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Abstract. Let H be a Krull monoid with infinite class group such
that each divisor class contains a prime divisor. It is shown that
for every positive integer n, there exists a divisor closed submonoid
S of H such that min∆(S) = n.

1. Introduction and main result

Let H be an atomic monoid, i.e., each non-invertible element is a
finite product of irreducible elements. Factorizations into irreducible
elements, opposed to factorizations into primes, are not necessarily
unique. For a non-invertible element a ∈ H the set of lengths LH(a) is
the set of all positive integers n such that a = u1 . . . un with irreducible
elements ui ∈ H. If a ∈ H is invertible, then LH(a) = {0}. The inves-
tigation of sets of lengths is a main subject in non-unique factorization
theory.

A central aim of non-unique factorization theory is to classify the
phenomena of non-uniqueness of factorizations occurring for different
(types of) monoids and domains (see the recent monograph [12] and
the proceedings [1, 5] for a comprehensive presentation of the subject).
It has its origins in algebraic number theory, in the investigation of
the multiplicative arithmetic of rings of integers of algebraic number
fields, and has been initiated in the 1960s by the work of L. Carlitz,
W. Narkiewizc and others (see [18, Chapter 9]). Subsequently, factor-
izations in more general integral domains have been investigated (see,
e.g., [2]). Meanwhile, many investigations in non-unique factorization
theory are done in a purely multiplicative framework. Krull monoids
are the multiplicative analogues of Krull domains, in particular the
multiplicative monoid of a Dedekind or Krull domain is a Krull monoid
(see [15, 14, 12] for details on Krull monoids). The notion Krull monoid
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also covers other monoids of interest. The monoids formed by the iso-
morphy classes of certain modules under direct-sum decomposition are
Krull monoids (see, e.g., [8, 16]). Moreover, the monoids of zero-sum
sequences over subsets of abelian groups are Krull monoids, and con-
versely many questions regarding factorizations in Krull monoids can
be transferred to questions regarding zero-sum sequences over subsets
of their class groups (see Section 2 for details). This links the investi-
gation of factorizations in Krull monoids to problems in additive group
theory (see, e.g., [10]).

In order to understand the structure of sets of lengths, one considers
the successive distances appearing in them. For a set of non-negative
integers L = {l1, l2, . . . } with li < li+1, let ∆(L) = {l2 − l1, l3 −
l2, . . . } denote the set of successive distances of L and let ∆(H) =⋃

a∈H ∆(LH(a)) denote the set of distances of H. Of particular interest
is the minimum of the set of distances and, more generally, the minima
of the sets of distances of divisor-closed submonoids of H (a submonoid
S ⊂ H is called divisor-closed, if for a ∈ S and b ∈ H, b |H a implies
b ∈ S). More specifically, one is interested in the following subset of
∆(H):

∆∗(H) = {min ∆(S) : S ⊂ H divisor-closed submonoid, ∆(S) 6= ∅}.
These quantities were investigated in the papers [9, 13, 19, 3, 4]; also
see [12, Chapters 4 and 6] for results and applications. Here we focus on
the investigation of ∆∗(H) for Krull monoids with infinite class group.
Specifically, the aim of this note is to prove the following result.

Theorem 1.1. Let H be a Krull monoid with infinite class group such
that each class contains a prime divisor. Then ∆∗(H) is equal to the
set of positive integers.

Examples of Krull monoids fulfilling the conditions of this result
include certain monoids of isomorphy classes of modules (see, e.g., [16,
Theorem 6.3]) and higher-dimensional finitely generated algebras over
infinite fields (see [17] and [12, Example 7.4.2] for further examples).

The proof of this result is split into several cases, according to the
type of the class group, which we address individually in several auxil-
iary results (see Section 3). Partial results on this problem, which we
use in our proof, are given in [12, Proposition 6.8.2], where it is proved
under the condition that the class group is not a torsion group or its
p-rank is infinite for some prime p.

Moreover, we establish a result on ∆∗(H) for Krull monoids with
finite class group as well, which complements known results (see Theo-
rem 4.1). Our main tool is a recent result, obtained in [4], that allows



MINIMAL DISTANCES IN KRULL MONOIDS 3

us to determine the minimal distance of certain Krull monoids with
cyclic class group (see the discussion preceding Proposition 3.1).

2. Preliminaries

Our notation is consistent with [12]. For convenience we recall some
key notions. We denote by Z the set of integers and by N and N0 the
set of positive and non-negative integers, respectively; by P ⊂ N the
set of prime numbers and, for a ∈ N0, by N≥a the set of integers of
size at least a. Let (G, +) be an abelian group. A family {ei : i ∈ I}
of elements of G is called independent if, for mi ∈ Z and almost all 0,∑

i∈I miei = 0 implies miei = 0 for each i ∈ I. By r0(G) and rp(G) for
p ∈ P we denote the torsionfree rank and the p-rank of G, respectively.
Furthermore, we denote by r(G) = r0(G) + supp∈P rp(G) the rank of G
and by r∗(G) = r0(G) +

∑
p∈P rp(G) the total rank of G. Moreover, let

exp(G) = sup{ord(g) : g ∈ G} ∈ N ∪ {∞} denote the exponent of G.
We call G bounded if its exponent is finite.

Let G0 ⊂ G be a subset. We denote the (multiplicatively written)
free abelian monoid over G0 by F(G0). An element S ∈ F(G0) is called
a sequence over G0 and by definition S =

∏
g∈G0

gvg with vg ∈ N0 and
almost all vg equal to 0. The sequence S is called a zero-sum sequence
if its sum σ(S) =

∑
g∈G0

vgg is equal to 0 ∈ G. The set B(G0) = {S ∈
F(G0) : σ(S) = 0} is a submonoid of F(G0) and is called the block
monoid over G0. As mentioned in the Introduction, block monoids are
Krull monoids and in particular atomic; their irreducible elements are
the minimal zero-sum sequences over G0, which we denote by A(G0).
Conversely, block monoids are a crucial tool in the investigation of
Krull monoids (see [12, Chapter 3]); in particular, the following holds
true (see [12, Proposition 4.3.13]).

Lemma 2.1. Let H be a Krull monoid with class group G and let
GP ⊂ G denote the subset of classes containing prime divisors. Then

∆∗(H) = ∆∗(B(GP )) = {min ∆(B(G0)) : G0 ⊂ GP , ∆(B(G0)) 6= ∅}.

We will frequently make use of the fact, which is a direct consequence
of the second equality in the above lemma, that if G′ is isomorphic to a
subgroup of G, then ∆∗(B(G′)) ⊂ ∆∗(B(G)). For convenience we write
∆(G0) and ∆∗(G) instead of ∆(B(G0)) and ∆∗(B(G)), respectively.

We make use of the following well known arithmetical functions.
For n ∈ N let ϕ(n) = |(Z/nZ)×| denote Euler’s totient function, let
λ(n) = exp((Z/nZ)×) denote Carmichael’s function, and let ω(n) =
|{p ∈ P : p | n}|. If the modulus is clear from context, we write m
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for m + nZ. All intervals are intervals of integers (i.e., for a, b ∈ Z,
[a, b] = {z ∈ Z : a ≤ z ≤ b}).

3. Proof of Theorem 1.1

An important tool in our investigation is the following result in the
special case G0 = {1, a} in Z/nZ. It is merely a special case of [4, The-
orem 2.1] where the min ∆(G0) is described in terms of the continued
fraction of n/a . For convenience we include an alternate proof of this
special case.

Proposition 3.1. Let a, n and k be in N such that 1 ≤ k < a < n
where n ≡ k (mod a) and a ≡ 1 (mod k). Let G0 = {1, a} ⊂ Z/nZ.
Then min ∆(G0) = a−1

k
.

To prove this result we recall the definition of the g-norm of a zero-
sum sequence (see [7, Definition 1] or [12, Definition 6.8.4]) and its
relation to the problem of determining the minimal distance of Krull
monoids (see [11, Proposition 7] or [12, Lemma 6.8.5]). Let G = 〈g〉 be

a cyclic group of order n. For S =
∏`

i=1(nig) ∈ F(G) with ni ∈ [1, n]
let

||S||g =
n1 + · · ·+ n`

n
.

Note that ||S||g is an integer if and only if B is a zero-sum sequence.

Lemma 3.2. Let G = 〈g〉 be a cyclic group of order n. Let G0 ⊂ G
such that ∆(G0) 6= ∅. Then min ∆(G0) = gcd{||U ||g − 1: U ∈ A(G0)}.

Proof. See [12, Lemma 6.8.5]. �

Proof of Proposition 3.1. We set m = n−k
a

and d = a−1
k

. We have

A(G0) = {a`1
n−`a

: ` ∈ [0, m]} ∪ {am+`(dm+1)1
k−`

: ` ∈ [1, k]}

(see [6] for a detailed argument). Since ||a`1
n−`a||1 = 1 for each ` ∈

[0, m] and ||am+`(dm+1)1
k−`||1 = 1 + d` for each ` ∈ [1, k] the claim

follows by Lemma 3.2. �

Proposition 3.3. Let p ∈ P and d, k ∈ N. If k ≥ λ(dp + 1) + 1, then
d ∈ ∆∗(Z/pkZ).

Proof. Since gcd(p, dp + 1) = 1, we have pλ(dp+1) ≡ 1 (mod dp + 1).
Thus, pλ(dp+1)+1 ≡ p (mod dp + 1) and pd + 1 ≡ 1 (mod p). Con-

sequently, by Proposition 3.1, (dp+1)−1
p

= d ∈ ∆∗(Z/pλ(dp+1)+1Z). If

k ≥ λ(dp+1)+1, then ∆∗(Z/pλ(dp+1)+1Z) ⊂ ∆∗(Z/pkZ) and the result
follows. �
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Remark 3.4. If d 6≡ −1 (mod p), then Proposition 3.3 can be modified
in the following way. If p ∈ P, d, k ∈ N, k ≥ λ(d + 1), and d 6≡
−1 (mod p), then d ∈ ∆∗(Z/pkZ) (since d 6≡ −1 (mod p), we have
gcd(d + 1, p) = 1 and pλ(d+1) ≡ 1 (mod d + 1); the claim follows by
Proposition 3.1 with n = pλ(d+1) and a = d + 1).

Proposition 3.5. Let P ⊂ P and G = ⊕p∈P Z/pZ. Furthermore, let
b ∈ N≥2 such that

(1) ϕ(b)(λ(b)− 1) + ω(b) < |P |.
Then b− 1 ∈ ∆∗(G).

Proof. For r ∈ (Z/bZ)×, let Pr = P ∩ r. We note that if p ∈ P \⋃
r∈(Z/bZ)× Pr, then p | b. Thus, |P | ≤ ω(b) +

∑
r∈(Z/bZ)× |Pr| and there

exists some r′ ∈ (Z/bZ)× such that |Pr′| ≥
|P |−ω(b)

ϕ(b)
> λ(b) − 1. Let

p1, . . . , pλ(b) ∈ Pr′ be distinct and n =
∏λ(b)

i=1 pi. Since pi ∈ r′ for each

i, we have n ∈ r′
λ(b)

= 1 + bZ. Thus, by Proposition 3.1, b − 1 ∈
∆∗(Z/nZ). Since ∆∗(Z/nZ) ⊂ ∆∗(G), the claim follows. �

The following two results are known (cf. [12, Proposition 6.8.2]), for
convenience we include (a sketch of) the proofs.

Lemma 3.6. ∆∗(Z) = N.

Proof. Let d ∈ N and let Gd = {1, (d + 1),−1,−(d + 1)} ⊂ Z. Then
∆(Gd) = {d}. �

Lemma 3.7. Let G be an abelian torsion group. If d ∈ N and d < r(G),
then d ∈ ∆∗(G).

Proof. Since d < r(G), there exists some p ∈ P and independent el-

ements e1, . . . , ed+1 such that ord(ei) = p. Let e0 =
∑d+1

i=1 ei and
G0 = {ei : i ∈ [0, d + 1]}. Then ∆(G0) = {d} (see [12, Proposition
6.8.1] for a detailed argument). �

Now, we combine these results to prove Theorem 1.1.

Proof of Theorem 1.1. Let G be the class group of H. By Lemma 2.1
it suffices to show that ∆∗(G) = N. If G is not a torsion group, then it
has a subgroup isomorphic to Z and the claim follows by Lemma 3.6.
Thus, we suppose that G is a torsion group. If G is bounded, then its
rank has to be infinite. In this case the claim follows by Lemma 3.7.
Thus, we suppose that G is not bounded. Therefore, at least one of
the following conditions has to hold:

• There exists an infinite subset P ⊂ P such that for each p ∈ P
there is some gp ∈ G with ord(gp) = p.
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• There exists some p ∈ P such that for each k ∈ N there exists
some gk ∈ G with ord(gk) = pk.

If the latter holds true, the claim follows by Proposition 3.3. If the for-
mer holds true, the claim follows by Proposition 3.5, since (1) trivially
holds for each b. �

4. Finite class groups

The methods used in the proof of Theorem 1.1 can be used to obtain
information on ∆∗(H) for Krull monoids with finite class group as
well. For an overview of results on this problem see [12, Section 6.8].
In particular, it might be interesting to contrast the second part of
the following result with a result of W. D. Gao and A. Geroldinger [9]
(also see [12, Proposition 6.8.7]) asserting that ∆∗(H) ⊂ [1, r∗(G)− 1]
if r∗(G) ≥ (exp(G)− 1) + 1

2
(exp(G)− 1)2(exp(G)− 2).

Theorem 4.1. Let H be a Krull monoid with finite class group G such
that each class contains a prime divisor.

(1) [1,
⌈√

ω(exp(G))
⌉
− 1] ⊂ ∆∗(H).

(2) [1,
⌈

3
√

r∗(G)
⌉
− 1] ⊂ ∆∗(H).

Proof. Let n = exp(G).
(1) The group Z/nZ has a subgroup isomorphic to ⊕p∈P Z/pZ where

P ⊂ P and |P | = ω(n). Since, for d ∈ N,

ϕ(d + 1)(λ(d + 1)− 1) + ω(d + 1) ≤ d(d− 1) + d = d2,

the claim follows by Proposition 3.5 and Lemma 2.1.
(2) We note that r∗(G) ≤ r(G)ω(n). Thus, r(G) ≥ r∗(G)1/3 or ω(n) ≥

r∗(G)2/3. Now, the claim follows by Lemma 3.7 and part (1) above,
respectively, and Lemma 2.1. �
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