MINIMAL ZERO-SUM SEQUENCES IN C, ¢ C,
GUNTER LETTL AND WOLFGANG A. SCHMID

ABSTRACT. Minimal zero-sum sequences of maximal length in C,, ® C,, are known to
have 2n — 1 elements, and this paper presents some new results on the structure of such
sequences.

It is conjectured that every such sequence contains some group element n — 1 times, and
this will be proved for sequences consisting of only three distinct group elements.

We prove, furthermore, that if p is an odd prime then any minimal zero-sum sequence
of length 2p — 1 in C, ® C), consists of at most p distinct group elements; this is best
possible, as shown by well-known examples. Moreover, some structural properties of
minimal zero-sum sequences in C, @& C,, of length 2p — 1 with p distinct elements are
established.

The key result proving our second theorem can also be interpreted in terms of Hamming
codes, as follows: for an odd prime power g each linear Hamming code C C IF?I“ contains
a non-zero word with letters only 0 and 1.

1. INTRODUCTION AND MAIN RESULTS

Many problems in graph theory, additive number theory and factorization theory trans-
late into questions about zero-sum sequences in finite abelian groups. Thus the interest
to investigate such sequences is large, and the reader is referred e.g. to [1, 7, 11] or the
book [10, Chapter 5] for more details and literature.

In this paper we use notation and terminology from [6]. We denote by C,, an (additively
written) cyclic group of order n. Let n > 2 be an integer and let G = C,, & C,,. Extensive
studies were made to investigate the structure of minimal zero-sum sequences in G. A
sequence (or a multi-set) S in G is an element

!
S=]]g €7@
i=1

of the free abelian (multiplicatively written) monoid generated by G. The length of S is
denoted by |S| = 1. Some T' € F(G) is called a subsequence of S if T divides S in F(G) (in
symbols: T'| S). The sequence S is called a zero-sum sequence if its sum o(S) = 22:1 9i
equals 0 € G, and it is called a minimal zero-sum sequence if additionally each proper
non-trivial subsum does not equal 0.

The maximal length of a minimal zero-sum sequence in a finite abelian group is called
Davenport’s constant of the group. Among others, it is known that Davenport’s constant
of C,, ® C,, where m | n, is equal to n + m — 1, in particular Davenport’s constant of
G equals 2n — 1 (see [15]). Given S as above, let supp(S) = {g1,...,a} C G denote the
support of S, i.e. the set of group elements appearing in the sequence S, and for g € GG
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let v,(S) = [{i: 1 <i <l and g; = g}| denote the multiplicity of the group element ¢ in
the sequence S. Further, let

2(5):{2%:@7&&{1,...,;}}

icl
denote the set of sums of all (non-empty) subsequences of S.

First, let us recall [5, Proposition 6.3.1] and [6, Proposition 4.1.2(b)].

Proposition 1. Let n > 2 be an integer, G = C,, & C,, and S € F(G) be a minimal
zero-sum sequence of mazimal length, i.e., |S| = 2n — 1. Then one has:

a) Any g € supp(S) has mazximal order, i.e., ord(g) = n.

b) For any e; € supp(S) with v, (S) = n — 1, there exists some ex € G such that
{e1,e2} is a basis of G and
n
S =it H(aiel + e2)
i=1
with a; € Z and Y, a; =1 mod (n). In particular, all elements occurring in S
apart ey lie in a single coset of (e1) which has order n.

Notice that any sequence S € F(G), given as in Proposition 1.b), is a minimal zero-sum
sequence. Thus, this result provides a classification of all minimal zero-sum sequences of
maximal lengths in G' containing some group element with multiplicity n — 1. According
to [6, Definition 3.2|, a natural number n € N is said to have “Property B”, if each minimal
zero-sum sequence of maximal length in C), & C), contains some element with multiplicity
n — 1. It is known that all n < 6 have Property B [6, Proposition 4.2] and that there are
arbitrarily large n with Property B [6, Theorem 8.1]. A (positive) answer to the question
whether actually all n have Property B, would allow progress on various other problems
(cf. [5, 6, 9]).

It is easy to see that any minimal zero-sum sequence of maximal length in G contains
at least 3 different group elements. We will prove that if such a sequence contains exactly
3 different elements, then it contains some element with multiplicity n — 1.

Theorem 1. Let n > 2 be an integer, G = C,, ® C,, and S = g1 g5°95* € F(G), with
pairwise distinct g1,g2,93 € G andn —1 > A > XAy > A3 > 1, be a minimal zero-sum
sequence of mazximal length, i.e., |S| = XA + X+ A3 =2n—1. Then

)\1:n—1.

For the rest of this section we will concentrate on the case where n is prime. We denote
by P the set of rational primes. Then one has further information about the structure
of minimal zero-sum sequences of maximal length (see [7, Corollary 6.3] and [6, Lemma
3.8.2]):

Proposition 2. Forp € P let G = C, & C, and S € F(G) be a minimal zero-sum
sequence of mazximal length, i.e., |S| = 2p — 1. Then one has:

a) Any two distinct elements of supp(S) generate G.
b) 3 < [supp(S)| < p+1.
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For p > 3 there are examples for minimal zero-sum sequences in C, @ C, with length
2p — 1 such that the support contains up to p different elements (see [5, Corollary 10.5.3])
and we will show that there exists no such sequence having a support with p+ 1 elements.

Theorem 2. Let p be an odd prime and G = C, ® C,. Then for every minimal zero-sum
sequence S € F(G) of maximal length |S| = 2p — 1 one has

|supp(S)| < p .

This result supports the belief that Property B holds for p € P, since the former would
be an easy consequence of the latter together with Proposition 1.b).

In the following result we obtain some information on the structure of any minimal
zero-sum sequence S in C, & C, with maximal length containing p different elements.
We recall that by Proposition 2 any two different elements in the support of S generate
distinct cyclic subgroups of order p of C, @ C,, and thus there exists a unique cyclic
subgroup of order p of C, ® C), that is not generated by an element occurring in S.

Theorem 3. Let p be an odd prime, G = C, ® C, and S = [[_, g € F(G) a minimal

zero-sum sequence of mazimal length, i.e., |S| = >""_| A = 2p — 1, with pairwise distinct
gi,.--,9p € G, and suppose that
p—1>2XN2>-- 2 > A== =1.

Thus m denotes the number of indices v with \; > 1, and 2 < m < p —1. Then we have
the following:
a) Let H C G be the cyclic subgroup of order p different from (g;) for each 1 <i < p.
Then
{gl,--.,gm} Cgl+H.

b) m </2p —2.
14+ +/4p —3
c) Either \y =p—1 or ++§/\1<p—\4/]_9.

Theorem 3 can be seen as a further small step towards proving that Property B holds
for p € P. Note that if p € P has Property B, the sequence in Theorem 3 would have
parameters Ay = p — 1 and Ay = m = 2.

2. PROOF OF THEOREM 1

First, we will show that the analog of Proposition 2.a) for composite n only holds for
sequences S with |supp(S)| = 3.

Lemma 1. Let G = C, ® C,, and S = [[;_, g € F(G) with pairwise distinct gy, ...,
gr € G be a minimal zero-sum sequence of mazimal length, i.e., |S| =Y N\ =2n— 1.
If for some 1 < j <r we have A\y +---+ X\; > n, then {g1,...,9;} generates G.

If three natural numbers \; < n — 1 sum up to 2n — 1, then any two of them have a
sum of at least n. Similarly, if four natural numbers \y < --- < A\; < n — 1 sum up to
2n — 1, then A\ 4+ Aa, A1 + A3, and either Ay + A3 or A\ + A4 have a sum of at least n. This
observation yields the following corollary.
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Corollary 1. Let the notation be as in Lemma 1.

a) If r =3 then any two elements of supp(S) = {91, g2, g3} form a basis of G.
b) If r = 4 then there exist (at least) 3 pairs of elements of supp(S), each of which
18 a basis of GG.

The following example shows that Proposition 2.a) does not generalize for composite n
and sequences S with |supp(S)| > 3, and also that in Lemma 1 the inequality A; + -« - +
Aj > n is best possible. Let n € N be a composite number, put n = d;d, with integers
d; > 2, and let eq, e be a basis of G = C,, & C,,. Then

671171 e;‘_dQ_l (d1€1 + 62)d2 (61 + 62)1 € F(G)

is a minimal zero-sum sequence of maximal length, but {ey, dye; + e} is not a basis of G
and the multiplicities of these two elements sum up to n — 1.

Proof of Lemma 1.

Put A\j+---+\; = 2n—1—1 with 0 <! < n—1 and suppose to the contrary that {g1,...,g;}
generates a proper subgroup G of G. From Proposition 1.a) we have Gy ~ C,®&C,,y, with
some m > 1 that divides n. Extending the canonical homomorphism 7 : G — G /Gy ~ C,,
to F(G) we obtain a zero-sum sequence S’ = 7(g;11)V* ... 7(g)* € F(Cp) of length
[. Now we can find minimal zero-sum sequences A, € F(C,,) (with lengths at most
m) such that §" = A{... A} with km > [. From this we obtain some factorization

Ajt1

gyt gt = Ay Ap with A; € F(G) and 7(4;) = Aj. Since A] are zero-sum sequences

in C,, we have o(4;) = a; € Go. Therefore Sy = g7 .. .g;\jal ...ai € F(Gy) is a zero-sum
sequence in Gq of length

[ n 1
Sol =M+ +A+k>2n—-1-l4+—=n+——-1+(1-=)n—-1) >
m m m
n
>n+ — —1.
m
Thus, the length of Sy exceeds Davenport’s constant of Gy (cf. Introduction) and con-

sequently the zero-sum sequence Sy in G is not minimal. It follows that the zero-sum
sequence S in (G is not minimal either, a contradiction. O

For an integer m let |m|,, denote the smallest non-negative integer which is congruent
to m modulo (n).

Proof of Theorem 1.

Let S be as in Theorem 1. Since by Corollary 1 any two elements of supp(S) = {g1, 92, g3}
are a basis of G, we have g3 = bg; + ags with some 1 < a,b < n — 1 and ged(a,n) =
ged(b,n) = 1. Knowing that S is a zero-sum sequence, we have

(1) A +bA3=0 mod (n) and Ao +aX3 =0 mod (n) .

Since S is minimal, there exists no (z,y,z) € N with 0 < z < A\, 0 < y < )y and
0 < z < A3 satisfying

r+bz=0 mod (n) and y+az=0 mod (n) .
Put
M, ={z:1<2z<n—1 and there exists an € {1,2,..., A} with z+bz =0 mod (n)}
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and
M, ={z:1<z<n—1 and there exists a y € {1,2,..., A2} with y+az=0 mod (n)}.
With ged(a,n) = ged(b,n) = 1 one obtains | M| = Ay and |M,| = 2. On the one hand
we have M, N M, N {1,2,...,A3 — 1} = (), on the other hand
’Mame| :)\1+>\2—|MaUMb| 2271—1—)\3—714—1:(n—l)—()\g—l) 3
so we conclude that M, N M, = {A\3, A3+ 1,...,n—1}.
For 1 <v <n— A3 we have n — v € M,, which means 1 < |val, < A2, and we get
(2) {lval,: 1 <v<n—=X} C{l,....%}.

If A3 = 1 we immediately obtain Ay = A\ = n — 1, which proves the assertion of the
theorem in this case.

Now suppose that A3 > 2. Since S is a minimal zero-sum sequence, (1) and (2) hold
and we can apply Lemma 2 below with [ = A3 and L = X\;. So a = 1, and the second
congruence of (1) yields Ay + A3 = n, thus A\; = n — 1 as asserted. O

Lemma 2. Leta,n € N with1 <a <n-—1 and ged(a,n) = 1. Furtherlet2 <[l <L éeN
with 2L +1 < 2n — 1 such that

(3) —la=L mod (n)
and
(4) {lval,: 1 <v<n-1} C{1,2,...,L}

hold. Then a = 1.

Proof.
From the suppositions of the lemma we obtain

n+1 [+1
(5) —

<n—-I<L<n-—
We will use the theory of (simple) continued fractions as explained e.g. in [12, Chapter X].

Let ¢ = [0;a1,as,...,a;] be the continued fraction expansion of ¢ with a; > 2 and with
convergents
p_0 o _ 1P G P _a
w0 1 ¢ a @ l+aa’ T
It is well known (e.g. [12, Theorems 150—151]) that
(6) o _pia)_ 1 and & _ P2 4
nogj-1 ng;j—1 no qj—2 nq;—2

Case 1: Suppose that j is odd.
If j = 1 we obtain ¢ = i, and with ged(a,n) = 1 conclude that a = 1.

Now let j > 3. Since Bimt o Bi % - Piz2 o can derive from (6) that
4j-1 ¢ N gj-2
(7) gi-1a=1 mod (n) and ¢j—2a =n —a; mod (n) .

Having supposed that a; > 2, we get n = a;qj_1 + ¢j—2 > 3¢;—2, and with (5) we obtain

gj—2 < § < n — 1. Therefore the second congruence of (7) together with (4) implies
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n—a; <L <n-—2 Puttingm =L+ a; —n one has 0 < m < a; — 2, and adding m
times the first congruence of (7) to the second one gives
(mgj—1+gj—2)a=m+n—a; =L mod (n) .
Using (3) and 1 < mg;_1 + gj_2 < n — 1 we obtain mgq;_; + ¢j_2 = n — . Now we insert
L =n+m—a; and | = (a; —m)qg,_ into the last inequality of (5) to get the contradiction
[+1 1

qj—1 1
n2L+T:n+§+(aj—m)<JT—1)2n+§,

where we used j —1 > 2 and ¢;—1 > ¢2 > 2.

Case 2: Suppose that j is even.

From 0 < = < 1 we see that j > 2, and j being even implies bi-2 < bi_ 2 < b1
qj—2 4a; n qj—1

This time we derive from (6) that

(8) ¢gi—1a=n—1 mod (n) and  ¢j_2a=a; mod (n).

Now n — 1 > L together with (4) implies ¢;_1 > n — [ > %. On the other hand,
n = a;jqj—1 + qj—2 > a;qj—1 gives qj_1 < % Thus a; = 2 must hold, and with n =
2gj—1 + ¢j—2 > 2¢;—1 + 1 we obtain

w

n—1
(9) n—l<q]1<T

Let us first suppose that j = 2. Then £ = [0;a,,2] =
estimation (9) we obtain

{lrvalp,: 1 <v<n—-I1}y={2,4,....2(n—1)} .

Using (4) and (5) we get 2(n—1) < L < n—"1, which yields n—1 < 2z! as a contradiction
to (5). (Note that the inequalities (5) are Just sharp enough to exclude the case a = 2.)

Now we may suppose that j > 4. Thenn = 2¢;_1+¢j_2 = (2a;_1+1)q;—2+2g;—3 > 5q;_3
yields gj_1 — aj_1¢j—2 = ¢j—3 < § <n — [, and from (9) we have ¢;_; > n — [. Therefore
we can choose an integer m with 1 <m < a;_; such that

SotT +1 implies a = 2, and with the

(10) ¢j—1 —mGj—2 <n—1<g_1—(m—1)g_o .
Now subtracting m times the second congruence of (8) from the first one (remember that
a; = 2) yields

(gj—1 —mgj_2)a=n—1—-2m mod (n),
and from (10) and (4) we obtain n — 1 —2m < L. Inserting these lower bounds for L and
[ into (5) now yields the contradiction

[+1 1 1
n2L+T>n—1—2m+§(n—qj,1+(m—1)qj,2)+§:
1 1 1 1
:n—1—2m+§(qj_1+mqj_2)+§2n—1—2m+§(2mq]~_2+1)+§:

=n+m(g-2—2)2n,
where we used ¢j_1 = a;_1¢j—2 + ¢j—3 > mgj_2 + 1 and gj_2 > g2 > 2. O
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3. HAMMING CODES AND THE PROOF OF THEOREM 2

For any prime power ¢ let IF, denote a finite field with ¢ elements. We use the following
terminology. Given a sum ), ; g; of elements of an abelian group, we call }_._; g; for
some J C I a subsum of this sum; we call it a zero-subsum if ) ., g; = 0 and we call
it proper (non-trivial, resp.) if J # I (J # 0, resp.). We consider subsums given by
distinct sets J, J' as distinct, even if their sums are equal. Moreover, given a subset A of
an abelian group, for brevity, we say “subsum of A” instead of “subsum of > gend’

Proof of Theorem 2.

Suppose to the contrary that supp(S) contains p + 1 elements, which by Proposition 2.a)
are pairwise independent in G’ ~ > . Now Theorem 4.a) below shows that supp(S) has a
non-trivial zero-subsum, contradicting the minimality of S. U

Theorem 4. Let g € N be a power of an odd prime.

a) Let vo,vy,...,v4 € F?I be given such that any two of these vectors are linearly
independent over F,. Then there exists a non-trivial zero-subsum of these vectors.
Moreover, the number of all non-trivial zero-subsums of {vo,v1,...,v,} is odd.
If furthermore Y !_,v; = 0, then there exists a proper non-trivial zero-subsum.

b) Let C C Fg“ be a (q-ary) linear Hamming code of order 2. Then there exists an
odd number of non-zero codewords x € C whose coordinates are only 0’s and 1’s.
If furthermore 1 = (1,1,...,1) € C, then there exists a codeword x € C\ {0,1}
whose coordinates are only 0’s and 1’s.

Proof.
a) For 0 < i < gqlet v; = (%j) € Fi be given such that each two of these vectors are
linearly independent, and put

H= (55 = 5) € Mg (Fy) -
Then it is well known that H is the parity check matrix of the Hamming code
C={xeF": Hx=(§)} CcFIt,

and any linear Hamming code C' C Fg“ can be obtained as above by a suitable choice
of vo,v1,...,vg € F? (see e.g. [16, pp. 253f]). It follows that assertions a) and b) are
equivalent, and we will prove the latter one.

b) For any x € Fi*! let w(x) € {0,...,¢ + 1} denote the weight of x, i.e. the number
of non-zero coordinates of x, and B(x) = {y € FI™": w(x —y) < 1} the ball of radius 1
around x, i.e. the set of all vectors y which differ from x in at most one coordinate. It is
known that C as given above is a perfect code with minimal distance 3, i.e. the balls of
radius 1 around the codewords yield a partition of the whole space:

1_0
FI*' = U B(x) .

xeC
Put W = {0,1}¢"' C F g“ the set of all vectors with coordinates 0 or 1, and partition
C =20C O Cy O Co, where Cy (Cy, Co, resp.) denotes the set of those codewords x € C with
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no (or exactly one, or at least two, resp.) coordinate(s) belonging to I, \ {0, 1}. It is easy
to check that in case x € Cy (or x € Cy, or x € Cy, resp.) one has

|IB(x)NW|=qg+2 (or2, or0, resp.),
and so we conclude that
(11) 20 = W[ =) [B(x) "W = (¢+2) |Co| +21[Ci] .

xeC
Since ¢+2 is odd, |Co| must be even, and since 0 € Cy, |Cy| must be positive. Thus Cy\ {0}
is non-empty and has odd cardinality, thus proving the first assertion of part b).
If furthermore 1 € C, one easily checks that the map
(Yol C1 — C1
x—1-x

is an involution, i.e., ¢ o ¢ = id, without fixed points, therefore C; is the disjoint union

of two-element sets {x, p(x)} and |Cy| is even. Now from (11) we see that |Co| is divisible
by 4, and consequently |Cy| > 4. OJ

Remark. With the same proof, Theorem 4 immediately generalizes for pairwise linearly
independent vi,vy,...,vy € F; with even r > 2 and N = (¢" — 1)/(¢ — 1), and thus
for linear Hamming codes C C IFJqV of even order r. But notice that only for the case
r = 2 and ¢ € P the number N of given vectors v; is less than Davenport’s constant of
the underlying additive group, so only in this case Theorem 4 gives new mathematical
insight.

4. PROOF OF THEOREM 3

Throughout this section we use the notation and assumptions of Theorem 3. Thus, p
is an odd prime, G = C, ® (), and
p

s=]1]s" e F(@)

i=1

is a minimal zero-sum sequence of maximal length, i.e., |[S| = > | A, = 2p — 1. More-
over, supp(S) = {g1,...,9,} consists of p elements, which are pairwise independent by
Proposition 2.a), and

p—1>2M>-- 22X, > A== =1

with some 2 < m < p—1. Let H C G be the cyclic subgroup of order p that is different
from (g;) for each 1 <7 < p.

Lemma 3. For each h € H \ {0} there exists a subset I;, C {1,...,p} such that
Zgi +h=0.
i€},

Furthermore, I N I_,N{m+1,...,p} #0.
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Proof.

Let h € H\{0}. Since any two elements of the set {¢1, ..., g,, h} are independent, this set
has a non-trivial zero-subsum by Theorem 4.a). Since S is a minimal zero-sum sequence,
this subsum has to contain h as a summand, thus proving the existence of Ij,.

Put I; = I,n{m+1,...,p}and I’ , = [_,N{m+1,...,p}, and suppose that I; NI", = 0.
We have

(12) ZQH‘ ZQ;':O

ie€ly jel_p

and T = [[,c;, 9i[l;c; , 95 1s a zero-sum sequence. Since I NI", = (), the sequence T is a
subsequence of S and the minimality of S implies that indeed S = T'. If m < p—2, we have
A1 > 3 and T is a proper subsequence of S, a contradiction. Thus only the case m =p—1
remains, which yields \y = --- = A\,_; = 2 and A\, = 1. Since S = T, it follows that
In={1,....,p}and I_, = {1,...,p— 1}, or vice versa, so let us assume I, = {1,...,p}.
Then >% | gi +h = 0 and the second part of Theorem 4.a) shows that this sum has a
proper non-trivial zero-subsum; clearly the complement of this zero-subsum is a proper
non-trivial zero-subsum as well and only one of the two contains h, a contradiction to the
minimality of S. Thus I} N 1", # 0. O

We use the following notation: for A, B C C, and k € N let
A+B={a+b:ac A be B}
denote the sumset of the sets A and B, and

KA = {Za . Ay C A with | Ay :k}
a€Ap

the set of all sums of k different elements of A.
In the following we will make use of two well known results from Additive Number The-
ory, namely the Cauchy—Davenport Theorem [2, 3] and the Theorem of Dias da Silva—
Hamidoune [4] (i.e., the confirmation of the Erdés—Heilbronn Conjecture), as well as of
some consequences of these. For the convenience of the reader we recall these results in
Proposition 3 below and refer to [14, Theorems 2.2 and 3.4] for a detailed exposition.
Moreover, in Proposition 3.e) we recall a recent result on the structure of sequences in C),
without zero-sum subsequences of length p that we need in the proof of Theorem 3. This
question is closely related to the problem of evaluating Brakemeier’s function for C),, —
in fact, recent results on this function, obtained in [13], were part of our first reasonings
towards our result.

Proposition 3. Let ) # A, B C C, and k € N. Then one has:
a) (Cauchy—Davenport)

A+ Bl > min{p.|A +|B] - 1}
b) If T € F(C,\ {0}), then |X(T) \ {0} > min{p — 1, |T}.
c) (Dias da Silva—Hamidoune)
|k"A| > min{p, k(|A| — k) + 1}
d) (cf. [4, Corollary 4.3]) If |A| > \/4p — 7, then A has a non-trivial zero-subsum with
at most (v/A4p — 7+ 1)/2 summands.
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e) ([8, Theorem 2.2]) If T' € F(C,) has no zero-sum subsequence of length p, then T
contains some element with multiplicity at least |T| —p + 1.

To get Proposition 3.b), write T = Hle t; and apply part a) repeatedly to [{0,¢1} +
-+ +{0,t,}| and note that {0,¢;} + --- +{0,tx} = 3(T") U {0}; the definition of X(-) is
given in the Introduction.

Proof of Theorem 3.
a) Let Sy = ¢g"'... g} a subsequence of S with |So| = p — 1, and let

7:G—G/H~C,

denote the canonical homomorphism. So 7(Sg) = 7(g1)* ... 7(gm) ! is a sequence
of length p — 1 in C,,.

Suppose that 7(Sp) has a non-trivial zero-sum subsequence. Then there are 0 < u; <
Ai — 1, not all vanishing, such that Y ", u;g; = h € H. The minimality of S implies that
h # 0. Using Lemma 3, we get

m

Z gi + Z pigi =0
i€l i=1
for a suitable I, C {1,...,p}. The remaining arguments are similar to the ones in the

proof of Lemma 3: the minimality of S implies u; = A\; — 1 for all 1 < i < m and
I, =A{1,....p};s0 >, g; + h =0, and again applying the second part of Theorem 4.a)
we get a contradiction.

Therefore 7(Sp) has no non-trivial zero-sum subsequence, which implies 7(Sp) = m(g1)?*,
and part a) of the theorem follows.

b) Let 5 = gfl ... gy be the subsequence of S of those elements with multiplicity at

least 2, and let
m:G=(q) P H— H~C,
denote the projection onto the subgroup H along (g;). Using part a) we have g, = g1 + I,
where hg, ..., h,, € H \ {0} are pairwise different. Thus, any zero-sum subsequence of
length p of the sequence
S = m(S1) = 0Mhy2 .. hdm € F(C,)

would give a proper zero-sum subsequence of S, contradicting the minimality of S. In
order to obtain the claimed inequality for m, it suffices to prove the following:

Assertion 1: If m > /2p — 2, then S’ has a zero-sum subsequence of length p.

Let A = supp(S’) C C,, and put my = my = T’l if m is odd, and m; = % — 1 and

my = 3 if m is even. Then we have by Proposition 3.c)
|m{*A| > min{p, m;(|A] — m1) + 1} = min{p, mymg + my + 1},
and similarly |my* A| > min{p, mom; + mq + 1}. Since, assuming m > /2p — 2, we have
Im [ A| + |my A| > 2mymg + my + may + 2 = 2(my + 1/2)(mg + 1/2) +3/2 > p,

it follows (cf. Proposition 3.a)) that m{*A + my*A = C,. Consequently, we can find a
subsequence T' | S” with o(T) = ¢(5’) and |T'| = my+ms = m—1. Since |S'| = p+m—1,
the sequence T" satisfying T'T" = S’ is a zero-sum subsequence of S” with length p, which
proves Assertion 1.
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c) From A\; + -+ X\, = p+m — 1 we obtain \; > I%l + 1. Moreover, the sequence
S’, considered in b), contains no zero-sum subsequence of length p, so we may apply
Proposition 3.e) to obtain A\; > m. Combining these inequalities, we have

p—1 }>1+\/4p—3
-_ 2 Y

+1,m
m

A > max{

the lower bound for A;.

Now, put 7 = p — A; and suppose that r > 2. We have to show that r > ¥p, and first
prove the following:

Assertion 2: For every h € H \ {0} we have |75 ' (h) Nsupp(S)| < 7.
Assume to the contrary that there exists some h € H\{0} with |7y ' (h)Nsupp(S)| > r. Let
D | S be a squarefree (i.e. each element has multiplicity 1) subsequence of S with length r
such that 7o(D) = h" and put S = g} DD'. Since |D’| = p—1 and supp(mo(D’)) € H\{0},
Proposition 3.b) shows that H\{0} C X(mo(D’)). In particular, there exists a subsequence
T | D’ such that o(my(T)) = —h. Therefore

{o(gT): g| D} C (g1) \ {0}

is a set of cardinality r, and we can find some ¢’ | D such that o(¢'T") = jg1 with some
r < j < p— 1. But then the sequence ¢'T'g} 7 is a proper zero-sum subsequence of S, a

contradiction proving Assertion 2.
So we know that |, *(h)Nsupp(S)| < 7 for every h € H\{0}. Since by Proposition 2.a)

751 (0) Nsupp(S) = {g1}, and since | supp(S)| = p, it follows that
-1
(13) [supp(mo($)) \ {0} = T— -

r—1

Assertion 3: If r < /p, then for 1 <4 < r there exist non-empty sequences U; € F(G)
with o (mo(U;)) = 0, such that [[/_, U; is a proper subsequence of [[%_, g,
By Proposition 3.d), any set of at least \/4p — 7 elements of supp(mo(S)) has a zero-subsum
with at most (/4p — 7+ 1)/2 summands. Consequently, providing that

[supp(mo(S)\ {0} — (= )L > A=

we get r pairwise disjoint zero-subsums of supp(m(S)) \ {0}. To each of these zero-
subsums corresponds a (squarefree) subsequence U; of [['_, g such that o(m(U;)) = 0.
Since the zero-subsums are disjoint, indeed [[._, mo(U;) | []5_, mo(gi). Using (13), the

above inequality holds if

0>7r?(14+/4p—T7)—2r —2p—\/dp—T+3,

and the latter one is satisfied for r < ¥p. Finally, since Ay > 2, the product of the r

. s . .
sequences U; is a proper subsequence of [[}_, g;%, which proves Assertion 3.

Now assume that r < ¢p and let U; be given according to Assertion 3. Since S is
minimal, we obtain o(U;) = k;g; with some 1 < k; < p—1. But now Proposition 3.b) yields
1X(IT;_; (kig1))| > 7, and we obtain a subset O # I C {1,...,7} with o([[,c, Us) = kg; for
some r < k < p. Therefore the sequence gf_k [Lic; Ui is a proper zero-sum subsequence
of S, again a contradiction. 0
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