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1. Introduction

Let G be an additive finite abelian group with exponent exp(G) = n.

We define some central invariants in zero-sum theory: Let

• D(G) denote the smallest integer l ∈ N such that every sequence S

over G of length |S| ≥ l has a zero-sum subsequence.

• η(G) denote the smallest integer l ∈ N such that every sequence

S over G of length |S| ≥ l has a zero-sum subsequence T of length

|T | ∈ [1, n].

• s(G) denote the smallest integer l ∈ N such that every sequence

S over G of length |S| ≥ l has a zero-sum subsequence T of length

|T | = n.

All these three invariants have been studied since the 1960s initiated by

the works of P. Erdős et al. (see [17, 36], and for more detailed historical

information see [23, 24]). For groups of rank at most two the precise values

of all three invariants are well known (see Theorem 2.4). In groups of higher

rank precise values are known only in very special cases (see [10, 24, 3] and

the introduction of Section 3).

The investigation of inverse problems has a long tradition in combinato-

rial number theory (see [34]), and more recently it has been promoted by

applications in the theory of non-unique factorizations (see [30]). In the

present paper we study the inverse problems associated to the above in-

variants. More precisely, we investigate the structure of sequences of length

D(G) − 1 (η(G) − 1 or s(G) − 1 respectively) that do not have a zero-sum

subsequence (of the required length). For cyclic groups these questions are

completely settled. Indeed, the answer for the invariants D(G) and η(G) is

straightforward (see Theorem 2.1), and the inverse problem for the invari-

ant s(G), with G cyclic, gave rise to a great variety of investigations (see

[5, 8, 18, 9, 19, 4, 38, 26, 31, 29]). In this paper we study the problems for

groups G of the form G = Cr
n, with n, r ≥ 2, where the emphasis is laid on

groups of rank two.
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Consider the following two properties.

Property C. Every sequence S over G of length |S| = η(G) − 1 that

has no zero-sum subsequence of length in [1, n] has the form S = T n−1 for

some sequence T over G.

Property D. Every sequence S over G of length |S| = s(G) − 1 that

has no zero-sum subsequence of length n has the form S = T n−1 for some

sequence T over G.

Property C was first considered by P. van Emde Boas and Property D by

W. Gao (see [16, 21]). At the beginning of Section 3 we discuss the state of

knowledge on these properties. In [24, Conjecture 7.2] it is conjectured that

every group G = Cr
n, where r ∈ N and n ∈ N≥2, has Property D. In Theorem

3.2 we show that Property C and Property D are both multiplicative, and

thus this conjecture is essentially reduced to the case of elementary p-groups.

Let G = Cn⊕Cn with n ≥ 2. It is conjectured that every minimal zero-

sum sequence S over G of length |S| = D(G) contains some element with

multiplicity n−1 (for several equivalent conditions see [30, Theorem 5.8.7]).

If this conjecture is true, then G has Property C (see [23, Theorem 6.2] and

[24, Theorem 6.7.2.(b)]). In Theorem 4.1 we show that, if ε > 0 and n is a

sufficiently large prime, then such a sequence S contains one element with

multiplicity greater than n1/4−ε. The proof rests on a variety of addition

theorems, among them the Theorem of Dias da Silva–Hamidoune (which

settles the Erdős–Heilbronn conjecture).

In Section 5 we study the analogue of Property D for sets (that is, for

squarefree sequences) in the group G = Cp ⊕ Cp, where p is a prime. W.

Gao and R. Thangadurai proved that the maximal size of a set S ⊂ Cp⊕Cp,

for primes p ≥ 67, without a subset of size p that sums to zero, is 2p − 2

(see [28]). In Theorem 5.1 we completely determine the structure of all

extremal sets, and moreover, we slightly improve the bound to p ≥ 47. The

proof of the inverse result is analogue to the proof of the direct result, but

additionally employs some (recent) ideas from the study of Brakemeier’s

function due to A. Bialostocki, M. Lotspeich [5] and F. Hennecart [31] (see

Lemma 5.9).

A crucial idea in all our work on groups of rank two is to find suitable

epimorphisms to cyclic groups, to use results known for cyclic groups and

then to shift the information back to the groups of rank two. We make use

of classical results, such as the Cauchy–Davenport Theorem, and list the

other needed results on cyclic groups at the end of Section 2 (see Theorems
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2.1 to 2.3). Of course we need the solutions of the original direct problems,

which are summarized in Theorem 2.4.

Throughout this article, let G be an additive finite abelian group.

2. Notations and some main tools

Our notations and terminology is consistent with [24] and [30]. We briefly

gather some key notions and fix the notations concerning sequences over

finite abelian groups. Let N denote the set of positive integers, P ⊂ N the

set of all prime numbers and let N0 = N ∪ {0}. For real numbers a, b ∈ R
we set [a, b] = {x ∈ Z | a ≤ x ≤ b}, and we denote by bac the largest

integer that is less than or equal to a, and by dae the smallest integer that

is greater than or equal to a.

Throughout, all abelian groups will be written additively. For n ∈ N, let

Cn denote a cyclic group with n elements. We have

G ∼= Cn1 ⊕ . . .⊕ Cnr ,

where r = r(G) ∈ N0 is the rank of G, n1, . . . , nr ∈ N are integers with

1 < n1 | . . . | nr and nr = exp(G) is the exponent of G. Let s ∈ N. An

s-tuple (e1, . . . , es) of elements of G is said to be independent if ei 6= 0 for

all i ∈ [1, s] and, for every s-tuple (m1, . . . ,ms) ∈ Zs,

m1e1 + . . . + mses = 0 implies m1e1 = . . . = mses = 0 .

An s-tuple (e1, . . . , es) of elements of G is called a basis if it is independent

and G = 〈e1〉 ⊕ . . .⊕ 〈es〉.

Let F(G) be the free abelian monoid, multiplicatively written, with basis

G. The elements of F(G) are called sequences over G. We write sequences

S ∈ F(G) in the form

S =
∏
g∈G

gvg(S) , with vg(S) ∈ N0 for all g ∈ G .

We call vg(S) the multiplicity of g in S, and we say that S contains g,

if vg(S) > 0. S is called squarefree if vg(S) ≤ 1 for all g ∈ G. The unit

element 1 ∈ F(G) is called the empty sequence . A sequence S1 is called a

subsequence of S if S1 |S in F(G) (equivalently, vg(S1) ≤ vg(S) for all

g ∈ G), and it is called a proper subsequence of S if it is a subsequence with

1 6= S1 6= S. If a sequence S ∈ F(G) is written in the form S = g1 · . . . · gl,

we tacitly assume that l ∈ N0 and g1, . . . , gl ∈ G.
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For a sequence

S = g1 · . . . · gl =
∏
g∈G

gvg(S) ∈ F(G) ,

we call

|S| = l =
∑
g∈G

vg(S) ∈ N0 the length of S ,

h(S) = max{vg(S) | g ∈ G} ∈ [0, |S|]

the maximum of the multiplicities of S ,

supp(S) = {g ∈ G | vg(S) > 0} ⊂ G the support of S ,

σ(S) =
l∑

i=1

gi =
∑
g∈G

vg(S)g ∈ G the sum of S ,

Σk(S) =
{∑

i∈I

gi

∣∣∣ I ⊂ [1, l] with |I| = k
}

the set of k-term subsums of S , for all k ∈ N ,

Σ≤k(S) =
⋃

j∈[1,k]

Σj(S) , Σ≥k(S) =
⋃
j≥k

Σj(S) ,

and

Σ(S) = Σ≥1(S) the set of (all) subsums of S .

The sequence S is called

• zero-sumfree if 0 /∈ Σ(S),

• a zero-sum sequence if σ(S) = 0,

• a minimal zero-sum sequence if it is a non-empty zero-sum sequence

and every proper subsequence is zero-sumfree,

• a short zero-sum sequence if it is a zero-sum sequence of length |S| ∈
[1, exp(G)].

Throughout the paper, we tacitly use the following argument: If g ∈ G

with ord(g) = exp(G) = n, then S = g1 · . . . · gl has zero-sum subsequence

of length n if and only if the shifted sequence S ′ = (g1 − g) · . . . · (gl − g)

has a zero-sum subsequence of length n.

Every group homomorphism ϕ : G → H extends to a homomorphism

ϕ : F(G) → F(H) where ϕ(S) = ϕ(g1) · . . . · ϕ(gl). Obviously, ϕ(S) is

a zero-sum sequence if and only if σ(S) ∈ Ker(ϕ). If m ∈ N, m |n1 and

ϕ : G → G is the multiplication by m (defined by ϕ(g) = mg for every

g ∈ G), then Ker(ϕ) ∼= Cr
m and ϕ(G) ∼= Cn1/m ⊕ · · · ⊕ Cnr/m.

Now we gather the results on cyclic groups that will be needed throughout

this paper.
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Theorem 2.1. Let G be cyclic of order n ≥ 3 and S ∈ F(G) a zero-

sumfree sequence of length |S| ≥ (n + 1)/2. Then there exists some g ∈
supp(S) such that vg(S) ≥ 2|S| − n + 1. In particular, D(G) = n and the

following statements hold :

(a) If |S| = n− 1, then S = gn−1.

(b) If |S| = n− 2, then either S = gn−3(2g) or S = gn−2.

(c) If |S| = n− 3, then S has one of the following forms :

gn−5(2g)2, gn−4(2g), gn−4(3g), gn−3 .

Proof. This is due to J.D. Bovey, P. Erdős and I. Niven (see [7] for the

original paper and also [30, Theorem 5.4.5.2]). �

Theorem 2.2. Let G be prime cyclic of order p ∈ P and S ∈ F(G).

1. Let v0(S) = 0 and |S| = p. Then Σ≤h(S)(S) = G, and in particular,

S has a zero-sum subsequence of length at least p− h(S).

2. Let k ∈ [2, p − 1], |S| ≥ 2p − k and h(S) ≤ p − k. Then S has a

zero-sum subsequence of length p.

3. Let p ≥ 13, v0(S) = 0, k ∈ [(p + 5)/2, p − 4], |S| ≥ 2p − k − 2 and

h(S) ≤ k. Then S has a zero-sum subsequence T of length |T | ∈
[p + 2− k, p− 2].

Proof. 1. and 2. See [28, Lemma 2.6 and Theorem 2.7].

3. Clearly, S has a subsequence S ′ of length |S ′| = p and with h(S ′) ≤
k − 2. By 1., S ′ has a zero-sum subsequence T of length |T | ≥ p− h(S ′) ≥
p+2−k. If |T | ≤ p−2, then we are done. If |T | ≥ p−1, then h(T ) ≤ p−4

and Theorem 2.1 imply that T is not a minimal zero-sum subsequence. Thus

it has a proper zero-sum subsequence T ′ of length |T ′| ∈ [(p− 1)/2, p− 2] ⊂
[p + 2− k, p− 2]. �

Theorem 2.3. Let G be prime cyclic of order p ∈ P, S ∈ F(G) a

squarefree sequence and k ∈ [1, |S|].

1. |Σk(S)| ≥ min{p, k(|S| − k) + 1}.
2. If k = b|S|/2c, then |Σk(S)| ≥ min{p, (|S|2 + 3)/4}
3. If |S| = b

√
4p− 7c+ 1 and k = b|S|/2c, then Σk(S) = G.

Proof. This is due to J.A. Dias da Silva and Y. ould Hamidoune (see [11] for

the original paper, and also [2] and [34, Theorems 3.4 and 3.8]). Obviously,

2. and 3. are special cases of 1., which will be needed repeatedly in this

form. �
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Theorem 2.4. Let G = Cn1 ⊕ Cn2 with 1 ≤ n1 |n2. Then

s(G) = 2n1 + 2n2 − 3 , η(G) = 2n1 + n2 − 2 and D(G) = n1 + n2 − 1 .

Proof. The result on D(G) goes back to D. Kruyswijk and J.E. Olson, and

the result on s(G) is based on C. Reiher’s result that s(Cp ⊕ Cp) = 4p − 3

(see [35] and [30, Theorem 5.8.3]). �

3. Properties C and D in groups of the form Cr
n

Let G = Cr
n with n ≥ 2, r ∈ N and and suppose that Property D

holds. Then, by definition, there exists some c(G) ∈ N such that s(G) =

c(G)(n−1)+1. Moreover, a simple argument shows that Property C holds

(see [24, Section 7]) and that η(G) = (c(G)− 1)(n− 1) + 1 (see [13, Lemma

2.3]). For r = 1 we have c(G) = 2 and for r = 2 we have c(G) = 4 (see

Theorem 2.4). In case of higher ranks bounds for c(G) were given by N.

Alon and M. Dubiner (see [1]) and then by Y. Edel, C. Elsholtz and S.

Kubertin (see [32, 15, 13, 12]).

We make use of the simple fact that η(Cr
2) = 2r and s(Cr

2) = 2r + 1

(see [30, Corollary 5.7.6]). It follows from the very definition that Cr
2 satis-

fies Property D, and a straightforward argument shows that Cr
3 satisfies

Property D (see [13, Lemma 2.3.3] and the subsequent discussion). How-

ever, in general only very little is known about Property D. If r = 2 and

n ∈ {2, 3, 5, 7}, then G has Property D by [37], and for first results in groups

of higher rank we refer to [25]. Property C was first studied for groups of

rank two in connection with investigations of the Davenport constant of

groups having rank three (see [16, 20], and also [24, Theorem 7.9]).

Theorem 3.2 shows that both Property C and Property D are multi-

plicative, provided that the c(·) invariants of all involved groups coincide

(in contrast to this assumption see the investigation of C3
6 in [25]). This re-

sult generalizes former work (see [21] and [27, Theorem 1]), and reduces the

conjecture, that all groups of the form Cr
n satisfy the discussed properties,

to the case of elementary p-groups (under the above assumption on the c(·)
invariants).

We start with a lemma that is used in the proof of the following theorem.

It is closely related to [27, Theorem 2].

Lemma 3.1. Let G = Cr
n with n ≥ 2, r ∈ N and let S ∈ F(G) be a

sequence of length |S| = η(G) + n − 2 that has no zero-sum subsequence

of length n. If G has Property C and h(S) ≥ b(n − 1)/2c, then S = T n−1

for some T ∈ F(G).
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Proof. Suppose that G has Property C and let g ∈ G such that vg(S) ≥
b(n − 1)/2c. We assume g = 0 and set S = 0vT with v = v0(S) and

T ∈ F(G). Since S has no zero-sum subsequence of length n, it follows that

T has no zero-sum subsequence of length in [n− v, n].

Assume to the contrary that v ≤ n− 2. Since |T | ≥ η(G) + (n− 2)− v ≥
η(G), T has a short zero-sum subsequence, and let T1 be a short zero-sum

subsequence of maximal length. Then we get

|T1| ≤ n− 1− v and |T−1
1 T | ≥ η(G)− 1 .

Since h(T−1
1 T ) ≤ h(S) = v ≤ n − 2 and G has Property C, it follows that

T−1
1 T has a short zero-sum subsequence T2. Since T1 has maximal length,

we obtain that |T1T2| ≥ n + 1 and hence

n + 1

2
≤ |T1| ≤ n− 1− v < n− 1− n− 3

2
=

n + 1

2
,

a contradiction.

Therefore we have v = n − 1 and |T | = η(G) − 1. Since T has no short

zero-sum subsequence and G has Property C, it follows that S has the

required form. �

Theorem 3.2. Let G = Cr
mn with m, n, r ∈ N and let c ∈ N.

1. If both Cr
m and Cr

n have Property D and

s(Cr
m)− 1

m− 1
=

s(Cr
n)− 1

n− 1
=

s(Cr
mn)− 1

mn− 1
= c ,

then G has Property D.

2. If both Cr
m and Cr

n have Property C and

η(Cr
m)− 1

m− 1
=

η(Cr
n)− 1

n− 1
=

η(Cr
mn)− 1

mn− 1
= c ,

then G has Property C.

3. If Cr
m has Property D, Cr

n has Property C, s(Cr
n) = η(Cr

n)+n− 1,

s(Cr
m)− 1

m− 1
=

s(Cr
n)− 1

n− 1
=

s(Cr
mn)− 1

mn− 1
= c and m ≥ nrb(n− 1)/2c+ c

cn
,

then G has Property D.

Proof. The proofs of all three assertions are based on the inductive method.

We need the following terminology. Let k ∈ N, s(Cr
k) = c(k − 1) + 1 and

S ∈ F(Cr
k). We say that S is of Type D if |S| = c(k − 1), S has no zero-

sum subsequence of length k, and S = T k−1 for some T ∈ F(Cr
k). Thus the

group Cr
k has Property D if and only if every sequence of length c(k − 1)

that has no zero-sum subsequence of length n is of Type D. Similarly, if

η(Cr
k) = c(k − 1) + 1 and S ∈ F(Cr

k), then we say that S is of Type C if

|S| = c(k − 1), S has no short zero-sum subsequence, and S = T k−1 for
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some T ∈ F(Cr
k). Again, the group Cr

k has Property C if and only if every

sequence of length c(k − 1) that has no short zero-sum subsequence is of

Type C.

Obviously we may assume that m, n ≥ 2. Let ϕ : G → G denote the

multiplication by m. Then Ker(ϕ) ∼= Cr
m and ϕ(G) = mG ∼= Cr

n.

1. Let S ∈ F(G) be of length |S| = c(mn − 1) such that S has no zero-

sum subsequence of length mn. We have to show that S is of Type D. Since

vg(S) ≤ mn− 1 for every g ∈ G, it suffices to show that |supp(S)| = c.

Since |S| = n(c(m − 1)) + c(n − 1), it follows that S admits a product

decomposition

S = S1 · . . . · Sc(m−1)S
′ ,

where S1, . . . , Sc(m−1), S
′ ∈ F(G) and, for every i ∈ [1, c(m− 1)], ϕ(Si) has

sum zero and length |Si| = n (see [30, Lemma 5.7.10]). Since S has no

zero-sum subsequence of length mn, ϕ(S ′) has no zero-sum subsequence of

length n. Clearly, we have

|ϕ(S ′)| = |S ′| = |S| − nc(m− 1) = c(n− 1) ,

and thus ϕ(S ′) is of Type D whence in particular |supp(ϕ(S ′))| = c. We

continue with the following assertion.

A1. |supp(ϕ(S))| = |supp(ϕ(S ′))|.

Proof of A1. It suffices to verify that for every i ∈ [1, c(m− 1)] there is

some h ∈ supp(ϕ(S ′)) such that ϕ(Si) = hn. Assume to the contrary that

there is some i ∈ [1, c(m− 1)] for which this does not hold. We assert that

ϕ(SiS
′) is divisible by a product of two zero-sum subsequences of length n.

This implies that ϕ(S) is divisible by a product of c(m − 1) + 1 zero-sum

subsequences of length n, whence S has a zero-sum subsequence of length

mn, a contradiction. We distinguish two cases.

CASE 1: supp(ϕ(S ′)) ∩ supp(ϕ(Si)) 6= ∅.
Let h ∈ supp(ϕ(S ′)) ∩ supp(ϕ(Si)). Then hn |ϕ(SiS

′). Since ϕ(Si)

is a zero-sum sequence of length n and distinct from hn, it follows that

|supp(h−1ϕ(Si))| ≥ 2. Therefore h−nϕ(SiS
′) is not of Type D, and thus it

has a zero-sum subsequence of length n.

CASE 2: supp(ϕ(S ′)) ∩ supp(ϕ(Si)) = ∅.
Let h ∈ supp(ϕ(Si)) and U a zero-sum subsequence of hϕ(S ′) of length n.

Then vh(U) ≥ 1 and |supp(h−1U)| ≥ 2. Consequently supp(U−1hϕ(S ′)) =

supp(ϕ(S ′)) and therefore we obtain that |supp
(
(U−1hϕ(S ′))(h−1ϕ(Si))

)
| >

|supp(ϕ(S ′))|. Therefore U−1ϕ(SiS
′) is not of Type D, and thus it has a

zero-sum subsequence of length n.
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It remains to show that

|ϕ−1(h) ∩ supp(S)| = 1 for every h ∈ supp(ϕ(S)) ,

since then we obtain that

|supp(S)| = |supp(ϕ(S))| = |supp(ϕ(S ′))| = c .

Let h ∈ supp
(
ϕ(S1 · . . . ·Sc(m−1))

)
, and assume to the contrary that there are

two distinct elements g, g′ ∈ supp(S) such that ϕ(g) = ϕ(g′) = h. By A1

we may suppose that g |S1 · . . . ·Sc(m−1) and g′ |S ′, say g |S1. Since S has no

zero-sum subsequence of length mn, the sequence σ(S1) · . . . · σ(Sc(m−1)) ∈
F(Ker(ϕ)) has no zero-sum subsequence of length m whence it is of Type D.

We consider S ′
1 = g−1g′S1. Then ϕ(S ′

1) = ϕ(S1) and hence σ(S1) 6= σ(S ′
1) ∈

Ker(ϕ). Thus the sequence σ(S ′
1)σ(S2) · . . . · σ(Sc(m−1)) ∈ F(Ker(ϕ)) is not

of Type D (note that in case m = 2 we have c = |Ker(ϕ)|) whence it has a

zero-sum subsequence of length m, a contradiction.

It remains to verify that supp(ϕ(S)) = supp
(
ϕ(S1 · . . . ·Sc(m−1))

)
. We set

c′ = |supp(ϕ(S1 · . . . · Sc(m−1)))| and check that c = c′ .

By A1 we have |supp(ϕ(S))| = c and the above argument shows that

|supp(S1 · . . . · Sc(m−1))| = |supp
(
ϕ(S1 · . . . · Sc(m−1))

)
|. Thus it follows that

c(mn− 1) = |S| =
∑

g∈supp(S)

vg(S)

=
∑

g∈supp(S1·...·Sc(m−1))

vg(S)

+
(
|supp(ϕ(S))| − |supp(ϕ(S1 · . . . · Sc(m−1)))|

)
(n− 1)

≤ c′(mn− 1) + (c− c′)(n− 1)

whence

(c− c′)(mn− 1) ≤ (c− c′)(n− 1) and c = c′ .

2. Let S ∈ F(G) be of length |S| = c(mn − 1) such that S has no zero-

sum subsequence of length in [1, mn]. We have to show that S is of Type C.

Since vg(S) ≤ mn−1 for every g ∈ G, it suffices to show that |supp(S)| = c.

Since |S| = n(c(m − 1)) + c(n − 1), it follows that S admits a product

decomposition

S = S1 · . . . · Sc(m−1)S
′ ,

where S1, . . . , Sc(m−1), S
′ ∈ F(G) and, for every i ∈ [1, c(m − 1)], ϕ(Si)

has sum zero and length |Si| ∈ [1, n] (see [30, Lemma 5.7.10]). Since S

has no zero-sum subsequence of length in [1, mn], ϕ(S ′) has no zero-sum

subsequence of length in [1, n] and every sequence ϕ(Si) is a minimal zero-

sum sequence. Clearly, we have

|ϕ(S ′)| = |S ′| ≥ |S| − nc(m− 1) = c(n− 1) ,
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and thus in fact |Si| = n for every i ∈ [1, c(m − 1)] and furthermore ϕ(S ′)

is of Type C whence in particular |supp(ϕ(S ′))| = c. We continue with the

following assertion.

A2. |supp(ϕ(S))| = |supp(ϕ(S ′))|.

Proof of A2. It suffices to verify that for every i ∈ [1, c(m− 1)] there is

some h ∈ supp(ϕ(S ′)) such that ϕ(Si) = hn. Assume to the contrary that

there is some i ∈ [1, c(m− 1)] for which this does not hold. We assert that

ϕ(SiS
′) is divisible by a product of two zero-sum subsequences of length in

[1, n]. This implies that ϕ(S) is divisible by a product of c(m− 1) + 1 zero-

sum subsequences of length in [1, n], whence S has a zero-sum subsequence

of length in [1, mn], a contradiction. We distinguish two cases.

CASE 1: supp(ϕ(S ′)) ∩ supp(ϕ(Si)) 6= ∅. We recall that |ϕ(Si)| = n. The

remaining argument is analogue to the according one in 1.

CASE 2: supp(ϕ(S ′)) ∩ supp(ϕ(Si)) = ∅.
Let h ∈ supp(ϕ(Si)) and U a zero-sum subsequence of hϕ(S ′) of length

in [1, n]. If |U | < n, then

|U−1ϕ(SiS
′)| ≥ |S ′|+ 1 = c(n− 1) + 1 = η(Cr

n) ,

and therefore U−1ϕ(SiS
′) has a zero-sum subsequence of length in [1, n].

Suppose that |U | = n, and note that vh(U) ≥ 1 and |supp(h−1U)| ≥
2. This implies that supp(U−1hϕ(S ′)) = supp(ϕ(S ′)) and thus we get

|supp
(
(U−1hϕ(S ′))(h−1ϕ(Si))

)
| > |supp(ϕ(S ′))|. Therefore U−1ϕ(SiS

′) is

not of Type C, and thus it has a zero-sum subsequence of length in [1, n].

It remains to show that

|ϕ−1(h) ∩ supp(S)| = 1 for every h ∈ supp(ϕ(S)) ,

since then we obtain that

|supp(S)| = |supp(ϕ(S))| = |supp(ϕ(S ′))| = c .

Let h ∈ supp
(
ϕ(S1 · . . . · Sc(m−1))

)
, and assume to the contrary that there

are two distinct elements g, g′ ∈ supp(S) such that ϕ(g) = ϕ(g′) = h.

By A2 we may suppose that g |S1 · . . . · Sc(m−1) and g′ |S ′, say g |S1.

Since S has no zero-sum subsequence of length in [1, mn], the sequence

σ(S1) · . . . · σ(Sc(m−1)) ∈ F(Ker(ϕ)) has no zero-sum subsequence of length

in [1, m] whence it is of Type C. We consider S ′
1 = g−1g′S1. Then ϕ(S ′

1) =

ϕ(S1) and hence σ(S1) 6= σ(S ′
1) ∈ Ker(ϕ). Thus the sequence σ(S ′

1)σ(S2) ·
. . . · σ(Sc(m−1)) ∈ F(Ker(ϕ)) is not of Type C (note that in case m = 2 we

have c = |Ker(ϕ)| − 1) whence it has a zero-sum subsequence of length in

[1, m], a contradiction.
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It remains to verify that supp(ϕ(S)) = supp
(
ϕ(S1 · . . . · Sc(m−1))

)
. This

is achieved as in 1. using A2 instead of A1.

3. Since Cr
2 has Property D, Cr

4 has Property D by 1. Furthermore, Cr
3

has Property D as mentioned at the beginning of this section. Thus for n ∈
[2, 4], the assertion follows from 1. Since c(n−1)+1 = s(Cr

n) ≥ 2r(n−1)+1

(see [13, Proposition 3.1]), we have c ≥ 2.

Let n ≥ 5 and let S ∈ F(G) be of length |S| = c(mn − 1) such that S

has no zero-sum subsequence of length mn. We have to show that S is of

Type D, and again it suffices to show that |supp(S)| = c.

There exists some h ∈ ϕ(G) such that

vh(ϕ(S)) ≥ |S|
|ϕ(G)|

=
c(mn− 1)

nr
≥

⌊
n− 1

2

⌋
and then

|h−bn−1
2

cϕ(S)| ≥ n
(
c(m− 1)− 1

)
+ s(Cr

n) .

By [30, Lemma 5.7.10], S admits a product decomposition of the form

S = S1 · . . . · Sc(m−1)S
′

where S1, . . . , Sc(m−1), S
′ ∈ F(G), hbn−1

2
c divides ϕ(S ′) and, for every i ∈

[1, c(m − 1)], ϕ(Si) has sum zero and length |Si| = n. Since S has no

zero-sum subsequence of length mn, it follows that ϕ(S ′) has no zero-sum

subsequence of length n. Thus Lemma 3.1 implies that ϕ(S ′) is of Type

D whence in particular |supp(ϕ(S ′))| = c. We continue with the following

assertion.

A3. |supp(ϕ(S))| = |supp(ϕ(S ′))|.

Proof of A3. It suffices to verify that for every i ∈ [1, c(m− 1)] there is

some h ∈ supp(ϕ(S ′)) such that ϕ(Si) = hn. Assume to the contrary that

there is some i ∈ [1, c(m− 1)] for which this does not hold. We assert that

ϕ(SiS
′) is divisible by a product of two zero-sum subsequences of length n.

This implies that ϕ(S) is divisible by a product of c(m − 1) + 1 zero-sum

subsequences of length n, whence S has a zero-sum subsequence of length

mn, a contradiction. We distinguish two cases.

CASE 1: supp(ϕ(S ′)) ∩ supp(ϕ(Si)) 6= ∅.
Let h ∈ supp(ϕ(S ′)) ∩ supp(ϕ(Si)). Then hn |ϕ(SiS

′). Since ϕ(Si)

is a zero-sum sequence of length n and distinct from hn, it follows that

|supp(h−1ϕ(Si)| ≥ 2. Therefore h−nϕ(SiS
′) is not of Type D. Since c ≥ 2,

h−nϕ(SiS
′) contains some element with multiplicity n − 1, and thus by

Lemma 3.1 it has a zero-sum subsequence of length n.

CASE 2: supp(ϕ(S ′)) ∩ supp(ϕ(Si)) = ∅.
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Let h ∈ supp(ϕ(Si)) and U a zero-sum subsequence of hϕ(S ′) of length

n. Then vh(U) ≥ 1 and |supp(h−1U)| ≥ 2. Thus supp(U−1hϕ(S ′)) =

supp(ϕ(S ′)) and |supp
(
(U−1hϕ(S ′))(h−1ϕ(Si))

)
| > |supp(ϕ(S ′))|. There-

fore U−1ϕ(SiS
′) is not of Type D. Since c ≥ 2, U−1ϕ(SiS

′) contains some

element with multiplicity at least (n− 1)/2, and thus by Lemma 3.1 it has

a zero-sum subsequence of length n.

It remains to show that

|ϕ−1(h) ∩ supp(S)| = 1 for every h ∈ supp(ϕ(S)) ,

since then we obtain that

|supp(S)| = |supp(ϕ(S))| = |supp(ϕ(S ′))| = c .

This can be achieved as in 1. using A3 instead of A1.

�

4. Properties B and C in groups of rank two

Let G = Cn ⊕Cn with n ≥ 2. We say that G has Property B if every

minimal zero-sum sequence S ∈ F(G) of length |S| = D(G) = 2n−1 con-

tains some element with multiplicity n−1. This property was first addressed

in [22], and it is conjectured that every group (of the above form) satisfies

Property B. We already mentioned in the Introduction that Property B

implies Property C. Various characterizations and further consequences of

Property B may be found in [30, Section 5.8]. Here we only recall the fol-

lowing two recent results. If n ≥ 6 and G has Property B, then C2n ⊕ C2n

has Property B (see [23, Theorem 8.1]). If S ∈ F(G) is a minimal zero-sum

sequence of length 2n − 1 and with |supp(S)| = 3, then it contains some

element with multiplicity n− 1 (see [33, Theorem 1]).

As a main result in this section we show that, in case n is a large prime,

every minimal zero-sum sequence of length 2n−1 contains one element with

high multiplicity (cf. also [33, Theorem 3]). Let S ∈ F(G) be a sequence of

length η(G)− 1 that has no short zero-sum subsequence. If G has Property

C, then obviously ord(g) = n for all g ∈ supp(S). In Theorem 4.6 we

establish this consequence without assuming that Property C holds.

Theorem 4.1. Let G = Cp⊕Cp with p ∈ P and let S ∈ F(G). If ε > 0 and

p is sufficiently large (in dependence of ε), then the following statements

hold :

1. If S has length |S| = D(G) − 1 but no zero-sum subsequence, then

h(S) > p
1
4
−ε.
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2. If S has length |S| = η(G) − 1 but no short zero-sum subsequence,

then h(S) > p
1
4
−ε.

By inspecting the proof of this result it can be noted that only in (4.7)

the size of p has to depend on that of ε. Though, at some other places it is

required that p is not too small, all these bounds are absolute and of a fairly

moderate size. By some calculation it can be seen that the result holds for

p > exp(−8 log(ε)/ε). Yet no effort was made to optimize the value of this

constant.

We need a series of lemmas. For a prime p ∈ P we denote by Fp a field

with p elements. The group Cp ⊕ Cp can be viewed as a vector space over

Fp. In particular, the notions ‘independent elements’ and ‘basis’, as stated

in Section 2, coincide with the notions ‘linearly independent (over Fp)’ and

‘Fp-basis’.

Lemma 4.2. Let G = Cp ⊕ Cp with p ∈ P, (e1, e2) a basis of G and

S =
l∏

i=1

(aie1 + bie2) ∈ F(G) , where a1, b1, . . . , al, bl ∈ Fp ,

a zero-sumfree sequence of length |S| = l ≥ p. Then∣∣∣ {∑
i∈I

bi | ∅ 6= I ⊂ [1, l] with
∑
i∈I

ai = 0
} ∣∣∣ ≥ l − p + 1 .

Proof. The proof is based on recent results from the theory of coverings. We

recall the required terminology. A subset A ⊂ Fl
p is called a proper coset if

A = a + N for some subspace N ⊂ Fl
p and some a ∈ Fl

p \ N . For a subset

A ⊂ Fl
p let s(A, Fl

p) denote the smallest s ∈ N0 ∪ {∞} such that A \ {0}
is contained in a union of s proper cosets.

Let (X1, . . . , Xl) be an Fp-basis of Fl
p,

D =
{∑

i∈I

Xi

∣∣∣ I ⊂ [1, l] ,
∑
i∈I

ai 6= 0
}
⊂ Fl

p and

D0 = Σ(X1 · . . . ·Xl) \D =
{∑

i∈I

Xi

∣∣∣ I ⊂ [1, l] ,
∑
i∈I

ai = 0
}
⊂ Fl

p .

Then s
(
Σ(X1 · . . . ·Xl), Fl

p

)
= l by [30, Theorem 5.6.6] and s(D, Fl

p) ≤ p−1

by [30, Lemma 5.6.7]. If θ ∈ HomFp(Fl
p, Fp) is the unique homomorphism

satisfying θ(Xi) = bi for all i ∈ [1, l], then 0 /∈ Σ(S) implies

0 /∈ θ(D0) =
{∑

i∈I

bi | ∅ 6= I ⊂ [1, l] with
∑
i∈I

ai = 0
}

.

Therefore [30, Lemma 5.6.2.1] implies that

|θ(D0)| ≥ s(D0, Fl
p) ≥ s

(
Σ(X1, . . . , Xl), Fl

p

)
− s(D, Fl

p) ≥ l − (p− 1) .

�
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Lemma 4.3. Let G = Cp⊕Cp with p ∈ P and let S ∈ F(G) be a zero-

sumfree sequence of length |S| = 2p − 2. Then any two distinct elements

of supp(S) are independent.

Proof. See [30, Corollary 5.6.9]. �

Lemma 4.4. Let G = Cn ⊕ Cn with n ≥ 2 and S ∈ F(G).

1. If |S| = 3n − 2, then S has a zero-sum subsequence T of length

|T | ∈ {n, 2n}.
2. If |S| = 3n−3 and S has no short zero-sum subsequence, then S has

a minimal zero-sum subsequence T of length |T | = 2n− 1.

Proof. 1. See [24, Theorem 6.7].

2. Suppose that |S| = 3n − 3, that S has no short zero-sum subse-

quence and set W = 0S ∈ F(G). Then 1. implies that W has a zero-sum

subsequence U of length |U | ∈ {n, 2n}, and by our assumption on S we

get |U | = 2n. If U is a subsequence of S, then D(G) = 2n − 1 implies

that U = U1U2, where both U1 and U2 are non-empty zero-sum sequences.

Therefore, either U1 or U2 is a short zero-sum subsequence of S, a contra-

diction. Therefore, U = 0T with |T | = 2n − 1, and since S has no short

zero-sum subsequence, it follows that T is a minimal zero-sum sequence. �

Proof of Theorem 4.1. By Theorem 2.4 we have D(G) = 2p− 1 and η(G) =

3p − 2. By Lemma 4.4 it suffices to prove the first assertion. Let (e1, e2)

be a basis of G and, for i ∈ [1, 2], let ϕi : G → 〈ei〉 denote the canonical

projections. Let ε > 0, p sufficiently large and assume to the contrary that

there exists a zero-sumfree sequence

S =

2p−2∏
i=1

(aie1 + bie2) ∈ F(G) , with a1, b1, . . . , a2p−2, b2p−2 ∈ [0, p− 1] ,

of length |S| = 2p − 2 and with h(S) ≤ p
1
4
−ε. Let T denote a maximal

squarefree subsequence of S and set h = h(ϕ1(T )). After renumbering if

necessary we may assume that

T =

|T |∏
i=1

(aie1 + bie2) and a1 = . . . = ah = a .

Now we set

W =
h∏

i=1

(ae1 + bie2) and S1 = SW−1 ,

and distinguish three cases.

CASE 1: h ≥ b
√

4p− 7c+ 1.
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We set k = b
√

4p− 7c+ 1, ` = bk/2c and

S2 =

2p−2∏
i=k+1

(aie1 + bie2) .

Theorem 2.3.3 implies that

(4.1) Σ`

( k∏
i=1

bie2

)
= 〈e2〉.

Consider the sequence ϕ1(S2) =
∏2p−2

i=k+1 aie1. If ai = aj = 0 for some

i, j ∈ [k + 1, 2p− 2], then by Lemma 4.3 we obtain that bi = bj. Therefore,

we get

v0(ϕ1(S2)) ≤ h(S)

and

|ϕ1(S2)| − v0(ϕ1(S2)) = 2p− 2− k − v0(ϕ1(S2))

> 2p− 2− b
√

4p− 7c − 1− p
1
4 ≥ p− 1

where the last inequality holds since p ≥ 11. Thus Theorem 2.2.1 implies

that Σ(ϕ1(S2)) = 〈e1〉. In particular, S2 has a non-empty subsequence S3

such that σ(ϕ1(S3)) = −`ae1. By equation (4.1) there is a subset I ⊂ [1, k]

such that
∑

i∈I bie2 = −σ(ϕ2(S3)) and |I| = `. Therefore, S3

∏
i∈I(ae1+bie2)

is a non-empty zero-sum subsequence of S, a contradiction.

CASE 2: 5p
1
4 ≤ h ≤ b

√
4p− 7c.

We set k = bh/2c and h1 = h(ϕ1(S1)). Theorem 2.3.2 implies that

(4.2) |Σk

( h∏
i=1

bie2

)
| ≥ h2 + 3

4
,

and by the assumption of CASE 2 we get

h1 ≤ h(ϕ1(T ))h(S) < hp
1
4 .

Therefore, since p ≥ 53,

|ϕ1(S1)|−v0(ϕ1(S1)) ≥ |S1|−h1 = 2p−2−h−h1 > 2p−2−h−hp
1
4 ≥ p−1 .

whence Theorem 2.2.1 implies

Σ≤h1(ϕ1(S1)) = 〈e1〉 .

In particular, S1 has a non-empty subsequence S4 such that

(4.3) σ(ϕ1(S4)) = −kae1 and |S4| ≤ h1.

By equations (4.2) and (4.3) we infer that

(4.4) σ(S4) + Σk(W ) ⊂ 〈e2〉 and |σ(S4) + Σk(W )| ≥ h2 + 3

4
.

Set S5 = S(S4W )−1. By Lemma 4.2

|Σ(S5) ∩ 〈e2〉| ≥ |S5| − p + 1.
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Therefore,

|σ(S4) + Σk(W )|+ |Σ(S5) ∩ 〈e2〉| ≥
h2 + 3

4
+ |S5| − p + 1

=
h2 + 3

4
+ 2p− 2− |S4| − |W | − p + 1 ≥ h2 + 3

4
+ p− 1− h1 − h

>
h2 + 3

4
+ p− 1− hp

1
4 − h ≥ p ,

where the last inequality holds since p ≥ 54. It follows from the Cauchy–

Davenport Theorem that(
σ(S4) + Σk(W )

)
+

(
Σ(S5) ∩ 〈e2〉

)
= 〈e2〉

whence 0 ∈
(
σ(S4) + Σk(W )

)
+

(
Σ(S5) ∩ 〈e2〉

)
⊂ Σ(S), a contradiction.

CASE 3: h < 5p
1
4 .

Let m = b5p 1
4 c. Note that |supp(T ) ∩ (ae1 + 〈e2〉)| = h. Thus we may

suppose that, for every subgroup H ⊂ G with |H| = p and every g ∈ G,

(4.5) |supp(T ) ∩ (g + H)| ≤ m ,

since otherwise we choose a different basis (e′1, e
′
2) of G and are back to

CASE 1 or CASE 2.

Let Ĝ = Hom(G, C×) be the character group of G with complex values,

χ0 ∈ Ĝ the principal character and for any χ ∈ Ĝ let

f(χ) =

2p−2∏
i=1

(
1 + χ(aie1 + bie2)

)
.

Clearly, we have

f(χ) = 1 +
∑

g∈Σ(S)

cgχ(g),

where cg = |{∅ 6= I ⊂ [1, 2p− 2] |
∑

i∈I(aie1 + bie2) = g}|.
Since S is zero-sumfree, we have 0 /∈ Σ(S) and the Orthogonality Rela-

tions (see [30, Lemma 5.5.2]) imply that∑
χ∈ bG

f(χ) =
∑
χ∈ bG

(
1 +

∑
g∈Σ(S)

cgχ(g)
)

= |Ĝ|+
∑

g∈Σ(S)

cg

∑
χ∈ bG

χ(g) = |G| .

Obviously, we have f(χ0) = 2|S|. Let χ ∈ Ĝ \ {χ0}. We set M = mh(S)

and

|S| = (2k − 1)M + q with q ∈ [0, 2M − 1] ,

and continue with the following assertion.

A1. |f(χ)| ≤ 2|S| exp(−π2r/2p2) with r = 2M(12 +22 + · · ·+(k−1)2)+

qk2.
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Proof of A1. Let j ∈ [−p−1
2

, p−1
2

] and g ∈ G with χ(g) = exp(2πij/p).

Note that for any real x with |x| < π/2, we have cos x ≤ exp(−x2/2). Thus

we obtain that

(4.6) |1 + χ(g)| = 2 cos(πj/p) ≤ 2 exp

(
−π2j2

2p2

)
.

If H = Ker(χ), then |H| = p and g + H = χ−1(exp(2πij/p)). Thus

(4.5) implies that there are at most m elements h ∈ supp(S) such that

χ(h) = exp(2πij/p). Consequently, the upper bound for |f(χ)|, obtained

by repeated application of (4.6), is maximal, if the values 0, 1,−1, . . . , k −
1,−(k − 1) are accepted M times each and the values k,−k are accepted q

times as images of χ(g) for g ∈ supp(S). Therefore we obtain

|f(χ)| ≤ 2|S| exp(−π2r/2p2) .

Since |S| = (2k−1)M +q, we get k = (2M)−1(|S|−q+M) and therefore

r = 2M
k−1∑
j=1

j2 + qk2 = 2M
(k − 1)k(2k − 1)

6
+ qk2

=
(|S| − q −M)(|S| − q + M)(|S| − q) + 3q(|S| − q + M)2

12M2
.

Since q ∈ [0, 2M − 1] and q ≤ |S|, it follows that

r =
|S|(|S|2 −M2)

12M2
+

q(2M − q)(2M + 3|S| − 2q)

12M2
≥ |S|(|S|2 −M2)

12M2
.

We obtain that (here we need p sufficiently large)

(4.7) exp
(π2r

2p2

)
≥ exp

(π2|S|(|S|2 −M2)

24M2p2

)
> 2p2 .

Therefore it follows that

p2 = |G| =
∑
χ∈ bG

f(χ) ≥ f(χ0)−
∑
χ6=χ0

|f(χ)|

≥ 2|S|
(

1− (p2 − 1) exp
(−π2r

2p2

))
> 2|S|

(
1− p2 − 1

2p2

)
> 2|S|−1 > p2 ,

a contradiction. �

The special case T = 1 of the following lemma may be found in [30,

Proposition 5.7.11].

Lemma 4.5. Let S ∈ F(G) be a sequence, H ⊂ G a subgroup and T ∈
F(H) a subsequence of S such that

|S| ≥ exp(G/H)(η(H)− 1) + η(G/H)− (exp(G/H)− 1)|T | .

S has a zero-sum subsequence S ′ of length |S ′| ∈ [1, exp(H) exp(G/H)].
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Proof. If |T | ≥ η(H), then T (and hence S) has a zero-sum subsequence S ′

of length |S ′| ∈ [1, exp(H)]. Suppose that |T | < η(H), and let ϕ : G → G/H

denote the canonical epimorphism. Since the sequence T−1S has length

|T−1S| ≥ exp(G/H)(η(H)− |T | − 1) + η(G/H) ,

it admits a product decomposition of the form T−1S = T1 · . . . · Tη(H)−|T |T
′,

where T1, . . . , Tη(H)−|T |, T ′ ∈ F(G) and, for every i ∈ [1, η(H)− |T |], ϕ(Ti)

has sum zero and length |Ti| ∈ [1, exp(G/H)] (see [30, Lemma 5.7.10]).

Then the sequence Tσ(T1) · . . . · σ(Tη(H)−|T |) ∈ F(H) has a short zero-sum

subsequence V , say

V = T0

∏
i∈I

σ(Ti) , where T0 |T and I ⊂ [1, η(H)− |T |] .

Thus the sequence

S ′ = T0

∏
i∈I

Ti

is a zero-sum subsequence of S of length |S ′| ≤ |T0| + |I| exp(G/H) ≤
exp(H) exp(G/H). �

Theorem 4.6. Let G = Cn ⊕ Cn with n ≥ 2 and S ∈ F(G). If there is

some subsequence T of S and some divisor m of n such that ord(g) |m for

every g ∈ supp(T ) and

|S| ≥ 3n− 2−
( n

m
− 1

)
|T | ,

then S has a short zero-sum subsequence. In particular, if S has length

|S| = 3n− 3 but no short zero-sum subsequence, then ord(g) = n for every

g ∈ supp(S).

Proof. Let T and m be as above, and let ϕ : G → G denote the multipli-

cation by m. Then H = Ker(ϕ) ∼= C2
m, G/H ∼= C2

n/m and T ∈ F(H). By

Theorem 2.4 we infer that

|S| ≥ 3n− 2−
( n

m
− 1

)
|T |

=
n

m
(3m− 3) +

(
3

n

m
− 2

)
−

( n

m
− 1

)
|T |

=
n

m
(η(C2

m)− 1) + η(C2
n
m

)−
( n

m
− 1

)
|T | .

Thus Lemma 4.5 implies that S has a short zero-sum subsequence.

Let |S| = 3n−3 and g ∈ supp(S). If S has no short zero-sum subsequence,

then |S| = 3n− 3 < 3n− 2− ( n
ord(g)

− 1) implies that ord(g) = n.

�



INVERSE ZERO-SUM PROBLEMS 19

5. Extremal zero-sumfree subsets in Cp ⊕ Cp

Let g(G) denote the smallest integer l ∈ N such that every squarefree

sequence S ∈ F(G) of length |S| ≥ l has a zero-sum subsequence T of

length |T | = exp(G).

Some elementary properties of g(G) are outlined in [24, Section 10], and

a (straightforward) connection with Property D (for groups of the form

Cr
n) may be found in [13, Lemma 2.3]). Moreover, if G is a vector space

over a finite field, then the invariant g(G) allows an interpretation in finite

geometry. Indeed, g(Cr
3) − 1 is the maximal size of a cap in AG(r, 3) (see

[13, Lemma 5.2] and also [25, Section 5.2]), and in this connection it found

a lot of attention by finite geometers (see [14, 6] and the literature cited

there).

In [28] it is conjectured that g(Cn ⊕ Cn) is equal to 2n− 1 for every odd

n ≥ 3 and equal to 2n+1 for every even n ≥ 3, and it is observed that these

values are lower bounds. Moreover, it is proved (see [28, Theorem 1]) that

g(Cp ⊕ Cp) = 2p − 1 for all primes p ≥ 67. Now Theorem 5.1 completely

solves the associated inverse problem by giving an explicit characterization

of all squarefree sequences of length 2p− 2 without a zero-sum subsequence

of length p.

First we give a proof of Theorem 5.1, which is based on the following

Proposition 5.2. Note that for the implication (b) ⇒ (a) we need no

assumption on the size of the prime p. We also outline how the inverse

result gives back the direct result that g(G) = 2p− 1. Then the main work

will be to derive Proposition 5.2. If G = Cp ⊕ Cp for some prime p ∈ P
and H ⊂ G is a subgroup of order p, then a homomorphism ϕ : G → H

is called a projection if ϕ|H = idH and G = H ⊕Ker(ϕ).

Theorem 5.1. Let G = Cp ⊕ Cp for some p ∈ P with p ≥ 47 and let

S ∈ F(G) be a squarefree sequence of length |S| = 2p− 2. Then following

statements are equivalent :

(a) S has no zero-sum subsequence of length p.

(b) There exists a subgroup K ⊂ G of order p such that one of the

following conditions is satisfied :

(b1) supp(S) = {g, h}+ K \ {g + k1, h + k2}.
(b2) supp(S) = ({g, h}+K \ {g + k1, g + k′1, h+ k2})∪{2g−h+ k1 +

k′1 − k2}.
(b3) supp(S) = ({g, h}+ K \ {g + k1, g + k′1, h + k2, h + k′2})

∪ {2g − h + k1 + k′1 + k
(′)
2 , 2h− g + k2 + k′2 + k

(′)
1 }
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where g, h ∈ G with g+K 6= h+K and k1, k
′
1, k2, k

′
2 ∈ K with ki 6= k′i

and k
(′)
i ∈ {ki, k

′
i} for i ∈ {1, 2}.

In particular, we have g(G) = 2p− 1.

Proposition 5.2. Let G = Cp ⊕ Cp for some p ∈ P with p ≥ 47 and

let S ∈ F(G) be a squarefree sequence of length |S| = 2p− 2 that has no

zero-sum subsequence of length p. Then there exists a subgroup H ⊂ G of

order p, a projection ϕ : G → H and distinct elements g, h ∈ H such

that ϕ(S) has one of the following forms :

gp−1hp−1, gp−2hp−1(2g − h) or gp−2hp−2(2g − h)(2h− g) .

Proof of Theorem 5.1 (using Proposition 5.2).

(a) ⇒ (b) By Proposition 5.2 there exists a subgroup H ⊂ G of order p

and a projection ϕ : G → H such that ϕ(S) has one of the indicated forms.

Then G = H ⊕ K with K = Ker(ϕ). If ϕ(S) = gp−1hp−1 with distinct

elements g, h ∈ H, then obviously

supp(S) = (g + K) ∪ (h + K) \ {g + k1, h + k2} for some k1, k2 ∈ K .

The remaining cases are similar (cf. the proof of (b) ⇒ (a) below).

(b) ⇒ (a) Assume to the contrary that S has a zero-sum subsequence

T of length |T | = p. Without restriction we may assume that h = 0. Then

g /∈ K, G = 〈g〉 ⊕ K and let ϕ : 〈g〉 ⊕ K → 〈g〉 denote the canonical

projection. Clearly, ϕ(T ) is a zero-sum subsequence of ϕ(S) of length p.

If (b1) holds, then ϕ(S) = gp−10p−1. This sequence has no zero-sum

subsequence of length p, a contradiction.

If (b2) holds, then ϕ(S) = gp−20p−1(2g) and ϕ(T ) = gp−20(2g). Let

k′ ∈ supp(T ) with ϕ(k′) = 0. We have (id−ϕ)(T ) = (
∏

k∈K\{k1,k′1}
k)k′(k1 +

k′1 − k2). Since σ(T ) = 0 it follows that 0 = σ((id−ϕ)(T )) = (−k1 − k′1) +

k′ + (k1 + k′1 − k2) whence k′ = k2, a contradiction to k2 /∈ supp(S).

If (b3) holds, then ϕ(S) = gp−20p−2(2g)(−g) and ϕ(T ) = gp−20(2g) or

ϕ(T ) = g0p−2(−g). First, suppose that ϕ(T ) = gp−20(2g). Let k′ ∈ supp(T )

with ϕ(k′) = 0. We have (id−ϕ)(T ) = (
∏

k∈K\{k1,k′1}
k)k′(k1 + k′1 − k

(′)
2 ). It

follows that 0 = σ((id−ϕ)(T )) = (−k1 − k′1) + k′ + (k1 + k′1 − k
(′)
2 ) whence

k′ = k
(′)
2 , a contradiction.

Now, suppose that ϕ(T ) = g0p−2(−g). Let k′ ∈ supp(T ) with ϕ(k′) = g.

We have (id−ϕ)(T ) = (
∏

k∈K\{k2,k′2}
k)k′(k2 + k′2 − k

(′)
1 ). It follows that

0 = σ((id−ϕ)(T )) = (−k2 − k′2) + k′ + (k2 + k′2 − k
(′)
1 ) whence k′ = k

(′)
1 , a

contradiction.

It remains to verify the additional statement, and for that it suffices to

prove that g(G) ≤ 2p − 1. Let R ∈ F(G) be a squarefree sequence of
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length |R| = 2p − 1, and assume to the contrary that R has no zero-sum

subsequence of length p. Let T be a subsequence of R of length |T | = 2p−2.

By (b), there exist a subgroup KT ⊂ G of order p, and two elements gT , hT ∈
G such that, for AT = supp(T )∩ (gT +KT ) and BT = supp(T )∩ (hT +KT ),

we have

|AT | ≥ p− 2, |BT | ≥ p− 2, gT − hT 6∈ KT .

Next we verify that KT , gT and hT are independent of T . Let T ′ be

a subsequence of R of length |T ′| = 2p − 2. Then |AT ′ ∩ AT | ≥ 2 or

|AT ′ ∩BT | ≥ 2, since otherwise we would have that

|AT ′| = |AT ∪ AT ′ ∪BT | − |AT | − |BT |+ |AT ′ ∩ AT |+ |AT ′ ∩BT |

≤ (2p− 1)− (p− 2)− (p− 2) + 1 + 1 = 5 < p− 2 ,

a contradiction. Hence, |AT ′ ∩ AT | ≥ 2 or |AT ′ ∩ BT | ≥ 2. This implies

that KT = KT ′ , and we set K = KT . If there are three distinct elements in

{gT , hT , gT ′ , hT ′}, then

2p− 1 = |supp(R)| ≥ 3(p− 2) , a contradiction .

Therefore it follows that {gT , hT} = {gT ′ , hT ′}, and we set {g, h} = {gT , hT}.
Thus for every subsequence T of R of length |T | = 2p− 2 we have

|supp(T )∩ (g +K)| ≥ p−2, |supp(T )∩ (h+K)| ≥ p−2 and g−h 6∈ K .

This implies that |supp(R)∩(g+K)| ≥ p−1 and |supp(R)∩(h+K)| ≥ p−1.

Without restriction we may suppose that h = 0. Since by assumption R

has no zero-sum subsequence of length p, we infer that

|supp(R) ∩K| = |supp(R) ∩ (g + K)| = p− 1

and

R = (mg + gp)

p−1∏
i=1

ki

p−1∏
i=1

(g + gi) ,

where ki ∈ K for every i ∈ [1, p − 1], gi ∈ K for every i ∈ [1, p] and

m ∈ [2, p − 1]. Theorem 2.3 and the Cauchy–Davenport Theorem imply

that

|Σm−1(

p−1∏
i=1

ki) + Σp−m(

p−1∏
i=1

gi)|

≥ min{p,
(
(m− 1)(p−m) + 1

)
+

(
(p−m)(p− 1− (p−m)) + 1

)
− 1}

= p ,

and hence there are some I ⊂ [1, p − 1] with |I| = m − 1 and some J ⊂
[1, p− 1] with |J | = p−m such that

(mg + gp)
∏
i∈I

ki

∏
j∈J

(g + gj)

is a zero-sum subsequence of R of length p, a contradiction. �
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The rest of this section is devoted to the proof of Proposition 5.2. It is

based on a series of lemmas, and its strategy can be seen best by browsing

through the (short) Proof of Proposition 5.2 at the very end of the section.

We fix our notations which remain valid throughout the whole section.

Let G = Cp ⊕ Cp for some odd prime p ∈ P, H ⊂ G a subgroup

of order p, ϕ : G → H a projection and let S ∈ F(G) be a squarefree

sequence.

Lemma 5.3.

1. If ϕ(S) has a zero-sum subsequence T such that∑
g∈H

vg(T )(vg(ϕ(S))− vg(T )) ≥ p− 1 ,

then S has a zero-sum subsequence T ∗ of length |T ∗| = |T |.
2. If |S| = 2p − 2 and h(ϕ(S)) ∈ [(p + 5)/2, p − 4], then S has a

zero-sum subsequence of length p.

3. If h(ϕ(S)) ≥ p, then S has a zero-sum subsequence of length p.

Proof. 1. See [25, Lemma 5.2].

2. Let g ∈ supp(ϕ(S)) with vg(ϕ(S)) = h(ϕ(S)) = h. We assume g = 0

and set ϕ(S) = 0hT . By Theorem 2.2.3 the sequence T has a zero-sum

subsequence R of length |R| ∈ [p + 2− h, p− 2]. Now the assertion follows

from 1., applied with T = 0p−|R|R.

3. Let T be a subsequence of S such that ϕ(T ) = gp. Since K =

Ker(ϕ) ⊂ G is a subgroup of order p and T is squarefree, it follows that

T =
∏

k∈K(g + k) and hence σ(T ) = 0. �

Lemma 5.4. Let p ≥ 7, |S| = 2p − 2 and h(ϕ(S)) = p − 1. If S has no

zero-sum subsequence of length p, then there exist distinct elements g, h ∈ H

such that

ϕ(S) = gp−1hp−1 or ϕ(S) = gp−2hp−1(2g − h) .

Proof. Let h ∈ supp(ϕ(S)) with vh(ϕ(S)) = h(ϕ(S)). We assume h = 0 and

set ϕ(S) = 0p−1T . If T is zero-sumfree or a minimal zero-sum sequence,

then Theorem 2.1 implies that ϕ(S) has the required form. If T has a

zero-sum subsequence R of length |R| ∈ [3, p − 2], then 0p−|R|R is a zero-

sum subsequence of ϕ(S) of length p, and hence, by Lemma 5.3.1, S has

a zero-sum subsequence of length p. Thus it remains to consider the case

that all zero-sum subsequences R of T have length |R| = 2 and R−1T is

zero-sumfree. Let R be such a sequence, say R = (−g)g for some g ∈ H.

Since R−1T is a zero-sumfree sequence of length p− 3, Theorem 2.1 implies
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that there is some e ∈ H such that R−1T has one of the following forms:

ep−3, ep−4(2e), ep−4(3e) or ep−5(2e)2. Since T has no zero-sum subsequence

of length greater than 2, it follows that e ∈ {−g, g}. Now we apply again

Lemma 5.3.1 with 0p−|R|R and infer that S has a zero-sum subsequence of

length p. �

Lemma 5.5. Let p ≥ 11, |S| = 2p − 2 and h(ϕ(S)) = p − 2. If S has no

zero-sum subsequence of length p, then there exist distinct elements g, h ∈ H

such that ϕ(S) = gp−2hp−2(−g + 2h)(2g − h).

Proof. Let h ∈ supp(ϕ(S)) with vh(ϕ(S)) = h(ϕ(S)). We assume h = 0

and set ϕ(S) = 0p−2T . If T has a zero-sum subsequence R of length |R| ∈
[4, p− 2], then S has a zero-sum subsequence of length p by Lemma 5.3.1.

Suppose that T has no such zero-sum subsequences, and let R denote a

zero-sum subsequence of T of maximal length. We distinguish two cases.

CASE 1: |R| ≥ p− 1.

We may assume that R is a minimal zero-sum subsequence, since oth-

erwise there exists a zero-sum subsequence of length in [4, p − 2]. Since

h(ϕ(S)) = p − 2, Theorem 2.1 implies that R = ep−2(2e) for some e ∈ H.

Let g ∈ H such that T = Rg. We note that g 6= e. If g /∈ {−e,−2e}, it

follows that T has a zero-sum subsequence of length in [4, p− 2], a contra-

diction. If g = −2e, then (−2e)e20p−3 is a zero-sum subsequence of ϕ(S)

of length p, and Lemma 5.3.1 implies that S has a zero-sum subsequence of

length p. If g = −e, then ϕ(S) has the asserted form.

CASE 2: |R| ≤ 3.

Suppose that |R| = 2, say R = (−g)g for some g ∈ H. Then R−1T

is a zero-sumfree sequence of length p − 2 and thus by Theorem 2.1 equal

to ep−3(2e) or ep−2, for some e ∈ H. Note that in the latter case neces-

sarily g 6= e. However, this implies that the sequence T has a zero-sum

subsequence of length greater than 2, a contradiction. Thus we obtain

that |R| = 3. The sequence R−1T is a zero-sumfree sequence of length

p − 3. By Theorem 2.1 there exists some e ∈ H such that R−1T has

one of the following forms: ep−5(2e)2, ep−42e, ep−43e, or ep−3. If there ex-

ists some g ∈ supp(R) such that g /∈ {−2e,−e, e, 2e}, then there exists

a zero-sum subsequence of T of length greater than 3, a contradiction. If

−2e ∈ supp(R), then (−2e)e20p−3 is a zero-sum subsequence of ϕ(S) of

length p, and Lemma 5.3.1 implies that S has a zero-sum subsequence of

length p. Therefore we obtain that supp(R) ⊂ {−e, e, 2e}, R = (2e)(−e)2

and thus (−e)2e2 is a zero-sum subsequence of T of length 4, a contradic-

tion. �
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Lemma 5.6. Let p ≥ 11, |S| = 2p− 2 and h(ϕ(S)) = p− 3. Then S has a

zero-sum subsequence of length p.

Proof. Let h ∈ supp(ϕ(S)) with vh(ϕ(S)) = h(ϕ(S)). We assume h = 0

and set ϕ(S) = 0p−3T . Let R be a zero-sum subsequence of T of maximal

length. If |R| ∈ [5, p− 2], the result follows by Lemma 5.3.1. If |R| ≥ p− 1,

then we may assume that R is a minimal zero-sum subsequence. However,

since h(ϕ(S)) = p− 3 this is impossible by Theorem 2.1.

It remains to consider the case that |R| ≤ 4. Since R has maximal length,

R−1T is zero-sumfree. Since h(ϕ(S)) = p− 3, we have |T | = p+1, and thus

Theorem 2.1 implies that |R| ≥ 3. We distinguish two cases.

CASE 1: |R| = 3.

By Theorem 2.1 we have R−1T = ep−3(2e). We note that supp(R) 6⊂
{−e,−2e}. However, this implies that there exists a zero-sum subsequence

of T of length greater than 3.

CASE 2: |R| = 4.

The sequence R−1T is a zero-sumfree sequence of length p− 3. By Theo-

rem 2.1 it is equal to ep−3, ep−4(2e), ep−4(3e), or ep−5(2e)2 for some e ∈ H.

Since T has no zero-sum subsequence of length greater than 4, we infer that

supp(R) ⊂ {−3e,−2e,−e, e, 2e}, If (−3e) ∈ supp(R), then (−3e)e30p−4

is a zero-sum subsequence of ϕ(S) of length p, and the assertion follows

by Lemma 5.3.1. Thus, we may assume supp(R) ⊂ {−2e,−e, e, 2e}. If

(−2e)2 | R, then (−2e)2e4 a zero-sum subsequence of T of length 6. There-

fore R is equal to (−2e)(−e)(2e)e or to (−e)2e2, and in both cases we have

ve(R) > 0. Applying Lemma 5.3.1 with R0p−4 we obtain that S has a

zero-sum subsequence of length p. �

In all the remaining lemmas we use the following notation.

Let

ϕ(S) = R′R3U2V where R′, R, U, V ∈ F(H) ,

R, U, V are squarefree, supp(V ) consists of those elements h ∈ H with

vh(ϕ(S)) = 1, supp(U) of those h ∈ H with vh(ϕ(S)) = 2 and supp(R)

of those h ∈ H with vh(ϕ(S)) ≥ 3.

Lemma 5.7. Let p ≥ 5, |supp(ϕ(S))| ≤ (p+3)/2 and suppose that R′RUV

has a zero-sum subsequence of length p. Then S has a zero-sum subsequence

of length p.

Proof. Let W be a zero-sum subsequence of R′RUV of length p. We set

W = W1W2, where W1 is the subsequence of elements occurring with mul-

tiplicity 1 in W , and thus W2 | RR′. Since |W1|+ |W2| = p, |supp(W1)|+
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|supp(W2)| ≤ (p + 3)/2 and W1 is squarefree, it follows that W2 6= 1,

|W1| = |supp(W1)| ≤ (p + 1)/2 and |W2| ≥ (p− 1)/2. Since∑
g∈H

vg(W )(vg(ϕ(S))− vg(W )) ≥
∑

g∈supp(W2)

vg(W )(vg(ϕ(S))− vg(W ))

≥
∑

g∈supp(W2)

2(vg(ϕ(S))− 2)

≥
∑

g∈supp(W2)

2vg(W )

= 2|W2| ≥ p− 1 ,

Lemma 5.3.1 implies that S has a zero-sum subsequence of length p. �

Lemma 5.8. Let p ≥ 5, |S| = 2p − 2 and 2|supp(ϕ(S))| + h(ϕ(S)) ≤ p.

Then S has a zero-sum subsequence of length p.

Proof. We set s = |supp(ϕ(S))| and note that s ≤ (p − 1)/2 whence

h(ϕ(S)) ≥ 3 and s ≤ (p− 3)/2. Since

|R′RUV | = |ϕ(S)| − 2|R| − |U | ≥ 2p− 2− 2s

and

h(R′RUV ) = h(ϕ(S))− 2 ≤ p− 2− 2s ,

Theorem 2.2.2 implies that R′RUV has a zero-sum subsequence of length

p, and therefore the assertion follows from Lemma 5.7. �

Lemma 5.9. Let p ≥ 47, |S| = 2p − 2, h(ϕ(S)) ≤ (p + 3)/2 and

|supp(ϕ(S))| ∈ [(p − 1)/4, (p − 1)/3]. Then S has a zero-sum subsequence

of length p.

Proof. By Lemma 5.7 it suffices to show that R′RUV has a zero-sum sub-

sequence of length p. We set s = |supp(ϕ(S))| = |RUV |, and obtain that

|R′RUV | = |S| − 2|R| − |U | ≥ 2p− 2− 2s and |R′| ≥ 2p− 2− 3s .

By Theorem 2.3.1 we have that Σds/2e(RUV ) ≥ min{p, ds/2ebs/2c+1} = t.

Since h(R′) = h(ϕ(S))−3 ≤ (p−3)/2 and |R′| ≥ p−1, R′ allows a product

decomposition of the form

R′ = Q′
∏
i∈I

Qi ,

where all Qi are squarefree sequences of length 2, |I| = b|R′|/2c and |Q′| ∈
{0, 1}.
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We assert that |I| ≥ p − t. This is clear for t = p, and we suppose that

t = ds/2ebs/2c + 1. Since t ≥ (s2 − 1)/4 + 1, s ≥ (p− 1)/4 and p ≥ 37, it

follows that

|I| = b|R′|/2c ≥ p− 1

2
≥ p− ((p− 1)/4)2 − 1

4
− 1 ≥ p− t .

If J ⊂ I, then

Σ|J |
(∏

i∈J

Qi

)
⊃

∑
i∈J

supp(Qi) ,

and therefore the Cauchy–Davenport Theorem implies that

|Σ|J |
(∏

i∈J

Qi

)
| ≥ |

∑
i∈J

supp(Qi)| ≥ min{p, |J |+ 1} .

If J ⊂ I with |J | = p− t, then

Σp−t+ds/2e
(
RUV

∏
i∈J

Qi

)
⊃ Σds/2e (RUV ) + Σ|J |

(∏
i∈J

Qi

)
.

The Cauchy–Davenport Theorem and the previous estimate imply that

min{p, t + (|J | + 1) − 1} = p is a lower bound for the cardinality of the

latter sumset, whence both sets are equal to H.

Now we choose some J ⊂ I with |J | = p− t, set

R∗ = R′(
∏
i∈J

Qi)
−1 and assert that |R∗| ≥ t− ds/2e .

Suppose that this is proved. Then R∗ has a subsequence Y of length t −
ds/2e. Since RUV

∏
i∈J Qi has a subsequence X of length p − t + ds/2e

with σ(X) = −σ(Y ), it follows that XY is a zero-sum sequence of R′RUV

of length |XY | = p.

Since

|R∗| = |R′| − 2|J | = |R′| − 2(p− t) ≥ 2p− 2− 3s− 2p + 2t = 2t− 2− 3s ,

it suffices to show that

t− 2− 3s ≥ −ds/2e .

Since s ≤ (p − 1)/3 and s ≥ (p − 1)/4 ≥ 2, this is clear for t = p. For

t = ds/2ebs/2c+ 1 we have to show that

ds/2ebs/2c − 1− 3s + ds/2e ≥ 0 .

Since p ≥ 47, we have s ≥ (p − 1)/4 ≥ 23/2, and thus the inequality

holds. �

Lemma 5.10. Let p ≥ 41, |S| = 2p−2 and |supp(ϕ(S))| ∈ [(p+1)/3, p−5].

Then S has a zero-sum subsequence of length p.
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Proof. Let W be a subsequence of RUV of length |W | = dp/3e such that

| gcd(W, R)| is minimal. Then W is squarefree, and Theorem 2.3.1 implies

that Σ4(W ) = H. Since | gcd(W, R)| is minimal, we either have W |UV or

UV |W . If W |UV , then gcd(W, R) = 1 and

| gcd(W, R)−1RR′RU | = |RR′RU | = 2p− 2− |RUV | ≥ p + 3 .

If UV |W , then | gcd(W, R)| = |W | − |UV |, and since |R| ≤ (2p− 2)/3, we

obtain that

| gcd(W, R)−1RR′RU | = 2p− 2− (|R|+ dp/3e) ≥ p− 2 .

In both cases gcd(W, R)−1RR′RU has a subsequence Y of length p − 4

such that RU |Y . Let X be a subsequence of W of length 4 such that

σ(X) = −σ(Y ). Then T = XY is a zero-sum subsequence of ϕ(S) of

length p. Since∑
g∈H

vg(T )(vg(ϕ(S))− vg(T ))

=
∑

g∈supp(R)

vg(T )(vg(ϕ(S))− vg(T )) +
∑

g∈supp(U)

vg(T )(vg(ϕ(S))− vg(T ))

≥
∑

g∈supp(R)

(vg(ϕ(S))− 1) +
∑

g∈supp(U)\supp(X)

1

= |R′R2|+ |U | − 4 = |ϕ(S)| − |supp(S)| − 4 ≥ p− 1 ,

Lemma 5.3.1 implies that S has a zero-sum subsequence of length p. �

Lemma 5.11. Let p ≥ 17, |S| = 2p− 2 and |supp(ϕ(S))| = p− 4. Then S

has a zero-sum subsequence of length p.

Proof. Let W be a subsequence of RUV of length (p + 3)/2 such that

| gcd(W, R)| is minimal. We distinguish two cases.

CASE 1: | gcd(W, R)| ≤ 4.

Since

| gcd(W, R)−1RR′RU | = |R′R2|+ |U | − | gcd(W, R)|

≥ 2p− 2− (p− 4)− 4 = p− 2 ,

gcd(W, R)−1RR′RU has a subsequence Y of length p− 2 such that RU |Y .

By Theorem 2.3.1 we have Σ2(W ) = H, and thus W has a subsequence

X of length 2 such that σ(X) = −σ(Y ). Then T = XY is a zero-sum
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subsequence of ϕ(S) of length p. Since∑
g∈H

vg(T )(vg(ϕ(S))− vg(T ))

=
∑

g∈supp(R)

vg(T )(vg(ϕ(S))− vg(T )) +
∑

g∈supp(U)

vg(T )(vg(ϕ(S))− vg(T ))

≥
∑

g∈supp(R)

(vg(ϕ(S))− 1) +
∑

g∈supp(U)\supp(X)

1

= |R′R2|+ |U | − 2 = |ϕ(S)| − |supp(S)| − 2 ≥ p ,

Lemma 5.3.1 implies that S has a zero-sum subsequence of length p.

CASE 2: | gcd(W, R)| ≥ 5.

By the minimality of | gcd(W, R)| we have UV |W . Then |UV | = |W | −
| gcd(W, R)| ≤ (p + 3)/2 − 5 and |RUV | = p − 4. Thus it follows that

|R| ≥ (p − 1)/2. Therefore Theorem 2.3.1 implies that Σ4(R) = H. Let

X be a subsequence of R of length 4 such that T = XRUV is a zero-sum

sequence. Then |T | = p, and since∑
g∈H

vg(T )(vg(ϕ(S))− vg(T ))

=
∑

g∈supp(R)

vg(T )(vg(ϕ(S))− vg(T )) +
∑

g∈supp(U)

vg(T )(vg(ϕ(S))− vg(T ))

≥
∑

g∈supp(R)

(vg(ϕ(S))− 1) +
∑

g∈supp(U)

1

= |R′R2|+ |U | = |ϕ(S)| − |supp(S)| ≥ p + 2 ,

Lemma 5.3.1 implies that S has a zero-sum subsequence of length p. �

Lemma 5.12. Let p ≥ 23, |S| = 2p− 2 and |supp(ϕ(S))| = p− 3. Then S

has a zero-sum subsequence of length p.

Proof. We have |R′R2U | = |S| − |supp(ϕ(S))| = p + 1, in particular R 6= 1.

We distinguish two cases.

CASE 1: |R| ≥ 7.

By the Cauchy–Davenport Theorem and by Theorem 2.3.1, we obtain

that

|Σ4(R)− supp(UV )| ≥ min{p, 4(|R| − 4) + |U |+ |V |}

= min{p, 3|R| − 16 + |supp(ϕ(S))|} = p ,

and therefore Σ4(R)−supp(UV ). Thus there exist a subsequence R∗ of R of

length 4 and some x ∈ supp(UV ) such that T = R∗x−1RUV is a zero-sum
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subsequence of ϕ(S) of length p. Since∑
g∈H

vg(T )(vg(ϕ(S))− vg(T )) ≥
∑

g∈supp(R)

(vg(ϕ(S))− 1) +
∑

g∈supp(U)\{x}

1

≥ |R′R2|+ |U | − 1 = p ,

Lemma 5.3.1 implies that S has a zero-sum subsequence of length p.

CASE 2: |R| ≤ 6.

We choose some r ∈ supp(R) and distinguish two cases.

CASE 2.1: |U | ≥ (p + 3)/2.

Then Σ2(U) = p. Thus U has a subsequence X of length 2 such that

T = rRUV X is a zero-sum subsequence of ϕ(S) of length p. Since∑
g∈H

vg(T )(vg(ϕ(S))− vg(T )) ≥ |R′R2|+ |U | − 2 = p− 1,

Lemma 5.3.1 implies that S has a zero-sum subsequence of length p.

CASE 2.2: |U | ≤ (p + 1)/2.

Since |R′R2U | = p + 1, |R| ≤ 6 and p ≥ 23, it follows that |R′R| ≥
(p + 1)/2− 6 ≥ 6, and hence R′R has a subsequence R∗ of length 5. Since

|UV | ≥ |RUV | − 6 = p − 9 ≥ (p + 3)/2, it follows that Σ2(UV ) = H, and

hence UV has a subsequence X of length 2 such that T = R∗RUV X−1 is a

zero-sum subsequence of ϕ(S) of length p. Since∑
g∈H

vg(T )(vg(ϕ(S))− vg(T )) ≥ |R′R2|+ |U | − 2 = p− 1,

Lemma 5.3.1 implies that S has a zero-sum subsequence of length p.

�

Lemma 5.13. There exists a subgroup H∗ ⊂ G of order p and a projection

ϕ∗ : G → H∗ such that∑
h∈H

(
vh(ϕ

∗(S))

2

)
≥

(
|S|
2

)
(p + 1)−1 .

In particular, |S| = 2p− 2 and p ≥ 7 imply that h(ϕ∗(S)) ≥ 3.

Proof. For a subgroup H ′ ⊂ G of order p we define

AH′ = |{gg′ ∈ F(G) | gg′ is a subsequence of S and g − g′ ∈ H ′}| .

Since G has p + 1 subgroups of order p and S has
(|S|

2

)
subsequences of

length 2, it follows that there exists some subgroup K ⊂ G such that

AK ≥
(|S|

2

)
/(p + 1). Let κ : G → K denote a projection. We define ϕ∗ =

id−κ and H∗ = im(id−κ) = Ker(κ). Note that g − g′ ∈ K if and only if

ϕ∗(g) = ϕ∗(g′). Since there exists
∑

h∈H

(
vh(ϕ∗(S))

2

)
subsequences gg′ of S

such that ϕ∗(g) = ϕ∗(g′), the assertion follows.
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Let |S| = 2p− 2, p ≥ 7 and assume to the contrary that h(ϕ∗(S)) ≤ 2.

Then (
2p− 2

2

)
(p + 1)−1 ≤

∑
h∈H

(
vh(ϕ

∗(S))

2

)
≤ |supp(ϕ∗(S))| ≤ p ,

a contradiction. �

A pair (H∗, ϕ∗) consisting of a subgroup H∗ ⊂ G and a projection

ϕ∗ : G → H∗ is called suitable (with respect to S) if it satisfies the property

given in Lemma 5.13.

In the following lemmas there is a trade-off between the length of the

argument and the range of primes for which the results are valid. Some

arguments could be slightly shortened when allowing p to be larger, and

conversely, with more involved proofs some of the results could be obtained

for (slightly) smaller primes. Our aim is to obtain results (at least) for

primes p with p ≥ 47, which is the bound given by Lemma 5.9.

Lemma 5.14. Let p ≥ 23, |S| = 2p − 2, |supp(ϕ(S))| = p and (H, ϕ)

suitable. Then S has a zero-sum subsequence of length p.

Proof. Since |RUV | = p and |R3U2V | ≤ |S| = 2p − 2, it follows that

|R2U | ≤ p − 2 and thus |R| ≤ (p − 3)/2. This implies that |UV | ≥ (p +

3)/2 and hence Σ2(UV ) = H by Theorem 2.3.1. Furthermore, we have

|R′R2U | = |S| − |supp(ϕ(S))| = p− 2.

We assert that one of the following three statements holds:

• h(ϕ(S)) ≥ 6.

• There exist two distinct elements r1, r2 ∈ H whose multiplicities in

ϕ(S) are at least 5 and 4, respectively.

• There exist three distinct elements r1, r2, r3 ∈ H whose multiplicities

in ϕ(S) are at least 4.

Assume to the contrary that none of these statements holds. Since (H, ϕ)

is suitable, we have

2p− 6 ≤
(
|S|
2

)
(p + 1)−1 ≤

∑
h∈H

(
vh(ϕ(S))

2

)
.

Since none of the statements holds, the last sum is bounded above either

by (
5

2

)
+ (|R| − 1)

(
3

2

)
+ |U |

(
2

2

)
= 7 + 3|R|+ |U |

or by

2

(
4

2

)
+ (|R| − 2)

(
3

2

)
+ |U |

(
2

2

)
= 6 + 3|R|+ |U | .
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Since |R3U2V | ≤ 2p−2, it follows that either |UV | ≤ 11 or that |UV | ≤ 10,

a contradiction to |UV | ≥ (p + 3)/2.

Now we distinguish three cases.

CASE 1: h(ϕ(S)) ≥ 6.

Let r ∈ supp(R) with vr(ϕ(S)) = h(ϕ(S)), and let X be a subsequence

of UV of length 2 such that T = r2RUV X−1 is a zero-sum subsequence of

ϕ(S) of length p. Since∑
g∈H

vg(T )(vg(ϕ(S))− vg(T ))

= 3(vr(ϕ(S))− 3) +
∑

g∈supp(R)\{r}

vg(T )(vg(ϕ(S))− vg(T ))

+
∑

g∈supp(U)\supp(X)

vg(T )(vg(ϕ(S))− vg(T ))

≥ 3(vr(ϕ(S))− 3) +
∑

g∈supp(R)\{r}

(vg(ϕ(S))− 1) + |U | − 2

= 2vr(ϕ(S))− 8 + |R′R2|+ |U | − 2 ≥ |R′R2|+ |U |+ 2 = p ,

Lemma 5.3.1 implies that S has a zero-sum subsequence of length p.

CASE 2: There exist distinct elements r1, r2 ∈ H with vr1(ϕ(S)) ≥ 5 and

vr2(ϕ(S)) ≥ 4.

Let X be a subsequence of UV of length 2 such that T = r1r2RUV X−1

is a zero-sum subsequence of ϕ(S) of length p. Since∑
g∈H

vg(T )(vg(ϕ(S))− vg(T ))

= 2(vr1(ϕ(S))− 2) + 2(vr2(ϕ(S))− 2)

+
∑

g∈supp(R)\{r1,r2}

vg(T )(vg(ϕ(S))− vg(T ))

+
∑

g∈supp(U)\supp(X)

vg(T )(vg(ϕ(S))− vg(T ))

≥ vr1(ϕ(S)) + vr2(ϕ(S))− 6 + |R′R2|+ |U | − 2

≥ |R′R2|+ |U |+ 1 = p− 1 ,

Lemma 5.3.1 implies that S has a zero-sum subsequence of length p.

CASE 3: There exist three distinct elements r1, r2, r3 ∈ H with vri
(ϕ(S)) ≥

4 for all i ∈ [1, 3].

Since |RUV | = p and 3 + |R3U2V | ≤ |R′R3U2V | = 2p− 2, we infer that

|R2U | ≤ p− 5, |R| ≤ (p− 5)/2 and therefore |UV | ≥ (p + 5)/2. Note that

V 6= 1, and we choose some v ∈ supp(V ). Then Σ2(UV v−1) = H, and hence

UV v−1 has a subsequence X of length 2 such that T = r1r2r3RUV v−1X−1
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is a zero-sum subsequence of ϕ(S) of length p. Since

∑
g∈H

vg(T )(vg(ϕ(S))− vg(T ))

=
3∑

i=1

2(vri
(ϕ(S))− 2) +

∑
g∈supp(R)\{r1,r2,r3}

vg(T )(vg(ϕ(S))− vg(T ))

+
∑

g∈supp(U)\supp(X)

vg(T )(vg(ϕ(S))− vg(T ))

≥
3∑

i=1

(vri
(ϕ(S))− 3) + |R′R2|+ |U | − 2 ≥ |R′R2|+ |U |+ 1 = p− 1 ,

Lemma 5.3.1 implies that S has a zero-sum subsequence of length p. �

Lemma 5.15. Let p ≥ 23, |S| = 2p − 2, |supp(ϕ(S))| = p − 1 and (H, ϕ)

suitable. Then S has a zero-sum subsequence of length p.

Proof. Since |RUV | = p − 1 and |R3U2V | ≤ |S| = 2p − 2, it follows that

|R2U | ≤ p−1 and thus |R| ≤ (p−1)/2. This implies that |UV | ≥ (p−1)/2

and hence Σ3(UV ) = H.

Since p ≥ 23 and (H, ϕ) is suitable, one of the following five statements

holds:

• There exists an element r1 ∈ H whose multiplicity in ϕ(S) is at least

7.

• There exist two distinct elements r1, r2 ∈ H whose multiplicities in

ϕ(S) are at least 6 and 3, respectively.

• There exist two distinct elements r1, r2 ∈ H whose multiplicities in

ϕ(S) are at least 5.

• There exist three distinct elements r1, r2, r3 ∈ H whose multiplicities

in ϕ(S) are at least 5, 4 and 3, respectively.

• There exist four distinct elements r1, r2, r3, r4 ∈ H whose multiplici-

ties in ϕ(S) are at least 4, 4, 4 and 3, respectively.

Corresponding to the five cases let R∗ be one of the following five se-

quences:

r4
1, r3

1r2, r2
1r

2
2, r2

1r2r3, or r1r2r3r4 .
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Let X be a subsequence of UV of length 3 such that T = R∗RUV X−1 is a

zero-sum subsequence of ϕ(S) of length p. Since∑
g∈H

vg(T )(vg(ϕ(S))− vg(T ))

=
∑

g∈supp(R∗)

vg(T )(vg(ϕ(S))− vg(T ))

+
∑

g∈supp(R)\supp(R∗)

(vg(ϕ(S))− 1) +
∑

g∈supp(U)\supp(X)

1

=
∑

g∈supp(R∗)

(vg(T )− 1)(vg(ϕ(S))− vg(T )− 1)

+
∑

g∈supp(R)

(vg(ϕ(S))− 1) +
∑

g∈supp(U)\supp(X)

1

≥
∑

g∈supp(R∗)

(vg(T )− 1)(vg(ϕ(S))− vg(T )− 1) + |R′R2|+ |U | − 3

=
∑

g∈supp(R∗)

(vg(T )− 1)(vg(ϕ(S))− vg(T )− 1) + (p− 4) ≥ p− 1 ,

Lemma 5.3.1 implies that S has a zero-sum subsequence of length p. �

Lemma 5.16. Let p ≥ 23, |S| = 2p − 2, |supp(ϕ(S))| = p − 2 and (H, ϕ)

suitable. Then S has a zero-sum subsequence of length p.

Proof. We have |R′R2U | = |S| − |supp(ϕ(S))| = p. We distinguish two

cases.

CASE 1: |R| ≥ 6.

By the Cauchy–Davenport Theorem and by Theorem 2.3.1,

|Σ3(R)− supp(UV )| ≥ min{p, 3(|R| − 3) + |U |+ |V |}

= min{p, 2|R| − 9 + |supp(ϕ(S))|} = p ,

and therefore Σ3(R)− supp(UV ) = H. Thus there exist a subsequence R∗

of R of length 3 and some x ∈ supp(UV ) such that σ(R∗)− x = −σ(RUV )

and hence T = R∗x−1RUV is a zero-sum subsequence of ϕ(S) of length p.

Since∑
g∈H

vg(T )(vg(ϕ(S))− vg(T )) ≥
∑

g∈supp(R)

(vg(ϕ(S))− 1) +
∑

g∈supp(U)\{x}

1

≥ |R′R2|+ |U | − 1 = p− 1 ,

Lemma 5.3.1 implies that S has a zero-sum subsequence of length p.

CASE 2: |R| ≤ 5.

Since p ≥ 23 and (H, ϕ) is suitable, one of the following six statements

holds:
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• There exists an element r1 ∈ H whose multiplicity in ϕ(S) is at least

7.

• There exist two distinct elements r1, r2 ∈ H whose multiplicities in

ϕ(S) are at least 6 and 3, respectively.

• There exist two distinct elements r1, r2 ∈ H whose multiplicities in

ϕ(S) are at least 5 and 4, respectively.

• There exist three distinct elements r1, r2, r3 ∈ H whose multiplicities

in ϕ(S) are at least 5, 3 and 3, respectively.

• There exist three distinct elements r1, r2, r3 ∈ H whose multiplicities

in ϕ(S) are at least 4, 4 and 3, respectively.

• There exist four distinct elements r1, r2, r3, r4 ∈ H whose multiplici-

ties in ϕ(S) are at least 4, 3, 3 and 3, respectively.

Corresponding to the six cases let R∗ be one of the following six sequences:

r4
1, r3

1r2, r2
1r

2
2, r2

1r2r3, r1r
2
2r3 or r1r2r3r4 .

Since |UV | ≥ |RUV | − 5 = p− 7 ≥ (p + 3)/2, it follows that Σ2(UV ) = H,

and hence UV has a subsequence X of length 2 such that T = R∗RUV X−1

is a zero-sum subsequence of ϕ(S) of length p. Since∑
g∈H

vg(T )(vg(ϕ(S))− vg(T ))

=
∑

g∈supp(R∗)

vg(T )(vg(ϕ(S))− vg(T ))

+
∑

g∈supp(R)\supp(R∗)

(vg(ϕ(S))− 1) +
∑

g∈supp(U)\supp(X)

1

=
∑

g∈supp(R∗)

(vg(T )− 1)(vg(ϕ(S))− vg(T )− 1)

+
∑

g∈supp(R)

(vg(ϕ(S))− 1) +
∑

g∈supp(U)\supp(X)

1

≥
∑

g∈supp(R∗)

(vg(T )− 1)(vg(ϕ(S))− vg(T )− 1) + |R′R2|+ |U | − 2

=
∑

g∈supp(R∗)

(vg(T )− 1)(vg(ϕ(S))− vg(T )− 1) + p− 2 ≥ p− 1 ,

Lemma 5.3.1 implies that S has a zero-sum subsequence of length p.

�

Proof of Proposition 5.2. Let p ∈ P with p ≥ 47 and let S ∈ F(G) be

a squarefree sequence of length |S| = 2p− 2. By Lemma 5.13 there exists

a subgroup H ⊂ G of order p and a projection ϕ : G → H such that

(H, ϕ) is suitable and thus in particular h(ϕ(S)) ≥ 3.
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If h(ϕ(S)) ≥ p, then S has a zero-sum subsequence of length p by Lemma

5.3.3. If h(ϕ(S)) = p − 1, then S either has a zero-sum subsequence of

length p or it is of the asserted form by Lemma 5.4. If h(ϕ(S)) = p− 2,

then S either has a zero-sum subsequence of length p or it is of the

asserted form by Lemma 5.5. If h(ϕ(S)) = p− 3, then S has a zero-sum

subsequence of length p by Lemma 5.6. If h(ϕ(S)) ∈ [(p + 5)/2, p − 4],

then S has a zero-sum subsequence of length p by Lemma 5.3.2.

Now suppose that h(ϕ(S)) ∈ [3, (p + 3)/2]. Then S has a zero-sum

subsequence of length p : Indeed,

• for |supp(ϕ(S))| = p, see Lemma 5.14,

• for |supp(ϕ(S))| = p− 1, see Lemma 5.15,

• for |supp(ϕ(S))| = p− 2, see Lemma 5.16,

• for |supp(ϕ(S))| = p− 3, see Lemma 5.12,

• for |supp(ϕ(S))| = p− 4, see Lemma 5.11,

• for |supp(ϕ(S))| ∈ [(p + 1)/3, p− 5], see Lemma 5.10,

• for |supp(ϕ(S))| ∈ [(p− 1)/4, (p− 1)/3], see Lemma 5.9,

• for |supp(ϕ(S))| ≤ (p− 3)/4, see Lemma 5.8.

�
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Acta Arith. 117 (2005), 35 – 50.

[32] S. Kubertin, Nullsummen in Zd
p, Master’s thesis, Technical University Clausthal,

2002.
[33] G. Lettl and W.A. Schmid, Minimal zero-sum sequences in Cn⊕Cn, Eur. J. Comb.

28 (2007), 742 – 753.
[34] M.B. Nathanson, Additive Number Theory : Inverse Problems and the Geometry of

Sumsets, Springer, 1996.
[35] C. Reiher, On Kemnitz’ conjecture concerning lattice points in the plane, Ramanujan

J. 13 (2007), 333 – 337.
[36] K. Rogers, A combinatorial problem in abelian groups, Proc. Camb. Philos. Soc. 59

(1963), 559 – 562.
[37] B. Sury and R. Thangadurai, Gao’s conjecture on zero-sum sequences, Proc. Indian

Acad. Sci., Math. Sci. 112 (2002), 399 – 414.



INVERSE ZERO-SUM PROBLEMS 37

[38] C. Wang, Note on a variant of the Erdős-Ginzburg-Ziv Theorem, Acta Arith. 108
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