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QUASI-HALF-FACTORIAL SUBSETS OF

ABELIAN TORSION GROUPS

S. T. CHAPMAN, W. A. SCHMID, AND W. W. SMITH

Abstract. If G is an abelian torsion group with generating subset G0, then

by a classical result in the theory of non-unique factorizations, the block

monoid B(G0) is a half-factorial monoid if each of its atoms has cross number

1. In this case, G0 is called a half-factorial set. In this note, we introduce

the notion of a k-quasi-half-factorial set and show for many abelian torsion

groups that G0 k-quasi-half-factorial implies that G0 is half-factorial. We

moreover show in general that G0 k-quasi-half-factorial implies that G0 is

weakly half factorial, a condition which has been of interest in the recent

literature.

1. Introduction

A monoid (or a domain) is called half-factorial if every (non-zero and) non-
invertible element is a product of irreducible elements and for each element the
number of factors in such a factorization is unique; see the following section for
a more formal definition and explanation of other terminology. Initiated by a
paper of L. Carlitz [2], the study of half-factorial structures is a main subject of
non-unique factorization theory (cf., e.g., the survey articles [3, 7]).

It is well-known that whether a Krull monoid, thus in particular a Dedekind
domain, is half-factorial just depends on its class group and the subset of classes
containing (non-empty, divisorial) prime ideals; more precisely, a Krull monoid
with class group G and subset of classes containing prime ideals G0 is half-factorial
if and only if G0 is a half-factorial set, which means that the block monoid B(G0)
is half-factorial. We refer to the monographs [16], in particular Chapter 9, and
[10], in particular to Section 3.4, for a detailed treatment and a discussion of the

2000 Mathematics Subject Classification. 20K01, 11R27, 13F05.

Key words and phrases. half factorial monoid, block monoid, abelian torsion group.

W. A. Schmid is supported by the FWF (Project number P18779-N13).

1



2 S. T. CHAPMAN, W. A. SCHMID, AND W. W. SMITH

historical development, originating in the works of L. Carlitz, H. Davenport, and
W. Narkiewicz.

Thus, one is interested in investigating half-factorial subsets of abelian groups.
It should be noted that indeed for each abelian group G and each strongly gen-
erating subset G0 ⊂ G (i.e., the semigroup generated by G0 is equal to G) some
Krull monoid (even Dedekind domain) exists such that G is (isomorphic to) the
class group of this Krull monoid and G0 is the subset of classes containing prime
ideals (see, e.g., [10, Theorem 2.5.4], and [12] for a more detailed analysis for
Dedekind domains). Consequently it is reasonable to study half-factorial subsets,
and related notions, of (abstract) abelian groups without any further reference
to some particular Krull monoid. Frequently, as is done in this paper, one even
disregards the restriction that the set has to be strongly generating; on the one
hand, for instance in investigations of quantitative aspects of non-unique factor-
izations, non-generating half-factorial subsets are of interest as-well (see, e.g., [10,
Theorem 9.4.6]), and on the other hand for most investigations it is no actual
restriction.

For torsion groups the following characterization, due to L. Skula [20] and
A. Zaks [22], of half-factorial sets is well-known and decisive in their investigation.

Theorem 1.1. Let G be an abelian torsion group, and let G0 ⊂ G. The set G0

is half-factorial if and only if for each minimal zero-sum sequence A = g1 . . . gn

over G0 the cross number k(A) =
∑n

i=1 1/ ord gi is equal to 1.

However, despite this characterization an explicit characterization of half-
factorial subsets is only known for special types of groups (cf. [10, Section 6.7]). In
investigations on half-factorial sets, and more generally of the arithmetic of Krull
monoids, it has turned out to be useful to generalize the notion ‘half-factorial set’
in various ways (see, e.g., [4, 5] and the discussion on whf sets below).

In this paper we introduce a new type of generalization, namely k-quasi-half-
factorial sets, where k ∈ N, which is motivated by the characterization recalled
above; in particular, it is only feasible for subsets of torsion groups. Since some
notation is needed to state this definition in a convenient way, we defer it to
Section 3. For now, we just mention that, by Theorem 1.1, half-factorial sets are
characterized by the fact that a certain semi-length function, namely the cross
number, is constant on the set of atoms (cf. [1]), and in this paper we investigate
subsets G0 ⊂ G for which this semi-length function is constant on certain other
subsets of B(G0). Moreover, 1-quasi-half-factorial sets are those sets that fulfil
the condition of Theorem 1.1; thus, by this theorem ‘1-quasi-half-factorial’ is
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equivalent to ‘half-factorial’. Conversely, it will be easy to see that half-factorial
sets are k-quasi-half-factorial for every k ∈ N (cf. Lemma 3.2).

The aim of this paper is to explore to what extent these observations can be
extended. More precisely, we seek to answer whether, for each k ∈ N, every
k-quasi-half-factorial set is already half-factorial. Though, this question, in full
generality, remains unanswered, we settle various special cases. Among others,
one of our results (Theorem 5.1) provides a positive answer to this question in
case the set under consideration is the subset of classes containing prime ideals of
a Krull monoid containing a prime element, which of course includes (the multi-
plicative monoids of) rings of integers of algebraic number fields, the archetypal
objects in non-unique factorization theory.

From a technical point of view a key-result and of some interest in its own right
is Proposition 4.3, where it is proved that if G0 is k-quasi-half-factorial for some
k ∈ N, then G0 is weakly half-factorial (see Section 3 for the definition). Weakly
half-factorial sets were introduced by J. Śliwa [21], using different terminology, in
his investigations on half-factorial sets; also see [10, Definition 6.7.2] or [18].

2. Preliminaries

We recall some notation and terminology, which is common in non-unique
factorization theory; essentially we follow the usage in the monograph [10]. A
monoid H is an abelian cancellative semigroup with identity element 1; we use
multiplicative notation for monoids. The set of invertible elements of H is denoted
by H×. An element a ∈ H \H× is called an atom if a = bc with b, c ∈ H implies
that b or c is invertible; and it is called prime if a | bc implies a | b or a | c. We
denote the set of atoms and primes of H by A(H) and P(H), respectively. Let
h ∈ H \H×. If h = a1 . . . an with ai ∈ A(H), then h is said to have a factorization
(into atoms) of length n. The set L(h) = {n : h has a factorization of length n}
is called the set of lengths of h; for h ∈ H×, let L(h) = {0}. The monoid is called
atomic if L(h) 6= ∅ for every h ∈ H, and it is called half-factorial if | L(h)| = 1 for
every h ∈ H.

Let G be an additively written abelian torsion group. We denote its exponent
by exp(G) ∈ N∪ {∞}. We denote by Cn a cyclic group of order n ∈ N, and for a
prime p, by Cp∞ a quasi-cyclic group of type p∞.

For a subset G0 ⊂ G, let F(G0) denote the, multiplicatively written, free
abelian monoid over G0. An element S ∈ F(G0) is called a sequence over G0;
by definition S =

∏
g∈G0

gvg with vg ∈ N0 where almost all vgs equal 0, and

S =
∏l

i=1 gi for some l ∈ N0 and gi ∈ G0, which are uniquely determined up to
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permutation. One calls σ(S) =
∑n

i=1 gi ∈ G the sum of S, |S| = n its length,
and k(S) =

∑n
i=1 1/ ord gi its cross number. Moreover, vg(S) = vg is called the

multiplicity of g in S. The monoid B(G0) = {S ∈ F(G0) : σ(S) = 0} ⊂ F(G0) is
called the block monoid over G0; its elements are called zero-sum sequences. For
convenience we write A(G0) instead of A(B(G0)) and do analogously for similar
notation. The elements of A(G0) are the minimal zero-sum sequences over G0.

3. Basic definitions and first results

Let H be an atomic monoid. To state the definition of k-quasi-half-factorial
sets, we first introduce k-quasi atoms. For k ∈ N, we call h ∈ H a k-quasi-atom if
max L(h) = k; we denote the set of k-quasi-atoms of H by Ak(H). This modifies
a definition of F. Halter-Koch [13] (also see [10, Definition 9.0]), namely Mk(H)
the set of h ∈ H with max L(h) ≤ k. Obviously Ak(H) = Mk(H) \Mk−1(H).
Moreover, a ∈ A(H) if and only if max L(a) = 1 (equivalently L(a) = {1}) and
Ak(H) ⊂ A(H)k, but in general this inclusion may be proper, and more precisely
Ak(H) = A(H)k \

⋃
l≥k+1A(H)l. Furthermore, we note that if S ⊂ H is a

divisor-closed submonoid of H, i.e., S is a submonoid such that for each s ∈ S

all divisors of s in H are in fact elements of S, then Ak(S) = Ak(H) ∩ S; in
particular, for G0 ⊂ G we have Ak(G0) = Ak(G) ∩ B(G0). Finally, recall that
A2(G) is the set of almost minimal zero-sum sequences, which were studied in [6].

As already mentioned (see Theorem 1.1) half-factorial subsets of torsion groups
are characterized by the cross number of the atoms of the block monoid. We
extend this definition by considering quasi-atoms instead of atoms.

Definition 3.1. Let G be an abelian torsion group and let G0 ⊂ G. For k ∈ N,
we call G0 a k-quasi-half-factorial (k-qhf) set if k(A) = k for each A ∈ Ak(G0).

Moreover, we recall the definition of a whf set. A subset G0 ⊂ G of an abelian
torsion group is called weakly half-factorial (whf) if k(A) ∈ N for each A ∈ A(G0).

The following basic lemma relates the qhf-properties for different values of k.

Lemma 3.2. Let G be an abelian torsion group and let G0 ⊂ G. Further let
k, ` ∈ N. If G0 is k-qhf and `-qhf, then G0 is (k + `)-qhf. In particular, if G0 is
half-factorial, then G0 is k-qhf for every k ∈ N.

Proof. Let B ∈ Ak+`(G0). By definition we have max L(B) = k + `; let B =
A1 . . . Ak+` with Ai ∈ A(G0). By the maximality of k + `, it follows that B1 =
A1 . . . Ak ∈ Ak(G0) and B2 = Ak+1 . . . Ak+` ∈ A`(G0). Since G0 is k-qhf and
`-qhf, we have k(B1) = k and k(B2) = ` and consequently k(B) = k + `. Thus G0

is (k + `)-qhf.



QUASI-HALF-FACTORIAL SUBSETS 5

Since, by Theorem 1.1, G0 is half-factorial if and only if G0 is 1-qhf, the second
statement is a direct consequence of the first one. �

4. Arbitrary subsets of special groups

In this section we consider arbitrary subsets of particular types of abelian
groups. For groups of small total rank we obtain the following result.

Theorem 4.1. Let G be (isomorphic to) a subgroup of Cp∞ ⊕ Cq∞ for (possibly
equal) primes p and q or of C2

2 ⊕Cp∞ for some odd prime p. If G0 ⊂ G is a k-qhf
set for some k ∈ N, then G0 is half-factorial.

We also consider groups of small exponent.

Theorem 4.2. Let G be an abelian torsion group and let G0 ⊂ G.

(1) If exp(G) = 2 and G0 is k-qhf for some k ∈ N, then G0 is half-factorial.
(2) If exp(G) = 3 and G0 is k-qhf for some k ∈ {2, 3}, then G0 is half-

factorial.
(3) If exp(G) = 4 and G0 is 2-qhf, then G0 is half-factorial.

To prove these results we first prove some more technical results. The following
proposition is a key-tool in the proof of Theorem 4.1.

Proposition 4.3. Let G be an abelian torsion group and let G0 ⊂ G. If G0 is a
k-qhf set, for some k ∈ N, then G0 is a whf set.

Proof. We suppose that G0 is k-qhf, for k ∈ N, and we assume to the contrary
that G0 is not whf. Thus, there exists some A′ ∈ A(G0) such that k(A′) /∈ N. We
set G′0 = suppA′, which is a finite set. Let A ∈ A(G′0) such that k(A) is minimal
with k(A) /∈ N among all elements of A(G′0).

First, we assume that k(A) < 1. We assert that Ak ∈ Ak(G), contradicting
the assumption that G0 is k-qhf. Obviously k ∈ L(Ak) and, since Ak ∈ B(G′0)
and A has the minimal cross number among all elements of A(G′0), it follows that
indeed max L(Ak) = k.

So, we assume that k(A) > 1. Thus, the cross number of each element of A(G′0)
is at least 1. Let T ∈ A(G′0) with k(T ) = 1, e.g., T = gord g for some g ∈ G′0. Let
B = AT k−1 ∈ B(G′0). We assert that B ∈ Ak(G), again a contradiction, since
k(B) = k(A) + k − 1 > k. It is obvious that k ∈ L(B). Let B = A1 . . . Aj be a
factorization into atoms. It remains to show that j ≤ k. Since k(B) /∈ N, there
exists some 1 ≤ m ≤ j with k(Am) /∈ N. By assumption, k(Am) ≥ k(A) and thus
k(A−1

m B) ≤ k − 1. Since k(Ai) ≥ 1 for each 1 ≤ i ≤ j, we have j − 1 ≤ k − 1,
completing the argument. �
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Though, by Theorem 5.1 and the well-known fact that there exist whf sets
that are not half-factorial or by Theorem 4.2 and the fact that such sets exist
for elementary 2-groups, it is clear that whf sets exist that are not k-qhf for each
k ∈ N, we give the following simple example for illustration.

Example 4.4. Let G = C3
2 = 〈e, e1, e2〉. It is well-known (see, e.g., [10, Theorem

6.7.5]), and easy to see, that the set G0 = e + 〈e1, e2〉 is whf. But, for each k ∈ N
we have e2k−1(e + e1)(e + e2)(e + e1 + e2) ∈ Ak(G0) and thus G0 is not k-qhf.

The following result, which extends [18, Proposition 4.4] (also see [10, Theorem
5.1.14, Corollary 5.7.18]), allows us to conclude that for certain groups whf sets
are even half-factorial, which by Proposition 4.3 implies that k-qhf sets are half-
factorial. First, we recall the definition of the cross number of an abelian torsion
group G: we call K(G) = sup{k(A) : A ∈ A(G)} the cross number of G.

Proposition 4.5. Let G be an abelian torsion group. If G is isomorphic to a
subgroup of Cp∞ ⊕ Cq∞ for (possibly equal) primes p and q or of C2

2 ⊕ Cp∞ for
some odd prime p, then k(A) < 2 for every A ∈ A(G).

Proof. Let A ∈ A(G). Clearly k(A) ≤ K(〈supp A〉). Since the finite abelian
group 〈suppA〉 has total rank at most two or is isomorphic to C2

2 ⊕Cpn for some
odd prime p and n ∈ N the result follows by well-known results on the cross
number due to A. Geroldinger and R. Schneider (cf. [10], in particular Theorem
5.5.9 and Theorem 5.7.17 for a unified treatment, and [9, 11] for the original
results). �

Indeed, it is not difficult to see that the converse of the above proposition
holds as well. In view of [18, Proposition 4.4], we note that K(Cp∞ ⊕ Cq∞) =
K(C2

2 ⊕ Cp∞) = 2. And, we point out that there exist some further groups with
K(G) = 2, namely C30, C2⊕C12, C3⊕C6, and subgroups of rank 3 of C2

2 ⊕C2∞ ;
this is a consequence of a lower bound on K(G) due to U. Krause and C. Zahlten
[15] and again results of A. Geroldinger and R. Schneider [9, 11] (again, see [10,
Chapter 5]). However, for these groups not every whf set is half-factorial (cf. [18,
Theorem 4.5]).

Proof of Theorem 4.1. Since G0 is k-qhf we know, by Proposition 4.3, that
G0 is whf. Since for each A ∈ A(G0) on the one hand k(A) ∈ N and on the
other hand by Proposition 4.5 k(A) < 2, it follows by Theorem 1.1 that G0 is
half-factorial. �

Furthermore, it is known for some other types of groups that every whf set is
already half-factorial. In particular, this holds true for C2

p ⊕Cq and C2pq where p
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and q are primes and q ≡ 1 (mod p), see [18, Proposition 4.8] and [17, Proposition
7.4] respectively. Again by Proposition 4.3, for these groups k-qhf sets are even
half-factorial as-well.

The following result is used to prove Theorem 4.2.

Proposition 4.6. Let G be an abelian torsion group and let G0 ⊂ G a k-qhf set
for some k ∈ N. If A ∈ A(G0) with k(A) 6= 1, then vg(A) ≤ ord g−1−(ord g+1)/k

for every g ∈ G0.

Proof. Suppose A ∈ A(G0) with k(A) 6= 1. By Proposition 4.3 we have k(A) >

1. Let g ∈ G0. We consider B = g(k−1) ord gA. We have k ∈ L(B) and, since
k(B) 6= k and G0 is k-qhf, we get max L(B) ≥ k +1. Let B =

∏`
i=1 Ai with ` > k

and Ai ∈ A(G0). We note that, for each 1 ≤ i ≤ `, Ai 6= A and thus Ai - A;
consequently vg(Ai) ≥ vg(A) + 1. We have

(k − 1) ord g + vg(A) =
∑̀
i=1

vg(Ai) ≥ (k + 1)(vg(A) + 1)

and the claim follows. �

A natural extension of this result is to consider A′ ∈ Am(G0) with k(A′) 6= m

for some m ≤ k instead of A ∈ A(G0). However, this extension does not seem to
yield further interesting results.

Proof of Theorem 4.2. We assume that G0 is not half-factorial. Thus, by
Theorem 1.1 there exists some A ∈ A(G0) with k(A) 6= 1. By Proposition 4.6
it follows that if G0 is k-qhf, then vg(A) ≤ ord g − 1 − (ord g + 1)/k for each
g ∈ G0. However, vg(A) ≥ 1 for each g ∈ suppA ⊂ G0. In each case this yields a
contradiction. �

We conclude this section by considering subsets of the group C3
5 , which is not

covered by the results obtained so far.

Proposition 4.7. Let G0 ⊂ C3
5 be a 2-qhf set. Then G0 is half-factorial.

Since it will be needed in the proof of this proposition, we recall a classical
result of A. Kemnitz [14, Theorem 3], see [8] for recent developments on this type
of problem.

Lemma 4.8. Let S ∈ F(C2
5 ) with vg(S) ≤ 1 for each g ∈ C2

5 . If |S| ≥ 9, then
there exists some T | S such that σ(T ) = 0 and |T | = 5.
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Proof of Proposition 4.7. We assume to the contrary that G0 is not half-
factorial. Thus, there exists some A ∈ A(G) with k(A) 6= 1. By Proposition 4.3
we know that G0 is whf. Thus k(A) ∈ N and moreover G0 ⊂ {0}∪(e+G′) for some
G′ ∼= C2

5 and 〈e,G′〉 = C3
5 (cf., e.g., [10, Theorem 6.7.5] or [18, Theorem 3.2]).

Since 0 - A it follows that |A| ≥ 10. Moreover, by Proposition 4.6, we known that
vg(A) ≤ 1 for each g ∈ G0. Thus we have A =

∏l
i=1(e+gi) with pairwise distinct

gi ∈ G′ and l ≥ 10. We apply Lemma 4.8 to the sequence
∏l

i=1 gi and obtain that
there exists a subset I ⊂ {1, . . . , l} with |I| = 5 such that

∑
i∈I gi = 0. Clearly∑

i∈I(e + gi) = 0 as well, a contradiction to A ∈ A(G0). �

5. Special subsets of arbitrary groups

In this section we consider the problem for arbitrary abelian torsion groups, but
impose certain conditions on the subsets we consider. In the following proposition
we require that the set of prime elements in B(G0) (denoted by P(G0)) is not
empty. We recall (cf., e.g., [19, Proposition 3.3]) that P(G0) ⊂ {gord g : g ∈ G0},
in particular k(P ) = 1 for each P ∈ P(G0). Moreover, if 0 ∈ G0, then 0 ∈ P(G0).

Theorem 5.1. Let G be an abelian torsion group and let G0 ⊂ G.

(1) Suppose G0 is a k-qhf set for some k ∈ N. If P(G0) 6= ∅, thus in particular
if 0 ∈ G0, then G0 is half-factorial.

(2) Suppose G0 is a 2-qhf set. If there exists some g ∈ G0 with ord g ≤ 2,
then G0 is half-factorial.

Interpreting, as usual, G0 ⊂ G as the subset of classes containing prime ideals
of the class group of some Krull monoid H, we have that 0 ∈ G0 is equivalent to
P(H) 6= ∅. However in general, P(G0) 6= ∅ does not imply P(H) 6= ∅.

Proof of Theorem 5.1. 1. Let P ∈ P(G0). Let A ∈ A(G0). We consider
B = AP k−1. Since P is prime, each factorization of B is of the form P k−1R and
obviously A = R. Thus, B has a unique factorization and L(B) = {k}. Thus,
since G0 is k-qhf, it follows that k(B) = k, and since k(P ) = 1, we have k(A) = 1
and the result follows by Theorem 1.1.
2. Seeking a contradiction, we assume that g ∈ G0 with ord g ≤ 2 but G0 is not
half-factorial. Thus, there exists some A ∈ A(G0) with k(A) 6= 1. By Proposition
4.6 we have vg(A) ≤ ord g−1− (ord g+1)/2 < 0. Yet, clearly we have vg(A) ≥ 0,
which yields the desired contradiction. �
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