
On short zero-sum subsequences over p-groups

W. A. Schmid∗ J. J. Zhuang†

Abstract

Let G be a finite abelian group with exponent n. Let s(G) denote
the smallest integer l such that every sequence over G of length
at least l has a zero-sum subsequence of length n. For p-groups
whose exponent is odd and sufficiently large (relative to Davenport’s
constant of the group) we obtain an improved upper bound on s(G),
which allows to determine s(G) precisely in special cases. Our results
contain Kemnitz’ conjecture, which was recently proved, as a special
case.
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1 Introduction

Let G be a finite abelian group. In this paper we investigate the invariant
s(G). Two further invariants, η(G) and D(G), will be of importance as
well. We recall their definitions.

Definition 1.1. Let G be a finite abelian group with exponent n.

1. Let s(G) denote the smallest integer l such that every sequence over
G of length at least l has a zero-sum subsequence of length n.

2. Let η(G) denote the smallest integer l such that every sequence over
G of length at least l has a non-empty zero-sum subsequence of length
at most n.
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3. Let D(G) denote the smallest integer l such that every sequence over
G of length at least l has a non-empty zero-sum subsequence. (This
invariant is called Davenport’s constant of G.)

The investigation of s(G) has a long tradition. It was initiated at the
beginning of the 1960s when P. Erdős, A. Ginzburg, and A. Ziv [3] proved
s(G) = 2n− 1 if G is a cyclic group. First results for more general groups
are due to H. Harborth [10]. We refer to [2] for an overview of the numerous
contributions to this problem.

Still, the precise value of s(G) is known only if G has rank at most 2, G
is a special type of 2-group, or a very special type of 3-group with rank at
most 5. Indeed, the case of groups of rank 2 was settled only recently when
C. Reiher [12] proved, the longstanding Kemnitz’ conjecture, s(C2

p) = 4p−3
(cf. [13, 4, 7] for earlier contributions and variants and [9, Theorem 5.8.3]
for the general result on groups of rank at most 2). For the precise results
for 2- and 3-groups cf. [2] (in particular Corollary 4.4 and Remarks 4.7).

Here, we obtain the following result on s(G).

Theorem 1.2. Let p be an odd prime and let G be a finite abelian p-group
with exp(G) = n and D(G) ≤ 2n− 1. Then

2 D(G)− 1 ≤ η(G) + n− 1 ≤ s(G) ≤ D(G) + 2n− 2.

In particular, if D(G) = 2n− 1, then

s(G) = η(G) + n− 1 = 4n− 3.

We emphasize that the lower bounds on s(G) are already known (see
[8, Theorem 1.5] or [2, Lemma 3.2]). The contribution of this paper is
a new upper bound on s(G), which sharpens recent results obtained in [8,
Theorem 1.5] and [2, Theorem 1.3.2], and allows to obtain the precise value
of s(G) for certain groups. Our result confirms a conjecture of W.D. Gao.
He conjectured (cf. [6, Conjecture 2.3]) that

s(G) = η(G) + exp(G)− 1

for every finite abelian group. This conjecture holds for every group for
which s(G) has been determined so far (cf. above), and additionally it is
known to hold for groups with exp(G) ≤ 4 (see [6, Theorem 2.5]) and for
C3

5 (see [5]).
It is well-known that D(C2

p) = 2p− 1 (cf. Lemma 2.3). Thus, our result
contains the result of C. Reiher (cf. above) as a special case. In fact, recently
S. Savchev and F. Chen [14] obtained a result that gives some structural
insight into the variety of zero-sum subsequences of “long” sequences in
C2

p that, among others, implies Reiher’s result. We adapt their method to
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our more general situation and obtain an analogue of their result (Theorem
3.1) that in turn yields Theorem 1.2.

In the following section, we recall and introduce some notation, and
recall some well-known results that we will apply in our proofs. Then,
we state Theorem 3.1 and derive Theorem 1.2 from it. We end the paper
with a conjecture on the precise value of s(G) for the groups considered in
Theorem 1.2.

2 Notation and some results

Throughout, let G denote an, additively written, finite abelian group.
We denote by Z the integers, and by N and N0 the positive and non-negative
integers respectively. For r, s ∈ Z, we denote by [r, s] = {z ∈ Z : r ≤ z ≤ s}
the interval of integers. For r, n ∈ N we denote by Cn a cyclic group of
order n and by Cr

n the direct sum of r copies of Cn.
If |G| > 1, then there exist uniquely determined 1 < n1 | · · · | nr such

that G ∼= Cn1 ⊕ · · · ⊕ Cnr
. We denote by exp(G) = nr the exponent of G

and r is called the rank of G. We call G a p-group if exp(G) = pk where p
is a prime and k ∈ N.

We denote by F(G) the multiplicatively written free abelian monoid
over G. We refer to its elements as sequences (over G). Let S ∈ F(G).
By definition, S is equal to a (formal, commutative) product S =

∏l
i=1 gi

with l ∈ N0 and gi ∈ G; this representation is unique up to the order of
the factors. We denote by |S| = l ∈ N0 the length of S and by σ(S) =∑l

i=1 gi ∈ G its sum. We say that T ∈ F(G) is a subsequence of S if T
divides S (in F(G)), i.e., there exists some T ′ ∈ F(G) such that S = TT ′;
we use the notation T−1S to denote this sequence T ′. A sequence whose
sum is equal to 0 is called a zero-sum sequence. The unit element of F(G)
is called the empty sequence; its length and sum equal 0 (in N0 and G
respectively).

2.1 Induced subsequences with prescribed sum

The “counting” of certain subsequences will play a main role in our proofs.
Therefore, we introduce some notation related to this problem. Similar
considerations can be found in [14].

Let S = g1 . . . gl ∈ F(G). For I ⊂ [1, l], let SI =
∏

i∈I gi denote
the subsequence induced by I. Let d ∈ N, i = (i1, . . . , id) ∈ Zd and
h = (h1, . . . , hd) ∈ Gd. We denote by

Ni
h(S) = |{(I1, . . . , Id) : Ij ⊂ [1, l], |Ij | = ij , σ(SIj ) = hj ,

Ij ∩ Ik = ∅ for all j, k ∈ [1, d]}| ,
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i.e., the number of (ordered) d-tuples of disjoint subsets of [1, l] with pre-
scribed number of elements and prescribed sum of the induced subsequence.
For d = 1 this coincides with the usual terminology, cf. [9, Definition 5.3.7].
For 0 = (0, . . . , 0), we omit the subscript and write Ni(S) instead of Ni

0(S).
Though we defined Ni

h(S) with respect to a particular representation of
S as a product of elements gi, Ni

h(S) is clearly invariant under permutation
of the factors of this product and actually just depends on S. If any of the
ij is negative, then Ni

h(S) = 0.
In the following lemma we record some basic properties of Ni

h(S) that
we will use frequently.

Lemma 2.1. Let S ∈ F(G) with |S| = l, and let d ∈ N, i = (i1, . . . , id) ∈
Zd and h = (h1, . . . , hd) ∈ Gd.

1. Suppose d ≥ 2. Let k ∈ [1, d], and ik = (i1, . . . , îk, . . . , id) ∈ Zd−1

and hk = (h1, . . . , ĥk, . . . , hd) ∈ Gd−1 where the ˆ indicates that the
coordinate is omitted. Then

Ni
h(S) =

∑
I⊂[1,l], |I|=ik, σ(SI)=hk

Nik
hk

(S−1
I S).

2. Let i =
∑d

j=1 ij and h =
∑d

j=1 hj. Then

Ni
h(S) =

∑
I⊂[1,l], |I|=i, σ(SI)=h

Ni
h(SI).

Proof. The first assertion is a direct consequence of the definition. To get
the second one, we observe that d disjoint sets I1, . . . , Id with |Ij | = ij
are contained in a unique set I with |I| = i and that necessarily σ(SI) =∑d

j=1 σ(SIj
) = h.

2.2 Two results

We recall two well-known results. Important special cases of the following
result can be found in [1] and [8].

Lemma 2.2. Let S ∈ F(G) and suppose D(G⊕ Cn) < 3n. If Nn(S) = 0,
then N(2i+1)n(S) = 0 for each i ∈ N0.

Proof. See Proposition 5.7.7.3 in [9].

The following result is due to J.E. Olson [11] and D. Kruyswijk (cf. [15]).
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Lemma 2.3. Let G ∼= Cn1 ⊕ · · · ⊕ Cnr be a p-group. Then D(G) = 1 +∑r
i=1(ni − 1). Moreover, if |S| ≥ D(G), then for each g ∈ G∑

i∈Z
(−1)i Ni

g(S) ≡ 0 (mod p).

Proof. See Proposition 5.5.8.2 in [9].

3 Main technical result

The following theorem is the main technical result of this paper.

Theorem 3.1. Let p be an odd prime and let G be a finite abelian p-group
with exp(G) = n and D(G) ≤ 2n− 1. Further, let l ∈ [1, n] and S ∈ F(G)
with D(G) + (n− 2) + l ≤ |S| < 4n.

1. For each {0} ⊂ I ⊂ [0, l − 1] we have∑
i∈I

(−1)i
(
N(i,n−i)(S) + N(i,3n−i)(S)

)
+

∑
i∈[0,n−1]\I

(−1)i N(i,2n−i)(S)

≡ 1 + 2−1 N(n,n)(S) (mod p).

2. One of the following two statements holds:

(a) S has a zero-sum subsequence B with |B| = n.

(b) S has a zero-sum subsequence B with |B| = 2n such that B has
a zero-sum subsequence B′ with |B′| ∈ [l, n− 1].

Now, using Theorem 3.1, we prove Theorem 1.2.

Proof of Theorem 1.2. For a proof of the lower bound on η(G) we refer to
[2, Lemma 3.2], and a proof that η(G) + n− 1 ≤ s(G) may be found in [9,
Lemma 5.7.2].

To show the upper bound on s(G), let S ∈ F(G) be a sequence of length
|S| ≥ D(G)+2n−2. We may suppose that |S| = D(G)+2n−2; otherwise we
consider a subsequence of S of that length. We apply Theorem 3.1.2 with
l = n. Since in case l = n statement (b) cannot hold, we infer that S has
a zero-sum subsequence of length n. Consequently, s(G) ≤ D(G) + 2n− 2.

Obviously, the assertion on the case of equality follows from the upper
and lower bound.

The rest of the section is concerned with the proof of Theorem 3.1.
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3.1 Auxiliary results

Lemma 3.2. Let p be an odd prime and let G be a p-group. Let d ∈ N
and k ∈ [1, d]. Further, let i = (ij)d

j=1 ∈ Zd and h = (hj)d
j=1 ∈ Gd, and let

ek = (δj,k)d
j=1 ∈ Zd denote the k-th unit vector. If |S| ≥ D(G) + pm − 1 +∑

j∈[1,d]\{k} ij, then∑
j∈Z

(−1)j Ni+jpmek

h (S) ≡ 0 (mod p).

Proof. We prove the result by induction on d. For d = 1 we have to show
that if |S| ≥ D(G) + pm − 1, then

∑
j∈Z(−1)j Ni1+jpm

h1
(S) ≡ 0 (mod p).

Thus, suppose that |S| ≥ D(G) + pm − 1. Let G⊕ Cpm = G⊕ 〈e〉 and let

ϕ :

{
G → G⊕ Cpm

g 7→ g + e
.

By Lemma 2.3 |ϕ(S)| ≥ D(G⊕ Cpm) and for each g′ ∈ G⊕ Cpm ,∑
j∈Z

(−1)j Nj
g′(ϕ(S)) ≡ 0 (mod p). (1)

We note that for g′ = g1 + i1e,

Nj
g′(ϕ(S)) =

{
Nj

g1
(S) if j ≡ i1 (mod pm)

0 otherwise
.

Consequently by (1),∑
j∈Z

(−1)i1+jpm

Ni1+jpm

h1
(S) ≡ 0 (mod p).

Since p is odd, (−1)jpm

= (−1)j and the claim follows.
Now, let d ≥ 2 and we assume that the result holds for d − 1. Let l ∈
[1, d] \ {k}. By Lemma 2.1.1 we have∑

j∈Z
(−1)j Ni+jpmek

h (S)

=
∑
j∈Z

(−1)j
∑

I⊂[1,|S|], σ(SI)=hl, |I|=il

N
(i+jpmek)l

hl
(S−1

I S)

=
∑

I⊂[1,|S|], σ(SI)=hl, |I|=il

∑
j∈Z

(−1)j N
(i+jpmek)l

hl
(S−1

I S),
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where, as in Lemma 2.1.1, (i+jpmek)l ∈ Zd−1 and hl ∈ Gd−1 are obtained
by omitting the l-th coordinate. If |S| ≥ D(G)+pm−1+

∑
j∈[1,d]\{k} ij , then

|S−1
I S| = |S|− il ≥ D(G)+pm−1+

∑
j∈[1,d]\{k,l} ij and consequently each

sum
∑

j∈Z(−1)j N
(i+jpmek)l

hl
(S−1

I S) is equal to 0 modulo p by the induction
hypothesis.

Lemma 3.3. Let G be a p-group, g ∈ G, and S ∈ F(G). Further, let l ∈ N
such that 2l ≥ D(G).

1. If |S| = 2l and σ(S) = 2g, then

2
l−1∑
i=0

(−1)i Ni
g(S) ≡ (−1)l−1 Nl

g(S) (mod p).

2.

2
l−1∑
i=0

(−1)i N
(i,2l−i)
(g,g) (S) ≡ (−1)l−1 N

(l,l)
(g,g)(S) (mod p).

Proof. 1. Suppose |S| = 2l and σ(S) = 2g. By Lemma 2.3

2l∑
i=0

(−1)i Ni
g(S) ≡ 0 (mod p).

We note that Ni
g(S) = N

|S|−i
σ(S)−g(S) = N2l−i

g (S) for each i ∈ Z. Since clearly
i ≡ 2l − i (mod 2), the result follows.
2. We have

2
l−1∑
i=0

(−1)i N
(i,2l−i)
(g,g) (S) = 2

l−1∑
i=0

(−1)i
∑

I⊂[1,l], σ(SI)=2g, |I|=2l

Ni
g(SI)

=
∑

I⊂[1,l], σ(SI)=2g, |I|=2l

2
l−1∑
i=0

(−1)i Ni
g(SI)

≡
∑

I⊂[1,l], σ(SI)=2g, |I|=2l

(−1)l−1 Nl
g(SI)

= (−1)l−1 N
(l,l)
(g,g)(S)

where the congruence holds modulo p and we applied Lemma 2.1.2 to obtain
the first and the last equality, and the first assertion of this lemma to get
the congruence.
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3.2 Proof of Theorem 3.1

Proof of Theorem 3.1. 1. Since 2n ≥ D(G), Lemma 3.3.2 yields (note that
n− 1 is even)

2
n−1∑
i=0

(−1)i N(i,2n−i)(S) ≡ N(n,n)(S) (mod p). (2)

For each k ∈ [0, l − 1], by Lemma 3.2 (with pm = n),∑
j∈Z

(−1)j N(k,jn−k)(S) ≡ 0 (mod p). (3)

Since |S| < 4n, for k = 0 this simplifies to

N(0,0)(S)− N(0,n)(S) + N(0,2n)(S)− N(0,3n)(S) ≡ 0 (mod p).

Since N(0,0)(S) = 1, substituting in (2) gives

2
(
−1+N(0,n)(S)+N(0,3n)(S)+

n−1∑
i=1

(−1)i N(i,2n−i)(S)
)
≡ N(n,n)(S) (mod p),

which yields the claimed congruence in the special case I = {0}. To obtain
the general case, it suffices to note that (3) for k ∈ [1, l − 1] implies

N(k,n−k)(S) + N(k,3n−k)(S) ≡ N(k,2n−k)(S) (mod p).

2. We note that (a) is equivalent to Nn(S) 6= 0 and (b) to N(k,2n−k)(S) 6= 0
for some k ∈ [l, n − 1]. By the first assertion of this theorem (with I =
[0, l − 1]) at least one of the following has to hold:

• N(n,n)(S) 6= 0.

• N(k,n−k)(S) 6= 0 or N(k,3n−k)(S) 6= 0 for some k ∈ [0, l − 1].

• N(k,2n−k)(S) 6= 0 for some k ∈ [l, n− 1].

If the first or the last assertion holds, then (a) or (b) respectively holds. If
N(k,n−k)(S) 6= 0 for k ∈ [0, l−1], then there exist two zero-sum subsequences
of S of length k and n − k respectively and their product is a zero-sum
subsequence of S of length n. Similarly, if N(k,3n−k)(S) 6= 0, then N3n(S) 6=
0 and, since by Lemma 2.3 D(G ⊕ Cn) = D(G) + n − 1 < 3n, by Lemma
2.2 Nn(S) 6= 0.
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4 Concluding remark

In view of the known results the following conjecture on s(G) (and η(G))
for p-groups with “large” exponent seems conceivable.

Conjecture 4.1. Let G be a finite abelian p-group with exp(G) = n and
D(G) ≤ 2n− 1. Then

2 D(G)− 1 = η(G) + n− 1 = s(G).

In other words, equality holds at the lower bounds in Theorem 1.2.

This conjecture is confirmed in case G has rank at most 2 (cf. [9, The-
orem 5.8.3]) and in case D(G) = 2n− 1 by Theorem 1.2.
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