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Abstract. The investigation of quantitative aspects of non-unique fac-
torizations in the ring of integers of an algebraic number field gives rise
to combinatorial problems in the class group of this number field. In this
paper we investigate the combinatorial problems related to the function
P(H,D,M)(x), counting elements whose sets of lengths have period D,
for extreme choices of D. If the class group fulfils certain conditions,
we obtain the value of an exponent in the asymptotic formula of this
function and results that imply oscillations of an error-term.

1. Introduction and main results

Let K be an algebraic number field, R its ring of integers, H the monoid

of non-zero principal ideals of R and G the ideal class group. Then every

non-zero element of R (or every element of H, respectively) is a product

of finitely many irreducible elements (principal ideals, respectively), but

such a factorization need not be unique (unless G is trivial). In the sixties

W. Narkiewicz initiated the investigation of quantitative aspects of non-

unique factorizations in algebraic number fields. That means one studies,

for arithmetically interesting subsets Z ⊂ H, the asymptotic behavior of

the associated counting function Z(x) = |{a ∈ Z : |a| ≤ x}| for x tending

to infinity. For an overview on known results see [20, Chapter 9] and [10,

Chapter 9] and for recent contributions see, e.g., [1] and [24].

We start our discussion with a classical example, which is relevant for

the investigations of this paper. Then, we turn to the problem actually

considered in this paper and formulate the main results.

Suppose that |G| ≥ 3 and let a ∈ H. If a = u1 · . . . ·ul is a factorization of

a into irreducible elements u1, . . . , ul ∈ H, then l is called the length of the

factorization and L(a) = {l ∈ N0 : a has a factorization of length l} ⊂ N0

denotes the set of lengths of a. Recall that |G| ≥ 3 implies that for every

N ∈ N there exists some a ∈ H such that | L(a)| ≥ N . If k ∈ N and

Gk = Gk(H) = {a ∈ H : | L(a)| ≤ k}, then

Gk(x) ∼ Cx(log x)−1+µ(G)/|G|(log log x)ψk(G)
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where C is a positive real constant, and µ(G) ∈ N and ψk(G) ∈ N0 depend

only on G and k (see Subsection 2.2 for the precise definition of µ(G) and

ψk(G)).

The function Gk(x) was introduced by W. Narkiewicz (see [18, Theorem

III]) and the above result (with the combinatorial description of the expo-

nents) was given by A. Geroldinger [6]. Although Gk(x) received a lot of

attention in recent years (for an overview see [10, Chapter 9]), there are

still many open questions around it. Among others, even for cyclic groups

the precise value of µ(G) is in general unknown (see [23]) and even less is

known on ψk(G) (see [25, 29]). Yet, since it is known that µ(G) < |G|, for

|G| ≥ 3, a simple consequence of the above formula is that the density of

all elements a ∈ H with | L(a)| ≤ k is zero.

In the present paper we study counting functions that deal with arbitrar-

ily long sets of lengths. Such counting functions were considered initially in

[5, Proposition 10] and [6, Satz 2], and more recently in [10, Chapter 9]. By

a result of A. Geroldinger [5] (see [9] or [10] for generalizations and refine-

ments) it is known that sets of lengths have a certain structure. Namely,

there exists some bound MG ∈ N, just depending on G, such that every set

of lengths in H is an almost arithmetical multiprogression (an AAMP for

short) with some difference d ∈ ∆∗(G), period {0, d} ⊂ D ⊂ {0, . . . , d} and

bound MG (see Subsection 2.2 for a precise definition and see below and

Subsection 2.1 for a definition of the set ∆∗(G)).

Now fix some difference d, some period D and some bound M , and let

P(H,D,M) denote the set of all a ∈ H for which the set of lengths L(a) is

a long AAMP with difference d, period D and bound M (in Subsection 2.2

we make the term “long” precise).

The present paper is devoted to the counting functions P(H,D,M)(x).

Theorem 1.1 gives asymptotics and Theorems 1.2 and 1.3, which are the

main results of the paper, deal with the exponents of log x and log log x in

the main term of the asymptotic formulas.

A weaker asymptotic formula, valid in the more general setting of abstract

formations, for P(H,D,M)(x) by A. Geroldinger and F. Halter-Koch can be

found in [10, Theorem 9.4.10]. We restrict to the number field case. Thus,

after showing that the sets P(H,D,M) are arithmetical, we can directly

apply the analytic results of of J. Kaczorowski [15] and M. Radziejewski

[24], building on results of J. Kaczorowski, A. Perelli, and J. Pintz (see

[16, 17]), to get the following result (for the short argument see Section 3).

Theorem 1.1. Let R be the ring of integers of an algebraic number field

K, H the set of all non-zero principal ideal and G the ideal class group

with |G| ≥ 3. Let M ∈ N sufficiently large, d ∈ ∆∗(G) and {0, d} ⊂
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D ⊂ {0, . . . , d} be such that P(H,D,M) 6= ∅. There exist aD(G) ∈ N and

bD(G) ∈ N0, just depending on G and D, such that the following holds.

(1) For x ≥ ee,

P(H,D,M)(x) = x(log x)−1+aD(G)/|G|(VD(log log x) +O(
(log log x)m

(log x)γ
)
)

with VD a polynomial with positive leading coefficient and degree

bD(G), γ = 1
|G| min{1, 1 − cos 2π

|G|} and m ∈ N depends on D and

K.

(2) If bD(G) > 0, then the following error-term is subject to oscillations

of positive lower logarithmic frequency and size x
1
2
−ε:

P(H,D,M)(x)− 1

2πi

∫
C
ζ(s,P(H,D,M))

xs

s
ds,

with ζ(s,P(H,D,M)) =
∑

I∈P(H,D,M)(R : I)−s for <(s) > 1, and

the contour of integration C goes counterclockwise around the points
1
2

and 1.

The condition that M is “sufficiently large” can be made more precise

(see Subsection 2.2).

The main subject of this paper is the investigation of the constants aD(G)

and bD(G) occurring in Theorem 1.1. In [10, Theorem 9.4.10] abstract com-

binatorial descriptions for aD(G) and bD(G) were obtained (see below and

Subsection 2.2). Building on these descriptions, we derive explicit results

in some special cases.

In [10, Theorem 9.4.10] the special case where D = {0, 1} has been con-

sidered. In that case P(H,D,M) is the set of all a ∈ H whose sets of

lengths are almost arithmetical progressions with difference 1. It is proved

that aD(G) = |G| and bD(G) = 0. Indeed, it is even known that the set

P(H,D,M) has density 1 (cf. [10, Theorem 9.4.11]).

Here, we consider sets of lengths that are almost arithmetical progressions

(that is the case where D = {0, d}); for simplicity we set ad(G) = a{0,d}(G)

and bd(G) = b{0,d}(G).

The starting point for all investigations of the invariants aD(G) and bD(G)

is the set (see Subsection 2.1 for definitions of ∆(G0) and the term “half-

factorial”)

∆∗(G) = {min ∆(G0) : G0 ⊂ G is not half-factorial }

which received a lot of attention in the recent literature (for an overview

see [10, Section 6.8]). The structure of ∆∗(G) heavily depends on whether

or not the exponent of G is large, in comparison with |G| (see Section 4 for

further discussion).
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In [10, Theorem 9.4.10] it is proved that if d ∈ ∆∗(G) and no multiple of

d is in ∆∗(G), then

ad(G) = max{|G0| : G0 ⊂ G, min ∆(G0) = d}.

Thus to determine ad(G) we have to solve an inverse problem, in the sense

of additive number theory. The combinatorial description of bd(G) is more

involved, we recall it in Subsection 2.2 after introducing more notation; to

determine bd(G) this inverse problem is relevant as well.

In particular, under the assumption that the exponent of G is sufficiently

large (this is made precise by supposing that the invariant m(G), see Def-

inition 4.1, is small; for now we note that 4 log |G| ≤ exp(G) is sufficient)

we consider an extreme case, namely d = max ∆∗(G) = exp(G) − 2. In

this case and the case d = exp(G) − 3, we solve the inverse problem; and

derive the following formulas for ad(G). (Note that the invariant µ(·) in the

results below is the same as the one appearing in the asypmtotic formula

for Gk(x).)

Theorem 1.2. Let G = G′ ⊕ Cn be a finite abelian group where G′ ⊂ G is

a subgroup and exp(G) = n.

(1) If n > m(G) + 2, then

an−2(G) =

{
3 + µ(G′) if n is prime and G has even rank,

2 + µ(G′) otherwise.

(2) If G′ = G′′⊕Cn for some subgroup G′′ ⊂ G′ and n > m(G)+3, then

an−3(G) = 3 + µ(G′′).

We note that the condition that the exponent is large is essential (cf. Sec-

tion 4 for further discussion).

Then, we consider the question of positivity of bd(G) and obtain the

following result. (For the significance of this question cf. Theorem 1.1.2.)

Theorem 1.3. Let G be a finite abelian group with exp(G) = n.

(1) If n > m(G) + 2, then bn−2(G) = 0 if and only if G is cyclic.

(2) If n > m(G) + 3 and n− 3 ∈ ∆∗(G), then bn−3(G) > 0.

The result that bn−2(G) = 0 for all cyclicG is quite surprising, since it is in

contrast to results obtained for related counting functions (cf. [10, Chapter

9]). More precisely, for the counting functions Fk(x) and Bk(x), counting the

number of elements with at most k distinct and block-distinct, respectively,

factorizations, it is known that the constants analogous to bd(G), i.e., the

exponents of log log x in the leading term of the asymptotic formulas, are

positive for any group G, apart the exceptional cases |G| = 1 and |G| ≤ 2,

respectively (see [19, Proposition 9] and [8, Corollary 1]); moreover, for



PERIODS OF SETS OF LENGTHS 5

Gk(x) it was conjectured ([24, Conjecture]) that ψk(G) is positive, apart the

exceptional cases |G| ≤ 2, and this was proved for k ≥ 2, and for k = 1 for

various types of groups (see [25]).

Yet, all these exceptions as well as the fact b{0,1}(G) = 0, mentioned

above, are in a certain sense “obvious” exceptions. All constants in dis-

cussion can be defined as the maximal length of sequences, in certain free

monoids, fulfilling an additional condition (cf. the definition of bd(G) and

ψk(G) in Subsection 2.2), and in all those exceptional cases, in contrast to

our case, the free monoids just contain the empty-sequence, and the con-

stants are 0 essentially by definition. Moreover, for Bk(x), Fk(x), and Gk(x)
the exceptional cases coincide with the degenerate cases that either every

or no ideal is counted according as k = 1 or k > 1.

2. Notations and basic results

Our terminology is consistent with the monograph [10] to which we refer

for a detailed discussion of the notions we briefly mention.

We denote for integers a, b by [a, b] the interval of integers. Let G denote

an, additively written, finite abelian group; let r(G) denote its rank and

exp(G) its exponent. By Cn we denote a cyclic group with n elements.

A set {e1, . . . , er} ⊂ G, where the ei are distinct, is called independent if∑r
i=1 aiei = 0, with integers ai, implies aiei = 0 for each i ∈ [1, r].

2.1. Monoids. For G0 ⊂ G we denote by F(G0) the (multiplicatively

written) free abelian monoid with basis G0. An element S =
∏l

i=1 gi =∏
g∈G0

gvg ∈ F(G0) is called a sequence. The identity element of F(G0) is

called the empty-sequence; it will be denoted by 1. Divisors of sequences

are called subsequences. |S| = l is called the length of S, σ(S) =
∑l

i=1 gi

the sum, and k(S) =
∑l

i=1 1/ ord gi the cross number; the set supp(S) =

{g1, . . . , gl} is called the support. If σ(S) = 0 ∈ G, then S is called a zero-

sum sequence (or a block); the monoid B(G0) = {S ∈ F(G0) : σ(S) = 0}
is called the block monoid over G0; the minimal zero-sum sequences, i.e.,

those without proper non-trivial zero-sum subsequence, are the irreducible

elements (atoms) of B(G0), denoted by A(G0). If there exists no subse-

quence 1 6= T | S with σ(T ) = 0, then S is called zero-sumfree. For G0 ⊂ G

and S ∈ F(G\G0) let Ω(G0, S) = S ·F(G0)∩B(G) and Ω(G0, S, l) = {B ∈
Ω(G0, S) : vg(B) ≥ l for each g ∈ G0}.

As already introduced in the Introduction for the monoid of principal

ideals of the ring of integers, we denote for a ∈ H, where H is a Krull

monoid (for instance, a block monoid), by L(a) the set of lengths of a.

For a set L = {l1, l2, . . . } ⊂ N with li < li+1, typically a set of lengths,

let ∆(L) = {l2− l1, l3− l2, . . . } denote the set of (successive) distances. For
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G0 ⊂ G let ∆(G0) =
⋃
B∈B(G0) ∆(L(B)) the set of distances of G0. Note

that ∆(G0) = ∆(G0 ∪ {0}) for every G0 ⊂ G.

The set of differences of G is defined as

∆∗(G) = {min ∆(G0) : G0 ⊂ G, ∆(G0) 6= ∅};

we will frequently make use of the fact that indeed min ∆(G0) = gcd ∆(G0).

A set G0 ⊂ G with ∆(G0) = ∅ is called half-factorial, since in this case

B(G0) is a half-factorial monoid; a monoid is called half-factorial if for each

element u of the monoid | L(u)| = 1. It is a well known result, obtained by

L. Skula [30] and A. Zaks [31], that G0 is half-factorial if and only if

(1) k(A) = 1 for every A ∈ A(G0);

moreover, B(G) is half-factorial if and only if |G| ≤ 2. Thus ∆∗(G) = ∅ if

and only if |G| ≤ 2. Moreover, for |G| ≥ 3 one has min ∆(G) = 1 ∈ ∆∗(G).

Naturally, if ∆(G0) 6= ∅, then G0 is referred to as non-half-factorial; if

all proper subsets of G0 are half-factorial, G0 is called minimal non-half-

factorial. For a non-half-factorial set G0 some information on ∆(G0) can

as well be obtained from the cross numbers of atoms; more precisely the

following holds: if n denotes the exponent of G, then for every A ∈ A(G0)

one has {n, n k(An)} ⊂ L(An), in particular (see [4])

(2) min ∆(G0) | n(k(A)− 1).

2.2. AAMPs and related notions. Now, we recall the central definitions

for our investigations. Let d,M ∈ N and {0, d} ⊂ D ⊂ [0, d]. A set L ⊂ Z
is called an AAMP with difference d, period D and bound M if

L = y + (L′ ∪ L∗ ∪ L′′) ⊂ y +D + dZ,

for some integer y, ∅ 6= L∗ = [0,maxL∗] ∩ (D + dZ), L′ ⊂ [−M, 1], and

L′′ ⊂ maxL∗ + [1,M ]. The sets L′, L′′, and L∗ are called the initial, end,

and central part, respectively.

Let H a Krull monoid with finite class group G and |G| ≥ 3. Then there

exists a constant MG, just depending on G, such that for each a ∈ H the

set of lengths L(a) is an AAMP with bound MG (see [10, Chapter 4] or [9]

for even more general statements).

For d ∈ N and {0, d} ⊂ D ⊂ [0, d] let

P(H,D,M) = {a ∈ H : L(a) is AAMP with period D bound M,

max L−min L ≥ 3M + d2
0},

where d0 = max ∆(G) (the constant d0 is indeed finite, for instance d0 ≤
|G| − 2 and more precise results are known). For simplicity we write

P(G, d,M) instead of P(B(G), {0, d},M).
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In Theorem 1.1 we formulated a result on the counting functions of the

sets P(H,D,M) for all sufficiently large M . To get the result as stated, it

turns out we only need to suppose that M is sufficiently large to ensure that

every set of lengths of an element of B(G) is an AAMP with bound M −d0,

i.e., M ≥MG+d0. Yet, the combinatorial descriptions for aD(G) and bD(G)

obtained in [10, Theorem 9.4.10] are only known to be valid, if M fulfils an

additional condition. This condition is very technical and, since we do not

need the precise condition, we only mention that there exists a constant

M(G) such that for M ≥ M(G) the statement of Theorem 1.1 holds, in

particular M(G) ≥MG+d0, and the exponents aD(G) and bD(G) are given

in the following way (we only formulate the special case we actually consider,

the general case is similar but rather more technical): For d ∈ ∆∗(G) let

Ad(G) = {G0 ⊂ G : min ∆(G0) = d}. Then (see [10, Theorem 9.4.10])

ad(G) = max{|G0| : G0 ∈ Ad(G)}

and

bd(G) = max{|S| : G0 ∈ Ad(G), S ∈ F(G \G0), for some l ∈ N

∅ 6= Ω(G0, S, l) ⊂ P(G, d,M(G))}.

For d /∈ ∆∗(G) we set Ad(G) = ∅ and ad(G) = bd(G) = 0. Since we need

it in the proof of Lemma 7.1, we finally mention that for G′ ⊂ G one has

M(G′) ≤M(G).

Now, we recall the combinatorial description for the invariants µ(G) and

ψk(G). We have µ(G) = max{G0 ⊂ G : G0 half-factorial} and

ψk(G) = max{|S| : G0 ⊂ G half-factorial, µ(G) = |G0|, S ∈ F(G \G0)

and | L(B)| ≤ k for every B ∈ Ω(G0, S)}.

2.3. Indecomposable sets. We recall the definition of an indecomposable

set and some related notions (see [27]). A subset G0 ⊂ G is called decom-

posable if B(G0) = B(G1) · B(G2) for non-empty and disjoint G1, G2 ⊂ G0,

equivalently 〈G0〉 = 〈G1〉 ⊕ 〈G2〉 and G0 = G1∪̇G2; we call G1, G2 compo-

nents of G0 and speak of a decomposition of G0. If B(G0) = B(G1) . . .B(Gs)

with indecomposable and pairwise disjoint sets Gi, then we refer to this as a

decomposition into indecomposables and call Gi the indecomposable com-

ponents of G0. Every set has an essentially (i.e., up to ordering) unique

decomposition into indecomposables. We recall that a set is half-factorial

if and only if all its components are half-factorial. Moreover, if G0 is

not half-factorial and G1, . . . , Gs are its indecomposable components, then

min ∆(G0) = gcd{min ∆(Gi) : Gi non-half-factorial}.
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3. Proof of Theorem 1.1

In this section we present the proof of Theorem 1.1. We recall the defin-

ition of an arithmetical set (see [10, Definition 9.4.1] also cf. [14, Definition

5]) for subsets of the block monoid. Let G be a finite abelian group. A

subset Z ⊂ B(G) is called arithmetical if for all B1, B,B2 ∈ B(G) one has

that B1, B2 ∈ Z and B1 | B | B2 implies that B ∈ Z.

Next, we prove that the sets P(B(G),D,M) are arithmetical.

Lemma 3.1. Let G, d, D, and M as in Theorem 1.1. Then, P(G,D,M)

is an arithmetical set.

In the proof of this result we make use of two facts on subsets of the

integers (cf. [10, Lemma 4.2.4]): Let d, d′ ∈ N, y ∈ Z, and A,B ⊂ Z. If

y+A+dZ ⊂ A+dZ, then y+A+dZ = A+dZ. If (B+dZ)∩ [y+1, y+`] ⊂
A+ d′Z and ` ≥ lcm{d, d′}, then B + dZ ⊂ A+ d′Z.

Proof of Lemma 3.1. Recall that we have M ≥ MG + d0 (see Subsection

2.2). Let B1, B2 ∈ P(B(G),D,M) and let B ∈ B(G) such that B1 | B | B2.

We have to show that B ∈ P(B(G),D,M). Let C1, C2 ∈ B(G) such that

C1B1 = B and BC2 = B2. Let ci ∈ L(Ci). Then c1 +L(B1) ⊂ L(B) ⊂ −c2 +

L(B2). By definition of P(B(G),D,M) we know that L(B1) and L(B2) are

AAMPs with difference d, period D, bound M and max L(Bi)−min L(Bi) ≥
3M+d2

0, where d0 = max ∆(G), i.e., L(Bi) = yi+(L′
i∪L∗

i ∪L′′
i ) ⊂ yi+D+dZ

for some integer yi, ∅ 6= L∗
i = [0,maxL∗

i ] ∩ (D + dZ), L′
i ⊂ [−M, 1], and

L′′
i ⊂ maxL∗

i + [1,M ] and we know that maxL∗
i ≥ M + d2

0. Moreover,

we know that L(B) is an AAMP with some difference d′ ∈ ∆∗(G), some

period D′ and bound M − d0 (indeed, this is true for each element of B(G),

cf. Subsection 2.2), i.e., L(B) = y + (L′ ∪ L∗ ∪ L′′) ⊂ y + D′ + d′Z for

some integer y, ∅ 6= L∗ = [0,maxL∗] ∩ (D′ + d′Z), L′ ⊂ [−M + d0, 1], and

L′′ ⊂ maxL∗ + [1,M − d0]. Additionally, since L(B) contains a shift of

L(B1), we know that max L(B) − min L(B) ≥ 3M + d2
0. Thus, we have

maxL∗ ≥M + d2
0.

Since c1 + (y1 + L∗
1) ⊂ c1 + L(B1) ⊂ L(B) ⊂ y +D′ + d′Z, we have

c1 + y1 + ([0,maxL∗] ∩ (D + dZ)) ⊂ y +D′ + d′Z.

Since by definition d, d′ ≤ d0 it follows (cf. above) that c1 + y1 +D + dZ ⊂
y+D′+d′Z. Considering L(B) ⊂ −c2 +L(B2), we get in the same way that

y +D′ + d′Z ⊂ −c2 + y2 +D + dZ.

Thus, we get (cf. above) c1+y1+D+dZ = −c2+y2+D+dZ = y+D′+d′Z.

Thus, L∗ = [0,maxL∗]∩(−c2+y2+D+dZ). Let D′′ = [0, d]∩(−c2+y2+D+

dZ). Then, L is an AAMP with difference d, period D′′ and bound M − d0.
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Thus, “shifting” the central part possibly at the expense of increasing the

bound (see [10, Lemma 4.2.6] for a precise statement), it follows that L is

an AAMP with difference d, period D and bound M . We already noted

that max L(B)−min L(B) ≥ 3M + d2
0. Thus, B ∈ P(B(G),D,M). �

Now, Theorem 1.1 follows quite directly from known results.

Proof of Theorem 1.1. By Lemma 3.1 we know that P(B(G),D,M) is an

arithmetical set. Thus (see [10, Proposition 9.4.2]), there exist G1, . . . , Gn ⊂
G, Si ∈ F(G \Gi) and li ∈ N0 such that

(3) P(B(G),D,M) =
n⋃
i=1

Ω(Gi, Si, li).

We note that for Ω(Gi, Si, li) 6= ∅, we have Ω(Gi ∪ {0}, Si0− v0(Si), li) ⊂
P(B(G),D,M). Thus, we have max{|Gi| : i ∈ [1, n]} > 0. Now, using (3),

the first statement follows by results of J. Kaczorowski [15] (see in particular

the proof of Theorem 2 also see [14, Section 5]), with aD(G) = max{|Gi| : i ∈
[1, n]} and bD(G) = max{|Si| : |Gi| = aD(G)}.

For the second statement we may assume that aD(G) < |G|, since other-

wise bD(G) = 0 and it is vacuosly true. Now, again using (3) the statement

follows from results of M. Radziejewski [24] (see in particular Theorem 6

and the proof of Theorem 5). �

4. The invariant m(G)

We recall that the structure of ∆∗(G) depends on the size of exp(G)

relative to |G|. To illustrate this, we recall some results: If G is cyclic of

order n, then (see [11])

max ∆∗(G) = n− 2 and max
(
∆∗(G) \ {n− 2}

)
=

⌊n
2

⌋
− 1.

Yet, if G is a p-group of large rank, then ∆∗(G) is an interval (see [4]). How-

ever, much on ∆∗(G) is up to now unknown; for general G, even max ∆∗(G)

is only known if the exponent of G is sufficiently large, and in that case

max ∆∗(G) = exp(G)− 2 (see [28]).

In this section we introduce m(G), used in the formulations of Theorems

1.2 and 1.3 to give a precise meaning to to the informal statement that

exp(G) is large. First, we introduce the notion LCN-set; the idea motivating

this definition is well-know and present in several earlier investigations on

∆∗(G).

Definition 4.1. Let G be a finite abelian group.

(1) A subset G0 ⊂ G is called a set with large cross numbers (LCN-set

for short) if k(A) ≥ 1 for each A ∈ A(G0).
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(2) We set

m(G) = max{min ∆(G0) : G0 ⊂ G a non-half-factorial LCN-set};

if there exists no non-half-factorial LCN-set, then m(G) = 0.

We note that, since gord g ∈ A(G0) is an atom with cross number 1 for

every g ∈ G0, the value 1 is the largest possible value for which such a

definition makes sense. Moreover, by (1) half-factorial sets are LCN-sets.

Next, we explain the significance of these notions for our investigations.

Proposition 4.2 ([4]). Let G be a finite abelian group with exponent n. If

n > 2, then

max{min ∆(G0) : G0 non-half-factorial and non-LCN } = n− 2;

in particular, max ∆∗(G) = max{n− 2,m(G)}.

Thus, the conditions on the exponent in Theorem 1.2 are just strong

enough to assert that the sets in questions are not LCN-sets. We have to

impose this condition, since for LCN-sets not even the basic direct problems,

for instance to determine m(G), are solved in general. Thus, at present it

does not seem (to the author) feasible to address the inverse problems. In

any case, results on LCN-sets for (elementary) p-groups with large rank

(cf. Proposition 4.4 and the subsequent remark) indicate that results (and

proofs) for groups with “small” exponent should be quite different.

At the end of this section we give upper and lower bounds for m(G), which

can be used to decide, for various types of groups, whether the conditions

of Theorem 1.2 hold.

First, we recall the definition of the (little) cross number, k(G), of a finite

abelian group G and some results. It is a well known, in the context of

non-unique factorizations, invariant defined as

k(G) = max{k(S) : S ∈ F(G) zero-sumfree}.

For k(G) a variety of results are known, though the precise value is unknown

in general; we summarize those that we shall need in this paper.

Proposition 4.3. Let G be a finite abelian group.

(1) k(G) ≤ log |G| (see [13]).

(2) If G = Cn1 ⊕ · · · ⊕ Cnr is a p-group, then k(G) =
∑r

i=1(ni − 1)/ni

(see [7]).

(3) If G = Cpm ⊕ Cpn ⊕ Cs
q with m,n, s ∈ N and distinct primes p and

q, then k(G) = (pm − 1)/pm + (pn − 1)/pn + s(q − 1)/q (see [12]).

In [26, Theorem 5.4] it is proved that

(4) m(G) ≤ 2 k(G)− 1;
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clearly, using Proposition 4.3, more explicit bounds can derived from (4).

The inequality (4) is sharp for elementary 2-groups, yet not in general, as

can be seen from the following result.

Proposition 4.4. Let G be a finite abelian group with r(G) ≥ 2. Then

m(G) ≥ r(G)− 1. If G is an elementary p-group, then equality holds.

Moreover, [4, Theorem 1.5] yields that m(G) = r(G) − 1 for p-groups

with sufficiently large rank (relative to the exponent) as well. We apply the

following lemma, to prove the proposition.

Lemma 4.5. Let G0 = {g, e1, . . . , er} with independent ei and g ∈ G. If

G0 is a non-half-factorial LCN-set, then min ∆(G0) ≤ r − 1.

In [28, Proposition 4.1] min ∆(G0) for “simple” sets has been investigated.

This lemma strengthens that result under the additional condition that G0

is a LCN-set; the proofs are very similar.

Proof of Lemma 4.5. By [27, Theorem 4.5] we may assume without restric-

tion that g =
∑r

i=1 aiei with aiei 6= 0 for each i ∈ [1, r]. Let n = ord g and

D = min ∆(G0). For j ∈ [1, n] let Wj denote the (unique) minimal block

with vg(Wj) = j; let Bj ∈ B({e1, . . . , er}) such that WjBj = W j
1 . Note that

L(Bj) = {k(Bj)} for every j. We know that W1 and Wn = gn are atoms,

and denote by m = min{j ∈ [2, n] : Wj ∈ A(G0)}. If m = n, it follows

(by [28]) that min ∆(G0) = |n − 1 − r|; since 1 ≤ k(W1) = (r + 1)/n, we

have |n − 1 − r| ≤ r − 1. If k(W1) = 1, it follows (by [28]) that for any

A ∈ A(G0) with k(A) 6= 1, min ∆(G0) ≤ k(A)− 1 < r. Thus assume m < n

and k(W1) > 1. Let k = min{j ∈ [2, n] : L(Wj) + L(Bj) 6= {j}}. It follows

(by [28]) that Wk ∈ A(G0) and thus {1}+ {k(Bk)} = L(Wk) + L(Bk). Con-

sequently, min ∆(G0) ≤ |1+ k(Bk)−k|. If 1+ k(Bk) > k it follows (by [28])

that min ∆(G0) ≤ r− 1. Thus assume 1 + k(Bk) < k. By definition of k we

have {k − 1} = L(Wk−1) + L(Bk−1); say l ∈ N such that {l} = L(Wk−1).

We assert that l ≤ r. Note Wk−1 = gk−1F with F ∈ F({e1, . . . , er})
zero-sumfree, thus k(F ) ≤

∑r
i=1(1 − 1/ ord ei) < r and k(Wk−1) < r + 1.

Yet, since G0 is a LCN-set, we have k(Wk−1) ≥ l and the assertion is proved.

Since Wk is an atom Bk 6= Bk−1 and thus k(Bk) ≥ 1 + k(Bk−1). All this

yields,

k − (1 + k(Bk)) ≤ k − (2 + k(Bk−1)) = k − (2 + k − 1− l) ≤ r − 1,

and finishes the proof. �

Now, we turn to the proof of Proposition 4.4.

Proof of Proposition 4.4. Let r(G) = r. First, we show that m(G) ≥ r − 1.

Let {e1, . . . , er} ⊂ G independent with ord e1 = · · · = ord er, and g =
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i=1 ei. By [4, Proposition 5.2], the set G0 = {g, e1, . . . , er} is an LCN-set

and min ∆(G0) = r − 1.

Now, assume G is an elementary p-group and let G0 ⊂ G be a LCN-

set. We have to show that min ∆(G0) ≤ r − 1. Without restriction we

assume that G0 is minimal non-half-factorial. If G0 fulfills the conditions of

Lemma 4.5 the result is obvious, and if this is not the case it follows that

min ∆(G0) ≤ 1/p + k(G)− 1 < r − 1, the first inequality by [28, Corollary

3.1] (also cf. Proof of Theorem 4.1 there) the second by Proposition 4.3. �

Finally, we prove a (weak) upper bound for m(C2
n), which we will need in

Section 6.

Lemma 4.6. Let n ≥ 5. Then m(C2
n) ≤ n− 4.

Since we make use of it in the proof of this result, we briefly recall the

definition of Davenport’s constant, D(G), of a finite abelian group G:

D(G) = max{|A| : A ∈ A(G)}.

It is easy to see that D(G) = 1 + max{|S| : S ∈ F(G) zero-sumfree}. The

value of Davenport’s constant is known for various groups, but is in general

unknown (cf. [10, Chapter 5] for a detailed discussion). We only use the

fact that D(C2
n) = 2n− 1 for each n ∈ N (see [21]).

Proof of Lemma 4.6. By (4) we know m(C2
n) ≤ 2 k(C2

n) − 1. This yields

m(C2
n) ≤ 4(log n) − 1, which is less than n − 3 for n ≥ 12, and m(C2

n) ≤ 3

if n is a prime power, by Proposition 4.3 part 1. and 2., respectively.

Moreover, by Proposition 4.4 we know that m(C2
n) = 1 if n is a prime.

Thus, it remains to consider n = 6 and n = 10. Using Proposition 4.3.3, we

get m(C2
10) ≤ 21/5 and m(C2

6) ≤ 11/3.

Consequently, it remains to show that m(C2
6) 6= 3. Seeking a contradic-

tion, we assume that there exist some subset G0 ⊂ C2
6 that is an LCN-set

with min ∆(G0) = 3. Since we know that m(C2
6) < 6, we may assume with-

out restriction that G0 is minimal non-half-factorial. Let A ∈ A(G0). By

(2) we know that 6(k(A) − 1) is a multiple of 3 and thus, by Proposition

4.3.3 and since G0 is an LCN-set, k(A) ∈ {1, 3/2, 2, 5/2}.
Let W ∈ A(G0) with maximal cross number. We note that k(W ) > 1 and

supp(W ) = G0. We write W = S2S3S6 where Si denotes the subsequence

of elements of order i. We recall that, for each i ∈ [1, 3], |Si| ≤ D(C2
i ), and

equality can only hold if W = Si.

Case 1: k(W ) = 3/2. Since k(W 2) = 3, we have max L(W 2) ≤ 3. Since

min ∆(G0) = 3, this yields L(W 2) = {2}. Consequently, every factorization

of W 2 consists of two atoms each with cross number 3/2. This implies

that S2 = 1, since otherwise W 2 would be divisible by an atom with cross
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number 1. Similarly, since k(W 3) = 9/2 we have S3 = 1 and vg(W ) = 1 for

each g ∈ G0. Now, let h ∈ G0 and we consider (h−1W )2. Since we know

|W | = 6 k(W ) = 9, we have |(h−1W )2| > D(C2
6) and (h−1W )2 is not zero-

sum free. Since G0 \ {h} is half-factorial, this implies that W 2 is divisible

by an atom with cross number 1, a contradiction.

Case 2: k(W ) = 2. Again, we have L(W 2) = {2} and W 2 is not divisible

by an atom with cross number less than 2, in particular S2 = 1. Since 2|S3|+
|S6| = 12, we conclude that both S3 and S6 are non-empty. This implies

that S2
3 and S2

6 are zero-sum free, since any minimal zero-sum subsequence

of S3 or S6 would have cross number 1 and divide W 2. However, this implies

2|Si| < D(C2
i ) for i ∈ {3, 6} and contradicts 2|S3|+ |S6| = 12.

Case 3: k(W ) = 5/2. It is easy to see that S6 6= 1. First we show that

S3 = 1. We assume S3 6= 1. Then W 3 = S3
3 · (S−1

3 W )−1 is a factorization of

W 3 into two blocks, each over a half-factorial set. This implies that k(W 3)

is an integer, a contradiction.

Now, we have 3|S2|+ |S6| = 15, and |S2| < 3 and |S6| ≤ 11. Consequently

|S2| = 2 and |S6| = 9. Since |S6| > D(C2
3), the sequence S6 has a non-trivial

proper subsequence T6 such that ordσ(T6) = 2. The sequence σ(T6)S2 has a

non-trivial zero-sum subsequence and thus T6S2 as well. Consequently, W =

S2S6 has a non-trivial proper zero-sum subsequence, a contradiction. �

5. Subsets with min ∆(G0) = max ∆∗(G)

In this section we investigate the structure of subsets G0 ⊂ G such

that min ∆(G0) = max ∆∗(G) for groups with “large” exponent, namely

exp(G) > m(G) + 2; in particular, we prove Theorem 1.2.1.

As discussed in the preceding section, it is well-known that in this case

max ∆∗(G) = exp(G) − 2. Moreover, it is known that min ∆({−g, g}) =

ord g − 2 for every g ∈ G with ord g ≥ 3 (cf. [4, Proposition 5.2]) which

provides examples for sets with minimal distance equal to max ∆∗(G). In

the following results we show that every indecomposable set with minimal

distance equal to max ∆∗(G) is of this form.

Theorem 5.1. Let G be a finite abelian group with exp(G) > m(G)+2 and

let G0 ⊂ G. Then G0 is indecomposable with min ∆(G0) = max ∆∗(G) if

and only if

G0 = {−g, g} with ord g = exp(G).

Proof. Let exp(G) = n. By Proposition 4.2 we have min ∆(G0) = n − 2.

Since for g ∈ G with ord g ≥ 3, by [4, Proposition 5.2], min ∆({−g, g}) =

ord g − 2 one implication is obvious. It remains to prove the other one.
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Thus, let G0 ⊂ G indecomposable with min ∆(G0) = n − 2 and assume

to the contrary that G0 is not of the claimed form; moreover assume that

G0 is minimal with this property. Clearly G0 is not an LCN-set. Thus,

there exists some A ∈ A(G0) such that k(A) < 1 and by (2) indeed k(A) =

2/n. Consequently, A = (−g)g for some g with ord g = n, in particular

{−g, g} ⊂ G0. By assumption G0 \ {−g, g} 6= ∅.
Since G0 is indecomposable, there exists some S ∈ A(G0 \ {−g, g}) with

σ(S) ∈ 〈g〉 \ {0}, say σ(S) = ag with a ∈ [1, n − 1]. Assume S is minimal

with this property, i.e., has no proper subsequence with this property. We

consider the atoms U = gn−aS and U ′ = (−g)aS. Note that (−g)nU =

((−g)g)n−aU ′. Thus (n− 2) | (n− a+ 1− 2) and therefore a ∈ {1, n− 1}.
Without restriction, else interchange the role of g and −g, assume a = 1.

Consequently, |S| ≥ 2 and k(U) = (n − 1)/n + k(S) > 1. Thus, the set

G0 \ {−g} is not half-factorial. We have n− 2 = min ∆(G0) ≤ min ∆(G0 \
{−g}) ≤ n − 2. Since G0 is indecomposable it follows that G0 \ {−g} is

indecomposable as well and trivially G0 \ {−g} is not equal to {−h, h} for

any h ∈ G, a contradiction to the minimality of G0. �

As discussed in Subsection 2.3 every set has a unique decomposition into

indecomposables, thus Theorem 5.1 yields a description of all sets with

minimal distance equal to max ∆∗(G).

Corollary 5.2. Let G be a finite abelian group with exp(G) > m(G) + 2,

and let G0 ⊂ G with min ∆(G0) = max ∆∗(G). Further, let G0 =
⋃s
i=1Gi be

the decomposition into indecomposable components. Then each component

Gi is either half-factorial or equal to {−gi, gi} for some gi ∈ G with ord gi =

exp(G); and there exists at least one non-half-factorial component.

Proof. At least one component has to be non-half-factorial and we have

min ∆(G0) = gcd{min ∆(Gi) : Gi non-half-factorial} (see Subsection 2.3).

We know that min ∆(G0) is maximal. Thus, if Gi is non-half-factorial, then

min ∆(Gi) = min ∆(G0) and the result follows by Theorem 5.1. �

Before we prove Theorem 1.2.1, we derive a further auxiliary result.

Lemma 5.3. Let G = H1⊕H2 and d ∈ ∆∗(G) such that dN∩∆∗(G) = {d}.
If d ∈ ∆∗(H1), then ad(G) ≥ ad(H1) + max{µ(H2), ad(H2)} − 1.

Proof. Let G1 ∈ Ad(H1) with (maximal) cardinality ad(H1). Further let

H0 ⊂ H2 half-factorial and, if such a set exists, G2 ∈ Ad(H2) with (maximal)

cardinality µ(H2) and ad(H2), respectively. Then G1 ∪G2 and G1 ∪H0 are

elements of Ad(G). Since G1 ∩G2 = G1 ∩H0 = {0}, the result follows. �
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Now the proof of Theorem 1.2.1 is almost straightforward, yet there is

one exceptional case that requires the use of a recent result on half-factorial

sets in elementary p-groups.

Proof of Theorem 1.2.1. Assume n > m(G) + 2. By Theorem 5.1 it is obvi-

ous that an−2(Cn) = 3. It follows by Lemma 5.3 that an−2(G) ≥ 2 + µ(G′).

Let G0 ∈ An−2(G) and let G0 =
⋃s
i=1Gi the decomposition into inde-

composable components. By Theorem 5.1 each Gi is either half-factorial

or equal to {−gi, gi} for some gi ∈ G0 with ord gi = n; and there exists

at least one j ∈ [1, s] such that Gj is not half-factorial. Assume there

exists more than one non-half-factorial component, say G1 and G2 are non-

half-factorial. Now consider G′
0 = G′

1 ∪
⋃s
i=2Gi where G′

1 ⊂ 〈g1〉 \ {0} is

half-factorial with maximal cardinality, µ(Cn)− 1. We have G′
0 ∈ An−2(G).

Observe that µ(Cn) ≥ 3 unless n ∈ P∪{1}. Thus, if n /∈ P, then |G′
0| ≥ |G0|;

consequently, in this case, there exists a set G′′
0 ∈ An−2(G) with cardinal-

ity an−2(G) and exactly one non-half-factorial component, and the result

follows.

So assume n ∈ P, and set r = r(G). Repeated application of Lemma 5.3

yields an−2(G) ≥ 2t + µ(Cr−t
p ) for every t ∈ [1, r]. Conversely, let t denote

the number of non-half-factorial components of G0. We obtain

|G0| ≤ 2t+ µ(Cr−t
p ).

Recall (see [22]) that µ(Cr
p) equals 1 + rp/2 for even r and 2 + (r− 1)p/2 =

1 + µ(Cr−1
p ) for odd r. Thus, 2t + µ(Cr−t

p ) is maximal for odd r if t = 1,

and for even r if t = 2, which implies the result. �

Since µ(Cn) = 3 if and only if n = p2 for some prime p, the proof of Theo-

rem 1.2.1 yields that if n is not a prime or the square of a prime, then every

G0 ∈ An−2(G) with maximal cardinality, has exactly one non-half-factorial

component. It might be interesting to note that for G = C2
p2 = 〈e1〉 ⊕ 〈e2〉

there actually exist sets in Ap2−2(G) with cardinality ap2−2(G) both with

one and two non-half-factorial components, e.g., {0, e1, pe1, e2,−e2} and

{0, e1,−e1, e2,−e2}.

6. Subsets with min ∆(G0) = max ∆∗(G)− 1

Having dealt with sets where the minimal distance is maximal, we turn to

the investigation of sets with minimal distance max ∆∗(G)−1, again assum-

ing that the exponent of G is sufficiently large (now we assume exp(G) >

m(G)+3). Of course, for max ∆∗(G)−1 it is not granted by definition that

sets with according minimal distance exist; indeed, as mentioned in Section

4 for cyclic groups (of order at least 5) this is not the case. However, if

two independent elements {e1, e2} ⊂ G each with order exp(G) exist, then
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the set {−e1 − e2, e1, e2} has minimal distance exp(G)− 3 (see [2, Example

4.11]). It turns out that, in case of “large” exponent, sets of this type are

the only indecomposable ones with minimal distance exp(G)− 3.

Theorem 6.1. Let G be a finite abelian group with exp(G) > m(G)+3 and

let G0 ⊂ G. Then G0 is indecomposable with min ∆(G0) = max ∆∗(G)− 1

if and only if

G0 = {−e1 − e2, e1, e2} with independent {e1, e2} and ord ei = exp(G).

In particular, max ∆∗(G) − 1 ∈ ∆∗(G) if and only if there exist two inde-

pendent elements each with order exp(G).

Again, we start with some auxiliary results.

Lemma 6.2. Let exp(G) = n > m(G) + 3, and G0 ∈ An−3(G). Then

there exists an independent set {e1, e2} with ord ei = n such that {−e1 −
e2, e1, e2} ⊂ G0.

Proof. Since m(G) < n − 3 the set G0 is not LCN. Thus there exists some

A ∈ A(G0) such that k(A) < 1. By (2) we have k(A) = 3/n, in particular

|A| ≤ 3. Since |A| ≤ 2 yields a contradiction, we have |A| = 3, say A =

gh(−g − h), and each element in A has order n. It remains to show that g

and h are independent. Suppose not. Then there exist a, b ∈ [1, n− 1] such

that gahb is an atom. Again by (2) it follows that a + b ∈ {3, n, 2n − 3};
and in fact a + b = 2n− 3 is impossible, since in this case gn−ahn−b | gahb,
contradictory to gahb an atom. Assume a + b = 3, say a = 2 and b = 1. It

follows that n is odd and g(n+1)/2h is an atom with cross number (n+3)/2n;

a contradiction, since this would imply (n − 3) | (n − 3)/2. Now, assume

a+ b = n. Without restriction assume a ≤ b. We consider the block

(gahb) · (−g − h)n = ((−g − h)gh)a · ((−g − h)n−ahb−a).

If B = (−g − h)n−ahb−a is an atom, it follows that (n − 3) | (a − 1) and

thus a = 1, which implies b = n − 1 and g = h, and is contradictory to

B an atom. Thus B is not an atom. Since k(B) < 2, there exist some

atom A1 such that A1 | B and k(A1) < 1. Using (2) again we infer that

k(A1) = 3/n. As above, this yields an atom with cross number (n + 3)/2n

and a contradiction. �

Lemma 6.3. Let n ≥ 5. Let G0 ∈ An−3(C
2
n). Then G0 \ {0} = {−e1 −

e2, e1, e2} with independent {e1, e2} where ord ei = n.

Proof. By Lemma 4.6 we know that n > m(C2
n) + 3. Consequently, by

Lemma 6.2 we have H0 = {−e1 − e2, e1, e2} ⊂ G0 for suitable independent

{e1, e2} with ord ei = n. Thus it suffices to show that for g ∈ C2
n\(H0∪{0})
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we have min ∆(H0 ∪ {g}) 6= n− 3; say g = −ae1 − be2 with a, b ∈ [0, n− 1]

and assume a ≥ b.

In case b > 0, the identity

(5) (gea1e
b
2) · (−e1 − e2)

n = (g(−e1 − e2)
n−bea−b1 ) · ((−e1 − e2)e1e2)

b;

implies that (n− 3) | (b+ 1− 2). Thus, we have b ∈ {0, 1, n− 2}.
In case a > b, the identity

(6) (g(−e1 − e2)
n−aeb+n−a2 ) · en1 = (gea1e

b
2) · ((−e1 − e2)e1e2)

n−a

implies that (n− 3) | (n− a+ 1− 2). Thus, if a > b, then a ∈ {2, n− 1}.
Consequently, it remains to consider the following cases (note that (a, b) =

(1, 1) and (a, b) = (n− 1, 0) are impossible):

Case 1: (a, b) = (n− 2, n− 2). The relation

(gen−2
1 en−2

2 )2 = en1e
n
2 (g2en−4

1 en−4
2 )

implies (n− 3) | 1, a contradiction.

Case 2: (a, b) ∈ {(2, 1), (n − 1, 1), (n − 1, n − 2)}. The atom gea1e
b
2 has

cross number 4/n, 1 + 1/n, or (2− 2/n), and thus n− 3 divides n− 4, 1, or

n− 2, respectively; a contradiction.

Case 3: (a, b) = (2, 0). If n is even, then ge21 has cross number 4/n and

(n− 3) | (n− 4), a contradiction. If n is odd, then the atom g(n+1)/2e1 has

cross number (n+ 3)/2n and (n− 3) | (n− 3)/2, a contradiction. �

Proof of Theorem 6.1. We set exp(G) = n. By Proposition 4.2 we have

max ∆∗(G)− 1 = n− 3. As recalled in the introduction of this section the

set {−e1 − e2, e1, e2} with independent {e1, e2} and ord ei = n has minimal

distance n− 3, and obviously the set is indecomposable.

To prove the converse, we assume to the contrary that there exist in-

decomposable sets in An−3(G) which do not have the asserted form. Let

G0 be such a set with minimal cardinality. By Lemma 6.2 it follows that

{−e1 − e2, e1, e2} ⊂ G0 with independent {e1, e2} where ord ei = n. By

assumption H0 = G0 \ {−e1 − e2, e1, e2} 6= ∅. Since G0 is indecomposable,

it follows that there exists some S ∈ F(H0) such that σ(S) ∈ 〈e1, e2〉 \ {0}.
Let S be minimal with this property. Note that by Lemma 6.3 |S| ≥ 2.

Further, let a, b ∈ [0, n − 1] such that σ(S) = −ae1 − be1, and we assume

a ≥ b

Since S is minimal with σ(S) ∈ 〈e1, e2〉 \ {0}, the same reasoning as in

(5) and (6) applies. Thus, it suffices to consider the following cases; in each

case we give an example of an atom with cross number not equal to 1 whose

support is a proper subset of G0.

Case 1: For (a, b) ∈ {(n − 2, n − 2), (n − 1, 1), (n − 1, n − 2)} the atom

A = Sea1e
b
2 has cross number greater 1.
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Case 2: For (a, b) ∈ {(2, 1), (2, 0)} we consider the atom A = S(−e1 −
e2)

n−2en−2+b
2 .

Case 3: For (a, b) = (1, 1) or (a, b) = (n− 1, 0), we consider A = S(−e1−
e2)

n−1 or A = Sen−1
1 , respectively; we recall |S| ≥ 2.

We set G′
0 = supp(A). Then G′

0 ( G0 is indecomposable, since it is the

support of an atom, and non-half-factorial. Since min ∆(G′
0) has to be a

multiple of n− 3 and max ∆∗(G) ≤ n− 2 by Proposition 4.2, it follows that

min ∆(G′
0) = n − 3. By the minimality condition on G0, it follows that

G′
0 = {−f1 − f2, f1, f2} with independent {f1, f2} where ord fi = n. In any

case, this yields a contradiction, since k(A′) ≤ 1 for every A′ ∈ A(G′
0), yet

k(A) > 1. �

Clearly, Theorem 6.1 implies a result similar to Corollary 5.2, since no

multiple of exp(G) − 3 is contained in ∆∗(G). We do not formulate it

explicitly. Now, Theorem 1.2.2 follows immediately.

Proof of Theorem 1.2.2. Assume n > m(G) + 3. By Theorem 6.1 the result

is obvious for C2
n; and thus an−3(G) ≥ 3 + µ(G′′) by Lemma 5.3. Since

µ(C2
n) ≥ 1+n > 5 (cf. [3, Corollary 6.4]), it follows that a set G0 ∈ An−3(G)

with |G0| = an−3(G) has exactly one non-half-factorial component; and the

result follows. �

Moreover, the results of this section yield an (unconditional) result on

∆∗(G) for G with rank at most 2. For these groups it is known (uncon-

ditionally) that max ∆∗(G) = exp(G) − 2 (see [4, Theorem 1.4] and [10,

Corollary 6.8.11] for a different argument). Here, we answer for which G we

have exp(G) − 3 ∈ ∆∗(G). As mentioned in Section 4, for cyclic groups a

stronger result is known.

Corollary 6.4. Let G be a finite abelian group with exp(G) = n and r(G) ≤
2. Then n− 3 ∈ ∆∗(G) if and only if n = 4 or G ∼= C2

n with n ≥ 5.

7. Results on bd(G)

Now, we investigate bd(G). Essentially, we restrict to prove Theorem 1.3.

For a definition of the invariant ψk(G), used below, see Subsection 2.2.

Lemma 7.1. Let G0 ∈ Ad(G) with |G0| = ad(G) where dN ∩∆∗(G) = {d};
and let G0 = G1 ∪G2 a decomposition where G1 is non-half-factorial.

(1) If G2 6= {0} is half-factorial, then bd(G) ≥ bd(〈G1〉) + ψ1(〈G2〉) + 1.

(2) If G2 is non-half-factorial, then bd(G) ≥ bd(〈G1〉) + bd(〈G2〉) + 1.

Proof. Without restriction assume 0 ∈ G2. Note that G1 and, in 2. G2 as

well, have minimal distance d.
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1. By Lemma 5.3 we have G1 ∈ Ad(〈G1〉) and |G1| = ad(〈G1〉) − 1,

moreover G2 is half-factorial and |G2| = µ(〈G2〉). Without restriction,

else we consider suitable G′
1 ⊂ 〈G1〉 and G′

2 ⊂ 〈G2〉, we may assume

that there exists a sequence T2 ∈ F(〈G2〉 \ G2) with |T2| = ψ1(〈G2〉) such

that | L(C)| = 1 for every C ∈ Ω(G2, T2). Further, we may assume that

there exists a sequence T1 ∈ F(〈G1〉 \ G1) with |T1| = bd(〈G1〉) such that

Ω(G1, T1, l) ⊂ P(〈G1〉, d,M(G)) for some l ∈ N. (Recall from Subsection

2.2 that M(G) ≥ M(〈G1〉) and since Ω(G1, T1, l
′) ⊂ P(〈G1〉, d,M(〈G1〉))

we have Ω(G1, T1, l) ⊂ P(〈G1〉, d,M(G)) for some l ≥ l′.)

Now, let g1 ∈ G1 and g2 ∈ G2 \ {0}. We set S = (g1 + g2)T1T2 and

assert that Ω(G0, S, l) ⊂ P(G, d,M(G)). Let B = SF1F2 ∈ Ω(G0, S, l)

where F1 ∈ F(G1) and F2 ∈ F(G2). Consider B′ = (g1 + g2)
−1g1g2B =

(g1T1F1)(g2T2F2).

We note that B′ is a block over 〈G1〉∪〈G2〉 and thus L(B′) = L(g1T1F1)+

L(g2T2F2). Moreover, in each factorization of B there is an atom A contain-

ing g1 + g2, and (g1 + g2)
−1g1g2A is a product of two atoms. Conversely,

in each factorization of B′ there are atoms A1 and A2 with gi | Ai, and

(g1g2)
−1(g1 + g2)A1A2 is an atom. Consequently L(B′) = 1 + L(B).

By definition of T2, since g2F2 ∈ F(G2), the set L(g2T2F2) is a singleton,

say equal to {L}; and g1T1F1 ∈ Ω(G1, T1, l) ⊂ P(〈G1〉, d,M(G)). Thus

L(B) = −1 + L+ L(g1T1F1), B ∈ P(G, d,M(G)), and bd(G) ≥ |S|.
2. The argument is quite similar to 1. We have |G1| = ad(〈G1〉) − 1

and |G2| = ad(〈G2〉); and we may assume that, for i ∈ {1, 2}, there exist

a sequence Ti ∈ F(〈Gi〉 \ Gi) with |Ti| = bd(〈Gi〉) such that Ω(Gi, Ti, li) ⊂
P(〈Gi〉, d,M(G)) for some li ∈ N. Let gi ∈ Gi \ {0}, S = (g1 + g2)T1T2

and l = max{l1, l2}; we assert Ω(G0, S, l) ⊂ P(G, d,M(G)). Again, for

B = SF1F2 ∈ Ω(G0, S, l) with Fi ∈ F(Gi) consider B′ = (g1 + g2)
−1g1g2B.

Then L(B) = −1 + L(g1T1F1) + L(g2T2F2). Thus, we have L(B) is an

AAMP with period {0, d} and it is not difficult to see that it is bounded by

M(G) (cf. [10, Section 4.2] for more general results of this form). Finally,

since max L(B) − min L(B) ≥ max L(giTiFi) − min L(giTiFi) we have B ∈
P(G, d,M(G)). �

Having the auxiliary results at hand the theorem follows easily.

Proof of Theorem 1.3. 1. We assume n > m(G) + 2. First, we assume that

G is cyclic, and we have to show that bn−2(G) = 0. The argument is similar

to the proof of Theorem 5.1. Let G0 ∈ An−2(G), say G0 = {0, e,−e} with

ord e = n. Further, let S ∈ F(G \ G0). We may assume |S| = 1, say S =

g = ae with a ∈ [2, n−2] Let B = gen−a(−e)n. Then L(B) = {2, n−a+1}.
For every l ∈ N, the set Ω(G0, g, l) contains a block B1 that is divisible by
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B. Thus n − a − 1 ∈ ∆(L(B1)) and L(B1) is not an AAMP with period

{0, n− 2}. Consequently bn−2(G) = 0 for cyclic G.

Conversely, we assume G is not cyclic, and show that bn−2(G) > 0. If G

is an elementary p-group with rank 2, it follows by the proof of Theorem

1.2.1 that we can apply Lemma 7.1.2 which implies bn−2(G) > 0. In any

other case, it follows by the proof of Theorem 1.2.1 that there exists some

G0 ∈ An−2(G) that allows a decomposition G0 = G1 ∪ G2 with G2 6= {0}
half-factorial. Now, bn−2(G) > 0 by Lemma 7.1.1.

2. We assume n > m(G) + 3. By Theorem 1.2.2 and Lemma 7.1 it

suffices to show that bn−3(C
2
n) > 0. Let G0 = {0, e1, e2,−e1 − e2} with

independent {e1, e2} and ord ei = n. We assert that Ω(G0, 2e1 + 2e2, l) ⊂
P(G, n−3,M) for sufficiently (depending on M) large l. The only atoms in

Ω(G0, 2e1+2e2) are gord g for g ∈ G0, e1e2(−e1−e2), (2e1+2e2)e
n−2
1 en−2

2 , and

(2e1+2e2)(−e1−e2)2. Thus, the only minimal relations are (2e1+2e2)(−e1−
e2)

2 ·en1 ·en2 = (2e1 +2e2)e
n−2
1 en−2

2 · ((−e1−e2)e1e2)2 and (e1e2(−e1−e2))n =

en1 · en2 · (−e1 − e2)
n, thus the only possible distance is n− 3, and the result

follows. �

We end with two examples, showing that the lower bounds of Lemma 7.1

can be sharp.

Example 7.2.

1. Let n ≥ 6 be even and G = C2 ⊕ Cn = 〈e1〉 ⊕ 〈e2〉. By Theorem

1.2, an−2(G) = 4 and we need to consider G0 = {0, e1, e2,−e2}. Let S ∈
F(G \ G0) such that Ω(G0, S, l) ⊂ P(G, n − 2,M) for some l ∈ N. From

the argument for cyclic groups it follows that supp(S) ⊂ {e1 + e2, e1 − e2}.
Without restriction we assume (e1 + e2) | S. Since each of the two blocks

(e1 + e2)e1(−e2) · (e1 − e2)e1e2 = (e1 + e2)(e1 − e2) · e21 · (−e2)e2,

(e1 + e2)
2en−2

2 · (−e2)n = (e1 + e2)
2(−e2)2 · (−e2e2)n−2

has {2, 3} as set of lengths, we have supp(S) = {e1 + e2} and ve1+e2(S) = 1.

This implies bn−2(G) = 1.

2. Let p ≥ 5 a prime and G = C2
p = 〈e1〉⊕〈e2〉. By Theorem 1.2, ap−2(C

2
p) =

5 and we need to consider G0 = {0, e1,−e1}∪{e2,−e2}. Let S ∈ F(G\G0)

such that Ω(G0, S, l) ⊂ P(G, p− 2,M) for some l ∈ N. From the argument

for cyclic groups it follows that supp(S) ⊂ {e1+e2, e1−e2,−e1+e2,−e1−e2}.
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We assume (e1 + e2) | S. Since each of the four blocks

(e1 + e2)(−e1 − e2)(−e1)e1(−e2)e2,

(e1 + e2)(e1 − e2)(−e2)e2e2p−2
1 ,

(e1 + e2)(−e1 + e2)(−e1)e1e2p−2
2 ,

(e1 + e2)
2e2p−2

1 e2p−2
2

has {2, 3} as set of lengths, we have supp(S) = {e1 + e2} and ve1+e2(S) = 1.

This implies bp−2(G) = 1.
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