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Abstract

By a result of G. Freiman and A. Geroldinger [J. Number Theory
85, 2000] it is known that the set of lengths of factorizations of an
algebraic integer (in the ring of integers of an algeraic number field), or
more generally of an element of a Krull monoid with finite class group,
has a certain structure: it is an almost arithmetical multiprogression
for whose difference and bound only finitely many values are possible,
and these depend just on the class group.

We establish a sort of converse to this result, showing that for each
choice of finitely many differences and of a bound there exists some
number field such that each almost arithmetical multiprogression with
one of these difference and that bound is up to shift the set of lengths
of an algebraic integer of that number field. Moreover, we give an
explicit sufficient condition on the class group of the number field for
this to happen.

Keywords: algebraic number field, almost arithmetical multiprogression,
Krull monoid, zero-sum sequence
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1 Introduction and main result

An atomic monoid is a commutative cancellative semigroup with identity
element such that each non-invertible element has a factorization (i.e., a
finite product decomposition) into irreducible elements. The multiplicative
monoid of the ring of algebraic integers of a number field (or any noetherian
domain) is an atomic monoid.

Let a ∈ H be an element of an atomic monoid and let a = u1 . . . un be a
factorization of a into irreducible elements ui ∈ H. The integer n is called the
lengths of this factorization of a. The set of lengths of a, denoted LH(a), is
defined as the set of all n such that a has a factorization of length n. The set
of lengths of an invertible element is defined to be {0}. If H is v-noetherian,
e.g., H is the multiplicative monoid of a noetherian domain, then the sets of
lengths of its elements are finite sets. All monoids considered in this paper
fulfil this condition.

The monoid H is called half-factorial if | LH(a)| = 1 for each a ∈ H. Ob-
viously, factorial monoids are half-factorial and L. Carlitz [4] showed that the
ring of integers of an algebraic number field is half-factorial if and only if its
ideal class group has at most two elements. Since that time the investigation
of half-factorial domains and monoids received much attention (see, e.g., the
recent papers [6, 7, 15, 17]).

Suppose that H is not half-factorial. Then an easy argument shows that
for every k ∈ N there is some a ∈ H such that | LH(a)| ≥ k. The investigation
of the structure of sets of lengths is a central topic in the theory of non-
unique factorizations (see, e.g., the proceedings [1, 5] or the recent paper [3]
for, among others, results on elasticities and delta sets).

For many classes of monoids satisfying natural finiteness conditions, in-
cluding Krull monoids with finite class group and orders in holomorphy
rings of global fields, sets of lengths are almost arithmetical multiprogres-
sions (AAMPs for short) with universal bounds on their parameters (see [10,
Section 4.7] also cf. Theorem 1.2 below).

We recall the definition of AAMPs. In the present form it was introduced
in [8] (also see [10, Definition 4.2.1]).

Definition 1.1. Let d ∈ N and M ∈ N0. Further, let {0, d} ⊂ D ⊂ [0, d], let
−L′, L′′ ⊂ N be finite sets such that −L′, L′′ ⊂ [1, M ], and let y ∈ Z, l′ ∈ N0,
and L∗ = [0, l′] ∩ (D + dZ). The set

L = y +
(
L′ ∪ L∗ ∪ (l′ + L′′)

)
⊂ y +D + dZ
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is called an almost arithmetical multiprogression (AAMP for short) with
difference d and bound M . Moreover, D and y are called period and shift of
L, respectively, and the sets y + L′, y + L∗, and y + l′ + L′′ are called the
initial part, the central part, and the end part of L, respectively.

We recall the structure theorem for sets of lengths for Krull monoids with
finite class group (cf. [10, Theorems 4.6.6 and 2.9.12]). As usual L(H) =
{LH(a) : a ∈ H} denotes the system of sets of lengths of H.

Theorem 1.2. Let H be a Krull monoid with finite class group. Then there
exists an M ∈ N0 and a finite non-empty set ∆∗ ⊂ N, for which a precise
description is known, such that the following holds: every L ∈ L(H) is an
AAMP with difference d ∈ ∆∗ and bound M .

Let H be as above and suppose H is not half-factorial. As mentioned
above, there exist elements with arbitrarily large sets of lengths, but by this
theorem the initial and end part are universally bounded and only the highly
structured central part can be arbitrarily large.

Krull monoids with finite class group are a basic class of monoids for
which such a structure theorem holds true. The aim of this paper is to
prove, for this class of monoids, the following realization theorem for sets of
lengths.

Theorem 1.3. Let M ∈ N0 and let ∅ 6= ∆∗ ⊂ N be a finite set. Then there
exists a Krull monoid H with finite class group such that the following holds:
for every AAMP L with difference d ∈ ∆∗ and bound M there is some yH,L

such that
y + L ∈ L(H) for all y ≥ yH,L.

Indeed, there exists a number field such that the multiplicative monoid of its
ring of algebraic integers has this property.

Our proof of Theorem 1.3 does not only yield the existence of a monoid
H, but allows to extract a sufficient condition on the class group of H for
L(H) to contain the relevant sets (see Remark 4.9); for these monoids we
give an upper bound for the constants yH,L as well.

We note that a condition like y ≥ yH,L is necessary: for an atomic monoid
H, for each L ∈ L(H)\{{0}} the ratio sup L/ min L does (by definition) not
exceed ρ(H) the elasticity of H, which for Krull monoids with finite class
group is known to be finite (see [18] and [2] or [10, Theorem 3.4.1]).
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First but weaker realization theorems for sets of lengths are obtained
in [10, Section 4.8]. In locally tame, strongly primary monoids (e.g., in
one-dimensional local noetherian domains) the structure theorem for sets is
simpler than it is for Krull monoids (see [10, Theorem 4.3.6]), and a first
realization theorem for sets of lengths for this class of monoids was recently
given in [11].

If G is a an abelian group with |G| 6= 2, then the monoid of zero-sum
sequences over G is a Krull monoid with class group (isomorphic to) G, and
conversely the system of sets of lengths of a Krull monoid is equal to the
system of sets of lengths of a monoid of zero-sum sequences, namely the
block monoid associated to H, a notion introduced by W. Narkiewicz [16].
We outline this in more detail in Section 2. In Section 3 we formulate our
main technical result (Theorem 3.1), which is a result on monoids of zero-
sum sequences, and derive Theorem 1.3 from it. The proof of Theorem 3.1
is given in Section 4.

2 Preliminaries

We recall some further terminology and notation, which is consistent with
[10] and [9].

For m, n ∈ Z let [m, n] = {z ∈ Z : m ≤ z ≤ n}. For A, B subsets of
an additive semigroup S and n ∈ N let A + B = {a + b : a ∈ A, b ∈ B}
and n · A = {na : a ∈ A}; since no confusion is to be expected, we use the
common notation dZ instead of d · Z. Moreover, if the elements of A are
invertible we write −A for {−a : a ∈ A} and we write a + A for {a}+ A.

Let (G, +) be a (finite) abelian group. Elements e1, . . . , er ∈ G are called
independent if

∑r
i=1 miei = 0 with mi ∈ Z implies that miei = 0 for all

i ∈ [1, r]. If g =
∑r

i=1 miei, then we refer to miei as the i-coordinate of g.
Let G0 ⊂ G. We denote by F(G0) the multiplicatively written free abelian

monoid over G0. An element S ∈ F(G0) is called a sequence over G0. By
definition there exist uniquely determined vg ∈ N0 such that S =

∏
g∈G0

gvg

and up to order uniquely determined g1, . . . , gl ∈ G such that S = g1 . . . gl.
The sequence S is called a zero-sum sequence if its sum σ(S) =

∑l
i=1 gi is

equal to 0 ∈ G. The set of all zero-sum sequences over G0 is denoted by
B(G0). This set is a submonoid of F(G0) and it is called the block monoid
over G0.

Block monoids are Krull monoids and additionally are of great impor-
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tance in the investigation of the arithmetic of Krull monoids. For a detailed
discussion of Krull monoids and block monoids we refer to the monographs
[13, 10, 12]. We recall some basic results (cf., e.g., Proposition 2.5.6, Theorem
3.4.10, and Proposition 7.3.1 in [10]).

Lemma 2.1. Let G be an abelian group and ∅ 6= G0 ⊂ G.

1. B(G0) is a Krull monoid and L(B(G0)) ⊂ L(B(G)).

2. If |G| 6= 2, then the class group of B(G) is (isomorphic to) G and each
class contains a prime divisor.

3. If G = G1 ⊕G2, then L(B(G1)) + L(B(G2)) ⊂ L(B(G)).

4. If 0 ∈ G0 and L ∈ L(B(G0)), then y + L ∈ L(B(G0)) for each y ∈ N0.

For ease of notation we write L(G0) instead of L(B(G0)) and L(B) instead
of LB(G0)(B).

Proposition 2.2. Let H be a Krull monoid with class group G and let G0 ⊂
G denote the subset of classes containing prime divisors. Then L(H) =
L(G0).

3 A conditional proof of Theorem 1.3

In this section we formulate our main technical result (Theorem 3.1) and
show that it implies Theorem 1.3. The proof of Theorem 3.1 is given in the
following section.

Theorem 3.1. Let d,M ∈ N. Further, let {0, d} ⊂ D ⊂ [0, d] and let
L′ ⊂ [−M,−1] ∩ (D + dZ) and L′′ ⊂ [1, M ] ∩ (D + dZ). Let G be a finite
abelian group and let e1, . . . , er, f, e′0 . . . , e′dM/de−1 ∈ G be independent such
that the following holds:

• r ≥ |L′|+ |L′′|+ dM/de(|D| − 1),

• ord e1 ≥ 3 and ord ei ≥ 5 for i ∈ [2, r],

• ord f ≥ 2(ddM/de+ max L′′ −min L′) + 1 (where max ∅ = min ∅ = 0),

• ord e′i = d(dM/de+ i) + 2 for i ∈ [0, dM/de − 1].
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If l ≥ (3dM/de+5)dM/de
2

, say l = (3dM/de+5)dM/de
2

+ t with t ∈ N0, then, for

yl = 2 + M + 2

(
dM/de+ 1 +

⌈
t + dM/de
2dM/de − 1

⌉)
,

and y ≥ yl,

y +
(
L′ ∪ ((D + dZ) ∩ [0, ld]) ∪ (dl + L′′)

)
∈ L(G).

Moreover, if additionally r ≥ |L′|+ |L′′|+ (|D| − 1) (3dM/de+5)dM/de−2
2

and

ord f ≥ 2

(
d
(3dM/de+ 5)dM/de − 2

2
+ max L′′ −min L′

)
+ 1,

then the condition on l can be dropped and for l < (3dM/de+5)dM/de
2

we can set
yl = 2 + M .

Using Theorem 3.1 we prove Theorem 1.3.

Proof of Theorem 1.3. First, we assert that it suffices to show that there ex-
ists a finite abelian group G such that L(G) contains the relevant sets. Except
for the additional statement regarding number fields this is immediate, since
by Lemma 2.1 B(G) is a Krull monoid. The result for number fields is ob-
tained in the following way (cf. [10, Remark 4.8.9]): it suffices to recall that
the multiplicative monoid of the ring of algebraic integers is a Krull monoid
(its class group is equal to the usual ideal class group and each class contains
a prime divisor, i.e., prime ideal) and that for each finite abelian group there
exists a number field whose class group has a subgroup isomorphic to this
group (see, e.g., [19, Corollary 3.9]). Thus, the claim follows by Proposition
2.2 and Lemma 2.1.

Now we proceed to show the existence of such a group. Let L be an
AAMP with difference d ∈ ∆∗ and bound M , i.e.,

y +
(
L′ ∪ L∗ ∪ (l′ + L′′)

)
⊂ y +D + dZ,

where L∗ = [0, l′] ∩ (D + dZ), L′ ⊂ [−M,−1] and L′′ ⊂ [1, M ] with y ∈ Z,
l′ ∈ N0. Without restriction we may assume M ≥ 1.

Let l = bl′/dc. Then

L = y +
(
L′ ∪

(
(D + dZ) ∩ [0, ld]

)
∪ (ld + L′′)

)
⊂ y +D + dZ
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where L′′ ⊂ [1, M + d− 1] and necessarily L′, L′′ ⊂ D + dZ.
By Theorem 3.1, with bound M +d−1, we know that there exists a finite

abelian group GD,L′,L′′ such that for each l ∈ N0 there exists some yl such
that for y ≥ yl

y +
(
L′ ∪

(
(D + dZ) ∩ [0, ld]

)
∪ (ld + L′′)

)
∈ L(GD,L′,L′′).

Let G be a finite abelian group that has a subgroup isomorphic to GD,L′,L′′

as above for each of the admissible choice of D, L′, and L′′, i.e., {0, d} ⊂ D ⊂
[0, d] with d ∈ ∆∗, −L′, L′′ ⊂ [1, M + d − 1] and moreover L′, L′′ ⊂ D + dZ.
Since d ≤ max ∆∗ < ∞, there are only finitely many such choices. Then,
L(G) contains all the required AAMPs.

4 Proof of Theorem 3.1

The general approach is as in [10, Theorem 4.8.6]. However, various de-
tails are handled somewhat differently to get improved dependence on the
constants and to make the condition on the class group explicit. First, we
prove several auxiliary results, which we combine in Subsection 4.4 to prove
Theorem 3.1.

4.1 An additive decomposition

We show that we can write an AAMP L with sufficiently large central part in
the form L = L1+L2 where L1 is a small set, in the sense that max L1−min L1

is bounded above by a constant that only depends on the the bound and
differences of L, and L2 is an AAMP of a special form.

Lemma 4.1. Let d ∈ N and s, s′ ∈ N and M ∈ N0 such that s ≤ s′ and
M ≤ ds. Further, let {0, d} ⊂ D ⊂ [0, d] and −L′, L′′ ⊂ [1, M ] such that
L′, L′′ ⊂ D + dZ. Then

L′∪
(
(D + dZ) ∩ [0, d(s′ + 2s)]

)
∪ (d(s′ + 2s) + L′′) =(

L′ ∪ ((D + dZ) ∩ [0, ds]) ∪ (ds + L′′)
)

+
(
{0} ∪ d · [s, s′] ∪ {d(s′ + s)}

)
Proof. Let L = L′ ∪ ((D + dZ) ∩ [0, d(s′ + 2s)]) ∪ (d(s′ + 2s) + L′′), L1 =
L′ ∪ ((D + dZ) ∩ [0, ds]) ∪ (ds + L′′), and L2 = {0} ∪ d · [s, s′] ∪ {d(s′ + s)}.
Clearly L ⊂ L1 + L2 and we only have to prove the reverse inclusion. Since
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L1 ⊂ D + dZ and L2 ⊂ dZ, it follows that L1 + L2 ⊂ D + dZ. It remains to
show that each element in L1+L2 that is less than 0 or greater than d(s′+2s)
is contained in L′ or d(s′ + 2s) + L′′, respectively. Let z = x + y ∈ L1 + L2,
where x ∈ L1 and y ∈ L2, be negative. It is clear that x ∈ L′ and it suffices to
assert that y = 0. Assume not. Then y ≥ ds ≥ M and since x ≥ −M , we get
z ≥ 0, a contradiction. Similarly, if z′ > d(s′+2s) and z′ = x′+y′ ∈ L1 +L2,
then since max L2 = d(s′ + s) we have x′ > ds and thus x′ ∈ ds + L′′ and
since max L1 ≤ 2ds we have y′ > ds′ and thus y′ = d(s′ + s).

The point of this result is that by Lemma 2.1 it thus suffices to construct
a group G1 and a group G2 whose system of sets of lengths contain the small
sets and the special AAMPs, respectively. In the next two subsections we do
this. We note that those AAMPs for which Lemma 4.1 is not applicable are
already small sets in the above sense.

4.2 Realization of certain special AAMPs

We show how to obtain the AAMPs with period {0, d} appearing in Lemma
4.1. Yet, we have to impose an additional restriction on the size of the central
part. The sets not fulfilling this condition and, more importantly, the sets
in the additive decomposition of which these sets arise are small sets in the
sense of the preceding subsection.

We first show that one can write the AAMPs in question as the sum of
simpler sets, namely arithmetical progressions. This means we prove that
in fact they are multidimensional arithmetical progressions, and it is well-
known how to obtain (multidimensional) arithmetical progressions as sets of
lengths (see [10, Corollary 4.1.3] and Proposition 4.4). To do so, we first
prove a simple lemma; a weaker version of this lemma would be a special
case of a result on numerical monoids (cf. [10, Proposition 2.9.4], yet note
that there is a minor flaw in that statement).

Lemma 4.2. Let s ∈ N and let ki ∈ N for i ∈ [0, s− 1] and suppose k0 ≥ 2.
Further, let S =

∑s−1
i=0 (s + i)ki. Then

L =
s−1∑
i=0

(s + i) · [0, ki] = {0} ∪ [s, S − s] ∪ {S}.

Proof. For s = 1 the assertion is trivial and we suppose s ≥ 2. It is immediate
that min L = 0, max L = S, [1, s−1]∩L = ∅ and [S− (s−1), S−1]∩L = ∅.
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Thus, it remains to show that [s, S − s] ⊂ L. Assume this is not true and
let n = min{[s, S − s] \ L}. Since [s, 2s − 1] ⊂ L, it follows that n − 1 ≥ s
and thus n − 1 ∈ L. Let hi ∈ [0, ki] such that n − 1 =

∑s−1
i=0 (s + i)hi. If

hj 6= 0 for some j ∈ [0, s − 2], it follows that hj+1 = kj+1, since otherwise
n = (n − 1) − (s + j) + (s + j + 1) ∈ L. And, if hs−1 6= 0 it follows that
h0 ≥ k0− 1, since otherwise n = (n− 1)− (2s− 1)+2s ∈ L. Since n− 1 6= 0,
not all of the his are equal to 0, and by the above reasoning it follows that
h0 ≥ k0 − 1 and hi = ki for each i ∈ [1, s − 1]. Thus n − 1 ≥ S − s, a
contradiction.

The following result is an almost immediate consequence of Lemma 4.2.

Proposition 4.3. Let s, s′ ∈ N such that s′ ≥ (3s + 1)s/2 and let t =
s′ − (3s + 1)s/2. There exist ki ∈ N for i ∈ [0, s − 1] such that

∑s−1
i=0 ki =

s + 1 + d(t + s)/(2s− 1)e and

s−1∑
i=0

(s + i) · [0, ki] = {0} ∪ [s, s′] ∪ {s + s′}. (1)

Proof. For each n ∈ N with n ≥ s there exist hi ∈ N0 such that
∑s−1

i=0 hi(s +
i) = n; moreover, we can choose the his in such a way that

∑s−1
i=0 hi =

dn/(2s− 1)e. Thus, for each s′ ≥ 2s +
∑s−1

i=1 (s + i) = (3s + 1)s/2 there exist
ki ∈ N with k0 ≥ 2 such that

∑s−1
i=0 ki(s + i) = s′ + s and we can choose the

kis in such a way that
∑s−1

i=0 ki = s + 1 + d(t + s)/(2s− 1)e. By Lemma 4.2
the result follows.

Simply multiplying (1) by the difference d, our task is reduced to obtain-
ing arithmetical progressions with difference (s + i)d and prescribed lengths
as sets of lengths. Several ways to achieve this are known. We recall two
natural ways ([10, Propositions 4.1.2 and 6.8.1]):

• Let g ∈ G be an element with ord g = n. Then L
(
((−g)g)nk

)
=

{2k + i(n− 2) : i ∈ [0, k]}.

• Let e1, . . . , er ∈ G be independent elements with ord ei = n, and e0 =∑r
i=1 ei. Then L((e0

∏r
i=1 en−1

i )k) = {k + i(r − 1) : i ∈ [0, k − d k
n
e]}.

We use the former construction in the proof of the following result, which
summarizes the argument of this subsection. In Remark 4.5 we briefly discuss
the other option.
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Proposition 4.4. Let s, d ∈ N. Let G = ⊕s−1
i=0 〈ei〉 with ord ei = d(s + i) + 2

for i ∈ [0, s − 1]. For each s′ = t + ((3s + 1)s/2), where t ∈ N0, and
y ≥ 2(s + 1 + d(t + s)/(2s− 1)e),

y + ({0} ∪ d · [s, s′] ∪ {d(s′ + s)}) ∈ L(G).

Proof. By Proposition 4.3, there exist ki ∈ N with
∑s−1

i=0 ki = s + 1 + d(t +
s)/(2s− 1)e such that

y + ({0} ∪ d · [s, s′] ∪ {d(s′ + s)}) = y′ +
s−1∑
i=0

(2ki + d(s + i) · [0, ki])

and y′ = y − 2
∑s−1

i=0 ki ≥ 0. Since 2ki + d(s + i) · [0, ki] ∈ L(〈ei〉) (cf. above)
the claim follows by Lemma 2.1.

Remark 4.5. Using the other construction to get the arithmetical progres-
sions, we can obtain an analogous result. The condition on the group could
be that its rank is at least (d(3s2 − s) + 2s)/2 =

∑s−1
i=0 ((s + i)d + 1).

This condition seems rather more natural than the one given in Proposi-
tion 4.4, but it yields groups of much larger order.

4.3 Realization of small sets of lengths

We show how to obtain the small sets of lengths mentioned in Subsection 4.1.
More precisely, for each D ∈ N we construct a finite abelian group whose
system of sets of lengths contains all L ⊂ N≥2 for which max L−min L ≤ D
(see Corollary 4.8). We emphasize that a result of this type is already known:
it is implicit in [14, Proof of Proposition] and the existence of (but not an
explicit construction for) such a group follows directly from [10, Proposition
4.8.3]. Nevertheless, we include a (different) proof of this fact, which, being
designed for this specific purpose, is rather short, yields a group of a relatively
small order, and is completely explicit. We start with a more technical result.
In the following result δi,j is equal to 1 if i = j and 0 otherwise. Furthermore,
the set of factorizations of a zero-sum sequence B (over G) is the set of all
essentially different (i.e., not only differing by the ordering of the factors)
factorizations of B into minimal zero-sum sequences (over G); it is thus a
subset of factorization monoid of B(G), the free abelian monoid over the set
of minimal zero-sum sequences (cf. [10, Definition 1.2.6]).
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Proposition 4.6. Let r, D ∈ N, and let e1, . . . , er, f ∈ G be independent
elements such that ord e1 ≥ 3, ord ei ≥ 5 for each i ∈ [2, r] and ord f ≥
2D + 1.

1. Let d1, . . . , dr ∈ N such that
∑r

i=1 di = D. Let g1 = e1 +
∑r

i=2 3ei +∑r
i=1 dif , g2 =

∑r
i=1 ei, hi = −ei − 2ei+1 − dif for i ∈ [1, r − 1] and

hr = −er − drf . Furthermore, let

B = g1g2

( r∏
i=1

hi

)
(−e1)

( r∏
i=2

2ei(−3ei)
)(

(−f)f
)Pr

i=1 di ,

Vk = g1

(k−1∏
i=1

hi

)
(−e1)

δ1,k
( r∏

i=max{2,k}

−3ei

)
(2ek)

1−δr+1,k(−f)
Pr

i=k di, and

Wk = g2

( r∏
i=k

hi

)
(−e1)

1−δ1,k
(k−1∏

i=2

−3ei

)( ∏
i∈[2,r]\{k}

2ei

)
f
Pr

i=k di

for k ∈ [1, r + 1]. Then B ∈ B(G) and

{VkWk

(
(−f)f

)Pk−1
i=1 di : k ∈ [1, r + 1]}

is the set of factorizations of B.

2. Let L ⊂ N≥2 such that max L − min L = D and |L| = r + 1. Then
L ∈ L(G).

Proof. 1. It is easy to see that B is a zero-sum sequence and thus an el-
ement of B(G). We have to show that each factorization of B into irre-
ducible elements, i.e. minimal zero-sum sequences, is equal (as factorization)

to VkWk((−f)f)
Pk−1

i=1 di for some k ∈ [1, r + 1]. We observe that Vk, Wk for
k ∈ [1, r + 1] and (−f)f are minimal zero-sum sequences. Next, we show
that no other minimal zero-sum sequence divides B. Let W | B be a minimal
zero-sum sequence.
Assertion 1: If g1 - W and g2 - W , then W = (−f)f . If hi - W for each
i ∈ [1, r], then this is obvious. Thus, suppose hj | W for some j and we
assume j is minimal with this property. First, we suppose j = 1. The only
elements in B with non-zero 1-coordinate are g1, g2, h1, and −e1. Thus,
if g1 - W and g2 - W , then the 1-coordinate of σ(W ) cannot equal 0, a
contradiction. Now, we assume j > 1. By the minimality of j, we know that
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hj−1 - W . The only elements in B with non-zero j-coordinate are g1, g2,
hj−1, hj, 2ej, and (−3ej). Again, if g1 - W and g2 - W , then the j-coordinate
of σ(W ) cannot equal 0, a contradiction.
Assertion 2: g1g2 - W . Assume to the contrary that g1g2 | W . Let R
the zero-sum sequence for which B = WR. By Assertion 1 it follows that
R = ((−f)f)k for some k ∈ N0. Consequently the zero-sum sequence
g2(−e1)(

∏r
i=2 2ei(−3ei)) is a proper divisor of W and W is not a minimal

zero-sum sequence, a contradiction.
Assertion 3: If g2 | W , then W = Wk for some k ∈ [1, r + 1]. Suppose
g2 | W . We observe the following fact: If hj | W for some j ∈ [1, r − 1],
then hj+1 | W . (This can be seen similarly to Assertion 1, considering the
(j + 1)-coordinate.) Now, let k ∈ N by minimal such that hi | W for each
i ≥ k. By the just established fact this implies that hi - W for each i < k.
Since g1 - W and (−f)f - W , it follows, considering each coordinate, that
W = Wk.

Having these assertions at hand we finish our argument. Let B = A1 · . . . ·
Al be a factorization into minimal zero-sum sequences. Necessarily (exactly)
one of the factors contains g2, say A1, and a different one contains g1, say
A2. By Assertion 3 A1 = Wk for some k ∈ [1, r + 1] and by Assertion 1
Ai = (−f)f for i ∈ [3, l]. Thus, A2 = Vk and l = 2 +

∑k
i=1 di.

2. By Lemma 2.1 we can assume that min L = 2. Obviously there exist
d1, . . . , dr ∈ N such that L = {2 +

∑k−1
i=1 di : k ∈ [1, r + 1]}. Applying 1. with

these dis the claim follows.

We note that Proposition 4.6 and its proof can be generalized in the
following way.

Remark 4.7. Instead of claiming the existence of the element f of order at
least 2D + 1 one could make the (weaker) claim that independent elements
fj exist such that

∑
j(ord fj − 1) ≥ 2D.

Yet, since our aim is a group with small order and a simple proof, we
refrain from actually proving this slightly stronger result and also do not
investigate further possible ramifications of the method used in the proof of
Proposition 4.6.

We end this subsection with the announced result, which follows imme-
diately from Proposition 4.6.

Corollary 4.8. Let G =
(
⊕D

i=1〈ei〉
)
⊕〈f〉 with ord ei ≥ 5 and ord f ≥ 2D+1.

If ∅ 6= L ⊂ N≥2 and max L−min L ≤ D, then L ∈ L(G).
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Proof. For each non-empty set L of integers |L| ≤ max L − min L + 1. The
claim is an immediate consequence of Proposition 4.6.2.

4.4 Combination of the auxiliary results

In this subsection we combine the auxiliary results to prove Theorem 3.1.

Proof of Theorem 3.1. Suppose that the conditions on l and yl hold and let
L = y + (L′ ∪ ((D + dZ) ∩ [0, ld]) ∪ (dl + L′′)) for some y ≥ yl. Further let
s = dM/de. Since l ≥ 3s, we can apply Lemma 4.1 to get

L =
(
2 + M + (L′ ∪ ((D + dZ) ∩ [0, ds]) ∪ (ds + L′′))

)︸ ︷︷ ︸
L1

+
(
y −M − 2 + ({0} ∪ d · [s, l − 2s] ∪ {d(l − s)})

)︸ ︷︷ ︸
L2

.

Since l − 2s ≥ (3s + 1)s/2 and y −M − 2 ≥ 2(s + 1 + d t+s
2s−1

e), it follows

by Proposition 4.4 that L2 ∈ L(⊕s−1
i=0 〈e′i〉). Since |L1| ≤ r + 1 and ord f ≥

2(max L1−min L1)+1, it follows by Proposition 4.6 that L1 ∈ L(⊕r
i=1〈ei〉⊕

〈f〉). Thus, L = L1 + L2 ∈ L
(
(⊕r

i=1〈ei〉 ⊕ 〈f〉)⊕ (⊕s−1
i=0 〈e′i〉)

)
⊂ L(G).

To get the “moreover”-statement, we note that for the remaining values
of l and if r and ord f fulfil the additional conditions, the respective sets of
lengths are elements of L((⊕r

i=1〈ei〉)⊕ 〈f〉) by Proposition 4.6.

We conclude this paper with the explicit condition on the class group
announced after Theorem 1.3, more precisely the subset of classes containing
prime divisors. By Lemma 2.1 (and the proof of Theorem 1.3) it is clear that
a condition for a finite abelian group G so that L(G) contains the relevant sets
is sufficient. The proof of Theorem 1.3 and Theorem 3.1 immediately yield
such a condition: G contains a subgroup isomorphic to the direct sum, over
all d ∈ ∆∗, all {0, d} ⊂ D ⊂ [0, d], and all (admissible)−L′, L′′ ⊂ [1, M+d−1]
of the groups GD,L′,L′′ occurring in the proof of Theorem 1.3, which are given
explicitly by Theorem 3.1.

However, taking the proof of Theorem 3.1 into account an improvement
to this condition is possible. The condition on the groups we use to construct
the small sets depends on the parameters only in a weak way (cf. Corollary
4.8) and thus a single group for this purpose is sufficient (we only need to
compute the maximal value that the lower bounds on r and ord f occurring
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in Theorem 3.1 obtain for the range of parameters, see below). Apart this
group for the small sets, we need a group to get the special AAMPs for each
d ∈ ∆∗ (see Proposition 4.4). Furthermore, with the same reasoning but
using the variants of our results stated in Remarks 4.5 and 4.7, we obtain
a different criterion (see below), which is simpler but typically (namely, if
max ∆∗ is not much larger than the bound M) leads to a group of larger
order.

Remark 4.9. Let M ∈ N and let ∅ 6= ∆∗ ⊂ N and D = max ∆∗. Let G
be a finite abelian group. If at least one of the following conditions holds,
then L(G) contains each set L that is an AAMP with difference d ∈ ∆∗ and
bound M whose shift is sufficiently, e.g., y ≥ 5(M + D) + 2(max L−min L).

• G has a subgroup of the form

( r⊕
j=1

〈ej〉
)
⊕ 〈f〉 ⊕

⊕
d∈∆∗

(
⊕d(M+d−1)/de

i=0 〈ed
i 〉

)
,

where r ≥ 12(M2 +D), ord f ≥ 24(M2 +D) and ord ed
i = d(d(M +d−

1)/de+ i) + 2.

• For some prime p ≥ 5 the p-rank of G is at least 21(M2 + D).

Even with the present methods the conditions can be improved, in par-
ticular we estimated the complicated conditions on r and ord f that follow
from our results only in a rough way. Yet, since the present construction will
not yield anything close to a “necessary condition”, we only state these rel-
atively simple conditions that still make the dependence on the parameters
transparent.
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