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Abstract. This paper gives an overview of results on the systems
of sets of lengths of Krull monoids, with a focus on monoids with
finite class group where each class contains a prime divisor. There
is an emphasis on results that allow to characterize (properties of)
the class group via the system of sets of lengths. Moreover, it is
shown for some further groups that the system of sets of lengths
characterizes the class group.

1. Introduction

The Theory of Non-Unique Factorizations has its origins in Algebraic
Number Theory. The ring of integers of an algebraic number field is
factorial (a unique factorization domain) if and only if it is a principal
ideal domain, i.e., its class group is trivial. Thus, if the class group
contains at least two elements, there exist elements that have various
essentially distinct factorizations into irreducible elements. A main
subject of the Theory of Non-Unique Factorizations is to understand
and describe the various types of non-uniqueness that can occur, both
from a qualitative and quantitative point of view. A classical result
due to L. Carlitz [8] yields the following: Let H be the ring of integers
of an algebraic number field. For a ∈ H let L(a) denote the set of all
n such that a has a factorization into n irreducible elements. Then,
| L(a)| = 1 for each a ∈ H if and only if the class group of H has at
most two elements. The set L(a) is called the set of lengths of a, and
the set of all L(a) for a ∈ H is called the system of sets of lengths of
H.

Subsequently, it turned out that all problems regarding sets of lengths
in the ring of integers of an algebraic number field can be transferred to
problems in the associated block monoid, i.e. the monoid of zero-sum
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sequences over the class group, a notion introduced by W. Narkiewicz
[42]. Moreover, this approach is not limited to the ring of integers of
an algebraic number field, but still works for a more general class of
monoids, namely Krull monoids; informally, these are the monoids for
which the divisibilty relation is induced (in a natural way) by that of an
associated free, and thus in particular factorial, monoid (in the number
field case, it is the monoid of non-zero ideals). We refer to the mono-
graph of W. Narkiewicz [43, Chapter 9] for an overview from a number
theoretic point of view and to the monograph of A. Geroldinger and
F. Halter-Koch [30] for a more abstract approach, which we adopt in
this paper. Moreover, we refer to the conference proceedings [5, 10]
and the recent survey articles [29, 35] for the history and development
of the subject.

The purpose of this paper is mainly expository, though it contains
some new results. Namely, we give an overview of, partly very recent,
results on the system of sets of lengths of Krull monoids, focusing on
the case that the class group is finite and each class contains a prime
divisor, which is the case for the ring of integers of an algebraic number
field. Moreover, we concentrate on those results that can be used to
characterize (properties of) the class group via the system of sets of
lengths; a classical example of such a result is the one, mentioned above,
due to L. Carlitz. These results can be seen as contributions to the
more general problem of finding arithmetical characterizations of the
class group, which was posed by W. Narkiewicz (cf. [43]) and initially
solved by J. Kaczorowski [38] and J.E. Rush [46] (see [30, Chapter 7]
for a detailed discussion). Therefore, we mention certain closely related
subjects, e.g., half-factorial domains and sets (see the survey article by
S.T. Chapman and J. Coykendall [11]) only in passing and refer to
the above mentioned publications for information on them. Moreover,
we point out that questions of the type discussed in this paper for
Krull monoids only are investigated for other classes of monoids as
well, e.g., for numerical semigroups (see the recent paper by J. Amos,
S.T. Chapman, N. Hine, and J. Paixão [4]).

The organization of the paper is as follows. In Section 2 and Section
3 we recall some results and terminology, which is fundamental for the
subsequent discussion, in particular we recall the definition of Krull and
block monoids. In Section 4 we recall some results on the Davenport
constant and a related constant. In Section 5 we recall the Structure
Theorem for Sets of Lengths, showing that all sets of lengths are almost
arithmetical multiprogressions, and in Section 7 we discuss results that
make this description more explicit. In Section 6 we recall what is
known on the problem of characterizing the class group via the system
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of sets of lengths and formulate an extension of one of these results. In
Section 8 we review (and partly extend) the results used to obtain the
characterization results. Finally, in Section 9 we employ these results
to prove the result formulated in Section 6.

2. Terminology and notation

In this section we fix some terminology and notation. We denote by
N the set of positive integers and by N0 = N ∪ {0}. All intervals in
this paper are intervals of integers, i.e., [a, b] = {z ∈ Z : a ≤ z ≤ b}.
For subsets A, B of an (additive) semigroup, we denote by A + B =
{a + b : a ∈ A, b ∈ B}.

Let G be a finite abelian group. We use additive notation throughout
and denote the identity element by 0. For n ∈ N, let Cn denote a
cyclic group of order n. A subset E ⊂ G \ {0} is called independent
if

∑
e∈E mee = 0 with me ∈ Z implies that mee = 0 for each e ∈ E.

For G0 ⊂ G, let 〈G0〉 denote the subgroup generated by G0. Let
G ∼= Cn1 ⊕ · · · ⊕ Cnr

∼= Cq1 ⊕ · · · ⊕ Cqr∗ with 1 < n1 | · · · | nr

and prime powers qi. Let exp(G) = nr denote the exponent of G,
r(G) = r the rank, and r∗(G) = r∗ the total rank of G. The group G
is called a p-group if the exponent is an (unspecified) prime power and
an elementary p-group if it is an (unspecified) prime. Occasionally, we
fix the prime and say, e.g., that a group is a 2-group to express that
the exponent is a power of 2.

3. Basics of Non-unique Factorization Theory

In this section we briefly recall various results and definitions that
are fundamental for many investigations in Non-Unique Factorization
Theory, with an emphazise on Krull monoids and related notions. We
refer to the monograph of A. Geroldinger and F. Halter-Koch [30] for
a complete exposition.

3.1. Monoids. In this section we recall some basic notions on monoids.
A monoid is a commutative cancellative semigroup with identity ele-
ment; we use multiplicative notation for monoids and denoted the iden-
tity element by 1. We denote the subset of invertible elements of H by
H×; if H× = {1} then H is called reduced. The monoid Hred = H/H×

is reduced. Elements a, b ∈ H are called associates, in symbols a ' b,
if a = εb for some ε ∈ H×. We denote by q(H) the quotient group of
H.

An element u ∈ H \H× is called irreducible, or an atom, if u = ab
implies that a or b is invertible. The set of atoms of H is denoted by
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A(H). A monoid is called atomic if each (non-invertible) element can
be written as finite product of atoms.

3.2. Free monoids and block monoids. A monoid F is called free
(with basis P ⊂ F ) if each a ∈ F has a unique representation

a =
∏
p∈P

pvp(a) with vp(a) ∈ N0 almost all equal to 0.

For a set P we denote by F(P ) the free monoid with basis P .
Let F = F(P ) and let a =

∏
p∈P pvp(a) ∈ F . Then, vp(a) is called

the multiplicity of p in a, |a| =
∑

p∈P vp(a) ∈ N0 the length of a, and

supp(a) = {p ∈ P : vp(a) 6= 0} the support of a. The element a is
called squarefree if vp(a) ≤ 1 for each p ∈ P . Frequently, we refer
to the elements of F(P ) as sequences over P and to divisors of an
element as subsequences; moreover, we call the identity element the
empty sequence.

Block monoids are a main tool in the investigation of Krull monoids.
They were introduced by W. Narkiewicz [42].

Definition 3.1. Let G be an abelian group and G0 ⊂ G a subset. Let
S =

∏
g∈G0

gvg ∈ F(G0).

(1) σ(S) =
∑

g∈G0
vgg ∈ G is called the sum of S. If σ(S) = 0,

then S is called a zero-sum sequence (or a block).
(2) If G0 consists of torsion elements, then k(S) =

∑
g∈G0

vg/ ord g
is called the cross number of S.

(3) B(G0) = {S ∈ F(G0) : σ(S) = 0} is called the block monoid,
or the monoid of zero-sum sequences, over G0.

The atoms of B(G0) are those non-empty sequences that do not have
a proper subsequence, i.e. one that is not equal to the sequence and
non-empty, that is a zero-sum sequence; these are called minimal zero-
sum sequences. We indentify the elements of G0 with the sequences
of length 1. In general, we denote sequences over subsets of abelian
groups by upper case letters and a sequence over a subset of an abelian
group that is denote by a lower case letter has always length 1, i.e., is
an element of the group. Moreover, if S = g1 . . . gl is a sequence over
an abelian group, then −S denotes the sequence (−g1) . . . (−gl).

3.3. Factorizations in monoids. Typically, one wants to consider
two factorizations of an element as equal if the irreducible factors are
equal up to ordering and associates. This can be made precise in the fol-
lowing way. The monoid Z(H) = F(A(Hred)) is called the factorization
monoid of H. The homomorphism given by πH : F(A(Hred)) → Hred
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that is constant on A(Hred) is called the factorization homomorphism.
For a ∈ H, ZH(a) = π−1

H (aH×) is called the set of factorizations of a.
And LH(a) = {|f | : f ∈ ZH(a)} is called the set of lengths (of factor-
izations) of a. If the monoid H is clear from context, the subscript H
is dropped. Moreover, L(H) = {L(a) : a ∈ H} is called the system of
sets of lengths of H.

The sets of factorizations and lengths of an element can be infinite.
An atomic monoid H is called

• an FF-monoid (finite factorization) if |Z(a)| < ∞ for each a ∈
H.

• a BF-monoid (bounded factorization) if | L(a)| < ∞ for each
a ∈ H.

• factorial if |Z(a)| = 1 for each a ∈ H.
• half-factorial if | L(a)| = 1 for each a ∈ H.

This definition of factorial is identical with the usual one of a factorial,
or unique factorization, monoid/domain. All monoids that are inves-
tigated in this paper are FF-monoids. It is not difficult to see that a
monoid is either factorial or contains elements for which |Z(a)| is ar-
bitrarily large; and similarly it is either half-factorial or | L(a)| can be
arbitrarily large.

The notion tameness plays an important role in Non-Unique Factor-
ization Theory (it has its origins in [24], see [30] for a detailed account).
To define it one introduces a metric on Z(H). For x, y ∈ Z(H), let
z = gcd(x, y), since Z(H) is a free monoid this is well-defined, and we
call

d(x, y) = max{|z−1x|, |z−1y|}
the distance of x and y.

Definition 3.2. Let H be a an atomic monoid.

(1) Let a ∈ H and x ∈ Z(H). Then t(a, x) denotes the smallest
N ∈ N0∪{∞} with the following property. If Z(a)∩x Z(H) 6= ∅
and z ∈ Z(a), then there exists some z′ ∈ Z(a) ∩ x Z(H) such
that d(z, z′) ≤ N .

(2) For H ′ ⊂ H and X ⊂ Z(H), let t(H ′, X) = sup{t(a, x) : a ∈
H ′ and x ∈ X}.

(3) H is called tame if t(H,A(Hred)) < ∞ and one calls t(H) =
t(H,A(Hred)) the tame degree of H.

It is easy to see that for a, b ∈ H one has L(a) + L(b) ⊂ L(ab), but in
general these sets are not equal. The tame degree allows to establish
a closer relation between L(a) + L(b) and L(ab). We only mention
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one specific result that we need in the sequel (see [30, Section 4.3] for
details).

Proposition 3.3. Let H be BF-monoid and let a, b ∈ H. Then,

min L(ab) ≥ max L(a) + min L(b)− t({ab}, Z(a))

and
max L(ab) ≤ min L(a) + max L(b) + t({ab}, Z(a)).

Note that t({ab}, Z(a)) ≤ 2 min L(a) t(H) and that the block monoid
over subsets of finite abelian groups are tame.

We recall some more notions, widely used in the investigation of sets
of lengths, which originated in [24, 15, 6]. Let H be an atomic monoid.

• For L = {l1 < l2 < l3 < . . . } ⊂ Z let ∆(L) = {l2−l1, l3−l2, . . . }
denote the set of successive distances. For ∅ 6= L ⊂ N let ρ(L) =
sup L/ min L denote the elasticity of L, and let ρ({0}) = 1.

• Let ∆(H) =
⋃

a∈H ∆(L(a)) denote the set of distances of H and
ρ(H) = sup{ρ(L(a)) : a ∈ H} the elasticity of H. Moreover, for
a ∈ H let ∆(a) = ∆(L(a)) and ρ(a) = ρ(L(a)); these are called
the set of distances and the elasticity, resp., of a.

• For k ∈ N, let Vk(H) =
⋃

a∈H{L(a) : a ∈ H, k ∈ L(a)}. More-
over, let ρk(H) = supVk(H) and λk(H) = minVk(H).

3.4. Krull monoids. We recall the definition of a Krull monoid; our
exposition is very brief and we refer to the monographs [30], [34], [37]
for a detailed expositions. Let H and D be monoids.

• A monoid homomorphism ϕ : H → D is called a divisor homo-
morphism if, for a, b ∈ H, a | b if and only if ϕ(a) | ϕ(b).

• A divisor homomorphism ϕ : H → D is called a divisor theory
(for H) if D = F(P ) is free and for each p ∈ P there exists
some finite subset ∅ 6= Xp ⊂ H such that gcd(ϕ(Xp)) = p.

Definition 3.4. A monoid is called a Krull monoid if it has a divisor
theory.

Note that a divisor theory of a Krull monoid is essentially unique. We
point out that there are a variety of equivalent ways to define a Krull
monoid; some of them are more reminiscent of common definitions
of a Krull or Dedekind domain. In particular, the ring of non-zero
algebraic integers of an algebraic number field is a Krull monoid (as is
the multiplicative monoid of a Dedekind or Krull domain); a divisor
theory can be obtained by mapping each element to the factorization
of its principal ideal into prime ideals (or, for Krull domains, divisorial
prime ideals). Moreover, note that block monoids are Krull monoids;
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the embedding of B(G0) in F(G0) is a divisor homomorphism, though
in general not a divisor theory.

3.5. Transfer homomorphsims. Next, we recall the definition of a
transfer homomorphism and some of its properties. This notion was
introduced by F. Halter-Koch (see [36], [28] or [30, Section 3.2]). It
allows to transfer investigations from the (complicated) monoids of ac-
tual interest, e.g., orders in algebraic number fields, to simpler auxiliary
monoids. A monoid homomorphism Θ : H → B is called a transfer
homomorphism if it has the following properties:

• B = Θ(H)B× and Θ−1(B×) = H×.
• If u ∈ H, b, c ∈ B, and Θ(u) = bc, then there exist v, w ∈ H

such that u = vw and Θ(v) ' b, Θ(w) ' c.

Let Θ : H → B be a transfer homomorphism. Then, among others,
the following holds.

• Θ(A(H)) = A(B).
• There exists a unique homomorphism Θ : Z(H) → Z(B) with

Θ(uH×) = Θ(u)B× for each u ∈ A(H). Moreover Θ(Z(a)) =
Z(Θ(a)) and L(a) = L(Θ(a)) for each a ∈ H. In particular, H
is atomic if and only if B is atomic and L(H) = L(B).

It will be of particular interest for us that transfer homomorphisms
preserve lengths of factorizations. For Krull monoids, e.g., maximal
orders in algebraic number fields, a transfer homomorphism to a block
monoid over a subset of its class group exists (this result has its origins
in [42] see [30, Chapter 3] for a detailed account):

Let H be a Krull monoid and ϕ : H → F(P ) the divisor theory.
Then G = q(F(P ))/ q(ϕ(H)) is called the class group of H. For p ∈ P ,
the class containing p is denoted by [p] and GP = {[p] : p ∈ P} is called
the subset of classes containing prime divisors. The class group can
be infinite, however we almost exclusively consider the finite case in
this paper. We use additive notation for the class group. Further, let
β̃ : F(P ) → F(GP ) denote the homomorphism that maps each p ∈ P
to [p]. Then

im(β̃ ◦ ϕ) = B(GP ).

The homorphism β = β̃ ◦ϕ : H → B(Gp) is called the block homomor-
phism of H.

Theorem 3.5. Let H be a Krull monoid. The block homomorphism is
a transfer homomorphism.

Thus, all questions regarding sets of lengths in Krull monoids can be
investigated in the associated block monoid. If one is not just interested
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in lengths of factorizations, but also, say, in the number of (essentially)
distinct factorizations, one can transfer to type monoids, informally
these are colored versions of block monoids, instead (cf. [30, Section
3.5]).

As already indicated, the method of transferring the problems to
suitable auxiliary monoids is not restricted to Krull monoids. For in-
stance, see [27] for a method that allows to treat non-maximal orders
as well.

4. Davenport constant and cross number

As explained in the preceding section problems on sets of lengths in
Krull monoids (with finite class group) can be transferred to problems
in the monoid of zero-sum sequences over a subset of a (finite) ablian
group. The investigation of zero-sum problems in finite abelian groups
has a long tradition; the Theorem of Erdős–Ginzburg–Ziv is one classi-
cal starting point for many investigations and the investigation of the
Davenport constant is another.

In this section we discuss some results on the Davenport constant
and the cross number, a related invariant introduced by U. Krause [40].
We restrict to recalling those results that are needed in this paper. We
refer to the monographs [1] and [30], the recent survey article [20], and
the recent papers [3, 2, 22, 33, 52] for more information on these and
related invariants.

Let G be a finite abelian group. Then D(G) = max{|A| : A ∈ A(G)}
is called the Davenport constant and K(G) = max{k(A) : A ∈ A(G)}
the cross number of G. The following result is classical; it was obtained
by D. Kruyswijk and (independently) J.E. Olson [44, 45, 53].

Proposition 4.1. Let G ∼= Cn1 ⊕ · · · ⊕ Cnr with ni | ni+1.

(1) D(G) ≥ 1 +
∑r

i=1(ni − 1).
(2) If G is a p-group or if the rank of G is at most 2, then D(G) is

equal to the above lower bound.

There are a some further classes of groups for which it is known that
D(G) is equal to the lower bound stated above (see [12, 7] for recent
progress on this problem). Here, we only make use of the fact that
this is true for the groups C2

3 ⊕ C6 and Cn
2 ⊕ C6 for n ≤ 3. However,

it is known that equality does not always hold at this lower bound,
in particular D(C4

2 ⊕ C6) > 10. These results are due to P.C. Baayen,
P. van Emde Boas, and D. Kruyswijk (see [54] and the references there).

Now, we recall results on the cross number that are due to U. Krause,
C. Zahlten [41] and A. Geroldinger and R. Schneider [26, 32].
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Proposition 4.2. Let G ∼= Cq1 ⊕ · · · ⊕ Cqr∗ with prime powers qi.

(1) K(G) ≥ 1
exp(G)

+
∑r∗

i=1
qi−1

qi
.

(2) If G is a p-group, then K(G) is equal to the above lower bound.
(3) If G ∼= Cs

p ⊕H with p ∈ P, s ∈ N0, p - |H| and r∗(H) ≤ 2, then
K(G) is equal to the above lower bound.

In contrast to D(G), for K(G) no example is known where it exceeds
the above lower bound.

5. The system of sets of lengths of Krull monoids

The investigation of sets of lengths of elements of Krull monoids is
a main subject of Non-Unique-Factorization Theory. As explained in
Section 3 it is equivalent to investigating sets of lengths of B(GP ) where
GP denotes the subset of the class group of classes containing prime
divisors. Thus, we formulate all results for block monoids only. We
focus on the case where every class contains a prime divisor and the
class group is finite; e.g., this is the case for the multiplicative monoid
of the ring of integers of an algebraic number field. For simplicity, it is
common to replace L(B(G)) by L(G), and alike for all other quantities
that are defined for monoids. In particular, we say that a subset G0 of
an abelian group is half-factorial if the monoid B(G0) is half-factorial.

By a result of L. Carlitz [8], already mentioned in Section 1, the
following is known.

Theorem 5.1. Let G be a finite abelian group. L(G) = {{k} : k ∈ N0}
if and only if |G| ≤ 2.

In other words, a finite abelian group G is half-factorial if and only
if |G| ≤ 2. As mentioned in Section 3, we thus know that if |G| ≥ 3,
then L(G) contains arbitrarily large sets. Still for some small groups
an explicit description for L(G) is known (see [25]), namely

L(C3) = L(C2 ⊕ C2) = {y + 2k + [0, k] : y, k ∈ N0}
and similar but more complicated descriptions are known for C4 and C3

2 .
However, the complexity of this problem increases very rapidly. Thus,
it seems (at present) rather infeasible to obtain explicit descriptions of
L(G) even for groups of a moderate order or simple structure. Yet,
by a result of A. Geroldinger [24], it is known that L(G) has some
structure. The following definition is crucial to describe the structure
of sets of lengths of Krull monoids (and other classes of monoids).

Definition 5.2. A finite subset L ⊂ Z is called an almost arithmetical
multiprogression (AAMP) with bound M and difference d if

L = y + (L′ ∪ L∗ ∪ L′′) ⊂ y +D + dZ,
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where {0, d} ⊂ D ⊂ [0, d], ∅ 6= L∗ = [0, max L∗] ∩ (D + dZ) and
L′ ⊂ [−M,−1] and L′′ ⊂ max L∗ + [1, M ].

The following result was obtained by A. Geroldinger [24]; meanwhile,
results of this type are known for various other classes of monoids (see
[30, Chapter 4]).

Theorem 5.3 (Structure Theorem for Sets of Lengths). Let G be a
finite abelian group. There exists some MG ∈ N and some finite set
∆∗

G ⊂ N such that each element L ∈ L(G) is an AAMP with bound
MG and difference d ∈ ∆∗

G.

In Section 7 we discuss results on ∆∗
G. A recent result of the author

[48], building on work of F. Halter-Koch and A. Geroldinger [30], in-
dicates that the structure of L(G) indeed can be (depending on G) as
complex as described by the Structure Theorem for Sets of Lengths. It
might be interesting to note that the situation for infinite G is quite
different. Namely, F. Kainrath [39] proved the following.

Theorem 5.4. Let G be an infinite abelian group. Then, L(G) consists
of all finite subsets of N≥2 and the sets {0} and {1}.

In other words, every set that possibly can be a set of lengths (recall
that B(G) is a BF-monoid) is indeed a set of lengths.

6. Characterization via systems of sets of lengths

As discussed in the preceding section it seems very difficult to obtain
explicit descriptions for L(G). Thus, as a more modest goal one seeks
to understand the system of sets of lengths sufficiently well to decide
whether the system of sets of lengths of a certain group is distinctive or
whether there are other (non-isomorphic) groups with the same system
of sets of lengths.

The following result summarizes for which types of groups it is known
that they are indeed characterized by their system of sets of lengths.
The first three parts are due to A. Geroldinger [25] the last due to
the author [47]. We recall that by Theorem 5.1 and the subsequent
discussion, the condition D(G) ≥ 4 below is necessary. In Section 8 we
see that in fact D(G) is determined by L(G).

Theorem 6.1. Let G, G′ be finite abelian groups such that L(G) =
L(G′). Suppose that D(G) ≥ 4 and one of the following statements
holds:

(1) G is cyclic.
(2) G is an elementary 2-group.
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(3) G is the direct sum of a cyclic group and a group of order 2.
(4) G is isomorphic to C2

n for some n ≥ 3.

Then, G ∼= G′.

Though, we do not recall a proof of this result, we discuss the meth-
ods used in it in some detail in Sections 7 and 8. And, we indicate
there in which way they are used in the proof. We point out that the
proof of Theorem 6.1 is “constructive”; i.e., one could list properties of
the systems of sets of lengths of the groups appearing in the theorem
above, which are not shared by the system of sets of lengths of any
other (up to isomorphy) finite abelian group.

Additionally, it can be shown that groups with small Davenport
constant are characterized by their systems of sets of lengths. The
following result extends a result of A. Geroldinger [25]; he proved the
result for 4 ≤ D(G) ≤ 7. For completeness, we give a proof of the
result for 4 ≤ D(G) ≤ 7 as well.

Theorem 6.2. Let G, G′ be finite abelian groups such that L(G) =
L(G′). If 4 ≤ D(G) ≤ 10, then G ∼= G′.

The proof of this result makes ample use of Theorem 6.1 and the
methods explained in Section 8; we give it in Section 9.

We end this section with a closely related result (see [49]) that shows
that an elementary p-group is characterized by its system of sets of
lengths among all elementary p-groups, apart from the already known
exception.

Theorem 6.3. Let p, q be primes and r, s ∈ N. If L(Cr
p) = L(Cs

q ),
then (p, r) = (q, s) or {(p, r), (q, s)} = {(2, 2), (3, 1)}.

7. The set of differences

A way to obtain more detailed information on the system of sets of
lengths L(G) is to investigate the set

∆∗(G) = {min ∆(G0) : G0 ⊂ G, ∆(G0) 6= ∅}.

It is known that, for |G| ≥ 3, Theorem 5.3 holds with ∆∗
G = ∆∗(G).

This set is also a main tool in results on characterizations via systems
of sets of lengths, via its close connection to the set ∆1(G) (see Section
8).

Though, many question on ∆∗(G), for general G, are still open there
are a variety of results that give good or even complete descriptions of
∆∗(G) for special types of groups. We recall some of them below.
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First, we recall some basic results on ∆(G0). We note that for G1 ⊂
G0 one has ∆(G1) ⊂ ∆(G0). And, one calls a set minimal non-half-
factorial if each proper subset is half-factorial.

The first statement below is due to A. Zaks [55] and L. Skula [51]
the others due to W.D. Gao and A. Geroldinger [24, 19].

Proposition 7.1. Let G be a finite abelian group.

(1) ∆(G0) = ∅ if and only if k(A) = 1 for each A ∈ A(G0).
(2) min ∆(G0) | exp(G)(k(A)− 1) for each A ∈ A(G0).
(3) min ∆(G0) = gcd ∆(G0).

The following result of W.D. Gao and A. Geroldinger [19] yields
various elements that are contained in ∆∗(G).

Proposition 7.2. Let G be a finite abelian group with |G| ≥ 3. We
have

{1, . . . , r(G)− 1} ⊂ ∆∗(G)

and
{d− 2: 3 ≤ d | exp(G)} ⊂ ∆∗(G).

Moreover, 1 ∈ ∆∗(G).

In the opposite direction various results are known as well. The
following proposition summarizes result that are useful in investigations
of min ∆(G0). The first two statements were obtained by W.D. Gao
and A. Geroldinger (see [19]) and the last by the author (see [49]).

Proposition 7.3. Let G be a finite abelian group and G0 ⊂ G a non-
half-factorial set.

(1) If there exists an A ∈ A(G0) with k(A) < 1, then min ∆(G0) ≤
exp(G)− 2.

(2) If k(A) ≥ 1 for each A ∈ A(G0), then min ∆(G0) ≤ |G0| − 2.
(3) If G0 is minimal non-half-factorial and has a proper subset ∅ 6=

G1 ( G0 that is not a minimal generating set (with respect to
inclusion) for 〈G1〉. Then, min ∆(G0) ≤ K(G)−1 and k(A) ∈ N
for each n ∈ N.

Motivated by results of this type the following terminology was in-
troduced. A subset G0 ⊂ G of a finite abelian group is called an
LCN-set if k(A) ≥ 1 for each A ∈ A(G0). Moreover, let m(G) =
max{min ∆(G0) : G0 ⊂ G non-half-factorial LCN} (if no such set G0

exists, then m(G) = 0).
The two propositions above are used in the proof of the following

result, which was recently obtained by the author [47] and builds on
results of [19].
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Theorem 7.4. Let G be a finite abelian group. Then,

max ∆∗(G) ≤ max{exp(G)− 2, r∗(G)− 1, K(G)− 1}.
In particular, if G is a p-group, then

max ∆∗(G) = max{exp(G)− 2, r(G)− 1}.

A key step in the proof of the above result is to show that

(1) m(G) ≤ max{K(G)− 1, r∗(G)− 1},
which together with Proposition 7.2 and Proposition 4.2 implies the
result.

Proposition 7.2 and Theorem 7.4 show that ∆∗(G) = [1, r(G)− 1] if
G is a p-group with rank r(G) ≥ exp(G)− 1. For groups with “large”
exponent the situation is quite different. This is illustrated by the
following results of A. Geroldinger and Y. ould Hamidoune [31] for
cyclic groups and the author [49] for elementary p-groups.

Theorem 7.5. Let G be a cyclic of order n. Then,

max ∆∗(G) = n− 2 and max
(
∆∗(G) \ {n− 2}

)
=

⌊n

2

⌋
− 1.

Further results on ∆∗(G) for cyclic groups can be found in a recent
paper of S. Chang, S.T. Chapman, and W.W. Smith [9]. For a recent
generalization of Theorem 7.5 see [47].

Theorem 7.6. Let G be an elementary p-group with exp(G) = p and
r(G) = r. Then

[1, r − 1] ∪ [max{1, p− r − 1}, p− 2] ⊂ ∆∗(G) ⊂

[1, r − 1] ∪ [max{1, p− r − 1}, p− 2] ∪ [1,
p− 3

2
].

In particular, ∆∗(G) is an interval if and only if p ≤ 2r + 1.

It is useful (see, e.g., Proposition 8.7) to not only know elements
of ∆∗(G), but even to know the (precise) structure of subsets that
yield these elements as their minimal distance, i.e., to solve the inverse
problem. Some progress in this direction was made by the author [50].

Theorem 7.7. Let G be a finite abelian group with exp(G) > m(G) +
2+δ with δ ∈ {0, 1}, and let G0 ⊂ G with min ∆(G0) = max ∆∗(G)−δ.
Then G0 =

⋃s
i=1 Gi where 〈G0〉 = ⊕s

i=1〈Gi〉 and each Gi is either half-
factorial or equal to,

• in case δ = 0, {−gi, gi} for some gi ∈ G with ord gi = exp(G),
• in case δ = 1, {−gi − hi, gi, hi} for independent gi, hi ∈ G with

order exp(G);
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and there exists at least one non-half-factorial Gi.

Note that the second statement implies that if exp(G) > m(G) + 3,
then exp(G) − 3 ∈ ∆∗(G) if and only if G has a subgroup isomorphic
to C2

exp(G).

In Section 9 we obtain a result that determines ∆∗(G) for some
special groups of exponent 6, for which the result of this section do not
(directly) yield a precise answer.

Finally, we remark that, as for L(G), for infinite abelian groups the
problem of determining ∆∗(G) is solved. Recently, S.T. Chapman,
W.W. Smith and the author [14] showed that for every infinite abelian
group G one has ∆∗(G) = N.

8. Tools for characterization via systems of sets of
lengths

In this section we collect results that can be used to characterize
groups via their systems of sets of lengths. Vaguely, the idea is to
express invariants of the group that by definition just depend on the
system of sets of lengths by invariants whose definition uses the struc-
ture of the group in a more direct way.

8.1. Elasticity and related notions. The invariants ρ(G) and ρk(G),
k ∈ N, (see Section 3) obviously just depend on the system of sets of
lengths. The following results (see [17, 13] and [30, Section 6.3]) show
that some of these invariants can be expressed in terms of the Daven-
port constant.

Proposition 8.1. Let G be a finite abelian group with |G| ≥ 2.

(1) ρ(G) = D(G)/2.
(2) ρ2k(G) = k D(G) for each k ∈ N.
(3) 1 + k D(G) ≤ ρ2k+1(G) ≤ k D(G) + bD(G)/2c for each k ∈ N.

The value of ρk(G) for odd k is unknown for most groups. Yet, it is
known that depending on the structure of G equality can hold at either
the upper or the lower bound: On the one hand, it is known that if
G = G1⊕G2 with |D(G1)−D(G2)| ≤ 1 and D(G) = D(G1)+D(G2)−1,
then ρ2k+1(G) = k D(G) + bD(G)/2c for each k ∈ N. On the other
hand, W.D. Gao and A. Geroldinger [21] recently proved that for cyclic
G, ρ2k+1(G) = 1 + k|G| for each k ∈ N. Moreover, M. Freeze and
A. Geroldinger [18] showed that Vk(G) is an interval. Since we need
it to apply Proposition 8.7 in the proof of Theorem 6.2, we recall (see
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[16]) that for G0 ⊂ G

(2) ρ(G0) ≤
max{k(A) : A ∈ A(G0)}
min{k(A) : A ∈ A(G0)}

.

As a consequence of these results one gets the following (see [25]).

Proposition 8.2. Let G, G′ be finite abelian groups of order at least 2
such that L(G) = L(G′). Then D(G) = D(G′).

Proposition 4.1 and 8.2 yield the following result (see [25]).

Theorem 8.3. Let G be a finite abelian group. There exist at most
finitely many (up to isomorphy) finite abelian groups G′ with L(G) =
L(G′).

An improved understanding of the invariants ρk(G) could lead to
further progress on the problem of characterization of class groups via
systems of sets of lengths. The same is true for the invariants λk(G);
yet by a recent result of A. Geroldinger [23] the invariants λk(G) are
determined in terms of the invariants ρk(G).

The following result (see [25]) shows that a detailed analysis of sets
of lengths containing 2, i.e. stemming from an element that is the
product of two atoms, can be a powerful tool for this problem as well
(see Section 9 for other investigations of this type).

Proposition 8.4. Let G be a finite abelian group with |G| ≥ 3. The
following statements are equivalent.

(1) G is an elementary 2-group or cyclic.
(2) {2, ρ2(G)} ∈ L(G).
(3) If L ∈ L(G) and {2, ρ2(G)} ⊂ L, then L = {2, ρ2(G)}.

8.2. Long almost arithmetical (multi) progressions. Above, we
discussed methods building on the investigation of “small” sets of
lengths. Now, we discuss methods based on the structure of long sets of
lengths. The starting point for such methods is the Structure Theorem
for Sets of Lengths (see Theorem 5.3) and related investigations.

In particular, we discuss that L(G) = L(G′) implies that ∆∗(G) is
“almost equal” to ∆∗(G′). To this end one considers the set ∆1(G)
that is defined as the set of all d ∈ N such that the following holds:

for each k ∈ N there exists some L ∈ L(G) such that,
for some y ∈ N0, {y + di : i ∈ [0, k]} ⊂ L ⊂ y + dZ.

Since obviously ∆1(G) just depends on L(G) it is clear that if L(G) =
L(G′), then ∆1(G) = ∆1(G

′). A result of W.D. Gao and A. Geroldinger
[19] establishes a close connection between ∆1(G) and ∆∗(G).
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Proposition 8.5. Let G be a finite abelian group. Then,

∆∗(G) ⊂ ∆1(G) ⊂ {d | d′ : d′ ∈ ∆∗(G)}.

In particular, the following is true.

Proposition 8.6. Let G, G′ be finite abelian groups such that L(G) =
L(G′). Then,

{d ∈ ∆∗(G) : d >
max ∆∗(G)

2
} = {d ∈ ∆∗(G′) : d >

max ∆∗(G′)

2
}.

The following result enables one to make use of results on the struc-
ture of subsets G0 with given min ∆(G0) (see Theorem 7.7) when trying
to characterize groups by their system of sets of lengths.

For d ∈ N, M ∈ N0, and {0, d} ⊂ D ⊂ [0, d], let PM(D, G) denote
the set of all B ∈ B(G) with L(B) an AAMP with period D and bound
M ; moreover let P(D, G, M) ⊂ PM(D, G) denote the subset of all B
with max L(B) − L(B) ≥ 3M + (max ∆(G))2 (see [30]). We say that
a subset {0, d} ⊂ D ⊂ [0, d] is periodic if there exists some d′ | d and
{0, d′} ⊂ D′ ⊂ [0, d′] with D = D′ + d′ · [0, d/d′ − 1], i.e., the image of
D in Z/dZ is periodic; otherwise we call it aperiodic.

Proposition 8.7. Let G be a finite abelian group. Let d,M ∈ N and
{0, d} ⊂ D ⊂ [0, d] aperiodic. Then

lim sup
B∈PM (D,G)
min L(B)→∞

ρ(B) ≤ max{ρ(G0) : G0 ⊂ G, d | min ∆(G0)}

where min ∅ = 0 and ρ(∅) = 1.

Proof. Let M(G) be sufficiently large that [30, Theorem 9.4.10] holds
and additionally M(G) ≥ M . Since the righthand side is at least 1,
we may restrict our consideration to those B ∈ PM(D, G) for which
max L(B) − min L(B) ≥ C for some arbitrary but fixed C. We note
that for B ∈ PM(D, G) \ P(D, G, M(G)), max L(B) − min L(B) <
3M(G)+(max ∆(G))2. Thus, we may assume that P(D, G, M(G)) 6= ∅
and can consider

lim sup
B∈P(D,G,M(G))

min L(B)→∞

ρ(B)

instead. Let B ∈ P(D, G, M(G)). By the proof of Theorem 9.4.10
in [30] we know that B = FS with F ∈ F(G0) for some G0 with
d | min ∆(G0) and |S| ≤ bD(G). Thus, B = B1B2 with B1 ∈ B(G0) and
|B2| ≤ bD(G)+D(G)−1. By Proposition 3.3 we know that min L(B) ≥
min L(B1)+max L(B2)−t and and max L(B) ≤ max L(B1)+min L(B2)+
t with t = t(B, Z(B2)) ≤ 2 min L(B2) t(G) ≤ 2(bD(G)+D(G)−1) t(G) =
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t0. And, note that max L(B2) ≤ |B2| ≤ bD(G) + D(G) − 1. Thus, if
min L(B) is sufficiently large and thus min L(B1) is large as well, in
particular greater than t0, then we have

ρ(B) =
max L(B)

min L(B)
≤ max L(B1) + min L(B2) + t0

min L(B1) + max L(B2)− t0

≤ max L(B1) + (bD(G) + D(G)− 1) + t0
min L(B1)− t0

.

Consequently, for ε > 0, there exists some L such that for min L(B) ≥
L, we have ρ(B) ≤ max L(B1)

min L(B1)
+ ε ≤ ρ(G0) + ε. The claim follows. �

Finally, we briefly sketch how the above mentioned tools are used in
the proof of Theorem 6.1. Propositions 8.4, 8.6, 7.2, 8.2 and (an earlier
version of) Theorem 7.5 were used (and established) to prove the first
two statements of Theorem 6.1. Moreover, Proposition 8.2 and (an
earlier version of) Theorem 7.4 together with Proposition 4.1 reduced
Theorem 6.3 to the problem of distinguishing L(Cq

p) and L(Cp−1
q ) for

primes p and q. To achieve this a special case of Proposition 8.7 was
established. Also, in the proofs of the two last statements of Theorem
6.1 it is crucial that one has a good understanding of the relation of
the Davenport constant to the maximum of the ∆1-set and that this
relation is rather special.

9. Proof of Theorem 6.2

In this section we prove Theorem 6.2. Using the results stated in
Sections 7 and 8, only few obstacles remain. These are addressed in
the following two subsections.

9.1. On ∆1(G) for two groups of exponent 6. In this subsection
we determine ∆1(G) and ∆∗(G) for two groups for which the results of
Section 7 do not give a precise answer.

Proposition 9.1.

(1) ∆∗(C2
2 ⊕ C6) = ∆1(C

2
2 ⊕ C6) = {1, 2, 4}.

(2) ∆∗(C2
3 ⊕ C6) = ∆1(C

2
3 ⊕ C6) = {1, 2, 4}.

Proof. 1. By Theorem 7.4 and Propositions 7.2 and 8.5 it suffices to
show that 3 /∈ ∆∗(C2

2 ⊕ C6). By Theorem 7.7 it suffices to show that
m(C2

2 ⊕C6) ≤ 2. Assume to the contrary that G0 ⊂ ∆1(C
2
2 ⊕C6) is an

LCN-set with min ∆(G0) = 3; we may assume it is minimal non-half-
factorial.

By Proposition 7.3 we have |G0| ≥ 5. Let A ∈ A(G0) with k(A) > 1;
then supp A = G0. Note that by Proposition 4.2 k(A) ≤ 7/3. Let
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H0 ⊂ G0 a minimal, with respect to inclusion, generating subset for
〈G0〉. By Proposition 7.3 we may assume that |H0| ≥ 4. Let H0 ⊃
{h1, h2, h3, h4}. Since 〈h1〉 ( 〈h1, h2〉 ( 〈h1, h2, h3〉 ( C2

2 ⊕ C6, it
follows that ord h1 < 6. Thus H0 does not contain an element of
order 6, and consequently H0 contains an element h of order 2. Thus,
since h2 | A and supp(h−2A) is half-factorial, it follows that A2 has a
factorization of length k(A2). Therefore, 3 | (2 k(A) − 2) and k(A) ≥
5/2, a contradiction.

2. The argument is very similar. It suffices to show that 3 /∈
∆1(C

2
3 ⊕ C6) and again we show that m(G) ≤ 2. Assume to the con-

trary that G0 ⊂ C2
3 ⊕ C6 is an LCN-set such that min ∆(G0) = 3; we

may assume that it is minimal non-half-factorial, it generates G, and
|G0| ≥ 5. Let A ∈ A(G0) with k(A) > 1. Note that k(A) ≤ 8/3. Let
H0 ⊂ G0 a minimal generating subset. We may assume that |H0| ≥ 4.
Again, it follows that H0 does not contain an element of order 6, and
consequently contains elements of order 2 and 3. Thus, A2 has a fac-
torization of length k(A2) ∈ N and 3 | (2 k(A)− 2), which implies that
and k(A) = 5/2. Yet, A3 has a factorization of length k(A3) ∈ N, a
contradiction. �

9.2. Two specific groups. For the groups C3 ⊕ C6 and C2
2 ⊕ C6 the

Davenport constant and the ∆1-set are equal and Proposition 8.7 seems
to be not applicable to establish the differences of the systems of sets
of lengths. However, in the following we show that considering the
structure of sets of lengths that contain 2, similarly to Proposition 8.4,
a difference can be established.

The following is a simple special case of [30, Lemma 6.6.4].

Lemma 9.2. {2, 3, 6, 7, 8} ∈ L(C3 ⊕ C6).

Proof. Let C3 ⊕ C6 = 〈e1〉 ⊕ 〈e2〉 with ord e1 = 3 and ord e2 = 6. Let
U = (e1 + e2)e

2
1e

5
2. Then L((−U)U) = {2, 3, 6, 7, 8}. �

In the remainder of the subsection we show that {2, 3, 6, 7, 8} /∈
L(C2

2 ⊕ C6). To achieve this we need to understand the structure of
atoms of maximal lengths of C2

2 ⊕ C6.

Lemma 9.3. Let A ∈ A(C2
2 ⊕ C6) with |A| = 8 and let g | A. Then

ord g ∈ {2, 6}.

Proof. It suffices to prove that ord g 6= 3. Assume to the contrary that
ord g = 3. Then C2

2 ⊕ C6
∼= C3

2 ⊕ 〈g〉. We denote by π2 and π3 the
projection to C3

2 and 〈g〉, respectively. We have π2(g
−1A) ∈ B(C3

2).
Since A is an atom, this sequence is the product of two atoms. Thus
supp π2(g

−1A) = C3
2 \ {0}, in particular the sequence is squarefree.
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There exists some h ∈ 〈g〉 such that supp(g−1A) ∩ π−1
3 (h) contains at

least three elements. We denote these by g1, g2, g3 and observe that
π2(g1), π2(g2), π2(g3) is independent. Let g4 | g−1A such that π2(g4) =∑3

i=1 π2(gi). It follows that π3(g4) = g, since otherwise σ(gg1 . . . g4) = 0
or σ(g1 . . . g4) = 0. For 1 ≤ i < j ≤ 3, let gi,j | g−1A such that π2(gi,j) =
π2(gi)+π2(gj). As above, we get that, for {i, j, k} = {1, 2, 3} and i < j,
σ(gi,jgkg4) = g. Thus, π3(gi,j) = π3(gi′,j′) for each admissible choice of
i, j, i′, j′. Consequently σ(g1,2g1,3g2,3) = 0, a contradiction. �

The following lemma can be found (the additional statement implic-
itly) in [25]. We make frequent use of it in the proof of Proposition
9.5.

Lemma 9.4. Let G be a finite abelian group with |G| ≥ 3. Let B ∈
B(G). If {2, D(G)} ⊂ L(B), then there exists some U ∈ A(G) and
|U | = D(G) such that B = (−U)U . If additionally D(G) ≥ 4 and
D(G) − 1 ∈ L(B), then there exist (possibly equal) g, h ∈ G such that
gh(g + h) | U .

Proof. Suppose that {2, D(G)} ⊂ L(B). Since 2 ∈ L(B), there exist
atoms U1, U2 ∈ A(G) such that B = U1U2. If Ui = 0 for some i, then
L(B) = {2}. Thus, 0 - B. Now, let V1 . . . VD(G) be a factorization of B

of length D(G). We have |Vj| ≥ 2 for each j, and
∑D(G)

j=1 |Vj| = |B| ≤
2 D(G). Thus, in fact |Vj| = 2, i.e., Vj = (−gj)gj for some gj, and
|Ui| = D(G). We have Vj - Ui. Thus, either gj | U1 or (−gj) | U1,
whereas the other of the two elements divides U2. Thus it follows that
−U1 = U2, which proves the first claim.

Now, suppose D(G) ≥ 4 and there exists a factorization of lengths
d = D(G)− 1, say W1 . . . Wd and assume |Wi| ≤ |Wi+1|. It follows that
either |Wd| = 4 and |Wd−1| = 2 or |Wd−1| = |Wd| = 3 and |Wd−2| = 2.
Yet, the former is impossible since Wi = (−hi)hi for i < d and thus, by
the first claim, Wd would have to equal gh(−g)(−h), which is not an
atom. Thus, |Wd−1| = |Wd| = 3. This means Wd−1 = gh(−g − h) and
Wd = (−g)(−h)(g + h) for possibly equal g, h ∈ G. We have Wd−1 - U
and Wd−1 - (−U). We may assume that gh | U and (−g − h) | (−U).
It follows that (g + h) | U , which proves the second claim. �

Proposition 9.5. {2, 3, 6, 7, 8} /∈ L(C2
2 ⊕ C6)

Proof. Assume to the contrary that there exists some B ∈ B(C2
2 ⊕C6)

such that L(B) = {2, 3, 6, 7, 8}. By Lemma 9.4 we know that there
exists some U ∈ A(C2

2 ⊕C6) with |U | = 8 and g, h ∈ C2
2 ⊕C6 such that

B = (−U)U and gh(g + h) | U .
By Lemma 9.3 we know that U does not contain an element of order

3. Let e | U with ord e = 6, obviously such an element exists, such that
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v = ve(U) is maximal. Let U = evR. We have C2
2⊕C6 = 〈e1〉⊕〈e2〉⊕〈e〉

with ord ei = 2. Let π denote the projection of C2
2 ⊕C6 to 〈e1〉⊕〈e2〉 ∼=

C2
2 .
Suppose v = 5. Then σ(R) = e. Moreover, R has no proper sub-

sequence R′ | R with σ(π(R′)) = 0, since otherwise R′ew for some
suitable w, is a proper zero-sum subsequence of R. Consequently,
π(R) = e1e2(e1 + e2). Thus by Lemma 9.4 7 /∈ L(B), a contradiction.

Suppose v = 4. Then σ(R) = 2e and for each proper subsequence
R′ | R with σ(π(R′)) = 0 we have σ(R′) = e. Thus, 0 - π(R) and
π(R) = e2

i e
2
j . We show that i 6= j. Assume not. Then R =

∏4
k=1(e1 +

ake) with ak ∈ [0, 5] and we have ak + ak′ ≡ 1 (mod 6) for all k 6= k′.
This is clearly impossible: we get ak + ak′′ ≡ ak′ + ak′′ (mod 6) thus
ak ≡ ak′ (mod 6) and 2ak ≡ 1 (mod 6), a contradiction.

Consequently R = (e1 + a1e)(e1 + b1e)(e2 + a2e)(e2 + b2e) for ai, bi ∈
[0, 5] and we have ai + bi ≡ 1 (mod 6). If {2, 5} /∈ {{a1, b1}, {a2, b2}},
then L(B) = {2, 6, 7, 8}. If, say, {a1, b1} = {2, 5}, then (e1 + 2e)(e1 −
5e)e3·(e1−2e)(e1+5e)(−e)3·(e2+a2e)(e2+b2e)(−e)·(e2−a2e)(e2−b2e)e
is a factorization of B of length 4, a contradiction.

Suppose v = 3. Then σ(R) = 3e and for each proper subsequence
R′ | R with σ(π(R′)) = 0 we have σ(R′) ∈ {e, 2e}. Thus 0 - π(R)
and we may assume that π(R) = e1e2(e1 + e2)

3. We have R = (e1 +
ae)(e2 + be)

∏3
i=1(e1 + e2 + cie) for a, b, ci ∈ [0, 5]. Since a + b + ci is

congruent to 1 or 2 modulo 6 for each i, it follows that, say, c1 = c2.
Since 2c1 = c1 + c2 is congruent to 2 (it cannot be 1) modulo 6, it
follows that c1 equals 1 or 4. Thus one of the following has to hold:

(1) ci = 1 and a + b ≡ 0 (mod 6).
(2) ci = 4 and a + b ≡ 3 (mod 6).
(3) c1 = c2 = 1, c3 = 0 and a + b ≡ 1 (mod 6).
(4) c1 = c2 = 4, c3 = 3 and a + b ≡ 4 (mod 6).

In the first two cases, by Lemma 9.4 7 /∈ L(B), a contradiction. In the
two other cases we have that

(e1 + e2 + c1e)(e1 + ae)(e2 + be)(−e)2·
(e1 + e2 − c1e)(e1 − ae)(e2 − be)e2 · (e1 + e2 + c2e)(e1 + e2 − c2e)·
(e1 + e2 + c3e)(e1 + e2 − c3e) · (−e)e

is a factorization of B of length 5, a contradiction.
Suppose v = 2. If 0 | π(R), i.e. 3e | R, then π(0−1R) ∈ A(C2

2),
which is impossible. Thus we have 0 - π(R) and we may assume that
π(R) is equal to e6

1, e4
1e

2
2, or e2

1e
2
2(e1 + e2)

2. We have σ(R) = 4e.
Moreover for each proper subsequence R′ | R with σ(π(R′)) = 0 we
have σ(R′) ∈ {e, 2e, 3e}. In particular, if R = R1R2R3 such that
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σ(π(Ri)) = 0 for each i, then it follows that, say, σ(R1) = σ(R2) = 1
and σ(R3) = 2e.

Suppose that
∏4

i=1(e1 + aie) | R for ai ∈ [0, 5], that is we are in
the first or second case. We may assume that a1 + a2 ≡ 1 (mod 6)
and a3 + a4 ≡ 2 (mod 6), since by the same argument as in the case
v = 4 not both sums can be congruent to 1. Checking all possible
combinations of ais, we see that the only choice (up to ordering) of ais
for which the sum of any two is congruent to 1 or 2, is either a1 = 0
and a1 = a2 = a3 = 1 or a1 = 3 and a1 = a2 = a3 = 4. Yet, in this case
(e1 + e)3 | U or (e1 + 4e)3 | U , contradicting the maximality of ve(U).

Consequently, we have R =
∏2

i=1(e1+aie)(e2+bie)(e1+e2+cie) with
ai, bi, ci ∈ [0, 5]. We may assume that a1 + a2 ≡ b1 + b2 ≡ 1 (mod 6)
and c1 + c2 ≡ 2 (mod 6). Now, let R = T1T2 with π(Ti) = e1e2(e1 +
e2). Then {σ(T1), σ(T2)} = {e, 3e}. Thus {a1e, a2e} + {b1e, b2e} +
{c1e, c2e} = {e, 3e}. Checking all cases, we see that this condition
together with the above congruence conditions can only (up to the
obvious symmetries) be fulfilled if

(1) a1 = b1 = 0, a2 = b2 = 1, and c1 = c2 = 1.
(2) a1 = b1 = 3, a2 = b2 = 4, and c1 = c2 = 1.
(3) a1 = 0, b1 = 3, a2 = 1, b2 = 4, and c1 = c2 = 4.

Now, let Vi = (e1+aie)(e2−bie)(e1+e2+cie)(−e) for i ∈ [1, 2]. Then Vi

is an atom and B = V1V2(−V1)(−V2). Thus, 4 ∈ L(B), a contradiction.
Suppose v = 1. Note that this implies that U is squarefree. Then

σ(R) = 5e. First we assume 0 | π(R), i.e, 3e | R. Then σ((3e)−1R) =
2e. Since |(3e)−1R| = 6, it follows that R = (3e)R1R2R3 such that
σ(π(Ri)) = 0 for each i. Let σ(Ri) = aie. Since U is an atom it
follows that e(3e)

∏3
i=1(aie) is an atom. However, this is impossible, a

contradiction.
Thus, we suppose that 0 - π(R). We may assume that π(R) is equal

to e1e2(e1 + e2)
5 or to e3

1e
3
2(e1 + e2). We show that both is impossible.

In the former case we get
∏

i∈[0,5]\{j}(e1 +e2 +ie) | U for some j ∈ [0, 5].
Yet, this sequence has a zero-sum subsequence, a contradiction. In the
latter case we get R = (e1+e2+ce)

∏3
i=1(e1+aie)(e2+bie) for ai, bi, c ∈

[0, 5] with pairwise distinct ai and bi. And, we have {a1e, a2e, a3e} +
{b1e, b2e, b3e}+ ce ⊂ {e, 2e, 3e, 4e}, which is impossible. �

9.3. Proof of theorem. Combining the results of Sections 7 and 8
and the preceding two subsections, we prove Theorem 6.2.

Proof of Theorem 6.2. Suppose that L(G) = L(G′) and that D(G) ≥ 4.
By Proposition 8.2 we know that D(G′) = D(G). By Theorem 6.1 the
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claim follows if G is an elementary 2-group or cyclic. Thus, we may
assume that neither G nor G′ is an elementary 2-group or cyclic.

Suppose D(G) = 4. By Proposition 4.1 there is no group with Dav-
enport constant 4 that is not an elementary 2-group or cyclic.

Suppose D(G) = 5. By our assumption on G and G′ it follows that
their exponent is 3 or 4. Thus by Proposition 4.1 it follows that G
and and G′ are isomorphic to C2 ⊕ C4 or C2

3 . The claim follows by
Theorem 6.1, or by noting that by Theorem 7.4 and Proposition 8.5
∆1(C2 ⊕ C4) = [1, 2] and ∆1(C

2
3) = {1}.

Suppose D(G) = 6. By Proposition 4.1 and our assumption on G
and G′ it follows that G and and G′ are isomorphic to C2

2 ⊕ C4.
Suppose D(G) = 7. It follows that G and G′ are isomorphic to one

of the following groups: C3
2 ⊕ C4, C2

4 , C3
3 or C2 ⊕ C6. We note that

by Theorem 7.4 and Propositions 7.2 and 8.5 ∆1(C
3
2 ⊕ C4) = [1, 3],

∆1(C
2
4) = [1, 2], ∆1(C

3
3) = [1, 2], and ∆1(C2 ⊕ C6) = {1, 2, 4}. Since

∆1(G) = ∆1(G
′), we only have to consider the case that G ∼= C2

4 and
G′ ∼= C3

3 (or conversely). By Theorem 6.1 L(C2
4) 6= L(C3

3), and the
claim follows.

Suppose D(G) = 8. By Proposition 4.1 and our assumption on G and
G′ it follows that their exponent is at least 3 and at most 7; moreover
it can be seen easily that it is not in {3, 5, 7}. Thus, G and G′ are
isomorphic two one of the following groups: C2⊕C2

4 , C4
2 ⊕C4, C3⊕C6,

C2
2 ⊕ C6. We note that by Theorem 7.4 and Propositions 7.2 and 9.1

∆1(C2⊕C2
4) = [1, 2], ∆1(C

4
2 ⊕C4) = [1, 4], ∆1(C3⊕C6) = {1, 2, 4} and

∆1(C
2
2 ⊕ C6) = {1, 2, 4}.

Since ∆1(G) = ∆1(G
′), we only have to consider the case that G ∼=

C2
2 ⊕ C6 and G′ ∼= C3 ⊕ C6 (or conversely). However, by Lemma

9.2 and Proposition 9.5, we know that in this case L(G) 6= L(G′), a
contradiction.

Suppose D(G) = 9. By Proposition 4.1 and our assumption G and
G′ are isomorphic to one of the following groups: C4

3 , C5
2⊕C4, C2

2⊕C2
4 ,

C2
5 , C3

2 ⊕C6, or C2 ⊕C8. By Theorem 6.1 we can exclude C2 ⊕C8 and
C2

5 from our considerations.
We note that by Theorem 7.4 and Proposition 7.2 ∆1(C

4
3) = [1, 3],

∆1(C
5
2 ⊕ C4) = [1, 5], ∆1(C

2
2 ⊕ C2

4) = [1, 3], and ∆1(C
3
2 ⊕ C6) = [1, 4].

Since ∆1(G) = ∆1(G
′), we only have to consider the case that G ∼=

C2
2 ⊕ C2

4 and G′ ∼= C4
3 (or conversely). Using Proposition 8.7, we show

that in this case L(G) 6= L(G′). Let G0 ⊂ G with min ∆(G0) = 3.
By Proposition 7.3 we know that G0 is an LCN-set. Thus by (2) we
know that ρ(G0) ≤ K(G) = 11/4. Thus, by Proposition 8.7 we have
that lim sup ρ(B) for B ∈ P0({0, 3}, G) and min L(B) →∞ is bounded
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above by 11/4. Now, let e1, . . . , e4 ∈ G′ be independent, e0 =
∑4

i=1 ei

and A = e0(e1 . . . e4)
2. Then L(A3k) is an arithmetical progression

with difference 3, minimum 3k, and maximum 9k. Thus, we have that
lim sup ρ(B) for B ∈ P0({0, 3}, G′) and min L(B) → ∞ is bounded
below by 3. Thus, L(G) 6= L(G′), a contradiction.

Suppose D(G) = 10. We get that G and G′ are isomorphic to one
of the following groups: C3

4 , C3
2 ⊕ C2

4 , C6
2 ⊕ C4, C2

3 ⊕ C6, or C2
2 ⊕ C8.

Recall that (see the remark after Proposition 4.1) D(C4
2 ⊕ C6) > 10.

By Theorem 7.4 and Proposition 7.2 ∆1(C
3
4) = [1, 2], ∆1(C

3
2 ⊕C2

4) =
[1, 4], ∆1(C

6
2 ⊕ C4) = [1, 6], ∆1(C

2
3 ⊕ C6) = {1, 2, 4}, and 6 ∈ ∆1(C

2
2 ⊕

C8) ⊂ [1, 4] ∪ {6}. Since ∆1(G) = ∆1(G
′), the claim follows. �
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