq n-1$ sum up to 2n-1, then any two of them have a sum of at least n. Similarly, if four natural numbers $\lambda_4 \leq \cdots \leq \lambda_1 \leq n-1$ sum up to 2n-1, then $\lambda_1 + \lambda_2$, $\lambda_1 + \lambda_3$, and either $\lambda_2 + \lambda_3$ or $\lambda_1 + \lambda_4$ have a sum of at least n. This observation yields the following corollary. **Corollary 1.** Let the notation be as in Lemma 1.

- **a)** If r = 3 then any two elements of supp $(S) = \{g_1, g_2, g_3\}$ form a basis of G.
- **b)** If r = 4 then there exist (at least) 3 pairs of elements of supp(S), each of which is a basis of G.

The following example shows that Proposition 2.a) does not generalize for composite nand sequences S with $|\operatorname{supp}(S)| > 3$, and also that in Lemma 1 the inequality $\lambda_1 + \cdots + \lambda_j \ge n$ is best possible. Let $n \in \mathbb{N}$ be a composite number, put $n = d_1d_2$ with integers $d_i \ge 2$, and let e_1, e_2 be a basis of $G = C_n \oplus C_n$. Then

$$e_1^{n-1} e_2^{n-d_2-1} (d_1 e_1 + e_2)^{d_2} (e_1 + e_2)^1 \in \mathcal{F}(G)$$

is a minimal zero-sum sequence of maximal length, but $\{e_2, d_1e_1 + e_2\}$ is not a basis of G and the multiplicities of these two elements sum up to n - 1.

Proof of Lemma 1.

Put $\lambda_1 + \cdots + \lambda_j = 2n - 1 - l$ with $0 \leq l \leq n - 1$ and suppose to the contrary that $\{g_1, \ldots, g_j\}$ generates a proper subgroup G_0 of G. From Proposition 1.a) we have $G_0 \simeq C_n \oplus C_{n/m}$ with some m > 1 that divides n. Extending the canonical homomorphism $\pi : G \to G/G_0 \simeq C_m$ to $\mathcal{F}(G)$ we obtain a zero-sum sequence $S' = \pi(g_{j+1})^{\lambda_{j+1}} \dots \pi(g_r)^{\lambda_r} \in \mathcal{F}(C_m)$ of length l. Now we can find minimal zero-sum sequences $A'_i \in \mathcal{F}(C_m)$ (with lengths at most m) such that $S' = A'_1 \dots A'_k$ with $km \geq l$. From this we obtain some factorization $g_{j+1}^{\lambda_{j+1}} \dots g_r^{\lambda_r} = A_1 \dots A_k$ with $A_i \in \mathcal{F}(G)$ and $\pi(A_i) = A'_i$. Since A'_i are zero-sum sequences in C_m we have $\sigma(A_i) = a_i \in G_0$. Therefore $S_0 = g_1^{\lambda_1} \dots g_j^{\lambda_j} a_1 \dots a_k \in \mathcal{F}(G_0)$ is a zero-sum sequence in G_0 of length

$$|S_0| = \lambda_1 + \dots + \lambda_j + k \ge 2n - 1 - l + \frac{l}{m} = n + \frac{n}{m} - 1 + (1 - \frac{1}{m})(n - l) >$$

> $n + \frac{n}{m} - 1.$

Thus, the length of S_0 exceeds Davenport's constant of G_0 (cf. Introduction) and consequently the zero-sum sequence S_0 in G_0 is not minimal. It follows that the zero-sum sequence S in G is not minimal either, a contradiction.

For an integer m let $|m|_n$ denote the smallest non-negative integer which is congruent to m modulo (n).

Proof of Theorem 1.

Let S be as in Theorem 1. Since by Corollary 1 any two elements of $supp(S) = \{g_1, g_2, g_3\}$ are a basis of G, we have $g_3 = bg_1 + ag_2$ with some $1 \le a, b \le n - 1$ and gcd(a, n) = gcd(b, n) = 1. Knowing that S is a zero-sum sequence, we have

(1) $\lambda_1 + b\lambda_3 \equiv 0 \mod (n)$ and $\lambda_2 + a\lambda_3 \equiv 0 \mod (n)$.

Since S is minimal, there exists no $(x, y, z) \in \mathbb{N}^3$ with $0 < x \leq \lambda_1$, $0 < y \leq \lambda_2$ and $0 < z < \lambda_3$ satisfying

$$x + bz \equiv 0 \mod (n)$$
 and $y + az \equiv 0 \mod (n)$.

Put

 $M_b = \{z : 1 \le z \le n-1 \text{ and there exists an } x \in \{1, 2, \dots, \lambda_1\} \text{ with } x+bz \equiv 0 \mod (n)\}$

and

 $M_a = \{z : 1 \le z \le n-1 \text{ and there exists a } y \in \{1, 2, \dots, \lambda_2\} \text{ with } y+az \equiv 0 \mod (n)\}$. With gcd(a, n) = gcd(b, n) = 1 one obtains $|M_b| = \lambda_1$ and $|M_a| = \lambda_2$. On the one hand we have $M_a \cap M_b \cap \{1, 2, \dots, \lambda_3 - 1\} = \emptyset$, on the other hand

$$M_a \cap M_b = \lambda_1 + \lambda_2 - |M_a \cup M_b| \ge 2n - 1 - \lambda_3 - n + 1 = (n - 1) - (\lambda_3 - 1) ,$$

so we conclude that $M_a \cap M_b = \{\lambda_3, \lambda_3 + 1, \dots, n-1\}$. For $1 \le \nu \le n - \lambda_3$ we have $n - \nu \in M_a$, which means $1 \le |\nu a|_n \le \lambda_2$, and we get

(2)
$$\left\{ |\nu a|_n \colon 1 \le \nu \le n - \lambda_3 \right\} \subset \{1, \dots, \lambda_2\}$$

If $\lambda_3 = 1$ we immediately obtain $\lambda_2 = \lambda_1 = n - 1$, which proves the assertion of the theorem in this case.

Now suppose that $\lambda_3 \geq 2$. Since S is a minimal zero-sum sequence, (1) and (2) hold and we can apply Lemma 2 below with $l = \lambda_3$ and $L = \lambda_2$. So a = 1, and the second congruence of (1) yields $\lambda_2 + \lambda_3 = n$, thus $\lambda_1 = n - 1$ as asserted.

Lemma 2. Let $a, n \in \mathbb{N}$ with $1 \le a \le n-1$ and gcd(a, n) = 1. Further let $2 \le l \le L \in \mathbb{N}$ with $2L + l \le 2n - 1$ such that

$$(3) -la \equiv L \mod(n)$$

and

(4)
$$\{|\nu a|_n \colon 1 \le \nu \le n-l\} \subset \{1, 2, \dots, L\}$$

hold. Then a = 1.

Proof.

From the suppositions of the lemma we obtain

(5)
$$\frac{n+1}{3} \le n-l \le L \le n-\frac{l+1}{2}$$

We will use the theory of (simple) continued fractions as explained e.g. in [12, Chapter X]. Let $\frac{a}{n} = [0; a_1, a_2, \ldots, a_j]$ be the continued fraction expansion of $\frac{a}{n}$ with $a_j \ge 2$ and with convergents

$$\frac{p_0}{q_0} = \frac{0}{1} , \quad \frac{p_1}{q_1} = \frac{1}{a_1} , \quad \frac{p_2}{q_2} = \frac{a_2}{1 + a_1 a_2} , \dots , \quad \frac{p_j}{q_j} = \frac{a}{n}$$

It is well known (e.g. [12, Theorems 150-151]) that

(6)
$$\left| \frac{a}{n} - \frac{p_{j-1}}{q_{j-1}} \right| = \frac{1}{nq_{j-1}}$$
 and $\left| \frac{a}{n} - \frac{p_{j-2}}{q_{j-2}} \right| = \frac{a_j}{nq_{j-2}}$

Case 1: Suppose that j is odd.

If j = 1 we obtain $\frac{a}{n} = \frac{1}{a_1}$, and with gcd(a, n) = 1 conclude that a = 1. Now let $j \ge 3$. Since $\frac{p_{j-1}}{q_{j-1}} < \frac{p_j}{q_j} = \frac{a}{n} < \frac{p_{j-2}}{q_{j-2}}$ we can derive from (6) that

(7)
$$q_{j-1}a \equiv 1 \mod (n)$$
 and $q_{j-2}a \equiv n - a_j \mod (n)$

Having supposed that $a_j \ge 2$, we get $n = a_j q_{j-1} + q_{j-2} \ge 3q_{j-2}$, and with (5) we obtain $q_{j-2} \le \frac{n}{3} < n-l$. Therefore the second congruence of (7) together with (4) implies

 $n - a_j \leq L \leq n - 2$. Putting $m = L + a_j - n$ one has $0 \leq m \leq a_j - 2$, and adding m times the first congruence of (7) to the second one gives

$$(mq_{j-1} + q_{j-2})a \equiv m + n - a_j = L \mod (n)$$

Using (3) and $1 \le mq_{j-1} + q_{j-2} \le n-1$ we obtain $mq_{j-1} + q_{j-2} = n-l$. Now we insert $L = n + m - a_j$ and $l = (a_j - m)q_{j-1}$ into the last inequality of (5) to get the contradiction

$$n \ge L + \frac{l+1}{2} = n + \frac{1}{2} + (a_j - m)\left(\frac{q_{j-1}}{2} - 1\right) \ge n + \frac{1}{2},$$

where we used $j - 1 \ge 2$ and $q_{j-1} \ge q_2 \ge 2$.

Case 2: Suppose that j is even.

From $0 < \frac{a}{n} < 1$ we see that $j \ge 2$, and j being even implies $\frac{p_{j-2}}{q_{j-2}} < \frac{p_j}{q_j} = \frac{a}{n} < \frac{p_{j-1}}{q_{j-1}}$. This time we derive from (6) that

(8)
$$q_{j-1}a \equiv n-1 \mod (n)$$
 and $q_{j-2}a \equiv a_j \mod (n)$.

Now n-1 > L together with (4) implies $q_{j-1} > n-l > \frac{n}{3}$. On the other hand, $n = a_j q_{j-1} + q_{j-2} > a_j q_{j-1}$ gives $q_{j-1} < \frac{n}{a_j}$. Thus $a_j = 2$ must hold, and with $n = 2q_{j-1} + q_{j-2} \ge 2q_{j-1} + 1$ we obtain

(9)
$$n-l < q_{j-1} \le \frac{n-1}{2}$$
.

Let us first suppose that j = 2. Then $\frac{a}{n} = [0; a_1, 2] = \frac{2}{2a_1+1}$ implies a = 2, and with the estimation (9) we obtain

$$\{|\nu a|_n: 1 \le \nu \le n-l\} = \{2, 4, \dots, 2(n-l)\}.$$

Using (4) and (5) we get $2(n-l) \le L \le n - \frac{l+1}{2}$, which yields $n-l \le \frac{n-1}{3}$ as a contradiction to (5). (Note that the inequalities (5) are just sharp enough to exclude the case a = 2.)

Now we may suppose that $j \ge 4$. Then $n = 2q_{j-1} + q_{j-2} = (2a_{j-1}+1)q_{j-2} + 2q_{j-3} > 5q_{j-3}$ yields $q_{j-1} - a_{j-1}q_{j-2} = q_{j-3} < \frac{n}{5} < n-l$, and from (9) we have $q_{j-1} > n-l$. Therefore we can choose an integer m with $1 \le m \le a_{j-1}$ such that

(10)
$$q_{j-1} - mq_{j-2} \le n - l < q_{j-1} - (m-1)q_{j-2} .$$

Now subtracting m times the second congruence of (8) from the first one (remember that $a_i = 2$) yields

$$(q_{j-1} - mq_{j-2})a \equiv n - 1 - 2m \mod (n)$$

and from (10) and (4) we obtain $n - 1 - 2m \le L$. Inserting these lower bounds for L and l into (5) now yields the contradiction

$$n \ge L + \frac{l+1}{2} > n - 1 - 2m + \frac{1}{2}(n - q_{j-1} + (m-1)q_{j-2}) + \frac{1}{2} =$$

= $n - 1 - 2m + \frac{1}{2}(q_{j-1} + mq_{j-2}) + \frac{1}{2} \ge n - 1 - 2m + \frac{1}{2}(2mq_{j-2} + 1) + \frac{1}{2} =$
= $n + m(q_{j-2} - 2) \ge n$,

where we used $q_{j-1} = a_{j-1}q_{j-2} + q_{j-3} \ge mq_{j-2} + 1$ and $q_{j-2} \ge q_2 \ge 2$.

3. Hamming codes and the proof of Theorem 2

For any prime power q let \mathbb{F}_q denote a finite field with q elements. We use the following terminology. Given a sum $\sum_{i \in I} g_i$ of elements of an abelian group, we call $\sum_{i \in J} g_i$ for some $J \subset I$ a subsum of this sum; we call it a zero-subsum if $\sum_{i \in J} g_i = 0$ and we call it proper (non-trivial, resp.) if $J \neq I$ ($J \neq \emptyset$, resp.). We consider subsums given by distinct sets J, J' as distinct, even if their sums are equal. Moreover, given a subset A of an abelian group, for brevity, we say "subsum of A" instead of "subsum of $\sum_{q \in A} g$ ".

Proof of Theorem 2.

Suppose to the contrary that $\operatorname{supp}(S)$ contains p+1 elements, which by Proposition 2.a) are pairwise independent in $G \simeq \mathbb{F}_p^2$. Now Theorem 4.a) below shows that $\operatorname{supp}(S)$ has a non-trivial zero-subsum, contradicting the minimality of S.

Theorem 4. Let $q \in \mathbb{N}$ be a power of an odd prime.

- a) Let $\mathbf{v}_0, \mathbf{v}_1, \ldots, \mathbf{v}_q \in \mathbb{F}_q^2$ be given such that any two of these vectors are linearly independent over \mathbb{F}_q . Then there exists a non-trivial zero-subsum of these vectors. Moreover, the number of all non-trivial zero-subsums of $\{\mathbf{v}_0, \mathbf{v}_1, \ldots, \mathbf{v}_q\}$ is odd. If furthermore $\sum_{i=0}^q \mathbf{v}_i = \mathbf{0}$, then there exists a proper non-trivial zero-subsum.
- **b)** Let $C \subset \mathbb{F}_q^{q+1}$ be a (q-ary) linear Hamming code of order 2. Then there exists an odd number of non-zero codewords $\mathbf{x} \in C$ whose coordinates are only 0's and 1's. If furthermore $\mathbf{1} = (1, 1, ..., 1) \in C$, then there exists a codeword $\mathbf{x} \in C \setminus \{\mathbf{0}, \mathbf{1}\}$ whose coordinates are only 0's and 1's.

Proof.

a) For $0 \leq i \leq q$ let $\mathbf{v}_i = \begin{pmatrix} \alpha_i \\ \beta_i \end{pmatrix} \in \mathbb{F}_q^2$ be given such that each two of these vectors are linearly independent, and put

$$H = \begin{pmatrix} \alpha_0 & \alpha_1 & \dots & \alpha_q \\ \beta_0 & \beta_1 & \dots & \beta_q \end{pmatrix} \in M_{2,q+1}(\mathbb{F}_q) \ .$$

Then it is well known that H is the parity check matrix of the Hamming code

$$\mathcal{C} = \{ \mathbf{x} \in \mathbb{F}_q^{q+1} \colon H\mathbf{x} = \begin{pmatrix} 0 \\ 0 \end{pmatrix} \} \subset \mathbb{F}_q^{q+1} ,$$

and any linear Hamming code $\mathcal{C}' \subset \mathbb{F}_q^{q+1}$ can be obtained as above by a suitable choice of $\mathbf{v}_0, \mathbf{v}_1, \ldots, \mathbf{v}_q \in \mathbb{F}_q^2$ (see e.g. [16, pp. 253f]). It follows that assertions **a**) and **b**) are equivalent, and we will prove the latter one.

b) For any $\mathbf{x} \in \mathbb{F}_q^{q+1}$ let $\omega(\mathbf{x}) \in \{0, \ldots, q+1\}$ denote the *weight* of \mathbf{x} , i.e. the number of non-zero coordinates of \mathbf{x} , and $B(\mathbf{x}) = \{\mathbf{y} \in \mathbb{F}_q^{q+1} : \omega(\mathbf{x} - \mathbf{y}) \leq 1\}$ the ball of radius 1 around \mathbf{x} , i.e. the set of all vectors \mathbf{y} which differ from \mathbf{x} in at most one coordinate. It is known that \mathcal{C} as given above is a perfect code with minimal distance 3, i.e. the balls of radius 1 around the codewords yield a partition of the whole space:

$$\mathbb{F}_q^{q+1} = \bigcup_{\mathbf{x}\in\mathcal{C}}^{\bullet} B(\mathbf{x}) \; .$$

Put $W = \{0,1\}^{q+1} \subset \mathbb{F}_q^{q+1}$ the set of all vectors with coordinates 0 or 1, and partition $\mathcal{C} = \mathcal{C}_0 \stackrel{\bullet}{\cup} \mathcal{C}_1 \stackrel{\bullet}{\cup} \mathcal{C}_2$, where $\mathcal{C}_0 (\mathcal{C}_1, \mathcal{C}_2, \text{resp.})$ denotes the set of those codewords $\mathbf{x} \in \mathcal{C}$ with

no (or exactly one, or at least two, resp.) coordinate(s) belonging to $\mathbb{F}_q \setminus \{0, 1\}$. It is easy to check that in case $\mathbf{x} \in \mathcal{C}_0$ (or $\mathbf{x} \in \mathcal{C}_1$, or $\mathbf{x} \in \mathcal{C}_2$, resp.) one has

$$|B(\mathbf{x}) \cap W| = q + 2$$
 (or 2, or 0, resp.)

and so we conclude that

(11)
$$2^{q+1} = |W| = \sum_{\mathbf{x} \in \mathcal{C}} |B(\mathbf{x}) \cap W| = (q+2) |\mathcal{C}_0| + 2 |\mathcal{C}_1|.$$

 φ

Since q+2 is odd, $|\mathcal{C}_0|$ must be even, and since $\mathbf{0} \in \mathcal{C}_0$, $|\mathcal{C}_0|$ must be positive. Thus $\mathcal{C}_0 \setminus \{\mathbf{0}\}$ is non-empty and has odd cardinality, thus proving the first assertion of part **b**).

If furthermore $\mathbf{1} \in \mathcal{C}$, one easily checks that the map

$$egin{array}{lll} : \mathcal{C}_1
ightarrow \mathcal{C}_1 \ \mathbf{x} \mapsto \mathbf{1} - \mathbf{x} \end{array}$$

is an involution, i.e., $\varphi \circ \varphi = id$, without fixed points, therefore C_1 is the disjoint union of two-element sets $\{\mathbf{x}, \varphi(\mathbf{x})\}$ and $|C_1|$ is even. Now from (11) we see that $|C_0|$ is divisible by 4, and consequently $|C_0| \ge 4$.

Remark. With the same proof, Theorem 4 immediately generalizes for pairwise linearly independent $\mathbf{v}_1, \mathbf{v}_2, \ldots, \mathbf{v}_N \in \mathbb{F}_q^r$ with even $r \geq 2$ and $N = (q^r - 1)/(q - 1)$, and thus for linear Hamming codes $\mathcal{C} \subset \mathbb{F}_q^N$ of even order r. But notice that only for the case r = 2 and $q \in \mathbb{P}$ the number N of given vectors \mathbf{v}_i is less than Davenport's constant of the underlying additive group, so only in this case Theorem 4 gives new mathematical insight.

4. Proof of Theorem 3

Throughout this section we use the notation and assumptions of Theorem 3. Thus, p is an odd prime, $G = C_p \oplus C_p$, and

$$S = \prod_{i=1}^{p} g_i^{\lambda_i} \in \mathcal{F}(G)$$

is a minimal zero-sum sequence of maximal length, i.e., $|S| = \sum_{i=1}^{p} \lambda_i = 2p - 1$. Moreover, $\operatorname{supp}(S) = \{g_1, \ldots, g_p\}$ consists of p elements, which are pairwise independent by Proposition 2.a), and

$$p-1 \ge \lambda_1 \ge \cdots \ge \lambda_m > \lambda_{m+1} = \cdots = \lambda_p = 1$$

with some $2 \leq m \leq p-1$. Let $H \subset G$ be the cyclic subgroup of order p that is different from $\langle g_i \rangle$ for each $1 \leq i \leq p$.

Lemma 3. For each $h \in H \setminus \{0\}$ there exists a subset $I_h \subset \{1, \ldots, p\}$ such that

$$\sum_{i \in I_h} g_i + h = 0$$

Furthermore, $I_h \cap I_{-h} \cap \{m+1,\ldots,p\} \neq \emptyset$.

Proof.

Let $h \in H \setminus \{0\}$. Since any two elements of the set $\{g_1, \ldots, g_p, h\}$ are independent, this set has a non-trivial zero-subsum by Theorem 4.a). Since S is a minimal zero-sum sequence, this subsum has to contain h as a summand, thus proving the existence of I_h .

Put $I'_h = I_h \cap \{m+1, \ldots, p\}$ and $I'_{-h} = I_{-h} \cap \{m+1, \ldots, p\}$, and suppose that $I'_h \cap I'_{-h} = \emptyset$. We have

(12)
$$\sum_{i \in I_h} g_i + \sum_{j \in I_{-h}} g_j = 0$$

and $T = \prod_{i \in I_h} g_i \prod_{j \in I_{-h}} g_j$ is a zero-sum sequence. Since $I'_h \cap I'_{-h} = \emptyset$, the sequence T is a subsequence of S and the minimality of S implies that indeed S = T. If $m \leq p-2$, we have $\lambda_1 \geq 3$ and T is a proper subsequence of S, a contradiction. Thus only the case m = p-1 remains, which yields $\lambda_1 = \cdots = \lambda_{p-1} = 2$ and $\lambda_p = 1$. Since S = T, it follows that $I_h = \{1, \ldots, p\}$ and $I_{-h} = \{1, \ldots, p-1\}$, or vice versa, so let us assume $I_h = \{1, \ldots, p\}$. Then $\sum_{i=1}^p g_i + h = 0$ and the second part of Theorem 4.a) shows that this sum has a proper non-trivial zero-subsum; clearly the complement of this zero-subsum is a proper non-trivial zero-subsum as well and only one of the two contains h, a contradiction to the minimality of S. Thus $I'_h \cap I'_{-h} \neq \emptyset$.

We use the following notation: for $A, B \subset C_p$ and $k \in \mathbb{N}$ let

$$A + B = \{a + b \colon a \in A, b \in B\}$$

denote the sumset of the sets A and B, and

$$k^{\wedge}A = \left\{ \sum_{a \in A_0} a : A_0 \subset A \text{ with } |A_0| = k \right\}$$

the set of all sums of k different elements of A.

In the following we will make use of two well known results from Additive Number Theory, namely the Cauchy–Davenport Theorem [2, 3] and the Theorem of Dias da Silva– Hamidoune [4] (i.e., the confirmation of the Erdős–Heilbronn Conjecture), as well as of some consequences of these. For the convenience of the reader we recall these results in Proposition 3 below and refer to [14, Theorems 2.2 and 3.4] for a detailed exposition.

Moreover, in Proposition 3.e) we recall a recent result on the structure of sequences in C_p without zero-sum subsequences of length p that we need in the proof of Theorem 3. This question is closely related to the problem of evaluating Brakemeier's function for C_p — in fact, recent results on this function, obtained in [13], were part of our first reasonings towards our result.

Proposition 3. Let $\emptyset \neq A, B \subset C_p$ and $k \in \mathbb{N}$. Then one has:

a) (Cauchy–Davenport)

 $|A + B| \ge \min\{p, |A| + |B| - 1\}$

- **b)** If $T \in \mathcal{F}(C_p \setminus \{0\})$, then $|\Sigma(T) \setminus \{0\}| \ge \min\{p-1, |T|\}$.
- c) (Dias da Silva–Hamidoune)

$$|k^A| \ge \min\{p, k(|A| - k) + 1\}$$

d) (cf. [4, Corollary 4.3]) If $|A| \ge \sqrt{4p-7}$, then A has a non-trivial zero-subsum with at most $(\sqrt{4p-7}+1)/2$ summands.

e) ([8, Theorem 2.2]) If $T \in \mathcal{F}(C_p)$ has no zero-sum subsequence of length p, then T contains some element with multiplicity at least |T| - p + 1.

To get Proposition 3.b), write $T = \prod_{i=1}^{k} t_i$ and apply part a) repeatedly to $|\{0, t_1\} + \cdots + \{0, t_k\}|$ and note that $\{0, t_1\} + \cdots + \{0, t_k\} = \Sigma(T) \cup \{0\}$; the definition of $\Sigma(\cdot)$ is given in the Introduction.

Proof of Theorem 3. **a)** Let $S_0 = g_1^{\lambda_1 - 1} \dots g_m^{\lambda_m - 1}$, a subsequence of S with $|S_0| = p - 1$, and let

$$\pi: G \to G/H \simeq C_p$$

denote the canonical homomorphism. So $\pi(S_0) = \pi(g_1)^{\lambda_1-1} \dots \pi(g_m)^{\lambda_m-1}$ is a sequence of length p-1 in C_p .

Suppose that $\pi(S_0)$ has a non-trivial zero-sum subsequence. Then there are $0 \leq \mu_i \leq \lambda_i - 1$, not all vanishing, such that $\sum_{i=1}^{m} \mu_i g_i = h \in H$. The minimality of S implies that $h \neq 0$. Using Lemma 3, we get

$$\sum_{i\in I_h}g_i+\sum_{i=1}^m\mu_ig_i=0$$

for a suitable $I_h \subset \{1, \ldots, p\}$. The remaining arguments are similar to the ones in the proof of Lemma 3: the minimality of S implies $\mu_i = \lambda_i - 1$ for all $1 \leq i \leq m$ and $I_h = \{1, \ldots, p\}$; so $\sum_{i=1}^p g_i + h = 0$, and again applying the second part of Theorem 4.a) we get a contradiction.

Therefore $\pi(S_0)$ has no non-trivial zero-sum subsequence, which implies $\pi(S_0) = \pi(g_1)^{p-1}$, and part **a**) of the theorem follows.

b) Let $S_1 = g_1^{\lambda_1} \dots g_m^{\lambda_m}$ be the subsequence of S of those elements with multiplicity at least 2, and let

$$\pi_0: G = \langle g_1 \rangle \oplus H \to H \simeq C_p$$

denote the projection onto the subgroup H along $\langle g_1 \rangle$. Using part **a**) we have $g_k = g_1 + h_k$, where $h_2, \ldots, h_m \in H \setminus \{0\}$ are pairwise different. Thus, any zero-sum subsequence of length p of the sequence

$$S' = \pi_0(S_1) = 0^{\lambda_1} h_2^{\lambda_2} \dots h_m^{\lambda_m} \in \mathcal{F}(C_p)$$

would give a proper zero-sum subsequence of S, contradicting the minimality of S. In order to obtain the claimed inequality for m, it suffices to prove the following:

Assertion 1: If $m > \sqrt{2p-2}$, then S' has a zero-sum subsequence of length p. Let $A = \text{supp}(S') \subset C_p$, and put $m_1 = m_2 = \frac{m-1}{2}$ if m is odd, and $m_1 = \frac{m}{2} - 1$ and $m_2 = \frac{m}{2}$ if m is even. Then we have by Proposition 3.c)

$$|m_1^{\wedge}A| \ge \min\{p, m_1(|A| - m_1) + 1\} = \min\{p, m_1m_2 + m_1 + 1\},\$$

and similarly $|m_2^{\wedge}A| \geq \min\{p, m_2m_1 + m_2 + 1\}$. Since, assuming $m > \sqrt{2p-2}$, we have

$$|m_1^{\wedge}A| + |m_2^{\wedge}A| \ge 2m_1m_2 + m_1 + m_2 + 2 = 2(m_1 + 1/2)(m_2 + 1/2) + 3/2 > p,$$

it follows (cf. Proposition 3.a)) that $m_1^{\wedge}A + m_2^{\wedge}A = C_p$. Consequently, we can find a subsequence $T \mid S'$ with $\sigma(T) = \sigma(S')$ and $|T| = m_1 + m_2 = m - 1$. Since |S'| = p + m - 1, the sequence T' satisfying TT' = S' is a zero-sum subsequence of S' with length p, which proves Assertion 1.

10

c) From $\lambda_1 + \cdots + \lambda_m = p + m - 1$ we obtain $\lambda_1 \ge \frac{p-1}{m} + 1$. Moreover, the sequence S', considered in b), contains no zero-sum subsequence of length p, so we may apply Proposition 3.e) to obtain $\lambda_1 \ge m$. Combining these inequalities, we have

$$\lambda_1 \ge \max\left\{\frac{p-1}{m} + 1, m\right\} \ge \frac{1+\sqrt{4p-3}}{2},$$

the lower bound for λ_1 .

Now, put $r = p - \lambda_1$ and suppose that $r \ge 2$. We have to show that $r > \sqrt[4]{p}$, and first prove the following:

Assertion 2: For every $h \in H \setminus \{0\}$ we have $|\pi_0^{-1}(h) \cap \operatorname{supp}(S)| < r$.

Assume to the contrary that there exists some $h \in H \setminus \{0\}$ with $|\pi_0^{-1}(h) \cap \operatorname{supp}(S)| \geq r$. Let $D \mid S$ be a squarefree (i.e. each element has multiplicity 1) subsequence of S with length r such that $\pi_0(D) = h^r$ and put $S = g_1^{\lambda_1} DD'$. Since |D'| = p-1 and $\operatorname{supp}(\pi_0(D')) \subset H \setminus \{0\}$, Proposition 3.b) shows that $H \setminus \{0\} \subset \Sigma(\pi_0(D'))$. In particular, there exists a subsequence $T \mid D'$ such that $\sigma(\pi_0(T)) = -h$. Therefore

$$\left\{\sigma(gT)\colon g\mid D\right\}\subset \langle g_1\rangle\setminus\{0\}$$

is a set of cardinality r, and we can find some $g' \mid D$ such that $\sigma(g'T) = jg_1$ with some $r \leq j \leq p-1$. But then the sequence $g'Tg_1^{p-j}$ is a proper zero-sum subsequence of S, a contradiction proving Assertion 2.

So we know that $|\pi_0^{-1}(h) \cap \operatorname{supp}(S)| < r$ for every $h \in H \setminus \{0\}$. Since by Proposition 2.a) $\pi_0^{-1}(0) \cap \operatorname{supp}(S) = \{g_1\}$, and since $|\operatorname{supp}(S)| = p$, it follows that

(13)
$$|\operatorname{supp}(\pi_0(S)) \setminus \{0\}| \ge \frac{p-1}{r-1} .$$

Assertion 3: If $r \leq \sqrt[4]{p}$, then for $1 \leq i \leq r$ there exist non-empty sequences $U_i \in \mathcal{F}(G)$ with $\sigma(\pi_0(U_i)) = 0$, such that $\prod_{i=1}^r U_i$ is a proper subsequence of $\prod_{i=2}^p g_i^{\lambda_i}$.

By Proposition 3.d), any set of at least $\sqrt{4p-7}$ elements of $\operatorname{supp}(\pi_0(S))$ has a zero-subsum with at most $(\sqrt{4p-7}+1)/2$ summands. Consequently, providing that

$$|\operatorname{supp}(\pi_0(S)) \setminus \{0\}| - (r-1)\frac{\sqrt{4p-7}+1}{2} \ge \sqrt{4p-7}$$

we get r pairwise disjoint zero-subsums of $\operatorname{supp}(\pi_0(S)) \setminus \{0\}$. To each of these zerosubsums corresponds a (squarefree) subsequence U_i of $\prod_{i=2}^p g_i^{\lambda_i}$ such that $\sigma(\pi_0(U_i)) = 0$. Since the zero-subsums are disjoint, indeed $\prod_{i=1}^r \pi_0(U_i) \mid \prod_{i=2}^p \pi_0(g_i)$. Using (13), the above inequality holds if

$$0 \ge r^2(1+\sqrt{4p-7}) - 2r - 2p - \sqrt{4p-7} + 3 ,$$

and the latter one is satisfied for $r \leq \sqrt[4]{p}$. Finally, since $\lambda_2 \geq 2$, the product of the r sequences U_i is a proper subsequence of $\prod_{i=2}^p g_i^{\lambda_i}$, which proves Assertion 3.

Now assume that $r \leq \sqrt[4]{p}$ and let U_i be given according to Assertion 3. Since S is minimal, we obtain $\sigma(U_i) = k_i g_1$ with some $1 \leq k_i \leq p-1$. But now Proposition 3.b) yields $|\Sigma(\prod_{i=1}^r (k_i g_1))| \geq r$, and we obtain a subset $\emptyset \neq I \subset \{1, \ldots, r\}$ with $\sigma(\prod_{i \in I} U_i) = kg_1$ for some $r \leq k \leq p$. Therefore the sequence $g_1^{p-k} \prod_{i \in I} U_i$ is a proper zero-sum subsequence of S, again a contradiction.

References

- Y. Caro, Zero-sum problems A survey, Discrete Math. 152 (1996), 93-113, doi:10.1016/0012-365X(94)00308-6
- [2] A. Cauchy, Recherches sur les nombres, J. École Polytech. 9 (1813), 99–123.
- [3] H. Davenport, On the addition of residue classes, J. London Math. Soc. 10 (1935), 30–32.
- [4] J.A. Dias da Silva and Y. ould Hamidoune, Cyclic spaces for Grassmann derivatives and additive theory, Bull. London Math. Soc. 26 (1994), 140–146.
- [5] W.D. Gao and A. Geroldinger, On long minimal zero sequences in finite abelian groups, *Period. Math. Hungar.* 38 (1999), 179-211.
- [6] W.D. Gao and A. Geroldinger, On zero-sum sequences in Z/nZ ⊕ Z/nZ, Integers 3 (2003), Paper A08, 45pp; http://www.integers-ejcnt.org/d8/d8.pdf.
- [7] W.D. Gao and A. Geroldinger, Zero-sum problems and coverings by proper cosets, *European J. Combin.* 24 (2003), 531-549, doi:10.1016/S0195-6698(03)00033-7
- [8] W.D. Gao, A. Panigrahi, and R. Thangadurai, On the structure of p-zero-sum free sequences and its application to a variant of Erdős-Ginzburg-Ziv theorem, Proc. Indian Acad. Sci. (Math. Sci.) 115 (2005), 67-77.
- [9] W.D. Gao and J.J. Zhuang, Sequences not containing long zero-sum subsequences, *European J. Combin.*, to appear, doi:10.1016/j.ejc.2005.06.001
- [10] A. Geroldinger and F. Halter-Koch, Non-Unique Factorizations: Algebraic, Combinatorial and Analytic Theory, Monographs and Textbooks in Pure and Applied Mathematics 278, Chapman & Hall/CRC, Boca Raton, FL, USA, 2005.
- [11] Y. ould Hamidoune, Subsequence Sums, Combin. Probab. Comput. 12 (2003), 413-425.
- [12] G.H. Hardy and E.M. Wright, An Introduction to the Theory of Numbers, Fifth Edition, The Clarendon Press, Oxford University Press, New York, NY, USA, 1979.
- [13] F. Hennecart, La fonction de Brakemeier dans le problème d'Erdős-Ginzburg-Ziv, Acta Arith. 117 (2005), 35-50.
- [14] M.B. Nathanson, Additive Number Theory. Inverse Problems and the Geometry of Sumsets, Graduate Texts in Mathematics 165, Springer-Verlag New York, NY, USA, 1996.
- [15] J.E. Olson, A Combinatorial Problem on Finite Abelian Groups, II, J. Number Th. 1 (1969), 195-199, doi:10.1016/0022-314X(69)90037-7
- [16] S. Roman, Coding and Information Theory, Graduate Texts in Mathematics 134, Springer-Verlag New York, NY, USA, 1992.

INSTITUT FÜR MATHEMATIK UND WISSENSCHAFTLICHES RECHNEN, KARL-FRANZENS-UNIVERSITÄT, HEINRICHSTRASSE 36, A-8010 GRAZ, AUSTRIA

E-mail address: guenter.lettl@uni-graz.at

E-mail address: wolfgang.schmid@uni-graz.at