MINIMAL ZERO-SUM SEQUENCES IN $C_{n} \oplus C_{n}$

GÜNTER LETTL AND WOLFGANG A. SCHMID

Abstract

Minimal zero-sum sequences of maximal length in $C_{n} \oplus C_{n}$ are known to have $2 n-1$ elements, and this paper presents some new results on the structure of such sequences. It is conjectured that every such sequence contains some group element $n-1$ times, and this will be proved for sequences consisting of only three distinct group elements. We prove, furthermore, that if p is an odd prime then any minimal zero-sum sequence of length $2 p-1$ in $C_{p} \oplus C_{p}$ consists of at most p distinct group elements; this is best possible, as shown by well-known examples. Moreover, some structural properties of minimal zero-sum sequences in $C_{p} \oplus C_{p}$ of length $2 p-1$ with p distinct elements are established. The key result proving our second theorem can also be interpreted in terms of Hamming codes, as follows: for an odd prime power q each linear Hamming code $\mathcal{C} \subset \mathbb{F}_{q}^{q+1}$ contains a non-zero word with letters only 0 and 1.

1. INTRODUCTION AND MAIN RESULTS

Many problems in graph theory, additive number theory and factorization theory translate into questions about zero-sum sequences in finite abelian groups. Thus the interest to investigate such sequences is large, and the reader is referred e.g. to $[1,7,11]$ or the book [10, Chapter 5] for more details and literature.

In this paper we use notation and terminology from [6]. We denote by C_{n} an (additively written) cyclic group of order n. Let $n \geq 2$ be an integer and let $G=C_{n} \oplus C_{n}$. Extensive studies were made to investigate the structure of minimal zero-sum sequences in G. A sequence (or a multi-set) S in G is an element

$$
S=\prod_{i=1}^{l} g_{i} \in \mathcal{F}(G)
$$

of the free abelian (multiplicatively written) monoid generated by G. The length of S is denoted by $|S|=l$. Some $T \in \mathcal{F}(G)$ is called a subsequence of S if T divides S in $\mathcal{F}(G)$ (in symbols: $T \mid S$). The sequence S is called a zero-sum sequence if its $\operatorname{sum} \sigma(S)=\sum_{i=1}^{l} g_{i}$ equals $0 \in G$, and it is called a minimal zero-sum sequence if additionally each proper non-trivial subsum does not equal 0 .

The maximal length of a minimal zero-sum sequence in a finite abelian group is called Davenport's constant of the group. Among others, it is known that Davenport's constant of $C_{m} \oplus C_{n}$, where $m \mid n$, is equal to $n+m-1$, in particular Davenport's constant of G equals $2 n-1$ (see [15]). Given S as above, let $\operatorname{supp}(S)=\left\{g_{1}, \ldots, g_{l}\right\} \subset G$ denote the support of S, i.e. the set of group elements appearing in the sequence S, and for $g \in G$

[^0]let $\mathrm{v}_{g}(S)=\mid\left\{i: 1 \leq i \leq l\right.$ and $\left.g_{i}=g\right\} \mid$ denote the multiplicity of the group element g in the sequence S. Further, let
$$
\Sigma(S)=\left\{\sum_{i \in I} g_{i}: \emptyset \neq I \subset\{1, \ldots, l\}\right\}
$$
denote the set of sums of all (non-empty) subsequences of S.
First, let us recall [5, Proposition 6.3.1] and [6, Proposition 4.1.2(b)].
Proposition 1. Let $n \geq 2$ be an integer, $G=C_{n} \oplus C_{n}$ and $S \in \mathcal{F}(G)$ be a minimal zero-sum sequence of maximal length, i.e., $|S|=2 n-1$. Then one has:
a) Any $g \in \operatorname{supp}(S)$ has maximal order, i.e., $\operatorname{ord}(g)=n$.
b) For any $e_{1} \in \operatorname{supp}(S)$ with $\mathrm{v}_{e_{1}}(S)=n-1$, there exists some $e_{2} \in G$ such that $\left\{e_{1}, e_{2}\right\}$ is a basis of G and
$$
S=e_{1}^{n-1} \prod_{i=1}^{n}\left(a_{i} e_{1}+e_{2}\right)
$$
with $a_{i} \in \mathbb{Z}$ and $\sum_{i=1}^{n} a_{i} \equiv 1 \bmod (n)$. In particular, all elements occurring in S apart e_{1} lie in a single coset of $\left\langle e_{1}\right\rangle$ which has order n.

Notice that any sequence $S \in \mathcal{F}(G)$, given as in Proposition 1.b), is a minimal zero-sum sequence. Thus, this result provides a classification of all minimal zero-sum sequences of maximal lengths in G containing some group element with multiplicity $n-1$. According to [6, Definition 3.2], a natural number $n \in \mathbb{N}$ is said to have "Property B ", if each minimal zero-sum sequence of maximal length in $C_{n} \oplus C_{n}$ contains some element with multiplicity $n-1$. It is known that all $n \leq 6$ have Property B [6, Proposition 4.2] and that there are arbitrarily large n with Property B [6, Theorem 8.1]. A (positive) answer to the question whether actually all n have Property B, would allow progress on various other problems (cf. [5, 6, 9]).

It is easy to see that any minimal zero-sum sequence of maximal length in G contains at least 3 different group elements. We will prove that if such a sequence contains exactly 3 different elements, then it contains some element with multiplicity $n-1$.
Theorem 1. Let $n \geq 2$ be an integer, $G=C_{n} \oplus C_{n}$ and $S=g_{1}^{\lambda_{1}} g_{2}^{\lambda_{2}} g_{3}^{\lambda_{3}} \in \mathcal{F}(G)$, with pairwise distinct $g_{1}, g_{2}, g_{3} \in G$ and $n-1 \geq \lambda_{1} \geq \lambda_{2} \geq \lambda_{3} \geq 1$, be a minimal zero-sum sequence of maximal length, i.e., $|S|=\lambda_{1}+\lambda_{2}+\lambda_{3}=2 n-1$. Then

$$
\lambda_{1}=n-1 .
$$

For the rest of this section we will concentrate on the case where n is prime. We denote by \mathbb{P} the set of rational primes. Then one has further information about the structure of minimal zero-sum sequences of maximal length (see [7, Corollary 6.3] and [6, Lemma 3.8.2]):

Proposition 2. For $p \in \mathbb{P}$ let $G=C_{p} \oplus C_{p}$ and $S \in \mathcal{F}(G)$ be a minimal zero-sum sequence of maximal length, i.e., $|S|=2 p-1$. Then one has:
a) Any two distinct elements of $\operatorname{supp}(S)$ generate G.
b) $3 \leq|\operatorname{supp}(S)| \leq p+1$.

For $p \geq 3$ there are examples for minimal zero-sum sequences in $C_{p} \oplus C_{p}$ with length $2 p-1$ such that the support contains up to p different elements (see [5, Corollary 10.5.3]) and we will show that there exists no such sequence having a support with $p+1$ elements.
Theorem 2. Let p be an odd prime and $G=C_{p} \oplus C_{p}$. Then for every minimal zero-sum sequence $S \in \mathcal{F}(G)$ of maximal length $|S|=2 p-1$ one has

$$
|\operatorname{supp}(S)| \leq p
$$

This result supports the belief that Property B holds for $p \in \mathbb{P}$, since the former would be an easy consequence of the latter together with Proposition 1.b).

In the following result we obtain some information on the structure of any minimal zero-sum sequence S in $C_{p} \oplus C_{p}$ with maximal length containing p different elements. We recall that by Proposition 2 any two different elements in the support of S generate distinct cyclic subgroups of order p of $C_{p} \oplus C_{p}$, and thus there exists a unique cyclic subgroup of order p of $C_{p} \oplus C_{p}$ that is not generated by an element occurring in S.

Theorem 3. Let p be an odd prime, $G=C_{p} \oplus C_{p}$ and $S=\prod_{i=1}^{p} g_{i}^{\lambda_{i}} \in \mathcal{F}(G)$ a minimal zero-sum sequence of maximal length, i.e., $|S|=\sum_{i=1}^{p} \lambda_{i}=2 p-1$, with pairwise distinct $g_{1}, \ldots, g_{p} \in G$, and suppose that

$$
p-1 \geq \lambda_{1} \geq \cdots \geq \lambda_{m}>\lambda_{m+1}=\cdots=\lambda_{p}=1
$$

Thus m denotes the number of indices i with $\lambda_{i}>1$, and $2 \leq m \leq p-1$. Then we have the following:
a) Let $H \subset G$ be the cyclic subgroup of order p different from $\left\langle g_{i}\right\rangle$ for each $1 \leq i \leq p$. Then

$$
\left\{g_{1}, \ldots, g_{m}\right\} \subset g_{1}+H
$$

b) $m \leq \sqrt{2 p-2}$.
c) Either $\lambda_{1}=p-1$ or $\frac{1+\sqrt{4 p-3}}{2} \leq \lambda_{1}<p-\sqrt[4]{p}$.

Theorem 3 can be seen as a further small step towards proving that Property B holds for $p \in \mathbb{P}$. Note that if $p \in \mathbb{P}$ has Property B, the sequence in Theorem 3 would have parameters $\lambda_{1}=p-1$ and $\lambda_{2}=m=2$.

2. Proof of Theorem 1

First, we will show that the analog of Proposition 2.a) for composite n only holds for sequences S with $|\operatorname{supp}(S)|=3$.
Lemma 1. Let $G=C_{n} \oplus C_{n}$ and $S=\prod_{i=1}^{r} g_{i}^{\lambda_{i}} \in \mathcal{F}(G)$ with pairwise distinct g_{1}, \ldots, $g_{r} \in G$ be a minimal zero-sum sequence of maximal length, i.e., $|S|=\sum_{i=1}^{r} \lambda_{i}=2 n-1$. If for some $1 \leq j \leq r$ we have $\lambda_{1}+\cdots+\lambda_{j} \geq n$, then $\left\{g_{1}, \ldots, g_{j}\right\}$ generates G.

If three natural numbers $\lambda_{i} \leq n-1$ sum up to $2 n-1$, then any two of them have a sum of at least n. Similarly, if four natural numbers $\lambda_{4} \leq \cdots \leq \lambda_{1} \leq n-1$ sum up to $2 n-1$, then $\lambda_{1}+\lambda_{2}, \lambda_{1}+\lambda_{3}$, and either $\lambda_{2}+\lambda_{3}$ or $\lambda_{1}+\lambda_{4}$ have a sum of at least n. This observation yields the following corollary.

Corollary 1. Let the notation be as in Lemma 1.
a) If $r=3$ then any two elements of $\operatorname{supp}(S)=\left\{g_{1}, g_{2}, g_{3}\right\}$ form a basis of G.
b) If $r=4$ then there exist (at least) 3 pairs of elements of $\operatorname{supp}(S)$, each of which is a basis of G.

The following example shows that Proposition 2.a) does not generalize for composite n and sequences S with $|\operatorname{supp}(S)|>3$, and also that in Lemma 1 the inequality $\lambda_{1}+\cdots+$ $\lambda_{j} \geq n$ is best possible. Let $n \in \mathbb{N}$ be a composite number, put $n=d_{1} d_{2}$ with integers $d_{i} \geq 2$, and let e_{1}, e_{2} be a basis of $G=C_{n} \oplus C_{n}$. Then

$$
e_{1}^{n-1} e_{2}^{n-d_{2}-1}\left(d_{1} e_{1}+e_{2}\right)^{d_{2}}\left(e_{1}+e_{2}\right)^{1} \in \mathcal{F}(G)
$$

is a minimal zero-sum sequence of maximal length, but $\left\{e_{2}, d_{1} e_{1}+e_{2}\right\}$ is not a basis of G and the multiplicities of these two elements sum up to $n-1$.

Proof of Lemma 1.

Put $\lambda_{1}+\cdots+\lambda_{j}=2 n-1-l$ with $0 \leq l \leq n-1$ and suppose to the contrary that $\left\{g_{1}, \ldots, g_{j}\right\}$ generates a proper subgroup G_{0} of G. From Proposition 1.a) we have $G_{0} \simeq C_{n} \oplus C_{n / m}$ with some $m>1$ that divides n. Extending the canonical homomorphism $\pi: G \rightarrow G / G_{0} \simeq C_{m}$ to $\mathcal{F}(G)$ we obtain a zero-sum sequence $S^{\prime}=\pi\left(g_{j+1}\right)^{\lambda_{j+1}} \ldots \pi\left(g_{r}\right)^{\lambda_{r}} \in \mathcal{F}\left(C_{m}\right)$ of length l. Now we can find minimal zero-sum sequences $A_{i}^{\prime} \in \mathcal{F}\left(C_{m}\right)$ (with lengths at most m) such that $S^{\prime}=A_{1}^{\prime} \ldots A_{k}^{\prime}$ with $k m \geq l$. From this we obtain some factorization $g_{j+1}^{\lambda_{j+1}} \ldots g_{r}^{\lambda_{r}}=A_{1} \ldots A_{k}$ with $A_{i} \in \mathcal{F}(G)$ and $\pi\left(A_{i}\right)=A_{i}^{\prime}$. Since A_{i}^{\prime} are zero-sum sequences in C_{m} we have $\sigma\left(A_{i}\right)=a_{i} \in G_{0}$. Therefore $S_{0}=g_{1}^{\lambda_{1}} \ldots g_{j}^{\lambda_{j}} a_{1} \ldots a_{k} \in \mathcal{F}\left(G_{0}\right)$ is a zero-sum sequence in G_{0} of length

$$
\begin{aligned}
\left|S_{0}\right| & =\lambda_{1}+\cdots+\lambda_{j}+k \geq 2 n-1-l+\frac{l}{m}=n+\frac{n}{m}-1+\left(1-\frac{1}{m}\right)(n-l)> \\
& >n+\frac{n}{m}-1
\end{aligned}
$$

Thus, the length of S_{0} exceeds Davenport's constant of G_{0} (cf. Introduction) and consequently the zero-sum sequence S_{0} in G_{0} is not minimal. It follows that the zero-sum sequence S in G is not minimal either, a contradiction.

For an integer m let $|m|_{n}$ denote the smallest non-negative integer which is congruent to m modulo (n).

Proof of Theorem 1.

Let S be as in Theorem 1. Since by Corollary 1 any two elements of $\operatorname{supp}(S)=\left\{g_{1}, g_{2}, g_{3}\right\}$ are a basis of G, we have $g_{3}=b g_{1}+a g_{2}$ with some $1 \leq a, b \leq n-1$ and $\operatorname{gcd}(a, n)=$ $\operatorname{gcd}(b, n)=1$. Knowing that S is a zero-sum sequence, we have

$$
\begin{equation*}
\lambda_{1}+b \lambda_{3} \equiv 0 \quad \bmod (n) \quad \text { and } \quad \lambda_{2}+a \lambda_{3} \equiv 0 \quad \bmod (n) . \tag{1}
\end{equation*}
$$

Since S is minimal, there exists no $(x, y, z) \in \mathbb{N}^{3}$ with $0<x \leq \lambda_{1}, 0<y \leq \lambda_{2}$ and $0<z<\lambda_{3}$ satisfying

$$
x+b z \equiv 0 \quad \bmod (n) \quad \text { and } \quad y+a z \equiv 0 \quad \bmod (n) .
$$

Put
$M_{b}=\left\{z: 1 \leq z \leq n-1\right.$ and there exists an $x \in\left\{1,2, \ldots, \lambda_{1}\right\}$ with $\left.x+b z \equiv 0 \bmod (n)\right\}$
and
$M_{a}=\left\{z: 1 \leq z \leq n-1\right.$ and there exists a $y \in\left\{1,2, \ldots, \lambda_{2}\right\}$ with $\left.y+a z \equiv 0 \bmod (n)\right\}$. With $\operatorname{gcd}(a, n)=\operatorname{gcd}(b, n)=1$ one obtains $\left|M_{b}\right|=\lambda_{1}$ and $\left|M_{a}\right|=\lambda_{2}$. On the one hand we have $M_{a} \cap M_{b} \cap\left\{1,2, \ldots, \lambda_{3}-1\right\}=\emptyset$, on the other hand

$$
\left|M_{a} \cap M_{b}\right|=\lambda_{1}+\lambda_{2}-\left|M_{a} \cup M_{b}\right| \geq 2 n-1-\lambda_{3}-n+1=(n-1)-\left(\lambda_{3}-1\right)
$$

so we conclude that $M_{a} \cap M_{b}=\left\{\lambda_{3}, \lambda_{3}+1, \ldots, n-1\right\}$.
For $1 \leq \nu \leq n-\lambda_{3}$ we have $n-\nu \in M_{a}$, which means $1 \leq|\nu a|_{n} \leq \lambda_{2}$, and we get

$$
\begin{equation*}
\left\{|\nu a|_{n}: 1 \leq \nu \leq n-\lambda_{3}\right\} \subset\left\{1, \ldots, \lambda_{2}\right\} \tag{2}
\end{equation*}
$$

If $\lambda_{3}=1$ we immediately obtain $\lambda_{2}=\lambda_{1}=n-1$, which proves the assertion of the theorem in this case.

Now suppose that $\lambda_{3} \geq 2$. Since S is a minimal zero-sum sequence, (1) and (2) hold and we can apply Lemma 2 below with $l=\lambda_{3}$ and $L=\lambda_{2}$. So $a=1$, and the second congruence of (1) yields $\lambda_{2}+\lambda_{3}=n$, thus $\lambda_{1}=n-1$ as asserted.

Lemma 2. Let $a, n \in \mathbb{N}$ with $1 \leq a \leq n-1$ and $\operatorname{gcd}(a, n)=1$. Further let $2 \leq l \leq L \in \mathbb{N}$ with $2 L+l \leq 2 n-1$ such that

$$
\begin{equation*}
-l a \equiv L \quad \bmod (n) \tag{3}
\end{equation*}
$$

and

$$
\begin{equation*}
\left\{|\nu a|_{n}: 1 \leq \nu \leq n-l\right\} \subset\{1,2, \ldots, L\} \tag{4}
\end{equation*}
$$

hold. Then $a=1$.
Proof.
From the suppositions of the lemma we obtain

$$
\begin{equation*}
\frac{n+1}{3} \leq n-l \leq L \leq n-\frac{l+1}{2} \tag{5}
\end{equation*}
$$

We will use the theory of (simple) continued fractions as explained e.g. in [12, Chapter X]. Let $\frac{a}{n}=\left[0 ; a_{1}, a_{2}, \ldots, a_{j}\right]$ be the continued fraction expansion of $\frac{a}{n}$ with $a_{j} \geq 2$ and with convergents

$$
\frac{p_{0}}{q_{0}}=\frac{0}{1}, \quad \frac{p_{1}}{q_{1}}=\frac{1}{a_{1}}, \quad \frac{p_{2}}{q_{2}}=\frac{a_{2}}{1+a_{1} a_{2}}, \ldots, \frac{p_{j}}{q_{j}}=\frac{a}{n} .
$$

It is well known (e.g. [12, Theorems 150-151]) that

$$
\begin{equation*}
\left|\frac{a}{n}-\frac{p_{j-1}}{q_{j-1}}\right|=\frac{1}{n q_{j-1}} \quad \text { and } \quad\left|\frac{a}{n}-\frac{p_{j-2}}{q_{j-2}}\right|=\frac{a_{j}}{n q_{j-2}} \tag{6}
\end{equation*}
$$

Case 1: Suppose that j is odd.
If $j=1$ we obtain $\frac{a}{n}=\frac{1}{a_{1}}$, and with $\operatorname{gcd}(a, n)=1$ conclude that $a=1$.
Now let $j \geq 3$. Since $\frac{p_{j-1}}{q_{j-1}}<\frac{p_{j}}{q_{j}}=\frac{a}{n}<\frac{p_{j-2}}{q_{j-2}}$ we can derive from (6) that

$$
\begin{equation*}
q_{j-1} a \equiv 1 \quad \bmod (n) \quad \text { and } \quad q_{j-2} a \equiv n-a_{j} \quad \bmod (n) . \tag{7}
\end{equation*}
$$

Having supposed that $a_{j} \geq 2$, we get $n=a_{j} q_{j-1}+q_{j-2} \geq 3 q_{j-2}$, and with (5) we obtain $q_{j-2} \leq \frac{n}{3}<n-l$. Therefore the second congruence of (7) together with (4) implies
$n-a_{j} \leq L \leq n-2$. Putting $m=L+a_{j}-n$ one has $0 \leq m \leq a_{j}-2$, and adding m times the first congruence of (7) to the second one gives

$$
\left(m q_{j-1}+q_{j-2}\right) a \equiv m+n-a_{j}=L \quad \bmod (n) .
$$

Using (3) and $1 \leq m q_{j-1}+q_{j-2} \leq n-1$ we obtain $m q_{j-1}+q_{j-2}=n-l$. Now we insert $L=n+m-a_{j}$ and $l=\left(a_{j}-m\right) q_{j-1}$ into the last inequality of (5) to get the contradiction

$$
n \geq L+\frac{l+1}{2}=n+\frac{1}{2}+\left(a_{j}-m\right)\left(\frac{q_{j-1}}{2}-1\right) \geq n+\frac{1}{2}
$$

where we used $j-1 \geq 2$ and $q_{j-1} \geq q_{2} \geq 2$.
Case 2: Suppose that j is even.
From $0<\frac{a}{n}<1$ we see that $j \geq 2$, and j being even implies $\frac{p_{j-2}}{q_{j-2}}<\frac{p_{j}}{q_{j}}=\frac{a}{n}<\frac{p_{j-1}}{q_{j-1}}$. This time we derive from (6) that

$$
\begin{equation*}
q_{j-1} a \equiv n-1 \quad \bmod (n) \quad \text { and } \quad q_{j-2} a \equiv a_{j} \quad \bmod (n) . \tag{8}
\end{equation*}
$$

Now $n-1>L$ together with (4) implies $q_{j-1}>n-l>\frac{n}{3}$. On the other hand, $n=a_{j} q_{j-1}+q_{j-2}>a_{j} q_{j-1}$ gives $q_{j-1}<\frac{n}{a_{j}}$. Thus $a_{j}=2$ must hold, and with $n=$ $2 q_{j-1}+q_{j-2} \geq 2 q_{j-1}+1$ we obtain

$$
\begin{equation*}
n-l<q_{j-1} \leq \frac{n-1}{2} \tag{9}
\end{equation*}
$$

Let us first suppose that $j=2$. Then $\frac{a}{n}=\left[0 ; a_{1}, 2\right]=\frac{2}{2 a_{1}+1}$ implies $a=2$, and with the estimation (9) we obtain

$$
\left\{|\nu a|_{n}: 1 \leq \nu \leq n-l\right\}=\{2,4, \ldots, 2(n-l)\}
$$

Using (4) and (5) we get $2(n-l) \leq L \leq n-\frac{l+1}{2}$, which yields $n-l \leq \frac{n-1}{3}$ as a contradiction to (5). (Note that the inequalities (5) are just sharp enough to exclude the case $a=2$.)

Now we may suppose that $j \geq 4$. Then $n=2 q_{j-1}+q_{j-2}=\left(2 a_{j-1}+1\right) q_{j-2}+2 q_{j-3}>5 q_{j-3}$ yields $q_{j-1}-a_{j-1} q_{j-2}=q_{j-3}<\frac{n}{5}<n-l$, and from (9) we have $q_{j-1}>n-l$. Therefore we can choose an integer m with $1 \leq m \leq a_{j-1}$ such that

$$
\begin{equation*}
q_{j-1}-m q_{j-2} \leq n-l<q_{j-1}-(m-1) q_{j-2} \tag{10}
\end{equation*}
$$

Now subtracting m times the second congruence of (8) from the first one (remember that $a_{j}=2$) yields

$$
\left(q_{j-1}-m q_{j-2}\right) a \equiv n-1-2 m \quad \bmod (n),
$$

and from (10) and (4) we obtain $n-1-2 m \leq L$. Inserting these lower bounds for L and l into (5) now yields the contradiction

$$
\begin{aligned}
n & \geq L+\frac{l+1}{2}>n-1-2 m+\frac{1}{2}\left(n-q_{j-1}+(m-1) q_{j-2}\right)+\frac{1}{2}= \\
& =n-1-2 m+\frac{1}{2}\left(q_{j-1}+m q_{j-2}\right)+\frac{1}{2} \geq n-1-2 m+\frac{1}{2}\left(2 m q_{j-2}+1\right)+\frac{1}{2}= \\
& =n+m\left(q_{j-2}-2\right) \geq n
\end{aligned}
$$

where we used $q_{j-1}=a_{j-1} q_{j-2}+q_{j-3} \geq m q_{j-2}+1$ and $q_{j-2} \geq q_{2} \geq 2$.

3. Hamming codes and the proof of Theorem 2

For any prime power q let \mathbb{F}_{q} denote a finite field with q elements. We use the following terminology. Given a sum $\sum_{i \in I} g_{i}$ of elements of an abelian group, we call $\sum_{i \in J} g_{i}$ for some $J \subset I$ a subsum of this sum; we call it a zero-subsum if $\sum_{i \in J} g_{i}=0$ and we call it proper (non-trivial, resp.) if $J \neq I(J \neq \emptyset$, resp.). We consider subsums given by distinct sets J, J^{\prime} as distinct, even if their sums are equal. Moreover, given a subset A of an abelian group, for brevity, we say "subsum of A " instead of "subsum of $\sum_{g \in A} g$ ".

Proof of Theorem 2.

Suppose to the contrary that $\operatorname{supp}(S)$ contains $p+1$ elements, which by Proposition 2.a) are pairwise independent in $G \simeq \mathbb{F}_{p}^{2}$. Now Theorem 4.a) below shows that $\operatorname{supp}(S)$ has a non-trivial zero-subsum, contradicting the minimality of S.

Theorem 4. Let $q \in \mathbb{N}$ be a power of an odd prime.
a) Let $\mathbf{v}_{0}, \mathbf{v}_{1}, \ldots, \mathbf{v}_{q} \in \mathbb{F}_{q}^{2}$ be given such that any two of these vectors are linearly independent over \mathbb{F}_{q}. Then there exists a non-trivial zero-subsum of these vectors. Moreover, the number of all non-trivial zero-subsums of $\left\{\mathbf{v}_{0}, \mathbf{v}_{1}, \ldots, \mathbf{v}_{q}\right\}$ is odd. If furthermore $\sum_{i=0}^{q} \mathbf{v}_{i}=\mathbf{0}$, then there exists a proper non-trivial zero-subsum.
b) Let $\mathcal{C} \subset \mathbb{F}_{q}^{q+1}$ be a (q-ary) linear Hamming code of order 2 . Then there exists an odd number of non-zero codewords $\mathbf{x} \in \mathcal{C}$ whose coordinates are only 0 's and 1 's. If furthermore $\mathbf{1}=(1,1, \ldots, 1) \in \mathcal{C}$, then there exists a codeword $\mathbf{x} \in \mathcal{C} \backslash\{\mathbf{0}, \mathbf{1}\}$ whose coordinates are only 0 's and 1 's.

Proof.
a) For $0 \leq i \leq q$ let $\mathbf{v}_{i}=\binom{\alpha_{i}}{\beta_{i}} \in \mathbb{F}_{q}^{2}$ be given such that each two of these vectors are linearly independent, and put

$$
H=\left(\begin{array}{ccc}
\alpha_{0} & \alpha_{1} & \ldots
\end{array} \alpha_{q}\right)\left(\begin{array}{l}
\beta_{0} \\
\beta_{0}
\end{array} \beta_{1} \ldots \beta_{q}\right) ~\left(\mathbb{F}_{2+1}\left(\mathbb{F}_{q}\right) .\right.
$$

Then it is well known that H is the parity check matrix of the Hamming code

$$
\mathcal{C}=\left\{\mathbf{x} \in \mathbb{F}_{q}^{q+1}: H \mathbf{x}=\binom{0}{0}\right\} \subset \mathbb{F}_{q}^{q+1},
$$

and any linear Hamming code $\mathcal{C}^{\prime} \subset \mathbb{F}_{q}^{q+1}$ can be obtained as above by a suitable choice of $\mathbf{v}_{0}, \mathbf{v}_{1}, \ldots, \mathbf{v}_{q} \in \mathbb{F}_{q}^{2}$ (see e.g. [16, pp. 253f]). It follows that assertions a) and \mathbf{b}) are equivalent, and we will prove the latter one.
b) For any $\mathbf{x} \in \mathbb{F}_{q}^{q+1}$ let $\omega(\mathbf{x}) \in\{0, \ldots, q+1\}$ denote the weight of \mathbf{x}, i.e. the number of non-zero coordinates of \mathbf{x}, and $B(\mathbf{x})=\left\{\mathbf{y} \in \mathbb{F}_{q}^{q+1}: \omega(\mathbf{x}-\mathbf{y}) \leq 1\right\}$ the ball of radius 1 around \mathbf{x}, i.e. the set of all vectors \mathbf{y} which differ from \mathbf{x} in at most one coordinate. It is known that \mathcal{C} as given above is a perfect code with minimal distance 3, i.e. the balls of radius 1 around the codewords yield a partition of the whole space:

$$
\mathbb{F}_{q}^{q+1}=\underset{\mathbf{x} \in \mathcal{C}}{\dot{\bullet}} B(\mathbf{x}) .
$$

Put $W=\{0,1\}^{q+1} \subset \mathbb{F}_{q}^{q+1}$ the set of all vectors with coordinates 0 or 1 , and partition $\mathcal{C}=\mathcal{C}_{0} \cup \mathcal{C}_{1} \cup \mathcal{C}_{2}$, where $\mathcal{C}_{0}\left(\mathcal{C}_{1}, \mathcal{C}_{2}\right.$, resp.) denotes the set of those codewords $\mathrm{x} \in \mathcal{C}$ with
no (or exactly one, or at least two, resp.) coordinate(s) belonging to $\mathbb{F}_{q} \backslash\{0,1\}$. It is easy to check that in case $\mathbf{x} \in \mathcal{C}_{0}$ (or $\mathbf{x} \in \mathcal{C}_{1}$, or $\mathbf{x} \in \mathcal{C}_{2}$, resp.) one has

$$
|B(\mathbf{x}) \cap W|=q+2 \quad \text { (or } 2, \text { or } 0, \text { resp.) }
$$

and so we conclude that

$$
\begin{equation*}
2^{q+1}=|W|=\sum_{\mathbf{x} \in \mathcal{C}}|B(\mathbf{x}) \cap W|=(q+2)\left|\mathcal{C}_{0}\right|+2\left|\mathcal{C}_{1}\right| \tag{11}
\end{equation*}
$$

Since $q+2$ is odd, $\left|\mathcal{C}_{0}\right|$ must be even, and since $\mathbf{0} \in \mathcal{C}_{0},\left|\mathcal{C}_{0}\right|$ must be positive. Thus $\mathcal{C}_{0} \backslash\{\mathbf{0}\}$ is non-empty and has odd cardinality, thus proving the first assertion of part b).

If furthermore $1 \in \mathcal{C}$, one easily checks that the map

$$
\begin{aligned}
\varphi: \mathcal{C}_{1} & \rightarrow \mathcal{C}_{1} \\
\mathbf{x} & \mapsto \mathbf{1 - x}
\end{aligned}
$$

is an involution, i.e., $\varphi \circ \varphi=\mathrm{id}$, without fixed points, therefore \mathcal{C}_{1} is the disjoint union of two-element sets $\{\mathbf{x}, \varphi(\mathbf{x})\}$ and $\left|\mathcal{C}_{1}\right|$ is even. Now from (11) we see that $\left|\mathcal{C}_{0}\right|$ is divisible by 4 , and consequently $\left|\mathcal{C}_{0}\right| \geq 4$.

Remark. With the same proof, Theorem 4 immediately generalizes for pairwise linearly independent $\mathbf{v}_{1}, \mathbf{v}_{2}, \ldots, \mathbf{v}_{N} \in \mathbb{F}_{q}^{r}$ with even $r \geq 2$ and $N=\left(q^{r}-1\right) /(q-1)$, and thus for linear Hamming codes $\mathcal{C} \subset \mathbb{F}_{q}^{N}$ of even order r. But notice that only for the case $r=2$ and $q \in \mathbb{P}$ the number N of given vectors \mathbf{v}_{i} is less than Davenport's constant of the underlying additive group, so only in this case Theorem 4 gives new mathematical insight.

4. Proof of Theorem 3

Throughout this section we use the notation and assumptions of Theorem 3. Thus, p is an odd prime, $G=C_{p} \oplus C_{p}$, and

$$
S=\prod_{i=1}^{p} g_{i}^{\lambda_{i}} \in \mathcal{F}(G)
$$

is a minimal zero-sum sequence of maximal length, i.e., $|S|=\sum_{i=1}^{p} \lambda_{i}=2 p-1$. Moreover, $\operatorname{supp}(S)=\left\{g_{1}, \ldots, g_{p}\right\}$ consists of p elements, which are pairwise independent by Proposition 2.a), and

$$
p-1 \geq \lambda_{1} \geq \cdots \geq \lambda_{m}>\lambda_{m+1}=\cdots=\lambda_{p}=1
$$

with some $2 \leq m \leq p-1$. Let $H \subset G$ be the cyclic subgroup of order p that is different from $\left\langle g_{i}\right\rangle$ for each $1 \leq i \leq p$.

Lemma 3. For each $h \in H \backslash\{0\}$ there exists a subset $I_{h} \subset\{1, \ldots, p\}$ such that

$$
\sum_{i \in I_{h}} g_{i}+h=0 .
$$

Furthermore, $I_{h} \cap I_{-h} \cap\{m+1, \ldots, p\} \neq \emptyset$.

Proof.
Let $h \in H \backslash\{0\}$. Since any two elements of the set $\left\{g_{1}, \ldots, g_{p}, h\right\}$ are independent, this set has a non-trivial zero-subsum by Theorem 4.a). Since S is a minimal zero-sum sequence, this subsum has to contain h as a summand, thus proving the existence of I_{h}.
Put $I_{h}^{\prime}=I_{h} \cap\{m+1, \ldots, p\}$ and $I_{-h}^{\prime}=I_{-h} \cap\{m+1, \ldots, p\}$, and suppose that $I_{h}^{\prime} \cap I_{-h}^{\prime}=\emptyset$. We have

$$
\begin{equation*}
\sum_{i \in I_{h}} g_{i}+\sum_{j \in I_{-h}} g_{j}=0 \tag{12}
\end{equation*}
$$

and $T=\prod_{i \in I_{h}} g_{i} \prod_{j \in I_{-h}} g_{j}$ is a zero-sum sequence. Since $I_{h}^{\prime} \cap I_{-h}^{\prime}=\emptyset$, the sequence T is a subsequence of S and the minimality of S implies that indeed $S=T$. If $m \leq p-2$, we have $\lambda_{1} \geq 3$ and T is a proper subsequence of S, a contradiction. Thus only the case $m=p-1$ remains, which yields $\lambda_{1}=\cdots=\lambda_{p-1}=2$ and $\lambda_{p}=1$. Since $S=T$, it follows that $I_{h}=\{1, \ldots, p\}$ and $I_{-h}=\{1, \ldots, p-1\}$, or vice versa, so let us assume $I_{h}=\{1, \ldots, p\}$. Then $\sum_{i=1}^{p} g_{i}+h=0$ and the second part of Theorem 4.a) shows that this sum has a proper non-trivial zero-subsum; clearly the complement of this zero-subsum is a proper non-trivial zero-subsum as well and only one of the two contains h, a contradiction to the minimality of S. Thus $I_{h}^{\prime} \cap I_{-h}^{\prime} \neq \emptyset$.

We use the following notation: for $A, B \subset C_{p}$ and $k \in \mathbb{N}$ let

$$
A+B=\{a+b: a \in A, b \in B\}
$$

denote the sumset of the sets A and B, and

$$
k^{\wedge} A=\left\{\sum_{a \in A_{0}} a: A_{0} \subset A \text { with }\left|A_{0}\right|=k\right\}
$$

the set of all sums of k different elements of A.
In the following we will make use of two well known results from Additive Number Theory, namely the Cauchy-Davenport Theorem [2,3] and the Theorem of Dias da SilvaHamidoune [4] (i.e., the confirmation of the Erdős-Heilbronn Conjecture), as well as of some consequences of these. For the convenience of the reader we recall these results in Proposition 3 below and refer to [14, Theorems 2.2 and 3.4$]$ for a detailed exposition. Moreover, in Proposition 3.e) we recall a recent result on the structure of sequences in C_{p} without zero-sum subsequences of length p that we need in the proof of Theorem 3. This question is closely related to the problem of evaluating Brakemeier's function for C_{p} in fact, recent results on this function, obtained in [13], were part of our first reasonings towards our result.

Proposition 3. Let $\emptyset \neq A, B \subset C_{p}$ and $k \in \mathbb{N}$. Then one has:
a) (Cauchy-Davenport)

$$
|A+B| \geq \min \{p,|A|+|B|-1\}
$$

b) If $T \in \mathcal{F}\left(C_{p} \backslash\{0\}\right)$, then $|\Sigma(T) \backslash\{0\}| \geq \min \{p-1,|T|\}$.
c) (Dias da Silva-Hamidoune)

$$
\left|k^{\wedge} A\right| \geq \min \{p, k(|A|-k)+1\}
$$

d) (cf. [4, Corollary 4.3]) If $|A| \geq \sqrt{4 p-7}$, then A has a non-trivial zero-subsum with at most $(\sqrt{4 p-7}+1) / 2$ summands.
e) ([8, Theorem 2.2]) If $T \in \mathcal{F}\left(C_{p}\right)$ has no zero-sum subsequence of length p, then T contains some element with multiplicity at least $|T|-p+1$.

To get Proposition 3.b), write $T=\prod_{i=1}^{k} t_{i}$ and apply part a) repeatedly to $\mid\left\{0, t_{1}\right\}+$ $\cdots+\left\{0, t_{k}\right\} \mid$ and note that $\left\{0, t_{1}\right\}+\cdots+\left\{0, t_{k}\right\}=\Sigma(T) \cup\{0\}$; the definition of $\Sigma(\cdot)$ is given in the Introduction.
Proof of Theorem 3.
a) Let $S_{0}=g_{1}^{\lambda_{1}-1} \ldots g_{m}^{\lambda_{m}-1}$, a subsequence of S with $\left|S_{0}\right|=p-1$, and let

$$
\pi: G \rightarrow G / H \simeq C_{p}
$$

denote the canonical homomorphism. So $\pi\left(S_{0}\right)=\pi\left(g_{1}\right)^{\lambda_{1}-1} \ldots \pi\left(g_{m}\right)^{\lambda_{m}-1}$ is a sequence of length $p-1$ in C_{p}.

Suppose that $\pi\left(S_{0}\right)$ has a non-trivial zero-sum subsequence. Then there are $0 \leq \mu_{i} \leq$ $\lambda_{i}-1$, not all vanishing, such that $\sum_{i=1}^{m} \mu_{i} g_{i}=h \in H$. The minimality of S implies that $h \neq 0$. Using Lemma 3, we get

$$
\sum_{i \in I_{h}} g_{i}+\sum_{i=1}^{m} \mu_{i} g_{i}=0
$$

for a suitable $I_{h} \subset\{1, \ldots, p\}$. The remaining arguments are similar to the ones in the proof of Lemma 3: the minimality of S implies $\mu_{i}=\lambda_{i}-1$ for all $1 \leq i \leq m$ and $I_{h}=\{1, \ldots, p\}$; so $\sum_{i=1}^{p} g_{i}+h=0$, and again applying the second part of Theorem 4.a) we get a contradiction.
Therefore $\pi\left(S_{0}\right)$ has no non-trivial zero-sum subsequence, which implies $\pi\left(S_{0}\right)=\pi\left(g_{1}\right)^{p-1}$, and part a) of the theorem follows.
b) Let $S_{1}=g_{1}^{\lambda_{1}} \ldots g_{m}^{\lambda_{m}}$ be the subsequence of S of those elements with multiplicity at least 2, and let

$$
\pi_{0}: G=\left\langle g_{1}\right\rangle \oplus H \rightarrow H \simeq C_{p}
$$

denote the projection onto the subgroup H along $\left\langle g_{1}\right\rangle$. Using part a) we have $g_{k}=g_{1}+h_{k}$, where $h_{2}, \ldots, h_{m} \in H \backslash\{0\}$ are pairwise different. Thus, any zero-sum subsequence of length p of the sequence

$$
S^{\prime}=\pi_{0}\left(S_{1}\right)=0^{\lambda_{1}} h_{2}^{\lambda_{2}} \ldots h_{m}^{\lambda_{m}} \in \mathcal{F}\left(C_{p}\right)
$$

would give a proper zero-sum subsequence of S, contradicting the minimality of S. In order to obtain the claimed inequality for m, it suffices to prove the following:

Assertion 1: If $m>\sqrt{2 p-2}$, then S^{\prime} has a zero-sum subsequence of length p.
Let $A=\operatorname{supp}\left(S^{\prime}\right) \subset C_{p}$, and put $m_{1}=m_{2}=\frac{m-1}{2}$ if m is odd, and $m_{1}=\frac{m}{2}-1$ and $m_{2}=\frac{m}{2}$ if m is even. Then we have by Proposition 3.c)

$$
\left|m_{1}^{\wedge} A\right| \geq \min \left\{p, m_{1}\left(|A|-m_{1}\right)+1\right\}=\min \left\{p, m_{1} m_{2}+m_{1}+1\right\}
$$

and similarly $\left|m_{2}^{\wedge} A\right| \geq \min \left\{p, m_{2} m_{1}+m_{2}+1\right\}$. Since, assuming $m>\sqrt{2 p-2}$, we have

$$
\left|m_{1}^{\wedge} A\right|+\left|m_{2}^{\wedge} A\right| \geq 2 m_{1} m_{2}+m_{1}+m_{2}+2=2\left(m_{1}+1 / 2\right)\left(m_{2}+1 / 2\right)+3 / 2>p
$$

it follows (cf. Proposition 3.a)) that $m_{1} \wedge A+m_{2}^{\wedge} A=C_{p}$. Consequently, we can find a subsequence $T \mid S^{\prime}$ with $\sigma(T)=\sigma\left(S^{\prime}\right)$ and $|T|=m_{1}+m_{2}=m-1$. Since $\left|S^{\prime}\right|=p+m-1$, the sequence T^{\prime} satisfying $T T^{\prime}=S^{\prime}$ is a zero-sum subsequence of S^{\prime} with length p, which proves Assertion 1.
c) From $\lambda_{1}+\cdots+\lambda_{m}=p+m-1$ we obtain $\lambda_{1} \geq \frac{p-1}{m}+1$. Moreover, the sequence S^{\prime}, considered in b), contains no zero-sum subsequence of length p, so we may apply Proposition 3.e) to obtain $\lambda_{1} \geq m$. Combining these inequalities, we have

$$
\lambda_{1} \geq \max \left\{\frac{p-1}{m}+1, m\right\} \geq \frac{1+\sqrt{4 p-3}}{2}
$$

the lower bound for λ_{1}.
Now, put $r=p-\lambda_{1}$ and suppose that $r \geq 2$. We have to show that $r>\sqrt[4]{p}$, and first prove the following:

Assertion 2: For every $h \in H \backslash\{0\}$ we have $\left|\pi_{0}^{-1}(h) \cap \operatorname{supp}(S)\right|<r$.
Assume to the contrary that there exists some $h \in H \backslash\{0\}$ with $\left|\pi_{0}^{-1}(h) \cap \operatorname{supp}(S)\right| \geq r$. Let $D \mid S$ be a squarefree (i.e. each element has multiplicity 1) subsequence of S with length r such that $\pi_{0}(D)=h^{r}$ and put $S=g_{1}^{\lambda_{1}} D D^{\prime}$. Since $\left|D^{\prime}\right|=p-1$ and $\operatorname{supp}\left(\pi_{0}\left(D^{\prime}\right)\right) \subset H \backslash\{0\}$, Proposition 3.b) shows that $H \backslash\{0\} \subset \Sigma\left(\pi_{0}\left(D^{\prime}\right)\right)$. In particular, there exists a subsequence $T \mid D^{\prime}$ such that $\sigma\left(\pi_{0}(T)\right)=-h$. Therefore

$$
\{\sigma(g T): g \mid D\} \subset\left\langle g_{1}\right\rangle \backslash\{0\}
$$

is a set of cardinality r, and we can find some $g^{\prime} \mid D$ such that $\sigma\left(g^{\prime} T\right)=j g_{1}$ with some $r \leq j \leq p-1$. But then the sequence $g^{\prime} T g_{1}^{p-j}$ is a proper zero-sum subsequence of S, a contradiction proving Assertion 2.

So we know that $\left|\pi_{0}^{-1}(h) \cap \operatorname{supp}(S)\right|<r$ for every $h \in H \backslash\{0\}$. Since by Proposition 2.a) $\pi_{0}^{-1}(0) \cap \operatorname{supp}(S)=\left\{g_{1}\right\}$, and since $|\operatorname{supp}(S)|=p$, it follows that

$$
\begin{equation*}
\left|\operatorname{supp}\left(\pi_{0}(S)\right) \backslash\{0\}\right| \geq \frac{p-1}{r-1} \tag{13}
\end{equation*}
$$

Assertion 3: If $r \leq \sqrt[4]{p}$, then for $1 \leq i \leq r$ there exist non-empty sequences $U_{i} \in \mathcal{F}(G)$ with $\sigma\left(\pi_{0}\left(U_{i}\right)\right)=0$, such that $\prod_{i=1}^{r} U_{i}$ is a proper subsequence of $\prod_{i=2}^{p} g_{i}^{\lambda_{i}}$.
By Proposition 3.d), any set of at least $\sqrt{4 p-7}$ elements of $\operatorname{supp}\left(\pi_{0}(S)\right)$ has a zero-subsum with at most $(\sqrt{4 p-7}+1) / 2$ summands. Consequently, providing that

$$
\left|\operatorname{supp}\left(\pi_{0}(S)\right) \backslash\{0\}\right|-(r-1) \frac{\sqrt{4 p-7}+1}{2} \geq \sqrt{4 p-7}
$$

we get r pairwise disjoint zero-subsums of $\operatorname{supp}\left(\pi_{0}(S)\right) \backslash\{0\}$. To each of these zerosubsums corresponds a (squarefree) subsequence U_{i} of $\prod_{i=2}^{p} g_{i}^{\lambda_{i}}$ such that $\sigma\left(\pi_{0}\left(U_{i}\right)\right)=0$. Since the zero-subsums are disjoint, indeed $\prod_{i=1}^{r} \pi_{0}\left(U_{i}\right) \mid \prod_{i=2}^{p} \pi_{0}\left(g_{i}\right)$. Using (13), the above inequality holds if

$$
0 \geq r^{2}(1+\sqrt{4 p-7})-2 r-2 p-\sqrt{4 p-7}+3
$$

and the latter one is satisfied for $r \leq \sqrt[4]{p}$. Finally, since $\lambda_{2} \geq 2$, the product of the r sequences U_{i} is a proper subsequence of $\prod_{i=2}^{p} g_{i}^{\lambda_{i}}$, which proves Assertion 3.

Now assume that $r \leq \sqrt[4]{p}$ and let U_{i} be given according to Assertion 3. Since S is minimal, we obtain $\sigma\left(U_{i}\right)=k_{i} g_{1}$ with some $1 \leq k_{i} \leq p-1$. But now Proposition 3.b) yields $\left|\Sigma\left(\prod_{i=1}^{r}\left(k_{i} g_{1}\right)\right)\right| \geq r$, and we obtain a subset $\emptyset \neq I \subset\{1, \ldots, r\}$ with $\sigma\left(\prod_{i \in I} U_{i}\right)=k g_{1}$ for some $r \leq k \leq p$. Therefore the sequence $g_{1}^{p-k} \prod_{i \in I} U_{i}$ is a proper zero-sum subsequence of S, again a contradiction.

References

[1] Y. Caro, Zero-sum problems - A survey, Discrete Math. 152 (1996), 93-113, doi:10.1016/0012-365X(94)00308-6
[2] A. Cauchy, Recherches sur les nombres, J. École Polytech. 9 (1813), 99-123.
[3] H. Davenport, On the addition of residue classes, J. London Math. Soc. 10 (1935), 30-32.
[4] J.A. Dias da Silva and Y. ould Hamidoune, Cyclic spaces for Grassmann derivatives and additive theory, Bull. London Math. Soc. 26 (1994), 140-146.
[5] W.D. Gao and A. Geroldinger, On long minimal zero sequences in finite abelian groups, Period. Math. Hungar. 38 (1999), 179-211.
[6] W.D. Gao and A. Geroldinger, On zero-sum sequences in $\mathbb{Z} / n \mathbb{Z} \oplus \mathbb{Z} / n \mathbb{Z}$, Integers 3 (2003), Paper A08, 45pp; http://www.integers-ejent.org/d8/d8.pdf.
[7] W.D. Gao and A. Geroldinger, Zero-sum problems and coverings by proper cosets, European J. Combin. 24 (2003), 531-549, doi:10.1016/S0195-6698(03)00033-7
[8] W.D. Gao, A. Panigrahi, and R. Thangadurai, On the structure of p-zero-sum free sequences and its application to a variant of Erdős-Ginzburg-Ziv theorem, Proc. Indian Acad. Sci. (Math. Sci.) 115 (2005), 67-77.
[9] W.D. Gao and J.J. Zhuang, Sequences not containing long zero-sum subsequences, European J. Combin., to appear, doi:10.1016/j.ejc.2005.06.001
[10] A. Geroldinger and F. Halter-Koch, Non-Unique Factorizations: Algebraic, Combinatorial and Analytic Theory, Monographs and Textbooks in Pure and Applied Mathematics 278, Chapman \mathcal{E}^{3} Hall/CRC, Boca Raton, FL, USA, 2005.
[11] Y. ould Hamidoune, Subsequence Sums, Combin. Probab. Comput. 12 (2003), 413-425.
[12] G.H. Hardy and E.M. Wright, An Introduction to the Theory of Numbers, Fifth Edition, The Clarendon Press, Oxford University Press, New York, NY, USA, 1979.
[13] F. Hennecart, La fonction de Brakemeier dans le problème d'Erdős-Ginzburg-Ziv, Acta Arith. 117 (2005), 35-50.
[14] M.B. Nathanson, Additive Number Theory. Inverse Problems and the Geometry of Sumsets, Graduate Texts in Mathematics 165, Springer-Verlag New York, NY, USA, 1996.
[15] J.E. Olson, A Combinatorial Problem on Finite Abelian Groups, II, J. Number Th. 1 (1969), 195-199, doi:10.1016/0022-314X(69)90037-7
[16] S. Roman, Coding and Information Theory, Graduate Texts in Mathematics 134, Springer-Verlag New York, NY, USA, 1992.

Institut für Mathematik und wissenschaftliches Rechnen, Karl-Franzens-Universität, Heinrichstrasse 36, A-8010 Graz, AUSTRIA

E-mail address: guenter.lettl@uni-graz.at
E-mail address: wolfgang.schmid@uni-graz.at

[^0]: 2000 Mathematics Subject Classification. Primary 11B75, secondary 20D60, 94B05.
 The second author was supported by the Austrian Science Fund FWF (Project P16770-N12).

