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Abstract. Minimal zero-sum sequences of maximal length in Cn ⊕ Cn are known to
have 2n− 1 elements, and this paper presents some new results on the structure of such
sequences.
It is conjectured that every such sequence contains some group element n− 1 times, and
this will be proved for sequences consisting of only three distinct group elements.
We prove, furthermore, that if p is an odd prime then any minimal zero-sum sequence
of length 2p − 1 in Cp ⊕ Cp consists of at most p distinct group elements; this is best
possible, as shown by well-known examples. Moreover, some structural properties of
minimal zero-sum sequences in Cp ⊕ Cp of length 2p − 1 with p distinct elements are
established.
The key result proving our second theorem can also be interpreted in terms of Hamming
codes, as follows: for an odd prime power q each linear Hamming code C ⊂ Fq+1

q contains
a non-zero word with letters only 0 and 1.

1. Introduction and main results

Many problems in graph theory, additive number theory and factorization theory trans-
late into questions about zero-sum sequences in finite abelian groups. Thus the interest
to investigate such sequences is large, and the reader is referred e.g. to [1, 7, 11] or the
book [10, Chapter 5] for more details and literature.

In this paper we use notation and terminology from [6]. We denote by Cn an (additively
written) cyclic group of order n. Let n ≥ 2 be an integer and let G = Cn⊕Cn. Extensive
studies were made to investigate the structure of minimal zero-sum sequences in G. A
sequence (or a multi-set) S in G is an element

S =
l∏

i=1

gi ∈ F(G)

of the free abelian (multiplicatively written) monoid generated by G. The length of S is
denoted by |S| = l. Some T ∈ F(G) is called a subsequence of S if T divides S in F(G) (in

symbols: T | S). The sequence S is called a zero-sum sequence if its sum σ(S) =
∑l

i=1 gi

equals 0 ∈ G, and it is called a minimal zero-sum sequence if additionally each proper
non-trivial subsum does not equal 0.

The maximal length of a minimal zero-sum sequence in a finite abelian group is called
Davenport’s constant of the group. Among others, it is known that Davenport’s constant
of Cm ⊕ Cn, where m | n, is equal to n + m − 1, in particular Davenport’s constant of
G equals 2n− 1 (see [15]). Given S as above, let supp(S) = {g1, . . . , gl} ⊂ G denote the
support of S, i.e. the set of group elements appearing in the sequence S, and for g ∈ G
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let vg(S) = |{i : 1 ≤ i ≤ l and gi = g}| denote the multiplicity of the group element g in
the sequence S. Further, let

Σ(S) =
{∑

i∈I

gi : ∅ 6= I ⊂ {1, . . . , l}
}

denote the set of sums of all (non-empty) subsequences of S.

First, let us recall [5, Proposition 6.3.1] and [6, Proposition 4.1.2(b)].

Proposition 1. Let n ≥ 2 be an integer, G = Cn ⊕ Cn and S ∈ F(G) be a minimal
zero-sum sequence of maximal length, i.e., |S| = 2n− 1. Then one has:

a) Any g ∈ supp(S) has maximal order, i.e., ord(g) = n.

b) For any e1 ∈ supp(S) with ve1(S) = n − 1, there exists some e2 ∈ G such that
{e1, e2} is a basis of G and

S = en−1
1

n∏
i=1

(aie1 + e2)

with ai ∈ Z and
∑n

i=1 ai ≡ 1 mod (n). In particular, all elements occurring in S
apart e1 lie in a single coset of 〈e1〉 which has order n.

Notice that any sequence S ∈ F(G), given as in Proposition 1.b), is a minimal zero-sum
sequence. Thus, this result provides a classification of all minimal zero-sum sequences of
maximal lengths in G containing some group element with multiplicity n− 1. According
to [6, Definition 3.2], a natural number n ∈ N is said to have “Property B”, if each minimal
zero-sum sequence of maximal length in Cn⊕Cn contains some element with multiplicity
n− 1. It is known that all n ≤ 6 have Property B [6, Proposition 4.2] and that there are
arbitrarily large n with Property B [6, Theorem 8.1]. A (positive) answer to the question
whether actually all n have Property B, would allow progress on various other problems
(cf. [5, 6, 9]).

It is easy to see that any minimal zero-sum sequence of maximal length in G contains
at least 3 different group elements. We will prove that if such a sequence contains exactly
3 different elements, then it contains some element with multiplicity n− 1.

Theorem 1. Let n ≥ 2 be an integer, G = Cn ⊕ Cn and S = gλ1
1 gλ2

2 gλ3
3 ∈ F(G), with

pairwise distinct g1, g2, g3 ∈ G and n − 1 ≥ λ1 ≥ λ2 ≥ λ3 ≥ 1, be a minimal zero-sum
sequence of maximal length, i.e., |S| = λ1 + λ2 + λ3 = 2n− 1. Then

λ1 = n− 1 .

For the rest of this section we will concentrate on the case where n is prime. We denote
by P the set of rational primes. Then one has further information about the structure
of minimal zero-sum sequences of maximal length (see [7, Corollary 6.3] and [6, Lemma
3.8.2]):

Proposition 2. For p ∈ P let G = Cp ⊕ Cp and S ∈ F(G) be a minimal zero-sum
sequence of maximal length, i.e., |S| = 2p− 1. Then one has:

a) Any two distinct elements of supp(S) generate G.

b) 3 ≤ | supp(S)| ≤ p + 1.
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For p ≥ 3 there are examples for minimal zero-sum sequences in Cp ⊕ Cp with length
2p−1 such that the support contains up to p different elements (see [5, Corollary 10.5.3])
and we will show that there exists no such sequence having a support with p+1 elements.

Theorem 2. Let p be an odd prime and G = Cp ⊕Cp. Then for every minimal zero-sum
sequence S ∈ F(G) of maximal length |S| = 2p− 1 one has

| supp(S)| ≤ p .

This result supports the belief that Property B holds for p ∈ P, since the former would
be an easy consequence of the latter together with Proposition 1.b).

In the following result we obtain some information on the structure of any minimal
zero-sum sequence S in Cp ⊕ Cp with maximal length containing p different elements.
We recall that by Proposition 2 any two different elements in the support of S generate
distinct cyclic subgroups of order p of Cp ⊕ Cp, and thus there exists a unique cyclic
subgroup of order p of Cp ⊕ Cp that is not generated by an element occurring in S.

Theorem 3. Let p be an odd prime, G = Cp ⊕ Cp and S =
∏p

i=1 gλi
i ∈ F(G) a minimal

zero-sum sequence of maximal length, i.e., |S| =
∑p

i=1 λi = 2p− 1, with pairwise distinct
g1, . . . , gp ∈ G, and suppose that

p− 1 ≥ λ1 ≥ · · · ≥ λm > λm+1 = · · · = λp = 1 .

Thus m denotes the number of indices i with λi > 1, and 2 ≤ m ≤ p− 1. Then we have
the following:

a) Let H ⊂ G be the cyclic subgroup of order p different from 〈gi〉 for each 1 ≤ i ≤ p.
Then

{g1, . . . , gm} ⊂ g1 + H.

b) m ≤
√

2p− 2.

c) Either λ1 = p− 1 or
1 +

√
4p− 3

2
≤ λ1 < p− 4

√
p.

Theorem 3 can be seen as a further small step towards proving that Property B holds
for p ∈ P. Note that if p ∈ P has Property B, the sequence in Theorem 3 would have
parameters λ1 = p− 1 and λ2 = m = 2.

2. Proof of Theorem 1

First, we will show that the analog of Proposition 2.a) for composite n only holds for
sequences S with | supp(S)| = 3.

Lemma 1. Let G = Cn ⊕ Cn and S =
∏r

i=1 gλi
i ∈ F(G) with pairwise distinct g1, . . . ,

gr ∈ G be a minimal zero-sum sequence of maximal length, i.e., |S| =
∑r

i=1 λi = 2n− 1.
If for some 1 ≤ j ≤ r we have λ1 + · · ·+ λj ≥ n, then {g1, . . . , gj} generates G.

If three natural numbers λi ≤ n − 1 sum up to 2n − 1, then any two of them have a
sum of at least n. Similarly, if four natural numbers λ4 ≤ · · · ≤ λ1 ≤ n − 1 sum up to
2n− 1, then λ1 + λ2, λ1 + λ3, and either λ2 + λ3 or λ1 + λ4 have a sum of at least n. This
observation yields the following corollary.
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Corollary 1. Let the notation be as in Lemma 1.

a) If r = 3 then any two elements of supp(S) = {g1, g2, g3} form a basis of G.
b) If r = 4 then there exist (at least) 3 pairs of elements of supp(S), each of which

is a basis of G.

The following example shows that Proposition 2.a) does not generalize for composite n
and sequences S with | supp(S)| > 3, and also that in Lemma 1 the inequality λ1 + · · ·+
λj ≥ n is best possible. Let n ∈ N be a composite number, put n = d1d2 with integers
di ≥ 2, and let e1, e2 be a basis of G = Cn ⊕ Cn. Then

en−1
1 en−d2−1

2 (d1e1 + e2)
d2 (e1 + e2)

1 ∈ F(G)

is a minimal zero-sum sequence of maximal length, but {e2, d1e1 + e2} is not a basis of G
and the multiplicities of these two elements sum up to n− 1.

Proof of Lemma 1.
Put λ1+· · ·+λj = 2n−1−l with 0 ≤ l ≤ n−1 and suppose to the contrary that {g1, . . . , gj}
generates a proper subgroup G0 of G. From Proposition 1.a) we have G0 ' Cn⊕Cn/m with
some m > 1 that divides n. Extending the canonical homomorphism π : G → G/G0 ' Cm

to F(G) we obtain a zero-sum sequence S ′ = π(gj+1)
λj+1 . . . π(gr)

λr ∈ F(Cm) of length
l. Now we can find minimal zero-sum sequences A′

i ∈ F(Cm) (with lengths at most
m) such that S ′ = A′

1 . . . A′
k with km ≥ l. From this we obtain some factorization

g
λj+1

j+1 . . . gλr
r = A1 . . . Ak with Ai ∈ F(G) and π(Ai) = A′

i. Since A′
i are zero-sum sequences

in Cm we have σ(Ai) = ai ∈ G0. Therefore S0 = gλ1
1 . . . g

λj

j a1 . . . ak ∈ F(G0) is a zero-sum
sequence in G0 of length

|S0| = λ1 + · · ·+ λj + k ≥ 2n− 1− l +
l

m
= n +

n

m
− 1 + (1− 1

m
)(n− l) >

>n +
n

m
− 1.

Thus, the length of S0 exceeds Davenport’s constant of G0 (cf. Introduction) and con-
sequently the zero-sum sequence S0 in G0 is not minimal. It follows that the zero-sum
sequence S in G is not minimal either, a contradiction. �

For an integer m let |m|n denote the smallest non-negative integer which is congruent
to m modulo (n).

Proof of Theorem 1.
Let S be as in Theorem 1. Since by Corollary 1 any two elements of supp(S) = {g1, g2, g3}
are a basis of G, we have g3 = bg1 + ag2 with some 1 ≤ a, b ≤ n − 1 and gcd(a, n) =
gcd(b, n) = 1. Knowing that S is a zero-sum sequence, we have

(1) λ1 + bλ3 ≡ 0 mod (n) and λ2 + aλ3 ≡ 0 mod (n) .

Since S is minimal, there exists no (x, y, z) ∈ N3 with 0 < x ≤ λ1, 0 < y ≤ λ2 and
0 < z < λ3 satisfying

x + bz ≡ 0 mod (n) and y + az ≡ 0 mod (n) .

Put

Mb = {z : 1 ≤ z ≤ n−1 and there exists an x ∈ {1, 2, . . . , λ1} with x+bz ≡ 0 mod (n)}
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and

Ma = {z : 1 ≤ z ≤ n−1 and there exists a y ∈ {1, 2, . . . , λ2} with y+az ≡ 0 mod (n)} .

With gcd(a, n) = gcd(b, n) = 1 one obtains |Mb| = λ1 and |Ma| = λ2. On the one hand
we have Ma ∩Mb ∩ {1, 2, . . . , λ3 − 1} = ∅, on the other hand

|Ma ∩Mb| = λ1 + λ2 − |Ma ∪Mb| ≥ 2n− 1− λ3 − n + 1 = (n− 1)− (λ3 − 1) ,

so we conclude that Ma ∩Mb = {λ3, λ3 + 1, . . . , n− 1}.
For 1 ≤ ν ≤ n− λ3 we have n− ν ∈ Ma, which means 1 ≤ |νa|n ≤ λ2, and we get

(2)
{
|νa|n : 1 ≤ ν ≤ n− λ3

}
⊂ {1, . . . , λ2} .

If λ3 = 1 we immediately obtain λ2 = λ1 = n − 1, which proves the assertion of the
theorem in this case.

Now suppose that λ3 ≥ 2. Since S is a minimal zero-sum sequence, (1) and (2) hold
and we can apply Lemma 2 below with l = λ3 and L = λ2. So a = 1, and the second
congruence of (1) yields λ2 + λ3 = n, thus λ1 = n− 1 as asserted. �

Lemma 2. Let a, n ∈ N with 1 ≤ a ≤ n−1 and gcd(a, n) = 1. Further let 2 ≤ l ≤ L ∈ N
with 2L + l ≤ 2n− 1 such that

(3) −la ≡ L mod (n)

and

(4) {|νa|n : 1 ≤ ν ≤ n− l} ⊂ {1, 2, . . . , L}
hold. Then a = 1.

Proof.
From the suppositions of the lemma we obtain

(5)
n + 1

3
≤ n− l ≤ L ≤ n− l + 1

2
.

We will use the theory of (simple) continued fractions as explained e.g. in [12, Chapter X].
Let a

n
= [0; a1, a2, . . . , aj] be the continued fraction expansion of a

n
with aj ≥ 2 and with

convergents
p0

q0

=
0

1
,

p1

q1

=
1

a1

,
p2

q2

=
a2

1 + a1a2

, . . . ,
pj

qj

=
a

n
.

It is well known (e.g. [12, Theorems 150 – 151]) that

(6)

∣∣∣∣an − pj−1

qj−1

∣∣∣∣ =
1

nqj−1

and

∣∣∣∣an − pj−2

qj−2

∣∣∣∣ =
aj

nqj−2

.

Case 1: Suppose that j is odd.

If j = 1 we obtain a
n

= 1
a1

, and with gcd(a, n) = 1 conclude that a = 1.

Now let j ≥ 3. Since
pj−1

qj−1

<
pj

qj

=
a

n
<

pj−2

qj−2

we can derive from (6) that

(7) qj−1a ≡ 1 mod (n) and qj−2a ≡ n− aj mod (n) .

Having supposed that aj ≥ 2, we get n = ajqj−1 + qj−2 ≥ 3qj−2, and with (5) we obtain
qj−2 ≤ n

3
< n − l. Therefore the second congruence of (7) together with (4) implies
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n − aj ≤ L ≤ n − 2. Putting m = L + aj − n one has 0 ≤ m ≤ aj − 2, and adding m
times the first congruence of (7) to the second one gives

(mqj−1 + qj−2)a ≡ m + n− aj = L mod (n) .

Using (3) and 1 ≤ mqj−1 + qj−2 ≤ n− 1 we obtain mqj−1 + qj−2 = n− l. Now we insert
L = n+m−aj and l = (aj−m)qj−1 into the last inequality of (5) to get the contradiction

n ≥ L +
l + 1

2
= n +

1

2
+ (aj −m)

(qj−1

2
− 1

)
≥ n +

1

2
,

where we used j − 1 ≥ 2 and qj−1 ≥ q2 ≥ 2.

Case 2: Suppose that j is even.

From 0 < a
n

< 1 we see that j ≥ 2, and j being even implies
pj−2

qj−2

<
pj

qj

=
a

n
<

pj−1

qj−1

.

This time we derive from (6) that

(8) qj−1a ≡ n− 1 mod (n) and qj−2a ≡ aj mod (n) .

Now n − 1 > L together with (4) implies qj−1 > n − l > n
3
. On the other hand,

n = ajqj−1 + qj−2 > ajqj−1 gives qj−1 < n
aj

. Thus aj = 2 must hold, and with n =

2qj−1 + qj−2 ≥ 2qj−1 + 1 we obtain

(9) n− l < qj−1 ≤
n− 1

2
.

Let us first suppose that j = 2. Then a
n

= [0; a1, 2] = 2
2a1+1

implies a = 2, and with the

estimation (9) we obtain

{|νa|n : 1 ≤ ν ≤ n− l} = {2, 4, . . . , 2(n− l)} .

Using (4) and (5) we get 2(n−l) ≤ L ≤ n− l+1
2

, which yields n−l ≤ n−1
3

as a contradiction
to (5). (Note that the inequalities (5) are just sharp enough to exclude the case a = 2.)

Now we may suppose that j ≥ 4. Then n = 2qj−1+qj−2 = (2aj−1+1)qj−2+2qj−3 > 5qj−3

yields qj−1 − aj−1qj−2 = qj−3 < n
5

< n− l, and from (9) we have qj−1 > n− l. Therefore
we can choose an integer m with 1 ≤ m ≤ aj−1 such that

(10) qj−1 −mqj−2 ≤ n− l < qj−1 − (m− 1)qj−2 .

Now subtracting m times the second congruence of (8) from the first one (remember that
aj = 2) yields

(qj−1 −mqj−2)a ≡ n− 1− 2m mod (n) ,

and from (10) and (4) we obtain n− 1− 2m ≤ L. Inserting these lower bounds for L and
l into (5) now yields the contradiction

n ≥L +
l + 1

2
> n− 1− 2m +

1

2
(n− qj−1 + (m− 1)qj−2) +

1

2
=

= n− 1− 2m +
1

2
(qj−1 + mqj−2) +

1

2
≥ n− 1− 2m +

1

2
(2mqj−2 + 1) +

1

2
=

= n + m(qj−2 − 2) ≥ n ,

where we used qj−1 = aj−1qj−2 + qj−3 ≥ mqj−2 + 1 and qj−2 ≥ q2 ≥ 2. �
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3. Hamming codes and the proof of Theorem 2

For any prime power q let Fq denote a finite field with q elements. We use the following
terminology. Given a sum

∑
i∈I gi of elements of an abelian group, we call

∑
i∈J gi for

some J ⊂ I a subsum of this sum; we call it a zero-subsum if
∑

i∈J gi = 0 and we call
it proper (non-trivial, resp.) if J 6= I (J 6= ∅, resp.). We consider subsums given by
distinct sets J, J ′ as distinct, even if their sums are equal. Moreover, given a subset A of
an abelian group, for brevity, we say “subsum of A” instead of “subsum of

∑
g∈A g”.

Proof of Theorem 2.
Suppose to the contrary that supp(S) contains p + 1 elements, which by Proposition 2.a)
are pairwise independent in G ' F2

p . Now Theorem 4.a) below shows that supp(S) has a
non-trivial zero-subsum, contradicting the minimality of S. �

Theorem 4. Let q ∈ N be a power of an odd prime.

a) Let v0,v1, . . . ,vq ∈ F2
q be given such that any two of these vectors are linearly

independent over Fq. Then there exists a non-trivial zero-subsum of these vectors.
Moreover, the number of all non-trivial zero-subsums of {v0,v1, . . . ,vq} is odd.
If furthermore

∑q
i=0 vi = 0, then there exists a proper non-trivial zero-subsum.

b) Let C ⊂ Fq+1
q be a (q-ary) linear Hamming code of order 2. Then there exists an

odd number of non-zero codewords x ∈ C whose coordinates are only 0’s and 1’s.
If furthermore 1 = (1, 1, . . . , 1) ∈ C, then there exists a codeword x ∈ C \ {0,1}
whose coordinates are only 0’s and 1’s.

Proof.
a) For 0 ≤ i ≤ q let vi =

( αi
βi

)
∈ F2

q be given such that each two of these vectors are
linearly independent, and put

H =
( α0 α1 ... αq

β0 β1 ... βq

)
∈ M2,q+1(Fq) .

Then it is well known that H is the parity check matrix of the Hamming code

C = {x ∈ Fq+1
q : Hx =

(
0
0

)
} ⊂ Fq+1

q ,

and any linear Hamming code C ′ ⊂ Fq+1
q can be obtained as above by a suitable choice

of v0,v1, . . . ,vq ∈ F2
q (see e.g. [16, pp. 253f]). It follows that assertions a) and b) are

equivalent, and we will prove the latter one.

b) For any x ∈ Fq+1
q let ω(x) ∈ {0, . . . , q + 1} denote the weight of x, i.e. the number

of non-zero coordinates of x, and B(x) = {y ∈ Fq+1
q : ω(x − y) ≤ 1} the ball of radius 1

around x, i.e. the set of all vectors y which differ from x in at most one coordinate. It is
known that C as given above is a perfect code with minimal distance 3, i.e. the balls of
radius 1 around the codewords yield a partition of the whole space:

Fq+1
q =

•
∪

x∈C
B(x) .

Put W = {0, 1}q+1 ⊂ Fq+1
q the set of all vectors with coordinates 0 or 1, and partition

C = C0

•
∪ C1

•
∪ C2, where C0 (C1, C2, resp.) denotes the set of those codewords x ∈ C with
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no (or exactly one, or at least two, resp.) coordinate(s) belonging to Fq \ {0, 1}. It is easy
to check that in case x ∈ C0 (or x ∈ C1, or x ∈ C2, resp.) one has

|B(x) ∩W | = q + 2 (or 2, or 0, resp.),

and so we conclude that

(11) 2q+1 = |W | =
∑
x∈C

|B(x) ∩W | = (q + 2) |C0|+ 2 |C1| .

Since q+2 is odd, |C0| must be even, and since 0 ∈ C0, |C0| must be positive. Thus C0\{0}
is non-empty and has odd cardinality, thus proving the first assertion of part b).

If furthermore 1 ∈ C, one easily checks that the map

ϕ : C1 → C1

x 7→ 1− x

is an involution, i.e., ϕ ◦ ϕ = id, without fixed points, therefore C1 is the disjoint union
of two-element sets {x, ϕ(x)} and |C1| is even. Now from (11) we see that |C0| is divisible
by 4, and consequently |C0| ≥ 4. �

Remark. With the same proof, Theorem 4 immediately generalizes for pairwise linearly
independent v1,v2, . . . ,vN ∈ Fr

q with even r ≥ 2 and N = (qr − 1)/(q − 1), and thus

for linear Hamming codes C ⊂ FN
q of even order r. But notice that only for the case

r = 2 and q ∈ P the number N of given vectors vi is less than Davenport’s constant of
the underlying additive group, so only in this case Theorem 4 gives new mathematical
insight.

4. Proof of Theorem 3

Throughout this section we use the notation and assumptions of Theorem 3. Thus, p
is an odd prime, G = Cp ⊕ Cp, and

S =

p∏
i=1

gλi
i ∈ F(G)

is a minimal zero-sum sequence of maximal length, i.e., |S| =
∑p

i=1 λi = 2p − 1. More-
over, supp(S) = {g1, . . . , gp} consists of p elements, which are pairwise independent by
Proposition 2.a), and

p− 1 ≥ λ1 ≥ · · · ≥ λm > λm+1 = · · · = λp = 1

with some 2 ≤ m ≤ p− 1. Let H ⊂ G be the cyclic subgroup of order p that is different
from 〈gi〉 for each 1 ≤ i ≤ p.

Lemma 3. For each h ∈ H \ {0} there exists a subset Ih ⊂ {1, . . . , p} such that∑
i∈Ih

gi + h = 0 .

Furthermore, Ih ∩ I−h ∩ {m + 1, . . . , p} 6= ∅.
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Proof.
Let h ∈ H \{0}. Since any two elements of the set {g1, . . . , gp, h} are independent, this set
has a non-trivial zero-subsum by Theorem 4.a). Since S is a minimal zero-sum sequence,
this subsum has to contain h as a summand, thus proving the existence of Ih.
Put I ′h = Ih∩{m+1, . . . , p} and I ′−h = I−h∩{m+1, . . . , p}, and suppose that I ′h∩I ′−h = ∅.
We have

(12)
∑
i∈Ih

gi +
∑

j∈I−h

gj = 0

and T =
∏

i∈Ih
gi

∏
j∈I−h

gj is a zero-sum sequence. Since I ′h∩I ′−h = ∅, the sequence T is a

subsequence of S and the minimality of S implies that indeed S = T . If m ≤ p−2, we have
λ1 ≥ 3 and T is a proper subsequence of S, a contradiction. Thus only the case m = p−1
remains, which yields λ1 = · · · = λp−1 = 2 and λp = 1. Since S = T , it follows that
Ih = {1, . . . , p} and I−h = {1, . . . , p− 1}, or vice versa, so let us assume Ih = {1, . . . , p}.
Then

∑p
i=1 gi + h = 0 and the second part of Theorem 4.a) shows that this sum has a

proper non-trivial zero-subsum; clearly the complement of this zero-subsum is a proper
non-trivial zero-subsum as well and only one of the two contains h, a contradiction to the
minimality of S. Thus I ′h ∩ I ′−h 6= ∅. �

We use the following notation: for A, B ⊂ Cp and k ∈ N let

A + B = {a + b : a ∈ A, b ∈ B}
denote the sumset of the sets A and B, and

k∧A =
{∑

a∈A0

a : A0 ⊂ A with |A0| = k
}

the set of all sums of k different elements of A.
In the following we will make use of two well known results from Additive Number The-
ory, namely the Cauchy–Davenport Theorem [2, 3] and the Theorem of Dias da Silva–
Hamidoune [4] (i.e., the confirmation of the Erdős–Heilbronn Conjecture), as well as of
some consequences of these. For the convenience of the reader we recall these results in
Proposition 3 below and refer to [14, Theorems 2.2 and 3.4] for a detailed exposition.
Moreover, in Proposition 3.e) we recall a recent result on the structure of sequences in Cp

without zero-sum subsequences of length p that we need in the proof of Theorem 3. This
question is closely related to the problem of evaluating Brakemeier’s function for Cp —
in fact, recent results on this function, obtained in [13], were part of our first reasonings
towards our result.

Proposition 3. Let ∅ 6= A, B ⊂ Cp and k ∈ N. Then one has:

a) (Cauchy–Davenport)

|A + B| ≥ min{p, |A|+ |B| − 1}
b) If T ∈ F(Cp \ {0}), then |Σ(T ) \ {0}| ≥ min{p− 1, |T |}.
c) (Dias da Silva–Hamidoune)

|k∧A| ≥ min{p, k(|A| − k) + 1}
d) (cf. [4, Corollary 4.3]) If |A| ≥

√
4p− 7, then A has a non-trivial zero-subsum with

at most (
√

4p− 7 + 1)/2 summands.
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e) ([8, Theorem 2.2]) If T ∈ F(Cp) has no zero-sum subsequence of length p, then T
contains some element with multiplicity at least |T | − p + 1.

To get Proposition 3.b), write T =
∏k

i=1 ti and apply part a) repeatedly to |{0, t1} +
· · · + {0, tk}| and note that {0, t1} + · · · + {0, tk} = Σ(T ) ∪ {0}; the definition of Σ(·) is
given in the Introduction.

Proof of Theorem 3.
a) Let S0 = gλ1−1

1 . . . gλm−1
m , a subsequence of S with |S0| = p− 1, and let

π : G → G/H ' Cp

denote the canonical homomorphism. So π(S0) = π(g1)
λ1−1 . . . π(gm)λm−1 is a sequence

of length p− 1 in Cp.
Suppose that π(S0) has a non-trivial zero-sum subsequence. Then there are 0 ≤ µi ≤

λi − 1, not all vanishing, such that
∑m

i=1 µigi = h ∈ H. The minimality of S implies that
h 6= 0. Using Lemma 3, we get ∑

i∈Ih

gi +
m∑

i=1

µigi = 0

for a suitable Ih ⊂ {1, . . . , p}. The remaining arguments are similar to the ones in the
proof of Lemma 3: the minimality of S implies µi = λi − 1 for all 1 ≤ i ≤ m and
Ih = {1, . . . , p}; so

∑p
i=1 gi + h = 0, and again applying the second part of Theorem 4.a)

we get a contradiction.
Therefore π(S0) has no non-trivial zero-sum subsequence, which implies π(S0) = π(g1)

p−1,
and part a) of the theorem follows.

b) Let S1 = gλ1
1 . . . gλm

m be the subsequence of S of those elements with multiplicity at
least 2, and let

π0 : G = 〈g1〉 ⊕H → H ' Cp

denote the projection onto the subgroup H along 〈g1〉. Using part a) we have gk = g1+hk,
where h2, . . . , hm ∈ H \ {0} are pairwise different. Thus, any zero-sum subsequence of
length p of the sequence

S ′ = π0(S1) = 0λ1hλ2
2 . . . hλm

m ∈ F(Cp)

would give a proper zero-sum subsequence of S, contradicting the minimality of S. In
order to obtain the claimed inequality for m, it suffices to prove the following:

Assertion 1: If m >
√

2p− 2, then S ′ has a zero-sum subsequence of length p.

Let A = supp(S ′) ⊂ Cp, and put m1 = m2 = m−1
2

if m is odd, and m1 = m
2
− 1 and

m2 = m
2

if m is even. Then we have by Proposition 3.c)

|m ∧
1 A| ≥ min{p, m1(|A| −m1) + 1} = min{p, m1m2 + m1 + 1},

and similarly |m ∧
2 A| ≥ min{p, m2m1 + m2 + 1}. Since, assuming m >

√
2p− 2, we have

|m ∧
1 A|+ |m ∧

2 A| ≥ 2m1m2 + m1 + m2 + 2 = 2(m1 + 1/2)(m2 + 1/2) + 3/2 > p,

it follows (cf. Proposition 3.a)) that m ∧
1 A + m ∧

2 A = Cp. Consequently, we can find a
subsequence T | S ′ with σ(T ) = σ(S ′) and |T | = m1 +m2 = m−1. Since |S ′| = p+m−1,
the sequence T ′ satisfying TT ′ = S ′ is a zero-sum subsequence of S ′ with length p, which
proves Assertion 1.



MINIMAL ZERO-SUM SEQUENCES IN Cn ⊕ Cn 11

c) From λ1 + · · · + λm = p + m − 1 we obtain λ1 ≥ p−1
m

+ 1. Moreover, the sequence
S ′, considered in b), contains no zero-sum subsequence of length p, so we may apply
Proposition 3.e) to obtain λ1 ≥ m. Combining these inequalities, we have

λ1 ≥ max
{p− 1

m
+ 1, m

}
≥ 1 +

√
4p− 3

2
,

the lower bound for λ1.
Now, put r = p− λ1 and suppose that r ≥ 2. We have to show that r > 4

√
p , and first

prove the following:

Assertion 2: For every h ∈ H \ {0} we have |π−1
0 (h) ∩ supp(S)| < r.

Assume to the contrary that there exists some h ∈ H\{0} with |π−1
0 (h)∩supp(S)| ≥ r. Let

D | S be a squarefree (i.e. each element has multiplicity 1) subsequence of S with length r
such that π0(D) = hr and put S = gλ1

1 DD′. Since |D′| = p−1 and supp(π0(D
′)) ⊂ H\{0},

Proposition 3.b) shows that H\{0} ⊂ Σ(π0(D
′)). In particular, there exists a subsequence

T | D′ such that σ(π0(T )) = −h. Therefore{
σ(gT ) : g | D

}
⊂ 〈g1〉 \ {0}

is a set of cardinality r, and we can find some g′ | D such that σ(g′T ) = jg1 with some
r ≤ j ≤ p − 1. But then the sequence g′Tgp−j

1 is a proper zero-sum subsequence of S, a
contradiction proving Assertion 2.

So we know that |π−1
0 (h)∩supp(S)| < r for every h ∈ H \{0}. Since by Proposition 2.a)

π−1
0 (0) ∩ supp(S) = {g1}, and since | supp(S)| = p, it follows that

(13) | supp(π0(S)) \ {0}| ≥ p− 1

r − 1
.

Assertion 3: If r ≤ 4
√

p, then for 1 ≤ i ≤ r there exist non-empty sequences Ui ∈ F(G)

with σ(π0(Ui)) = 0, such that
∏r

i=1 Ui is a proper subsequence of
∏p

i=2 gλi
i .

By Proposition 3.d), any set of at least
√

4p− 7 elements of supp(π0(S)) has a zero-subsum
with at most (

√
4p− 7 + 1)/2 summands. Consequently, providing that

| supp(π0(S)) \ {0}| − (r − 1)

√
4p− 7 + 1

2
≥

√
4p− 7 ,

we get r pairwise disjoint zero-subsums of supp(π0(S)) \ {0}. To each of these zero-
subsums corresponds a (squarefree) subsequence Ui of

∏p
i=2 gλi

i such that σ(π0(Ui)) = 0.
Since the zero-subsums are disjoint, indeed

∏r
i=1 π0(Ui) |

∏p
i=2 π0(gi). Using (13), the

above inequality holds if

0 ≥ r2(1 +
√

4p− 7)− 2r − 2p−
√

4p− 7 + 3 ,

and the latter one is satisfied for r ≤ 4
√

p. Finally, since λ2 ≥ 2, the product of the r

sequences Ui is a proper subsequence of
∏p

i=2 gλi
i , which proves Assertion 3.

Now assume that r ≤ 4
√

p and let Ui be given according to Assertion 3. Since S is
minimal, we obtain σ(Ui) = kig1 with some 1 ≤ ki ≤ p−1. But now Proposition 3.b) yields
|Σ(

∏r
i=1(kig1))| ≥ r, and we obtain a subset ∅ 6= I ⊂ {1, . . . , r} with σ(

∏
i∈I Ui) = kg1 for

some r ≤ k ≤ p. Therefore the sequence gp−k
1

∏
i∈I Ui is a proper zero-sum subsequence

of S, again a contradiction. �
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application to a variant of Erdős-Ginzburg-Ziv theorem, Proc. Indian Acad. Sci. (Math. Sci.) 115
(2005), 67-77.

[9] W.D. Gao and J.J. Zhuang, Sequences not containing long zero-sum subsequences, European J.
Combin., to appear, doi:10.1016/j.ejc.2005.06.001

[10] A. Geroldinger and F. Halter-Koch, Non-Unique Factorizations: Algebraic, Combinatorial and
Analytic Theory, Monographs and Textbooks in Pure and Applied Mathematics 278, Chapman &
Hall/CRC, Boca Raton, FL, USA, 2005.

[11] Y. ould Hamidoune, Subsequence Sums, Combin. Probab. Comput. 12 (2003), 413-425.
[12] G.H. Hardy and E.M. Wright, An Introduction to the Theory of Numbers, Fifth Edition, The Claren-

don Press, Oxford University Press, New York, NY, USA, 1979.
[13] F. Hennecart, La fonction de Brakemeier dans le problème d’Erdős-Ginzburg-Ziv, Acta Arith. 117
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