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Abstract

Extensions of the notion of a class group and a block monoid asso-
ciated to a Krull monoid with torsion class group are introduced and
investigated. Instead of assigning to a Krull monoid only one abelian
group (the class group) and one monoid of zero-sum sequences (the block
monoid), we assign to it a recursively defined family of abelian groups,
the first being the class group, and do alike for the block monoid. These
investigations are motivated by the aim of gaining a more detailed un-
derstanding of the arithmetic of Krull monoids, including Dedekind and
Krull domains, both from a technical and conceptual point of view. To
illustrate our method, some first arithmetical applications are presented.

Keywords: Dedekind domain, half-factorial, Krull monoid, non-unique factor-
ization, simply presented group, zero-sum sequence

2000 MSC: 13C20, 13F05, 11R27, 20K10

Short title: Higher-order class groups and block monoids

1 Introduction

A commutative and cancelative semigroup with identity element, in this paper
we refer to such a structure as a monoid, is called a Krull monoid if it is v-
noetherian and completely integrally closed (see the monographs [22, 23, 20] for
detailed information on Krull monoids, also cf. Section 2 for a brief overview on
this and related notions used below). The multiplicative monoid of a Dedekind
or Krull domain are classical examples of Krull monoids. Thus, all the construc-
tions and results that are formulated for Krull monoids in this paper are valid
for Dedekind domains and Krull domains as well; the class group, as defined for
Krull monoids (cf. below), in this case coincides with the ideal or divisor class
group, respectively. However, for the present investigations the purely multi-
plicative point of view is crucial. Moreover, Krull monoids that are not the
multiplicative monoid of some domain arise in various ways. The term Krull
monoid was introduced by L. Chouinard [8], investigating under which condi-
tions semi-group rings are Krull domains. Moreover, the monoid of isomorphy
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classes of certain modules under direct sum decomposition are Krull monoids
(see, e.g., [11, 12, 24]). Finally, to get a precise understanding of the arithmetic
of the ring of algebraic integers of number fields, and more generally Dedekind
and Krull domains, it is necessary to understand the arithmetic of certain sub-
monoids, which are Krull monoids (see [20, Sections 4.3 and 9.4] and, e.g., [7]
for a recent contribution).

It is well-known that a monoid H is a Krull monoid if and only if there exists
a free (commutative) monoid F and a monoid homomorphism ϕ : H → F such
that for all a, b ∈ H one has that a | b if and only if ϕ(a) | ϕ(b); a homomorphism
with this property is called a divisor homomorphism. In this paper, we work
exclusively with this characterization of Krull monoids. Additionally, there
exists an essentially unique “smallest” free monoid F with this property, namely
the monoid of non-empty divisorial ideals of H. Let H be a Krull monoid and
ϕ : H → F the divisor homomorphism into this “smallest” free monoid, which
is called a divisor theory. Then, q(F )/ q(ϕ(H)), where q(·) denotes the quotient
group, is called the class group of H, denoted C(H). Moreover, D(H) ⊂ C(H)
denotes the subset of classes containing prime divisors, i.e., prime elements of
F .

A Krull monoid H is factorial if and only if C(H) is trivial. Moreover, the
complexity of the arithmetic of a Krull monoid is to some extent governed by its
class group. However, it is well-known that knowledge of the class group only
does not yield much information on the actual arithmetic of the Krull monoid,
e.g., there exists Krull monoids with arbitrary finite class group and even infinite
class group that are half-factorial (for an overview regarding the property half-
factorial see the survey articles by S.T. Chapman and J. Coykendall [4, 9], for
the definition see Section 2). A main reason for this phenomenon, which is in
sharp contrast with the fact that the monoid of principal ideals of the ring of
integers of an algebraic number field is determined up to isomorphy by the class
group, is the fact that for a general Krull monoid it is not guaranteed that each
class contains a prime divisor, indeed the sole restriction on this set is that it
generates the class group as a monoid (see, e.g., [6, Example 1.6] for a natural
example of a Krull monoid whose class group is isomorphic to Z and only two
classes contain prime divisors). Thus, to gain more detailed information on
the complexity of the arithmetic of a Krull monoid it is common to consider
the class group and in addition the subset of classes containing prime divisors.
Knowledge of these two already determines the arithmetic of a Krull monoid to a
large extent. Indeed, if H is a Krull monoid and B the block monoid associated
to H, i.e., the monoid of zero-sum sequences over the set D(H), then there
exists a natural homomorphism βH : H → B, called the block homomorphism.
And, this homomorphism is a transfer homomorphism and thus preserves a lot
of arithmetical properties, in particular it preserves all information regarding
lengths of factorizations (cf. Section 2). The reason that not all information on
factorizations is preserved by the block homomorphism is that the number of
prime divisors contained in each class is not taken into account; we recall that
up to units and isomorphy a Krull monoid is determined by its class group, the
subset of classes containing prime divisors, and the number of prime divisors
in each class (see, e.g., [20, Theorem 2.5.4]). The notion of a block monoid
was introduced by W. Narkiewicz [26] to investigate the arithmetic of rings of
algebraic integers. Meanwhile, it has been extended to arbitrary Krull monoids
and has become a common tool in Non-Unique Factorization Theory; moreover,
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the idea of transferring problems on factorizations to auxiliary monoids has been
applied for other types of domains and monoids as well (see the monograph [20]
and the conference proceedings [1, 3] for an overview).

Thus, if one wishes to explore certain arithmetical properties of H, e.g., its
system of sets of lengths, one can consider the analogous problem in B, which
is typically much simpler to investigate than the original Krull monoid.

In this paper, we extend the notion of a class group and a block monoid
for Krull monoids with torsion class group, by assigning to a Krull monoid not
only a single abelian group (the class group) and the block monoid (a monoid of
zero-sum sequences over a subset of the class group), but a recursively defined
family of abelian groups and monoids of zero-sum sequences over subsets of
these groups, which we call higher-order class groups and higher-order block
monoids, respectively.

The basic idea underlying our construction is simple. The above mentioned
block monoid B is itself a Krull monoid. Thus, one can consider its class group
and form the block monoid B′ associated to B; we refer to B′ as the refinement
of B. Clearly, one can iterated this construction, considering the refinement
of B′ and so on; thus, defining a sequence of groups and monoids of zero-sum
sequences associated to a Krull monoid. However, this basic construction of
a sequence of groups is not yet satisfactory, e.g., since for infinite class group
these sequences are not necessarily eventually constant (cf. Example 4.17), and
thus we explore a transfinite version of this construction and construct a family
(indexed by ordinals) of groups and monoids of zero-sum sequences. The need
for this transfinite construction is a main reason for the restriction to the case
that the class group of the Krull monoid is a torsion group, since in this case we
are able to obtain an explicit understanding of the above mentioned iteration,
which presently seems to be needed for the transfinite construction. Besides,
having applications in Non-Unique Factorization Theory in mind, which we
illustrate by some simple examples in the present paper (see Subsection 6.2), an
explicit construction is desirable.

The motivation for our considerations is two-fold. On the one hand, we
seek technical simplifications for investigations in Non-Unique Factorization
Theory. A main motivation for considering the block monoid associated to
a Krull monoid, and more generally for the method of transferring to auxil-
iary monoids, is the fact that these are in general simpler to investigate than
the original monoid. And, in our recursive construction the family of groups
turns out to be a descending chain of subgroups of the class group and each
of the monoids of zero-sum sequences in this family is potentially simpler, and
definitely not more complicated, than the preceding ones while still containing
essentially all the arithmetical information. Note that with B,B′ as above one
obtains a block homomorphism β′ from B to its refinement B′. The composi-
tion of transfer homomorphisms being again a transfer homomorphism, we get
a transfer homomorphism β′ ◦ β from H to B′. And, an analogous statement
will be obtained for the transfinite version. Moreover, these families are even-
tually constant and a monoid of zero-sum sequences in this constant part can
be shown to have a property (cf. Lemma 4.5) that is of significant technical ad-
vantage in investigations of Non-Unique Factorization Theory. As an example,
we present a strengthening of a technical result in Non-Unique Factorization
Theory that is an immediate consequence of our investigations (see Corollary
4.13). Regarding applications in Non-Unique Factorization Theory, we point
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out that our construction tends to yield significant simplifications only in case
the subset of classes containing prime divisors is rather sparse. Thus, at first it
might seem almost useless when investigating, for instance, the ring of integers
of an algebraic number field (where each class contains a prime divisor). Yet,
as recalled above, various results in Non-Unique Factorization Theory on rings
of algebraic integers depend on detailed knowledge of the arithmetic of certain
submonoids. And, these submonoids can have the property that the subset of
classes containing prime divisors is sparse. Indeed, it is rather common that the
submonoids that are most interesting in this context, since they yield extremal
values for certain parameters, have this property.

On the other hand, the notion of a higher-order class group might be of
some conceptual interest as well. To illustrate this, we explore, expanding on
the fact that a Krull monoid is factorial if and only if its class group is trivial,
consequences of the triviality of higher-order class groups. And, we use the
thus defined notions to reconsider certain constructions of A. Geroldinger and
R. Göbel [17] made in the context of the investigation of the class groups of
half-factorial monoids with infinite class group (see Section 7).

1.1 Organization of the paper

The organization of this paper is as follows. In Section 2, we recall some key no-
tions and results. Then, in Section 3, we investigate the class groups, assuming
they are torsion groups, associated to divisor homomorphisms of a Krull monoid
H into a free monoid. These investigations build on results of S.T. Chapman,
F. Halter-Koch, and U. Krause [5] on outside factorial monoids. In particular,
we see that the class group of H is, up to a natural identification, a subgroup
of each class group associated to a divisor homomorphism. More precisely, the
class group associated to a divisor homomorphism is an extension of the class
group by a group that is the direct sum, over all prime divisors, of cyclic groups
whose orders are determined in terms of valuations of elements of H. Having
this result at hand, we give an explicit description of the refinement of a block
monoid (over a subset of a torsion group). Building on this description, we
define and investigate higher-order block monoids in an abstract setting (see
Section 4). And, we show how this construction yields (as mentioned above),
in a natural way, an extension of a technical result in Non-Unique Factoriza-
tion Theory. In Section 5, we investigate a finitary analog of higher-order block
monoids that has certain technical advantages. Having the abstract versions
of our constructions at hand, we introduce higher-order class groups and block
monoids of Krull monoids, and of divisor homomorphisms of Krull monoids into
free monoids (see Definition 6.1). It turns out that the higher-order class groups
and block monoids of infinite order are in fact independent of the divisor ho-
momorphism (as long as its class group is a torsion group). Moreover, we give
an example that illustrates how these notions can be applied in Non-Unique
Factorization Theory (see Subsection 6.2). Finally, in Section 7, expanding on
the above mentioned characterization that a Krull monoid is factorial if and
only if its class group is trivial, we introduce the notion of a σ-pseudo factorial
and a finitary-pseudo factorial Krull monoid, defined by the property that the
higher-order class group of order σ or the finitary analog, respectively, is trivial.
Having the results of Section 6, it is easy to see that σ-pseudo factorial and
finitary-pseudo factorial Krull monoids are half-factorial monoids. And, we in-
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vestigate these monoids, focusing on the case that the class group is a p-group.
In particular, in analogy with the well-known problem (see [21, Problem CG1])
of determining whether for each abelian group G there exists a half-factorial
Krull monoid (or equivalently a half-factorial Dedekind domain) whose class
group is isomorphic to G, we explore which p-groups are isomorphic to class
groups of finitary-pseudo factorial Krull monoids. We build on the above men-
tioned work of A. Geroldinger and R. Göbel [17] and obtain a complete answer
to our variant, namely that these groups are precisely the simply presented
p-groups.

2 Preliminaries

We recall some key notions and terminology. Our notation mainly follows the
monograph [20] to which we refer for a complete exposition of the ideas recalled
briefly below.

We denote by N and N0 the set of positive integers and non-negative integers,
respectively. For a, b ∈ Z, we denote by [a, b] = {z ∈ Z : a ≤ z ≤ b} the
interval of integers. We denote the smallest infinite ordinal by ω. We identify
finite ordinals and cardinals, in case it is convenient and no confusion is to be
expected.

2.1 Groups

Throughout the paper, all groups we consider are abelian. Thus, by a group we
always mean an abelian group. We use additive notation for groups. Let G be
a group. For G0 ⊂ G, we denote by 〈G0〉 the subgroup generated by G0; we
call G0 a generating set if G = 〈G0〉. We use the convention that 〈∅〉 = {0}.
We call a subset G0 independent if 0 /∈ G0 and

∑
g∈G0

agg = 0, with ag ∈ Z
(almost all 0), implies that agg = 0 for each g ∈ G0. We denote the order
of g ∈ G by ord(g) and call G a torsion group if each g ∈ G has finite order.
Moreover, for p a prime, we say that G is a p-group if ord(g) is a power of p
for each g ∈ G, and we say that G is an elementary p-group if each non-zero
element has order p. For p a prime, we set pG = {pg : g ∈ G}, p0G = G,
pσ +1G = p(pσG), and pσG = ∩ρ<σpρG for σ a limit ordinal. For n ∈ N, we
denote by Cn a cyclic group with n elements. For p a prime, we denote by
Z(p∞) = {a/pn +Z : a ∈ Z, n ∈ N} ⊂ Q/Z the quasicyclic p-group. By the rank
of a p-group we mean the maximal cardinality of an independent subset.

2.2 Monoids

As mentioned in Section 1, throughout this paper a monoid is a cancelative
commutative semigroup with identity element, which we denote by 1. We use
multiplicative notation for monoids. Let H be a monoid. We denote its invert-
ible elements by H×. A monoid is called reduced if H× = {1}. For a, b ∈ H, we
write a ' b, and call a and b associates, if aH× = bH×. For a subset A ⊂ H,
we denote by [A] the submonoid of H generated by A. By q(H) we denote a
quotient group of H such that H ⊂ q(H). Moreover, if H ′ ⊂ H is a submonoid,
then we assume that q(H ′) ⊂ q(H).
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A monoid F is called free if there exists a subset P ⊂ F such that for each
f ∈ F there exist uniquely determined vp(f) ∈ N0 (almost all 0) such that
f =

∏
p∈P pvp(f); the set P is called the basis of F and vp(f) the p-valuation

of f . For some set P , we denote by F(P ) the free monoid with basis P . For
f ∈ F(P ), let supp(f) = {p ∈ P : vp(f) > 0} the support of f .

For G a group and G0 ⊂ G, let σ : F(G0) → G denote the monoid homomor-
phism that is identical on G0, i.e., σ(

∏
g∈G0

gvg ) =
∑

g∈G0
vgg. Furthermore,

let B(G0) = kerσ. Then, B(G0) is a submonoid of F(G0) and it is called the
block monoid over G0. It is common to refer to the elements of F(G0) as
sequences over G0 and to the elements of B(G0) as zero-sum sequences. For
S =

∏
g∈G0

gvg ∈ F(G0), let |S| =
∑

g∈G0
vg denote the length of S; moreover,

if G0 consists of torsion elements, then let k(S) =
∑

g∈G0
vg/ ord(g) denote the

cross number of S.

2.3 Factorizations and transfer homomorphisms

An element a ∈ H is called irreducible, or an atom, if a = bc implies that b or
c is invertible. The set of atoms in H is denoted by A(H). A monoid is called
atomic [factorial] if each non-invertible element of H is the product of atoms
[in an essentially unique way, i.e., up to ordering and associates]. Clearly, free
monoids are factorial and conversely a monoid is factorial if and only if H/H×

is free.
Let a ∈ H \ H× and a = u1 . . . un be a factorization of a into irreducible

elements ui ∈ A(H). Then, n is called the length of this factorization. By L(a)
we denote the set of all n ∈ N such that a has a factorization into irreducible
elements of length n. For a ∈ H× we set L(a) = {0}. Moreover, L(H) =
{L(a) : a ∈ H} is called the system of sets of lengths of H. If | L(a)| = 1 for each
a ∈ H, then H is called half-factorial.

A monoid homomorphism θ : H → D is called a transfer homomorphism if
it satisfies the following two conditions.

(T1) D = θ(H)D× and H× = θ−1(D×).

(T2) If u ∈ H and b, c ∈ D such that θ(a) = bc, then there exist v, w ∈ H such
that θ(v) ' b, θ(w) ' c, and u = vw.

Transfer homomorphisms are important, since they preserve a lot of information
on factorizations of elements. Let θ : H → D be a transfer homomorphism of
atomic monoids. Then, θ(A(H))D× = A(D) and L(a) = L(θ(a)) for each a ∈ H,
in particular L(H) = L(D). The composition of transfer homomorphisms is
again a transfer homomorphism.

For detailed information on transfer homomorphisms see [20, Section 3.2].

2.4 Class groups and divisor homomorphisms

Let H and D be monoids and ϕ : H → D a monoid homomorphism.
The group C(ϕ) = q(D)/ q(ϕ(H)) is called the class group of ϕ. We use

additive notation for this group and for each a ∈ q(D) the class containing a is
denoted by [a]ϕ.

The homomorphism ϕ is called a divisor homomorphism if a | b if and only
if ϕ(a) | ϕ(b). And, ϕ is called cofinal if for each d ∈ D there exists some
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a ∈ H such that d | ϕ(a). If q(D)/ q(ϕ(H)) is a torsion group, then ϕ is cofinal.
Moreover, if H ⊂ D is a submonoid and H ↪→ D is a divisor homomorphism,
then H is called a saturated submonoid of D.

As mentioned in Section 1, a monoid H is called a Krull monoid if there exists
some free monoid F such that there exists a divisor homomorphism ϕ : H → F .
For each Krull monoid there exists an essentially unique (it is unique up to
unique isomorphism) “smallest” free monoid with the above property. More
precisely the following is well-known. A divisor homomorphism ϕ : H → F(P )
is called a divisor theory if for each p ∈ P there exists a finite set ∅ 6= X ⊂ H
such that p = gcdϕ(X). And, each Krull monoid has a unique (up to unique
isomorphism) divisor theory. The class group of a divisor theory of a Krull
monoid is called the class group of the Krull monoid and is denoted by C(H).

Krull monoids are atomic and a Krull monoid is factorial if and only if its
class group is trivial (see, e.g., [20, Corollary 2.3.13]).

We recall and introduce some additional notation regarding divisor homo-
morphisms into free monoids. Let H be a Krull monoid and let ϕ : H → F(P )
be a divisor homomorphism. The elements of P are called prime divisors and
the set D(ϕ) = {[p]ϕ : p ∈ P} ⊂ C(ϕ) is called the subset of classes containing
prime divisors. One has 〈D(ϕ)〉 = C(ϕ). Furthermore, let β̃ : F(P ) → F(D(ϕ))
be the homomorphism defined by p 7→ [p]ϕ. Then, im(β̃ ◦ ϕ) = B(D(ϕ)) and
βϕ = β̃ ◦ϕ : H → B(D(ϕ)) is a transfer homomorphism. This map is called the
block homomorphism associated to ϕ and B(D(H)) is called the block monoid
associated to ϕ. Additionally, let Fϕ = {gcd ϕ(X) : ∅ 6= X ⊂ H}. In [20, Theo-
rem 2.4.7] this set is denoted by F0. There, it is proved that Fϕ is a monoid and
that there exists an epimorphism from {[a]ϕ : a ∈ Fϕ}, which is a submonoid of
C(ϕ), to C(H). If ϕ is cofinal, thus in particular if C(ϕ) is a torsion group, then,
for p ∈ P , we set mp(ϕ) = min({vp(ϕ(a)) : a ∈ H} \ {0}).

If we just refer to the block monoid or block homomorphism associated
to a Krull monoid, without specifying a divisor homomorphism, we mean one
associated to a divisor theory of H, which is again essentially unique. And,
in this case we use the notation D(H) and βH to denote the subset of classes
containing prime divisors and the block homomorphism, respectively.

For detailed information see [20, Chapter 2].

3 Divisor homomorphisms with torsion class group

As mentioned in Section 2, it is well-known that every Krull monoid has an
essentially unique divisor theory. However, besides divisor theories there exist
numerous distinct divisor homomorphisms into free monoids. In this section, we
investigate divisor homomorphisms into free monoids with torsion class group,
i.e., outside factorial monoids (see [5]). Our investigation builds on known re-
sults (cf. [20, Theorem 2.4.7]), valid without the condition that the class group
is a torsion group. Yet, in our more restricted situation a more explicit approach
is possible, leading to a quite precise understanding of these divisor homomor-
phisms. We apply this information in our investigation of higher-order block
monoids. In particular, we use it to show that the class groups and block
monoids of order σ for infinite σ are independent of the divisor homomorphism
(see Theorem 6.3). For a related result, investigating the class groups of certain
submonoids of a Krull monoid, see [25].
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Theorem 3.1. Let ϕ : H → F(P ) be a divisor homomorphism such that C(ϕ)
is a torsion group. Then, up to a natural identification, C(H) is a subgroup of
C(ϕ). More precisely, there exists an exact sequence

0 → C(H) ↪→ C(ϕ) → ⊕p∈P Cmp(ϕ) → 0.

And, for each p ∈ P , we have k[p]ϕ ∈ C(H) if and only if mp(ϕ) | k, and
D(H) = {mp(ϕ)[p]ϕ : p ∈ P}.

We start with a preparatory lemma.

Lemma 3.2. Let ϕ : H → F(P ) be a divisor homomorphism such that C(ϕ) is
a torsion group.

1. The monoid Fϕ is free. More precisely, Fϕ = [{pmp(ϕ) : p ∈ P}]. In
particular, mp(ϕ) = gcd{vp(ϕ(a)) : a ∈ H} and mp(ϕ) | ord([p]ϕ) for each
p ∈ P .

2. ι(ϕ) : Fϕ ↪→ F(P ) is a divisor homomorphism.

3. For each p ∈ P , ord([p]ι(ϕ)) = mp(ϕ) and C(ι(ϕ)) =
⊕

p∈P 〈[p]ι(ϕ)〉.

4. The map ϕr : H → Fϕ, defined via ϕr(a) = ϕ(a), is a divisor theory.

Proof. 1. Let p ∈ P and Mp = ord([p]ϕ), and let up ∈ H such that ϕ(up) = pMp .
We first assert that mp(ϕ) | Mp. Assume not. Let a ∈ H with vp(ϕ(a)) =
mp(ϕ). Since pMp | ϕ(a)dMp/mp(ϕ)e and ϕ is a divisor homomorphism, it follows
that up | adMp/mp(ϕ)e. Yet, 0 < vp(ϕ(au−1

p )) < mp(ϕ), a contradiction.
We observe that gcd ϕ({up, a}) = pmp(ϕ) ∈ Fϕ. We assert that mp(ϕ) =

gcd{vp(ϕ(a)) : a ∈ H}. Let a1, a2 ∈ H and d = gcd{vp(ϕ(a1)), vp(ϕ(a2))}. We
have to show that there exists some a ∈ H with vp(ϕ(a)) = d. We observe that
for all sufficiently large k the element kd is contained in the submonoid of N0

generated by vp(ϕ(a1)) and vp(ϕ(a2)). Let k = (1 + `Mp/d) for some ` ∈ dN
such that kd = x1 vp(ϕ(a1)) + x2 vp(ϕ(a2)) for x1, x2 ∈ N. Then, as above,
u−`

p ax1
1 ax2

2 ∈ H and vp(ϕ(u−`
p ax1

1 ax2
2 )) = d. The claim is now immediate.

2. By the first part, we know that for f ∈ F(P ) we have f ∈ Fϕ if and only if
mp(ϕ) | vp(f) for each p ∈ P . Thus, if f1, f2 ∈ Fϕ and f1 | f2 in F(P ), then
f−1
1 f2 ∈ Fϕ.

3. By the above reasoning, we have for f1, f2 ∈ F(P ) that f1 ∈ f2 q(Fϕ) if and
only if vp(f1) ≡ vp(f2) (mod mp(ϕ)) for each p ∈ P . Thus, the claim follows.
4. By the first part, Fϕ is free. The map ϕr is a divisor homomorphism, since
ϕ is a divisor homomorphism. The condition that each element of Fϕ is the
greatest common divisor of the image of finitely many elements of H is true by
definition, since in a free monoid the greatest common divisor of an infinite set
is already attained by a finite subset.

Proof of Theorem 3.1. By Lemma 3.2, we know that ϕr : H → Fϕ is a divisor
theory. Thus, C(H) is (up to unique isomorphism) q(Fϕ)/ q(ϕr(H)). We have
that q(Fϕ) ⊂ q(F(P )) is a subgroup and that q(ϕr(H)) = q(ϕ(H)). Thus,
q(Fϕ)/ q(ϕr(H)) ⊂ q(F(P ))/ q(ϕ(H)) is a subgroup. The former is C(H) and
the latter C(ϕ), establishing the first claim.

Since (q(F(P ))/ q(ϕ(H)))/(q(Fϕ)/ q(ϕr(H))) ∼= q(F(P ))/ q(Fϕ), we have
C(ϕ)/C(H) ∼= C(ι(ϕ)). By Lemma 3.2, C(ι(ϕ)) ∼= ⊕p∈P Cmp(ϕ) and the existence
of the exact sequence is established.
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The remaining result on D(H) follows once the following claim is established.
Claim: Let f1, f2 ∈ F(P ), fi,0 = lcm{f ∈ Fϕ : f | fi} and f ′i = f−1

i,0 fi for
i ∈ [1, 2]. Then, [f1]ϕ = [f2]ϕ if and only if f ′1 = f ′2 and [f1,0]ϕ = [f2,0]ϕ.
Proof of Claim: Suppose [f1]ϕ = [f2]ϕ. That is, there exists some h ∈ q(ϕ(H))
such that f1 = hf2. Since ϕ(H) ⊂ Fϕ, we know that vp(h) ∈ mp(ϕ)Z for each
p ∈ P . We observe that f ′i ∈ [0,mp(ϕ) − 1] for each p ∈ P and conclude that
f ′1 = f ′2. Thus, we have f1,0 = hf2,0, that is [f1,0]ϕ0 = [f2,0]ϕ0 . The converse
direction is obvious.

4 Abstract version of higher-order constructions

In this section, we develop the notion of a higher-order block monoid and a
higher-order class group in an abstract fashion. That is, we only consider block
monoids and frequently even just investigate subsets of torsion groups without
making any direct reference to monoids.

4.1 The refinement of a block monoid

Using Theorem 3.1, we give an explicit description of the block monoid associ-
ated to B(G0) for G0 a subset of a torsion group, which we call the refinement of
B(G0). To avoid any ambiguity, we reiterate that the refinement of B(G0) is de-
fined via a divisor theory of B(G0). Yet, the obvious imbedding B(G0) ↪→ F(G0)
is in general only a divisor homomorphism. The block monoid associated to the
imbedding B(G0) ↪→ F(G0) is, up to standard identification, B(G0) (see [20,
Proposition 2.5.6]).

Proposition 4.1. Let G be a torsion group and let G0 ⊂ G. The refinement of
B(G0) is, up to identification, B(H0) where H0 = {n(g)g : g ∈ G0} and n(g) ∈ N
is minimal with n(g)g ∈ 〈G0 \ {g}〉. In particular, the class group of B(G0) is
〈H0〉, a subgroup of 〈G0〉.

Proof. As recalled above, the imbedding ϕ : B(G0) ↪→ F(G0) is a divisor homo-
morphism, C(ϕ) = 〈G0〉 and Dϕ(B(G0)) = G0. We observe that, for n ∈ N and
g ∈ G0, the following statements are equivalent:

• There exists some B ∈ B(G0) with vg(B) = n.

• ng ∈ 〈G0 \ {g}〉.

Thus, indeed n(g) = mg(ϕ) and the result follows by Theorem 3.1.

In view of this proposition, we make the following definitions.

Definition 4.2. Let G be a torsion group and let G0 ⊂ G. Let g ∈ G0.

1. nG0(g) = min{n ∈ N : ng ∈ 〈G0 \ {g}〉}.

2. γG0 : G0 → G is defined by γG0(g) = nG0(g)g.

3. Γ(G0) = γG0(G0).

Since we need it frequently, we explicitly point out a property of nG0(g) that
is clear by Lemma 3.2 and the proof of Proposition 4.1 (also cf. [20, Lemma
6.7.10]).
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Remark 4.3. Let G be a torsion group, let G0 ⊂ G, and let g ∈ G0. Then,
nG0(g) = gcd{vg(B) : B ∈ B(G0)}. In particular, nG0(g) | ord(g).

Using the terminology introduced above, we reformulate and refine Propo-
sition 4.1.

Corollary 4.4. Let G be a torsion group and let G0 ⊂ G. We have D(B(G0)) =
Γ(G0). The block homomorphism is given by

βB(G0) :

{
B(G0) → B(Γ(G0))
B 7→

∏
h∈Γ(G0)

hord(h) k(Fh), where Fh =
∏

g∈γ−1
G0

(h) gvg(B) .

Proof. The first statement is clear by Proposition 4.1 and Definition 4.2. To
get the result on the block homomorphism, we note that, for B ∈ B(G0)
and g ∈ G0, we have ord(γG0(g)) = ord(nG0(g)g) = ord(g)/nG0(g). Thus,
ord(h) k(Fh) =

∑
g∈γ−1

G0
(h) vg(B)(ord(g)/nG0(g)). Now, the claim is clear by the

proof of Proposition 4.1.

Since it is relevant for our following work, we state the following simple
lemma.

Lemma 4.5. Let G be a torsion group and let G0 ⊂ G. The following state-
ments are equivalent.

1. nG0(g) = 1 for each g ∈ G0, i.e., γG0 = idG0 .

2. Γ(G0) = G0.

3. 〈Γ(G0)〉 = 〈G0〉.

We point out that the groups 〈Γ(G0)〉 and 〈G0〉 actually have to be equal;
it is not sufficient that they are isomorphic (cf. Example 4.17).

Proof. Since the implications from 1. to 2. to 3. are trivial, we only have to
show that 3. implies 1.

Suppose 〈Γ(G0)〉 = 〈G0〉. Let g ∈ G0. We show that nG0(g) = 1. Assume
not. We have g ∈ 〈Γ(G0)〉, i.e., g =

∑
h∈Γ(G0)

ahh with ah ∈ Z (almost all
0). This implies that g =

∑
f∈G0

afnG0(f)f with af ∈ Z (almost all 0). It
follows that (1 − agnG0(g))g ∈ 〈G0 \ {g}〉. Since by assumption nG0(g) > 1
and by Remark 4.3 nG0(g) | ord(g), we have gcd{1 − agnG0(g), ord(g)} = 1.
Consequently, g ∈ 〈G0 \ {g}〉, contradicting the assumption nG0(g) > 1.

4.2 Main definitions and basic results

We recursively define quantities that are fundamental in the definition of higher-
order class groups and block monoids.

Definition 4.6. Let G be a torsion group and let G0 ⊂ G. Let σ be some
ordinal.

• If σ = 0, then nσ
G0

(g) = 1, γσ
G0

= idG0 , and Γσ(G0) = G0.

• Γσ +1(G0) = Γ(Γσ(G0)), nσ +1
G0

(g) = nΓσ(G0)(γ
σ
G0

(g))nσ
G0

(G), and γσ +1
G0

=
γγσ(G0) ◦ γσ

G0
.
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• If σ is a limit ordinal, then nσ
G0

(g) = supρ<σ nρ
G0

(g). Moreover, γσ
G0

(g) =
nσ

G0
(g)g and Γσ(G0) = γσ

G0
(G0).

For completeness, we add that we use the convention that nσ
G0

(g)g = 0 in
case nσ

G0
(g) is infinite; yet, as is shown in the lemma below, nσ

G0
(g) is always

finite.
It is apparent, by the definition and Proposition 4.1, that for finite σ the

block monoid B(Γσ(G0)) is just the monoid obtained by constructing the re-
finement, starting from B(G0), σ-times. Thus, there exists a natural transfer
homomorphism from B(G0) to B(Γσ(G0)), namely the composition of the re-
spective block homomorphisms.

Our next aim is to construct, for each ordinal σ, a transfer homomorphism
from B(G0) to B(Γσ(G0)). For finite σ this transfer homomorphism coincides
with the composition of the block homomorphisms.

We start with a technical lemma.

Lemma 4.7. Let G be a torsion group and let G0 ⊂ G. Let σ ≤ τ be ordinals.

1. nσ
G0

(g) | nτ
G0

(g).

2. nσ
G0

(g) | ord(g).

Proof. The first statement is clear by definition. To get the second one we
induct on σ. For σ = 0 this is trivial, and for σ = 1 the fact that ord(g)g ∈
〈G0 \ {g}〉, implies the claim (cf. Remark 4.3). We consider σ +1. We have
nσ +1

G0
(g) = nΓσ(G0)(γ

σ
G0

(g))nσ
G0

(g). By the induction hypothesis, ord(γσ
G0

(g)) =
ord(g)/nσ

G0
(g). And, by the case σ = 1, nΓσ(G0)(γ

σ
G0

(g)) | ord(γσ
G0

(g)). For
σ a limit ordinal the claim is immediate by the definition of nσ

G0
(g) and the

induction hypothesis.

To construct our transfer homomorphisms, we need to consider the following
specific decomposition of elements of B(G0), which generalizes the one used in
Corollary 4.4.

Notation 4.8. Let G be a torsion group and let G0 ⊂ G. Let σ be an ordinal.
For h ∈ Γσ(G0) and B ∈ B(G0), let Fσ

h (B) =
∏

g∈(γσ
G0

)−1(h) gvg(B).

We establish some basic facts about Fσ
h (B).

Lemma 4.9. Let G be a torsion group and let G0 ⊂ G. Let σ be an ordinal. Let
B ∈ B(G0). For each h ∈ Γσ(G0) we have ord(h) k(Fσ

h (B)) ∈ N0. Moreover,∏
h∈Γσ(G0)

hord(h) k(F σ
h (B)) ∈ B(Γσ(G0)) .

Proof. Let h ∈ Γσ(G0). For simplicity, we write Fσ
h instead of Fσ

h (B). Let
g ∈ (γσ

G0
)−1(h). This means that nσ

G0
(g)g = h. Since, by Lemma 4.7, nσ

G0
(g) |

ord(g) this implies that ord(g) = nσ
G0

(g) ord(h).
We induct on σ. For σ = 0 the claims are trivial. We consider σ +1. By def-

inition, (γσ +1
G0

)−1(h) = (γσ
G0

)−1(γ−1
Γσ(G0)

(h)). Thus, Fσ +1
h =

∏
h′∈γ−1

Γσ(G0)(h) Fσ
h′ .

By the induction hypothesis, we have ord(h′) k(Fσ
h′) ∈ N0. We observe that

ord(h′) = nΓσ(G0)(h
′) ord(h) and, by Remark 4.3, nΓσ(G0)(h

′) | vh′(βσ
G0

(B)) =
ord(h′) k(Fσ

h′). Thus,

ord(h) k(Fσ
h′) =

ord(h′)
nΓσ(G0)(h′)

k(Fσ
h′) ∈ N0,
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implying that ord(h) k(Fσ +1
h ) =

∑
h′∈γ−1

Γσ(G0)(h) ord(h) k(Fσ
h′) ∈ N0. Moreover,

we observe that σ(Fσ +1
h ) =

∑
h′∈γ−1

Γσ(G0)(h) σ(Fσ
h′), implying that σ(βσ +1

G0
(B)) =

σ(βσ
G0

(B)) = 0.
Let σ be a limit ordinal. Let ρ < σ such that nρ

G0
(g) = nσ

G0
(g) for each

g ∈ supp(B); since supp(B) is finite, the existence of such a ρ is guaranteed.
We note that F ρ

h = Fσ
h and

∏
h∈Γρ(G0)

hord(h) k(F ρ
h ) =

∏
h∈Γσ(G0)

hord(h) k(F σ
h ).

The claim follows by the induction hypothesis.

Having these preparatory results at hand, we construct the transfer homo-
morphisms.

Theorem 4.10. Let G be a torsion group and let G0 ⊂ G. Let σ be an ordinal.
The map

βσ
G0

:

{
B(G0) → B(Γσ(G0))
B 7→

∏
h∈Γσ(G0)

hord(h) k(F σ
h (B))

is a transfer homomorphism. For finite σ ≥ 1 it is a composition of the block
homomorphisms.

Proof. We induct on σ. For σ = 0 the map is the identity and the claim
is trivial. For σ = 1 we observe that β1

G0
is the block homomorphism (cf.

Corollary 4.4). We consider σ +1. By the proof of Lemma 4.9, we see that
βσ +1

G0
= β1

Γσ(G0)
◦ βσ

G0
. It is thus a transfer homomorphism, as composition of

two transfer homomorphisms.
Now, suppose that σ is a limit ordinal. By the definition, it is easy to see that

βσ
G0

is a homomorphism. We show that βσ
G0

is surjective. Let C ∈ B(Γσ(G0)).

For h ∈ supp(C), let gh ∈ (γσ
G0

)−1(h). We set B =
∏

h∈supp(C) g
nσ

G0
(gh) vC(h)

h .

Then, Fσ
h (B) = g

nσ
G0

(gh) vC(h)

h and

ord(h) k(Fσ
h (B)) =

ord(h) nσ
G0

(gh) vh(B)
ord(gh)

= vh(B).

Thus, βσ
G0

(B) = C. Since B(G0) and B(Γσ(G0)) are reduced, this shows that
(T1) holds.

Next, we note that for each B there exists some ρ < σ such that βρ(B) =
βσ(B) and the same holds true for each each B′ | B. Using this observation
and noting that, by the induction hypothesis, (T2) holds for βρ

G0
, we get that

(T2) holds for βσ
G0

.

We want to show that the family (Γσ(G0))σ is eventually constant. To this
end, we consider the groups 〈Γσ(G0)〉. Since we need it in Section 7, we prove
a result that is stronger than required for the present purpose.

Lemma 4.11. Let G be a torsion group and let G0 ⊂ G. Let σ be a limit
ordinal. Then, 〈Γσ(G0)〉 =

⋂
ρ<σ〈Γρ(G0)〉.

Proof. Since, by Lemma 4.7, nρ
G0

(g) | nσ
G0

(g) for each ρ < σ, it is clear that
〈Γσ(G0)〉 ⊂ 〈Γρ(G0)〉 for each ρ < σ.

Now, let g ∈
⋂

ρ<σ〈Γρ(G0)〉. We have to show that g ∈ 〈Γσ(G0)〉. Consid-
ering ρ = 0, we know that g ∈ 〈G0〉. Let G1 ⊂ G0 be a finite set such that
g ∈ 〈G1〉.
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If g ∈ 〈γρ
G0

(G1)〉 for each ρ < σ, then, since the finiteness of G1 implies that
γτ

G0
|G1 = γσ

G0
|G1 for some τ < σ, we have g ∈ 〈γσ

G0
(G1)〉 ⊂ 〈Γσ(G0)〉, implying

the claim.
Thus, we may assume that there exists some τ ′ < σ such that g /∈ 〈γτ ′

G0
(G1)〉;

and we assume that τ ′ is minimal with this property. By the same argument
as above, we note that τ ′ is a successor ordinal, say τ ′ = τ + 1. We have
g ∈ 〈γτ

G0
(G1)〉, i.e., g =

∑
h∈G1

ahnτ
G0

(h)h with ah ∈ Z (almost all 0), but
g /∈ 〈γτ+1

G0
(G1)〉 = 〈{nτ+1

G0
(h)h : h ∈ G1}〉. Without restriction we may assume

that γτ
G0
|G1 is injective.

Since g /∈ 〈{nτ+1
G0

(h)h : h ∈ G1}〉, we know that there exists some f ∈ G1

such that nτ+1
G0

(f) - afnτ
G0

(f).
Since g ∈ 〈Γτ+1(G0)〉, we know that there exist bh ∈ Z (almost all 0) such

that g =
∑

h∈G0
bhnτ+1

G0
(h)h. We may assume that if nτ+1

G0
(h)h = nτ+1

G0
(f)f for

some h 6= f , then bh = 0. We have
∑

h∈G1
ahnτ

G0
(h)h =

∑
h∈G0

bhnτ+1
G0

(h)h.
Implying that, with ah = 0 for h /∈ G1,

(afnτ
G0

(f)− bfnτ+1
G0

(f))f =
∑

h∈G0\{f}

(bhnτ+1
G0

(h)− ahnτ
G0

(h))h.

We recall that nτ+1
G0

(h) = nΓτ (G0)(γ
τ
G0

(h))nτ
G0

(h) for each h ∈ G1. Thus, we
have

(af − bfnΓτ (G0)(γ
τ
G0

(f)))γτ
G0

(f) =
∑

h∈G0\{f}

(bhnΓτ (G0)(γ
τ
G0

(f))− ah)γτ
G0

(h).

By our assumption on G1 and bh, we know that bhnΓτ (G0)(γ
τ
G0

(f))− ah = 0 for
each h ∈ (γτ

G0
)−1(γτ

G0
(f)) \ {f}. Consequently, we have

(af − bfnΓτ (G0)(γ
τ
G0

(f)))γτ
G0

(f) ∈ 〈Γτ (G0) \ {γτ
G0

(f)}〉.

Yet, the condition nτ+1
G0

(f) - afnτ
G0

(f) is equivalent to nΓτ (G0)(γ
τ
G0

(f)) - af ,
and thus nΓτ (G0)(γ

τ
G0

(f)) - (af − bfnΓτ (G0)(γ
τ
G0

(f))), a contradiction (cf. Re-
mark 4.3). This contradiction completes the argument.

We point out that for the finitary analog of this construction such a result
does not hold (see Example 5.5).

Proposition 4.12. Let G be a torsion group and let G0 ⊂ G. There exists a
smallest ordinal σ such that Γσ(G0) = Γτ (G0) for each τ ≥ σ. If G0 is finite,
then σ is finite.

Proof. Let σ be an ordinal. If, for each ρ < σ, Γρ(G0) 6= Γρ+1(G0), then by
Lemma 4.5 and Lemma 4.11, (〈Γρ(G0)〉)ρ≤σ is a properly descending chain of
subgroups of 〈G0〉. Since the lengths of such a properly descending chain is
bounded by the cardinality of 〈G0〉, the claim follows.

We point out that this result directly yields a generalization of a result
that proved to be useful in Non-Unique Factorization Theory (cf. [20, Theorem
6.7.11] where this result is proved for finite sets, [15, 27] for earlier versions,
and, e.g., [28] for an application).
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Corollary 4.13. Let G be a torsion group and let G0 ⊂ G. There exists some
set G∗

0 ⊂ G with g ∈ 〈G∗
0 \ {g}〉 for each g ∈ G∗

0 and a transfer homomorphism

θ : B(G0) → B(G∗
0).

Proof. By Proposition 4.12, there exists some σ such that Γσ +1(G0) = Γσ(G0).
We set G∗

0 = Γσ(G0). By Theorem 4.10, there exists a transfer homomorphism
from B(G0) to B(G∗

0). We have Γ(G∗
0) = Γσ +1(G0) = Γσ(G0) = G∗

0, which, by
Lemma 4.5, implies g ∈ 〈G∗

0 \ {g}〉 for each g ∈ G∗
0.

The finitary construction, to be given in the following section, in particular
Proposition 5.7, yields another way to get such a set G∗

0.

4.3 Examples

We give some simple examples of the effect of Γσ(·). On the one hand, we do
so for illustration, yet on the other hand we refer to these examples elsewhere
in the paper.

The first example characterizes sets with Γ1(G0) ⊂ {0}, that is B(G0) is
factorial; clearly, Γσ(G0) = ∅ only in the trivial case that G0 = ∅. We recover
the characterization given in [19, Propostion 3], also cf. Lemma 7.2.

Example 4.14. Let G be a torsion group and let G0 ⊂ G. Then, Γ1(G0) ⊂
{0} if and only if G0 \ {0} is independent. To see this, it suffices to note
that Γ1(G0) ⊂ {0} is equivalent to nG0(g) = ord(g) for each g ∈ G, that is
kg /∈ 〈G0 \ {g}〉 for each k /∈ ord(g)Z.

In the following examples, we study subsets of p-groups. Later, in Section 7,
we undertake a systematic investigation of subsets of p-groups with Γσ(G0) =
{0}.

Example 4.15. Let p be a prime and k ∈ N. Let Cpk = 〈e〉 and let ∅ 6= G0 ⊂
{pje : j ∈ [0, k]}. Let n = |G0 \ {0}|, then Γn(G0) = {0} and Γm(G0) 6= {0}
for each 0 ≤ m < n. To see this, we first consider the element g ∈ G0 of
maximal order. If g = 0, the claim is clear, and we assume g 6= 0. We have
g /∈ 〈G0 \ {g}〉, yet nG0(g)g ∈ G0 \ {g}. For each h ∈ G0 \ {g}, we have
nG0(h) = 1, since h = − ord(g)/ ord(h)g ∈ 〈g〉 ⊂ 〈G0 \ {g}〉. And, the claim
follows by induction on |G0 \ {0}|.

Example 4.16. Let p be a prime. Let G0 = {p−n + Z : n ∈ N0} ⊂ Z(p∞).
Then, Γσ(G0) = G0. To see this, note that for each g ∈ G0 there exists some
h ∈ G0 \ {g} with ph = g, thus g = 〈h〉 ⊂ 〈G0 \ {g}〉 and nG0(g) = 1.

Example 4.17. Let G = ⊕k∈N〈ek〉 with ord(ek) = pk and let G0 = {pjek : j ∈
N0, k ∈ N}. Then, Γω(G0) = {0}, yet Γρ(G0) 6= {0} for each ρ < ω. Indeed,
〈Γρ(G0)〉 ∼= G for each ρ < ω (cf. the remark after Lemma 4.5). To see this,
it suffices to note that each “coordinate” can be considered separately and to
apply Example 4.15.

The following example shows that Γσ(·) does not preserve inclusions.

Example 4.18. Let p be an odd prime. Let Cp2 = 〈e〉 and let G0 = {e,−e, pe}
and G′

0 = {−e, pe}. Then, Γσ(G0) = G0 and Γσ(G′
0) = {pe,−pe} for each

σ ≥ 1. To see this, note that ±e ∈ 〈∓e〉 and pe ∈ 〈e〉. Yet, −e /∈ 〈pe〉, but
p(−e) ∈ 〈pe〉.
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We end with an example that is relevant in Lemma 7.8.

Example 4.19. Let p, q distinct primes, Cpq = 〈e〉, and G0 = {e, pe, qe}. Then,
Γσ(G0) = G0. To see this, note that e ∈ 〈{pe, qe}〉.

4.4 Some technical results

In this subsection, we prove some technical results that are needed in the fol-
lowing sections. We make frequent use of the following notation.

Notation 4.20. Let G be a torsion group. For g, h ∈ G, let ng,h(g) denote the
divisor of ord(g) with the property that 〈ng,h(g)g〉 = 〈g〉 ∩ 〈h〉.

The relevance of the following lemma is due to the fact that it yields a
condition regarding the non-equality of γσ

G0
(g) and γσ

G0
(h) that is independent

of G0.

Lemma 4.21. Let G be a torsion group and let G0 ⊂ G. Let σ be an ordinal.
Let h, g ∈ G0. We have

• nσ
G0

(g) | ng,h(g) and nσ
G0

(h) | ng,h(h), or

• γσ
G0

(g) = γσ
G0

(h).

Moreover, if ng,h(g)g 6= ng,h(h)h, then nσ
G0

(g) | ng,h(g), nσ
G0

(h) | ng,h(h), and
γσ

G0
(g) 6= γσ

G0
(h).

Proof. We induct on σ. The case σ = 0 is trivial. We consider σ +1. If γσ
G0

(g) =
γσ

G0
(h), clearly γσ +1

G0
(g) = γσ +1

G0
(h). Thus, suppose γσ

G0
(g) 6= γσ

G0
(h). By the

induction hypothesis, we know that nσ
G0

(g) | ng,h(g) and nσ
G0

(h) | ng,h(h). Since
γσ

G0
(h) ∈ Γσ(G0) \ {γσ

G0
(g)} and since nσ

G0
(h) | ng,h(h), it follows that

ng,h(g)
nσ

G0
(g)

γσ
G0

(g) = ng,h(g)g ∈ 〈Γσ(G0) \ {γσ
G0

(g)}〉.

Thus,

nΓσ(G0)(γ
σ
G0

(g)) | ng,h(g)
nσ

G0
(g)

and nσ +1
G0

(g) = nΓσ(G0)(γ
σ
G0

(g))nσ
G0

(g) | ng,h(g). Suppose σ is a limit ordinal.
If nρ

G0
(g) | ng,h(g) and nρ

G0
(h) | ng,h(h) for each ρ < σ, then clearly nσ

G0
(g) |

ng,h(g) and nσ
G0

(h) | ng,h(h). Yet, if γρ
G0

(g) = γρ
G0

(h) for some ρ < σ, then

γρ′

G0
(g) = γρ′

G0
(h) for each ρ′ ≥ ρ.

It remains to prove the “moreover”-statement. Suppose that ng,h(g)g 6=
ng,h(h)h. It suffices to show that γσ

G0
(g) 6= γσ

G0
(h). Assume to the contrary

that γτ
G0

(g) = γτ
G0

(h) for some τ , and suppose τ is minimal with this property.
We note that τ is a successor ordinal, say τ = σ +1. Thus, we have γσ

G0
(g) 6=

γσ
G0

(h) and consequently nσ
G0

(g) | ng,h(g) and nσ
G0

(h) | ng,h(h). By the above
argument, we have nτ

G0
(g) | ng,h(g) and nτ

G0
(h) | ng,h(h). If at least one of

the divisibility relations is proper, then γτ
G0

(g) 6= γτ
G0

(h) by the definition of
ng,h(g) and ng,h(h). Yet, if nτ

G0
(g) = ng,h(g) and nτ

G0
(h) = ng,h(h), then

γτ
G0

(g) 6= γτ
G0

(h) by assumption, a contradiction.
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Using this lemma, we establish a relation among nσ
G1

(g) and nσ
G0

(g) for
G1 ⊂ G0.

Proposition 4.22. Let G be a torsion group and let G1 ⊂ G0 ⊂ G. Let σ be
an ordinal. Then, nσ

G0
(g) | nσ

G1
(g) for each g ∈ G1.

Proof. We induct on σ. For σ = 0 the claim is obvious. We consider σ +1.
We start by showing the following auxiliary claim: G1 \ (γσ

G1
)−1(γσ

G1
(g)) ⊂

G0 \ (γσ
G0

)−1(γσ
G0

(g)). Let h ∈ G1 \ (γσ
G1

)−1(γσ
G1

(g)), i.e., γσ
G1

(h) 6= γσ
G1

(g).
By Lemma 4.21, we thus know that nσ

G1
(g) | ng,h(g) and nσ

G1
(h) | ng,h(h). By

the induction hypothesis, we know that nσ
G0

(g) | nσ
G1

(g) | ng,h(g) and nσ
G0

(h) |
nσ

G1
(h) | ng,h(h). Since equality in the chain of divisibilty relations cannot hold,

nσ
G0

(g)g 6= nσ
G0

(h)h and h ∈ G0 \ (γσ
G0

)−1(γσ
G0

(g)).
We know that nσ +1

G1
(g) is the minimal n ∈ N fulfilling the two properties

ng ∈ 〈Γσ(G1) \ {γσ
G1

(g))}〉 and nσ
G1

(g) | n. We denote the set of all n ∈ N
fulfilling the former and the latter property by I1 and J1, respectively. In the
same way we have nσ +1

G0
(g) is minimal with the properties ng ∈ 〈Γσ(G0)\γσ

G0
(g)〉

and nσ
G0

(g) | n, and we denote the respective sets by I0 and J0. By the induction
hypothesis, we know that I1 ⊂ I0. We show that J1 ⊂ J0 as well, which implies
the claim.

Let n ∈ J1. Thus, for suitable af , ah, af ′ ∈ Z (almost all 0) and dh ∈ N, we
have

ng =
∑

f∈Γσ(G1)\{γσ
G1

(g)}

aff =
∑

h∈G1\(γσ
G1

)−1(γσ
G1

(g))

ahnσ
G1

(h)h

=
∑

h∈G1\(γσ
G1

)−1(γσ
G1

(g))

ahdhnσ
G0

(h)h =
∑

f ′∈γσ
G0

(G1\(γσ
G1

)−1(γσ
G1

(g)))

af ′f
′,

where the penultimate equality holds by the induction hypothesis. Since, by
the auxiliary claim,

γσ
G0

(G1 \ (γσ
G1

)−1(γσ
G1

(g))) ⊂ γσ
G0

(G0 \ (γσ
G0

)−1(γσ
G0

(g))) = Γσ(G0) \ {γσ
G0

(g)},

we have ng ∈ 〈Γσ(G0) \ {γσ
G0

(g)}〉, i.e., n ∈ J0.
It remains to consider the case that σ is a limit ordinal. This case is obvious,

since there exists some ρ < σ with nρ
G0

(g) = nσ
G0

(g) and nρ
G1

(g) = nσ
G1

(g).

The following lemma is used in Theorem 6.3, where we show that the class
groups of infinite order are independent of the divisor homomorphism.

Lemma 4.23. Let G be a torsion group and let G0 ⊂ G. For each g ∈ G, let
dg ∈ N with dg | nG0(g), and let H0 = {dgg : g ∈ G0}. Then, for each g ∈ G0,
nσ

G0
(g) | dgn

σ
H0

(dgg) | nσ +1
G0

(g) for σ < ω and nσ
G0

(g) = dgn
σ
H0

(dgg) for σ ≥ ω.
In particular, γσ

G0
(g) = γσ

H0
(dgg) for σ ≥ ω.

Proof. Let g ∈ G0. For σ = 0 the claim is merely the condition on dg.
We consider σ +1 for σ < ω. We set dσ

g = dgn
σ
H0

(dgg)/nσ
G0

(g). By the
induction hypothesis, we have dσ

g ∈ N and dσ
g | nΓσ(G0)(γ

σ
G0

(g)). Moreover, we
have Γσ(H0) = {dσ

g γσ
G0

(g) : g ∈ G0}.
We assert that if γσ

G0
(g1) = γσ

G0
(g2) for g1, g2 ∈ G0, then dσ

g1
= dσ

g2
. For

σ = 0 this is trivial, and we assume σ ≥ 1. Thus, we know that dg | nσ
G0

(g).
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Suppose γσ
G0

(g1) = γσ
G0

(g2) for g1, g2 ∈ G0. We have

nσ
G0

(g1)
dg1

(dg1g1) =
nσ

G0
(g2)

dg2

(dg2g2).

Consequently, for i ∈ [1, 2],

ndg1g1,dg2g2(dgi
gi) |

nσ
G0

(g1)
dg1

| nσ
H0

(dgi
gi),

where the latter holds by the induction hypothesis.
Thus, by Lemma 4.21, we have γσ

H0
(dg1g1) = γσ

H0
(dg2g2). Since dgi

| ord(gi),
we have nσ

H0
(dgigi)dgi | ord(gi). Thus, nσ

H0
(dg1g1)dg1g1 = nσ

H0
(dg2g2)dg2g2

together with nσ
G0

(g1)g1 = nσ
G0

(g2)g2, implies that dσ
g1

= dσ
g2

.
By the just asserted fact, we have

Γσ(H0) \ {dσ
g γσ

G0
(g)} ⊂ {dσ

hγσ
G0

(h) : h ∈ G0 \ (γσ
G0

)−1(γσ
G0

(g))},

and thus 〈Γσ(H0) \ {dσ
g γσ

G0
(g)}〉 ⊂ 〈Γσ(G0) \ {γσ

G0
(g)}〉. Therefore, we have

nΓσ(H0)(d
σ
g γσ

G0
(g))dσ

g γσ
G0

(g) ∈ 〈Γσ(G0) \ {gσ}〉, implying that

nΓσ(G0)(γ
σ
G0

(g)) | nΓσ(H0)(d
σ
g γσ

G0
(g))dσ

g .

Multiplying the above relation by nσ
G0

(g), we get

nΓσ(G0)(γ
σ
G0

(g))nσ
G0

(g) | nΓσ(H0)(d
σ
g γσ

G0
(g))dσ

g nσ
G0

(g).

The first term is merely nσ +1
G0

(g) and, using the definition of dσ
g , we get that

the second one equals nΓσ(H0)(n
σ
H0

(dgg)dgg)dgn
σ
H0

(dgg) = dgn
σ +1
H0

(dgg). This
completes the argument for the first relation.

To show the other relation, we proceed similarly. We observe that if, for
g1, g2 ∈ G0, we have dσ

g1
γσ

G0
(g1) = dσ

g2
γσ

G0
(g2), then, by Lemma 4.21, since

nγσ
G0

(g1),γσ
G0

(g2)(γ
σ
G0

(gi)) | dσ
gi
| nΓσ(G0)(γ

σ
G0

(gi)), we have

γσ +1
G0

(g1) = γΓσ(G0)(γ
σ
G0

(g1)) = γΓσ(G0)(γ
σ
G0

(g2)) = γσ +1
G0

(g2).

Thus,
〈Γσ +1(G0) \ {γσ +1

G0
(g)}〉 ⊂ 〈Γσ(H0) \ {dσ

g γσ
G0

(g)}〉.

This inclusion implies nΓσ +1(G0)(γ
σ +1(g))γσ +1

G0
(g) ∈ 〈Γσ(H0) \ {dσ

g γσ
G0

(g)}〉.
Noting that

nΓσ +1(G0)(γ
σ +1(g))γσ +1

G0
(g) = nΓσ +1(G0)(γ

σ +1(g))
nΓσ(G0)(γ

σ(g))
dσ

g

(dσ
g γσ

G0
(g)),

it follows that

nΓσ(H0)(d
σ
g γσ

G0
(g)) | nΓσ +1(G0)(γ

σ +1(g))
nΓσ(G0)(γ

σ(g))
dσ

g

.

Multiplying by dgn
σ
H0

(dgg), we get

dgn
σ
H0

(dgg)nΓσ(H0)(d
σ
g γσ

G0
(g)) | nΓσ +1(G0)(γ

σ +1(g))nΓσ(G0)(γ
σ(g))nσ

G0
(g),

that is dgn
σ +1
H0

(dgg) | nσ +2
G0

(g).
Now, let σ ≥ ω. It suffices to consider σ = ω. The two divisibilty relations

and the definition readily yield that nω
G0

(g) = dgn
ω
H0

(dgg).
The “in particular”-statement is clear.
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5 Abstract version of the finitary analog

Having applications in Non-Unique Factorization Theory in mind, it is natural
to consider finitary analogs of the constructions done in the previous section, in
the hope that they yield still simpler sets than can be obtained by the construc-
tions of the preceding section. To be more specific, properties of factorizations
of an element B of a block monoid just depend on B(supp(B)) and supp(B) is a
finite set. Thus, an immediate idea would be to consider ∪G1⊂G0, |G1|<∞Γσ(G1)
instead of Γσ(G0), or in other words to carry out our construction for each
divisor-closed finitely generated submonoid of B(G0) and then to put the re-
sults together in a naive way. Unfortunately, this approach has the drawback
that Γσ(·) does not preserve inclusions (cf. Example 4.18) and thus the set
∪G1⊂G0, |G1|<∞Γσ(G1) is in general too large. The following modification avoids
this problem.

Definition 5.1. Let G be a torsion group and let G0 ⊂ G. Let σ be an
ordinal. For g ∈ G0, let nσ,fin

G0
(g) = min{nσ

G1
(g) : g ∈ G1 ⊂ G0, |G1| < ∞},

γσ,fin
G0

(g) = nσ,fin
G0

(g)g, and Γσ,fin(G0) = γσ,fin
G0

(G0).

First, we collect some simple facts about the just introduced notions and
relate them to the notions introduced in the preceding section. Then, we show
that they are indeed meaningful, in the sense that there exists a transfer homo-
morphism from B(G0) to B(Γσ,fin(G0)).

Lemma 5.2. Let G be a torsion group, let G0 ⊂ G, and let g ∈ G0. Let σ be
an ordinal.

1. nσ,fin
G0

(g) = gcd{nσ
G1

(g) : g ∈ G1 ⊂ G0, |G1| < ∞}.

2. nσ
G0

(g) | nσ,fin
G0

(g).

3. nσ,fin
G0

(g) | nσ,fin
G1

(g) for G1 ⊂ G0.

Proof. 1. Let G2, G3 ⊂ G0 be finite sets containing g. By Proposition 4.22,
nσ

G2∪G3
(g) | nσ

Gi
(g) for i ∈ {2, 3}. Thus, the claim follows.

2. Let G2 ⊂ G0 be a finite set containing with g such that nσ
G2

(g) = nσ,fin
G0

(g).
By Proposition 4.22, we know that nσ

G0
(g) | nσ

G2
(g). Thus, the claim follows.

3. We note that nσ,fin
G0

(g) = nσ
G2

(g) and nσ,fin
G1

(g) = nσ
G3

(g) for finite sets G2 ⊂ G0

and G3 ⊂ G1 containing g. Moreover, by Proposition 4.22 and the definition
of nσ,fin

G0
(g), we know that nσ

G2∪G3
(g) = nσ,fin

G0
(g) as well. Again by Proposition

4.22, nσ
G2∪G3

(g) | nσ
G3

(g), implying the claim.

The following proposition shows that, as is to be expected, for finite G0 the
finitary construction coincides with the usual one. Moreover, it shows that the
finitary construction is actually only interesting for the ordinal ω.

Proposition 5.3. Let G be a torsion group, let G0 ⊂ G, and let g ∈ G0. Let σ
be an ordinal.

1. If G0 is finite, then nσ,fin
G0

(g) = nσ
G0

(g).

2. If σ < ω, then nσ,fin
G0

(g) = nσ
G0

(g).
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3. If σ ≥ ω, then nσ,fin
G0

(g) = nω,fin
G0

(g).

Proof. 1. By Proposition 4.22, we have nσ
G0

(g) | nσ
G1

(g) for each G1 ⊂ G0 with
g ∈ G1. By the definition of nσ,fin

G0
(g), the claim follows.

2. We induct on σ. For σ = 0 the claim is trivial.
We consider σ +1. Let g ∈ G0. We know that nΓσG0(γ

σ
G0

(g))γσ
G0

(g) ∈
〈Γσ(G0) \ {γσ

G0
(g)}〉. There exists a finite subset Hσ

0 ⊂ Γσ(G0) \ {γσ
G0

(g)} such
that nΓσ(G0)(γ

σ
G0

(g))γσ
G0

(g) ∈ 〈Hσ
0 〉. For each h ∈ Hσ

0 there exists, by the in-
duction hypothesis, some finite set Gh and some gh ∈ Gh such that γσ

Gh
(gh) =

γσ
G0

(gh) = h. Moreover, there exists some set Gg such that γσ
Gg

(g) = γσ
G0

(g). We
set G1 = Gg ∪

⋃
h∈Hσ

0
Gh and G2 = {g} ∪ {gh : h ∈ Hσ

0 }. Then, by Proposition
4.22, γσ

G1
|G2 = γσ

G0
|G2 . Thus, nΓσ(G1)(γ

σ
G1

(g))γσ
G1

(g) ∈ 〈Γσ(G1) \ {γσ
G1

(g)}〉,
implying that nΓσ(G1)(γ

σ
G1

(g)) | nΓσ(G0)(γ
σ
G0

(g)). In combination with the in-
duction hypothesis and Proposition 4.22, this implies the claim.
3. By Proposition 4.12, we know that for each finite set G1 ⊂ G0 with g ∈ G1,
nσ

G1
(g) = nω

G1
(g). Thus, the claim follows.

Now, we show the existence of a transfer homomorphism.

Theorem 5.4. Let G be a torsion group and let G0 ⊂ G. There exists a
transfer homomorphism βω,fin

G0
: B(G0) → B(Γω,fin(G0)) given by βω,fin

G0
(B) =∏

h∈Γω,fin(G0)
hord(h)k(F ω,fin

h ), where Fω,fin
h =

∏
g∈(γω,fin

G0
)−1(h) gvg(B).

Proof. As in Lemma 4.9, we see that βω,fin
G0

is a surjective homomorphism.
Let B ∈ B(G0). For each g ∈ supp(B), there exists a finite set Gg ⊂ G0

such that nω,fin
G0

(g) = nω
Gg

(g). We set G1 = ∪g∈supp(B)Gg. By Proposition 4.22,
nω

Gg
(g) = nω

G1
(g) for each g ∈ G1. By Proposition 4.12, there exists some ρ < ω

such that nω
G1

(g) = nρ
G1

(g) for each g ∈ supp(B). Thus, βω,fin
G0

(B) = βρ
G1

(B)
for each B and the same is true for each B′ | B. The claim thus follows by
Theorem 4.10.

We give a simple example that shows a strength of the finitary construction
(cf. Example 4.16).

Example 5.5. Let p be a prime. Let G0 = {p−n +Z : n ∈ N0} ⊂ Z(p∞). Then,
Γω,fin(G0) = {0}. To see this, note that, by Example 4.15, Γω(G1) = {0} for
each finite subset G1 ⊂ G0.

In Section 7 we investigate subsets of p-groups with Γω,fin(G0) = {0} in
detail. We point out that the above example shows that an analog of Lemma
4.11 does not hold for the finitary constructions, since Γρ,fin(G0) = G0 for each
ρ < ω and consequently ∩ρ<ω〈Γρ,fin(G0)〉 = Z(p∞) 6= {0} = 〈Γω,fin(G0)〉.

We want to show a result analogous to Proposition 4.12. To this end, we
need the following lemma.

Lemma 5.6. Let G be a torsion group and let G0 ⊂ G. Further, let G1 ⊂ G0

be finite. For each ordinal σ and for each g ∈ G1, we have

nσ
γω,fin

G0
(G1)

(γω,fin
G0

(g))nω,fin
G0

(g) | nω
G1

(g).
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Proof. Let H1 = γω,fin
G0

(G1) and let H2 = Γω(G1). By Lemma 5.2, we know that
nω,fin

G0
(g) | nω

G1
(g). We claim that if g, g′ ∈ G1 and γω,fin

G0
(g) = γω,fin

G0
(g′), then

γω
G1

(g) = γω
G1

(g′). To see this, it suffices to note that if γω,fin
G0

(g) = γω,fin
G0

(g′),
then ng,g′(g) | nω,fin

G0
(g) and ng,g′(g′) | nω,fin

G0
(g′), and thus ng,g′(g) | nω

G1
(g) and

ng,g′(g′) | nω
G1

(g′), implying the claim by Lemma 4.21.
Since nω

G1
(g), nω,fin

G0
(g) and nω

G1
(g′), nω,fin

G0
(g′) divide the order of g and g′, re-

spectively, it follows, by the above claim, that if γω,fin
G0

(g) = γω,fin
G0

(g′), then
nω

G1
(g)/nω,fin

G0
(g) = nω

G1
(g′)/nω,fin

G0
(g′). For h ∈ H1 we thus define d(h) =

nω
G1

(g)/nω,fin
G0

(g) for some g ∈ (γω,fin
G0

)−1(h)∩G1. We have to show that nσ
H1

(h) |
d(h) for each h ∈ H1. We note that H2 = {d(h)h : h ∈ H1} and we recall that,
by Proposition 4.12 and Lemma 4.5, f ∈ 〈H2 \ {f}〉 for each f ∈ H2.

Now, we induct on σ. For σ = 0 we have to show that nω,fin
G0

(g) | nω
G1

(g).
This is stated above.

We consider σ + 1. Let h ∈ H1. We suppose that nσ
H1

(h) | d(h). Thus, we
have

d(h)
nσ

H1
(h)

(nσ
H1

(h)h) ∈ 〈H2 \ {d(h)h}〉.

It thus remains to show that 〈H2 \ {d(h)h}〉 ⊂ 〈Γσ(H1) \ {γσ
H1

(h)}〉. To see
this, it suffices to show that if γσ

H1
(h) = γσ

H1
(h′), then d(h)h = d(h′)h′. Let

h, h′ ∈ H1 such that γσ
H1

(h) = γσ
H1

(h′). By the induction hypothesis, we know
that nσ

H1
(h)nω,fin

G0
(g) | nω

G1
(g) for some g ∈ (γω,fin

G0
)−1(h) ∩ G1 and the analo-

gous statement holds for h′ for some g′ ∈ (γω,fin
G0

)−1(h′) ∩ G1. For these ele-
ments g, g′ we thus have nσ

H1
(h)nω,fin

G0
(g)g = nσ

H1
(h′)nω,fin

G0
(g′)g′. Thus, ng,g′(g)

and ng,g′(g′) divide nσ
H1

(h)nω,fin
G0

(g) and nσ
H1

(h′)nω,fin
G0

(g′), respectively. Thus,
ng,g′(g) | nω

G1
(g) and ng,g′(g′) | nω

G1
(g′). By Lemma 4.21, this implies that

nω
G1

(g)g = nω
G1

(g′)g′, that is d(h)h = d(h′)h′ as claimed.
For σ a limit ordinal the argument is immediate.

Now, the above mentioned result follows easily.

Proposition 5.7. Let G be a torsion group and let G0 ⊂ G. Let σ be an
ordinal.

1. Γω,fin(Γω,fin(G0)) = Γω,fin(G0).

2. Γσ(Γω,fin(G0)) = Γω,fin(G0) for each ordinal σ.

Proof. 1. Let H0 = Γω,fin(G0) and let h ∈ H0. Let g ∈ (γω,fin
G0

)−1(h). There
exists some finite subset G1 ⊂ G0 such that nω

G1
(g) = nω,fin

G0
(g). Let H1 =

γω,fin
G0

(G1). Obviously, H1 is a finite subset of H0. Since nω
G1

(g) = nω,fin
G0

(g), we
get, by Lemma 5.6, nσ

H1
(h) = 1 for each σ. Thus, nσ,fin

H0
(h) = 1, implying the

claim.
2. By Lemma 5.2, nσ

H0
(h) | nσ,fin

H0
(h), implying the claim by 1.

We establish an analog of Lemma 4.23 that we need in the following section.

Lemma 5.8. Let G be a torsion group and let G0 ⊂ G. For each g ∈ G0,
let dg ∈ N with dg | nG0(g), and let H0 = {dgg : g ∈ G0}. Then, γω,fin

G0
(g) =

γω,fin
H0

(dgg).
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Proof. We show that nω,fin
G0

(g) = nω,fin
H0

(dgg)dg.
Let G1 ⊂ G0 finite. We set H1 = {dgg : g ∈ G1}. By Proposition 4.22,

we have dg | nG1(g) for each g ∈ G1. Thus, by Lemma 4.23, we get that
nω

G1
(g) = nω

H1
(dgg)dg. Consequently, nω,fin

G0
(g) ≥ nω,fin

H0
(dgg)dg.

Conversely, let H2 ⊂ H0 finite. Let G2 ⊂ G0 finite such that H2 =
{dgg : g ∈ G2}. Again, we have dg | nG2(g) for each g ∈ G2 and we get
nω

G2
(g) = nω

H2
(dgg)dg, implying that nω,fin

G0
(g) ≤ nω,fin

H0
(dgg)dg.

6 Results for Krull monoids

Having the abstract versions of our constructions at hand, the application to
Krull monoids is fairly straightforward.

6.1 General results

We make the following definitions.

Definition 6.1. Let H be a Krull monoid with torsion class group and let
ϕ : H → F(P ) be a divisor homomorphism such that C(ϕ) is a torsion group.

1. Let σ be an ordinal. Let Cσ(H) = 〈Γσ(D(H))〉 and Cσ(ϕ) = 〈Γσ(D(ϕ))〉.
We call these groups the class group of order σ of H and ϕ, respectively.
Moreover, we call B(Γσ(D(H))) and B(Γσ(D(ϕ))) the block monoid of
order σ associated to H and ϕ, respectively.

2. Let Cω,fin(H) = 〈Γω,fin(D(H))〉 and Cω,fin(ϕ) = 〈Γω,fin(D(ϕ))〉. We call
these groups the finitary higher-order class group of H and ϕ, respectively.
Moreover, we call B(Γω,fin(D(H))) and B(Γω,fin(D(ϕ))) the finitary higher-
order block monoid associated to H and ϕ, respectively.

By the already recalled and established results, it follows quite directly that
the notion of a higher-order block monoid is meaningful, in the sense that there
exists a transfer homomorphism from the original Krull monoid to each of its
higher-order block monoids, and thus much information on the arithmetic of the
original Krull monoid is still encoded in the higher-order block monoids. We
summarize this in the following result.

Theorem 6.2. Let ϕ : H → F(P ) be a divisor homomorphism such that C(ϕ)
is a torsion group. Let σ be an ordinal. There exists a transfer homomorphism

βσ
ϕ : H → B(Γσ(D(ϕ))).

Moreover, there exists a transfer homomorphism

βω,fin
ϕ : H → B(Γω,fin(D(ϕ))).

Proof. As noted in Section 2, there exists a transfer homomorphism βϕ : H →
B(D(ϕ)). By Theorem 4.10, there exists a transfer homomorphism βσ

D(ϕ) :
B(D(ϕ)) → B(Γσ(D(ϕ))), and by Theorem 5.4, there exists a transfer homo-
morphism βω,fin

D(ϕ) : B(D(ϕ)) → B(Γω,fin(D(ϕ))).

Thus, setting βσ
ϕ = βσ

D(ϕ)◦βϕ and βω,fin
ϕ = βω,fin

D(ϕ)◦βϕ, the claim follows, since
the composition of transfer homomorphisms is again a transfer homomorphism.
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We refer to βσ
ϕ as block homomorphism of order σ associated to ϕ, and to

βω,fin
ϕ as finitary higher-order block homomorphism. By the proof of the above

theorem and by Theorem 4.10, for finite σ, βσ
ϕ is just the composition of σ +1

block homomorphisms. In particular, β0
ϕ = βϕ. Moreover, combining the ex-

plicit descriptions for the maps involved in the construction of the higher-order
block homomorphism, an explicit definition of the higher-order block homomor-
phism could be given, yet we refrain from writing it down. Again, we write
βσ

H and βω,fin
H to denote the higher-order block homomorphisms associated to a

divisor theory of H.
By definition, the higher-order class groups and block monoids associated to

a divisor homomorphism from H into a free monoid (with torsion class group)
depend on the divisor homomorphism. However, below we see that this de-
pendence is not too severe. It turns out that the higher-order constructions of
infinite order, as well as the finitary one, are actually independent of the partic-
ular choice of the divisor homomorphism and just depend on the Krull monoid
H.

Theorem 6.3. Let ϕ : H → F(P ) be a divisor homomorphism such that C(ϕ)
is a torsion group. Then, for σ ≥ ω we have Γσ(D(ϕ)) = Γσ(D(H)). Moreover,
Γω,fin(D(ϕ)) = Γω,fin(D(H)).

Proof. Clearly, it suffices to show the claim for σ = ω.
We start by investigating nD(ϕ)(g) for g ∈ D(ϕ). Let dg = mp(ϕ) for some

p with [p]ϕ = g; we note that p is uniquely determined if mp(ϕ) > 1, and thus
mp(ϕ) is independent of the choice of p (see Theorem 3.1).

We know that kg ∈ 〈Γ(ϕ) \ {g}〉 implies that dg | k. Thus, dg | nΓ(ϕ)(g).
We recall that, by Theorem 3.1, D(H) = {dgg : g ∈ D(ϕ)}. Thus, we can apply
Lemma 4.23 to get that Γω(D(ϕ)) = Γω(D(H)).

To get the result for the finitary version, we just apply Lemma 4.23 instead
of Lemma 5.8.

For finite σ, Γσ(D(ϕ)) and Γσ(D(H)) can actually be distinct. For example,
for G0 a subset of a torsion group, Γσ(D(B(G0) ↪→ F(G0))) = Γσ(G0) whereas
Γσ(D(B(G0)) = Γσ(Γ(G0)) = Γσ +1(G0) (cf. Propostion 4.1). The phenomenon
that the relation is just given by a shift of σ, as in this example, is not a general
one. Yet, it is “almost” true (cf. the statement of Lemma 4.23 for finite σ).

6.2 An application

We show an immediate way to apply Theorem 6.2 in Non-Unique Factorization
Theory. A main aim of Non-Unique Factorization Theory is to quantify how
much a certain type of monoid deviates from being factorial. A common way
to do this is to study the system of sets of lengths and quantities derived from
it. Two classical examples are the elasticity and the set of distances (see, e.g.,
[2] and [20]). Let H be an atomic monoid. For a ∈ H \ H×, let ρ(a) =
sup L(a)/ min L(a) and set ρ(a) = 1 for a ∈ H×. And, if L(a) = {`1 < `2 < . . . },
then let ∆(a) = {`2 − `1, `3 − `2, . . . } represent the set of successive distance.
Moreover, let ρ(H) = sup{ρ(a) : a ∈ H \H×} represent the elasticity of H and
∆(H) = ∪a∈H∆(H) the set of distances of H. If H is a Krull monoid, then it
is well-known that L(a) is a finite set, thus ρ(a) and ∆(a) are finite. Yet, ρ(H)
and ∆(H) can be infinite.
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Another common approach, which aims at a more precise understanding of
the system of sets of lengths, is to investigate whether the Structure Theorem for
Sets of Lengths holds. One says that the Structure Theorem for Sets of Lengths
holds if for each a ∈ H the set L(a) is an almost arithmetical multiprogression
and its difference and its initial and end part are bounded by constants just
depending on H (see [20, Chapter 4] for a precise definition). The first result of
this type has been proved by A. Geroldinger [16] for Krull monoids with D(H)
finite. Meanwhile, it is known to hold for various other classes of monoids (see
[20, Section 4.7] for an overview).

Using higher-order block monoids and the well-known technique of “trans-
ferring” problems of the above type, we can easily establish the finiteness of
ρ(H) and ∆(H), and the validity of the Structure Theorem of Sets of Lengths
for a new class of Krull monoids.

Corollary 6.4. Let H be a Krull monoid with torsion class group. If Γσ(D(H))
is finite for some ordinal σ, then ρ(H) < ∞, |∆(H)| < ∞, and the Structure
Theorem for Sets of Lengths holds for H. Moreover, the same holds true if
Γω,fin(D(H)) is finite.

Proof. By Theorem 6.2, we know that there exits a transfer homomorphism
from H to B(Γσ(D(H))). Since a transfer homomorphism preserves sets of
lengths (cf. the Section 2 or [20, Proposition 3.2.3]), and thus all quantities
derived solely from sets of lengths, we have ρ(H) = ρ(B(Γσ(D(H)))), ∆(H) =
∆(B(Γσ(D(H)))), and the Structure Theorem for Sets of Lengths holds for
H if and only if it holds for B(Γσ(D(H))). If Γσ(D(H)) is finite, then for
B(Γσ(D(H))) all three claims are well-known (cf. [20, Theorems 3.4.11 and
4.4.11]). The argument in case Γω,fin(D(H)) is finite is identical.

We remark that examples of Krull monoids fulfilling the above condition, yet
not covered by already known results of this type, actually exist. As recalled
above, the conclusion of our result is well-known under the stronger condition
that D(H) is finite. Moreover, under the weaker condition that only D(D(H)),
the Davenport constant of D(H), is finite (i.e., sup{|A| : A ∈ A(B(D(H)))} <
∞), it is well-known that ρ(H) and ∆(H) are finite (cf. [20, Theorem 3.4.11]).
And, by a very recent result of A. Geroldinger and D. Grynkiewicz [18], it is
also known that the Structure Theorem of Sets of Lengths holds. The condition
D(D(H)) < ∞ neither implies nor is implied by our condition. Opposed to our
result, these results do not require that the class group is a torsion group.

For illustration we write down a simple explicit example.

Example 6.5. Let p be a prime. Let H0 = {p−n +Z : n ∈ N0} ⊂ Z(p∞) and let
H ′

0 ⊂ Z(p∞) finite. We set G0 = H0∪H ′
0. Then, D(B(G0)) = G0 is infinite and

the Davenport constant of G0 is infinite as well. Yet, Γω,fin(G0) is contained in
〈H ′

0〉 (cf. Example 5.5) and thus finite.

Additionally, we remark that the result of [18] can be used to strengthen
Corollary 6.4.

Remark 6.6. Let H be a Krull monoid with C(H) torsion. If D(Γσ(D(H))) <
∞, for some ordinal σ, or D(Γω,fin(D(H))) < ∞, then ρ(H) < ∞, |∆(H)| < ∞
and the Structure Theorem for Sets of Lengths holds.
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7 Pseudo factorial monoids and a characteriza-
tion of simply presented p-groups

As stated in Section 2, it is well-known that a Krull monoid is factorial if and
only if its class group is trivial. Moreover, A. Geroldinger and F. Halter-Koch
[19] investigated under which condition all factorizations of an element of a
Krull monoid are block-equivalent, i.e., the image of the element under the block
homomorphism has a unique factorization. In particular, each element of a Krull
monoid H has this property if and only if B(D(H)) is a factorial monoid. We
refer to such a monoid as block-unique factorization monoid. Using the notion
of a higher-order class group, these considerations can be extended in a natural
way.

Definition 7.1. Let H be a Krull monoid with torsion class group. For σ an
ordinal, we say that H is σ-pseudo factorial if Cσ(H) is trivial. Moreoever, we
say that H is finitary-pseudo factorial if Cω,fin(H) is trivial.

In the following lemma, we collect some first facts about the just defined
properties.

Lemma 7.2. Let H be a Krull monoid with torsion class group.

1. If H is σ-pseudo factorial, then H is τ -pseudo factorial for each τ ≥ σ.

2. If H is σ-pseudo factorial, then H is finitary-pseudo factorial.

3. If H is finitary-pseudo factorial, then H is half-factorial.

4. H is 0-pseudo factorial if and only if H is factorial.

5. H is 1-pseudo factorial if and only if H is a block unique factorization
monoid.

Proof. 1. and 2. are clear by Lemma 4.7 and Lemma 5.2, respectively.
3. Theorem 6.2 yields a transfer homomorphism from H to B(Γω,fin(D(H)). If
H is finitary-pseudo factorial, then Γω,fin(D(H)) ⊂ {0} and the latter monoid
is obviously half-factorial, implying that H is half-factorial.
4. The class group of H is trivial if and only if H is factorial (see Section 2).
Thus, the statement is clear.
5. By definition, H is a block-unique factorization monoid if and only if B(D(H))
is factorial. The claim follows by 4.

The notion of a σ-pseudo factorial and a finitary-pseudo factorial monoid
thus give rise to a hierarchy of half-factorial monoids. By [19, Proposition
3], a Krull monoid with torsion class group is 1-pseudo factorial if and only
if D(H) \ {0} is independent (also cf. Example 4.14). Below, we investigate
C(H) and D(H) for σ-pseudo factorial and finitary-pseudo factorial H under
the condition that C(H) is a p-group. It turns out that in this case the sets
D(H) are closely connected to T -basis of C(H) (cf. below for a definition), and
we can thus characterize the class groups of finitary-pseudo factorial H under the
condition that it is a p-group. As mentioned in Section 1, these investigations
are motivated and guided by [17].
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Building on the results on D(H) for σ-pseudo factorial and finitary-pseudo
factorial Krull monoids, it could be an interesting problem to investigate the
arithmetical consequences of these properties in more detail. For example, one
could study the number of essentially distinct factorizations of elements of σ-
pseudo factorial and finitary-pseudo factorial monoids. Yet, in this paper we do
not undertake such investigations.

We start by stating the above mentioned characterization.

Theorem 7.3. Let G be a p-group. The following statements are equivalent.

• G is simply presented.

• There exists a finitary-pseudo factorial Krull monoid H with C(H) ∼= G.

Remark 7.4. Calling a Dedekind domain finitary-pseudo factorial if its multi-
plicative monoid is finitary-pseudo factorial, the above result holds for ‘Dedekind
domain’ instead of ‘Krull monoid’ as well.

We recall the definition of and some results on a T -basis of a p-group. Our
terminology follows [29].

Let G be a p-group and Y ⊂ G. Then, Y is called a T -basis of G if the
following conditions hold.

1. G = 〈Y 〉.

2. 0 /∈ Y .

3. If y ∈ Y and py 6= 0, then py ∈ Y .

4. For y ∈ Y let Z = {z ∈ Y : pnz 6= y for all n ∈ N0}. Then, y /∈ 〈Z〉.

We recall that if Y is a T -basis, then for each g ∈ G there exist uniquely
determined ay ∈ [0, p − 1] (almost all 0) such that g =

∑
y∈Y ayy. We recall

that if H ⊂ G is a subgroup and Y a T -basis of G, then Y ∩ H is a T -basis
of H. A p-group is simply presented if and only if it has a T -basis (cf. [29,
Lemma 2.1]). The notion of a simply presented p-group, i.e., a group that can
be presented by generators and relations of the form px = y and px = 0 only,
has been introduced by P. Crawley and A.W. Hales [10] and is equivalent to
the notion of a totally projective p-group. We refer to, e.g., [14] for a detailed
account.

Next, we investigate Γσ(G0) for T -basis.

Proposition 7.5. Let G be a simply presented p-group and let G0 ⊂ G such that
0 ∈ G0 and G0\{0} is a T -basis. For each ordinal σ, we have Γσ(G0) = G0∩pσG
and nσ

G0
(g) = 1 for each g ∈ G0 ∩ pσG. In particular, 〈Γσ(G0)〉 = pσG and

Γσ(G0) \ {0} is a T -basis of pσG.

Proof. We point out that the “in particular”-statement follows directly by the
above mentioned property of a T -basis regarding subgroups.

We induct on σ. For σ = 0 the claim is trivial.
We consider σ +1. Let g ∈ Γσ(G0), which equals G0 ∩ pσG by the induction

hypothesis.
First, assume g /∈ pσ +1G. Thus, for each h ∈ Γσ(G0) ⊂ pσG, we have

pnh 6= g for all n ∈ N. Consequently, since by the induction hypothesis, Γσ(G0)
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is a T -basis, g /∈ 〈Γσ(G0)\{g}〉. Yet, pg ∈ 〈Γσ(G0)\{g}〉. Thus, nΓσ(G0)(g) = p
and nΓσ(G0)(g)g ∈ pσ +1G.

Second, assume g ∈ pσ +1G. We may assume g 6= 0. There exists some
h ∈ pσG such that ph = g and since, by the induction hypothesis, Γσ(G0) \ {0}
is a T -basis of pσG, we may assume that h ∈ Γσ(G0). It thus follows that
g ∈ 〈Γσ(G0)\{g}〉. Therefore, nΓσ(G0)(g) = 1. By the induction hypothesis, we
know that nσ

G0
(g) = 1 and consequently nσ +1

G0
(g) = 1.

Now, let σ be a limit ordinal. Let g ∈ G0. By Lemma 4.7, we know that
nρ

G0
(g) | nσ

G0
(g) for each ρ < σ. By the induction hypothesis, we know that

nρ
G0

(g)g ∈ pρG for each ρ < σ. It thus follows that nσ
G0

(g)g ∈ pρG for each
ρ < σ, that is nσ

G0
(g)g ∈ pσG. Since nσ

G0
(g) is a power of p, being a divisor of

ord(g), it follows that nσ
G0

(g)g ∈ G0. Thus, we know Γσ(G0) ⊂ G0 ∩ pσG.
Suppose g ∈ pσG. We have to show that nσ

G0
(g) = 1. Since g ∈ pρG for each

ρ < σ, this follows by the induction hypothesis and the definition of nσ
G0

(g).

This result yields the following corollary, which in particular shows that
it can be useful to consider higher-order class groups beyond the first infinite
ordinal.

Corollary 7.6. Let G be a simply presented p-group and let G0 ⊂ G such that
0 ∈ G0 and G0 \ {0} is a T -basis.

1. If G is reduced and of length σ, then Γσ(G0) = {0}, but yet Γρ(G0) 6= {0}
for each ρ < σ.

2. Γω,fin(G0) = {0}.

Proof. 1. This is clear by Proposition 7.5.
2. Let G1 ⊂ G0 be finite. We set G′

1 = 〈G1〉 ∩G0. Then, G′
1 \ {0} is a T -basis

of 〈G1〉. Since G1 is finite, it is clearly reduced and has finite length. Thus, by
the first statement, Γω(G′

1) = {0}, that is nω
G′

1
(g) = ord(g) for each g ∈ G′

1.
By Proposition 4.22, this implies nω

G1
(g) = ord(g) for each g ∈ G1. Thus,

nω,fin
G0

(g) = ord(g) for each g ∈ G0, implying the claim.

Next, we characterize generating subsets G0 of p-groups with Γω,fin(G0) =
{0}.

Proposition 7.7. Let G be a p-group. Let ∅ 6= G0 ⊂ G be a generating set
and let G0 = {png : g ∈ G0, n ∈ N0}. We have Γω,fin(G0) = {0} if and only if
G0 \ {0} is a T -basis of G.

Proof. If G0 \ {0} is a T -basis of G, then, by Proposition 7.5, Γω,fin(G0) = {0}.
As in Corollary 7.6, it follows that Γω,fin(G0) = {0} as well.

Suppose G0 \ {0} is not a T -basis of G. We have to show that Γω,fin(G0) 6=
{0}. It is clear that G0 \ {0} fulfills the first three conditions in the definition
of a T -basis. Thus, we know that the last one fails. This means that there
exists some h0, h1, . . . , hr ∈ G0 \{0} such that h0 =

∑r
i=1 aihi with ai ∈ Z, and

pnhi 6= h0 for each n ∈ N0 and i ∈ [1, r]. We may assume that pnhi 6= hj for each
n ∈ N0 and distinct i, j ∈ [1, r]. Moreover, we may assume that gcd{ai, p} = 1
for each i ∈ [1, r].

Now, for i ∈ [0, r], let gi ∈ G0 and ni ∈ N0 such that pnigi = hi; by our
assumptions, p`gi 6= pkgj for distinct i, j ∈ [0, r], and ` ∈ [0, ni] and k ∈ [0, nj ].
We set G1 = {g0, g1, . . . , gr}.
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We assert that nω
G1

(gi) | pni for each i ∈ [0, r]. We note that this holds if
and only if nσ

G1
(gi) | pni for each finite σ. We induct on σ. If σ = 0, this is

trivial. We consider σ +1. By the induction hypothesis and our assumption,
γσ

G1
(gi) = nσ

G1
(gi)gi 6= nσ

G1
(gj)gj = γσ

G1
(gj) for distinct i, j ∈ [0, r]. We note

that
pn0

nσ
G1

(g0)
γσ

G1
(g0) =

r∑
i=1

ai
pni

nσ
G1

(gi)
γσ

G1
(gi)

and

pnj

nσ
G1

(gj)
γσ

G1
(gj) = bj

( pn0

nσ
G1

(g0)
γσ

G1
(g0)−

r∑
i=1,i 6=j

ai
pni

nσ
G1

(gi)
γσ

G1
(gi)

)
,

where bj ∈ Z is an inverse of aj modulo ord(pnj gj). This implies nΓσ(G1)(gi) |
pni

nσ
G1

(gi)
for each i ∈ [0, r] and the assertion follows.

Since nω,fin
G0

(g0) | nω
G1

(g0), we have nω,fin
G0

(g0)g0 6= 0 and Γω,fin(G0) 6= {0}.

Proof of Theorem 7.3. It is well-known (cf. [20, Theorem 3.7.8]) that for each
group G and each subset G0 ⊂ G that generates G as a monoid, thus for each
torsion group and each generating subset, there exists a Krull monoid H with
C(H) ∼= G and D(H) ⊂ C(H) corresponding to G0. Thus, in particular if
G is a simply presented p-group and G0 ⊂ G a T -basis, then there exists a
Krull monoid H such that C(H) ∼= G and D(H) ⊂ C(H) corresponds to G0. By
Proposition 7.5, and noting that Γω,fin(G0) ⊂ {0} if and only if Γω,fin(G0∪{0}) =
{0}, we get that Γω,fin(D(H)) ⊂ {0}, i.e., H is finitary-pseudo factorial.

Conversely, for each Krull monoid H we know that D(H) generates C(H).
Thus, if H is finitary-pseudo factorial, then, by Proposition 7.7, D(H) \ {0} is
T -basis of C(H). Thus, C(H) is simply presented.

Using a classical result of L. Claborn (cf. [20, Theorem 3.7.8] or [13, Theorem
15.18]) on the existence of Dedekind domains with class groups containing par-
ticular distributions of prime ideals, one can restate Remark 7.4 in the obvious
manner.

We point out that these results, specifically Theorem 7.3, do not yield any
direct new insight into the problem whether each group is isomorphic to the
class group of a half-factorial Krull monoid. For simply presented p-groups it is
already known that they are isomorphic to the class group of some half-factorial
Krull monoid (see [17]), and for most groups not each half-factorial subset G0,
i.e., a set G0 such that B(G0) is half-factorial, fulfills Γω,fin(G0) ⊂ {0}. Indeed,
those few types of groups for which this is true can be characterized fairly easily,
and all these groups are simply presented.

Lemma 7.8. Let G be a torsion group. The following statements are equivalent.

• For each half-factorial subset G0 of G, Γω,fin(G0) ⊂ {0}.

• G is an elementary 2-group or a p-group of rank one.

Proof. Assume G is neither an elementary 2-group nor a p-group of rank one.
Then, at least one of the following three statements is true:

• There exists some e ∈ G with ord(e) = pq for distinct primes p and q. We
set G1 = {e, pe, qe}.
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• There exist independent elements e1, e2 ∈ G with ord(ei) = p and p an
odd prime. We set G2 = {e1 + je2 : j ∈ [0, p− 1]}.

• There exist independent elements f1, f2 ∈ G with ord(f1) = 2, ord(f2) =
4. We set G3 = {f2, f1 + f2, f1 + 2f2}.

Each of the sets G1, G2, and G3 is half-factorial (cf. [20, Corollaries 6.7.7 and
6.7.9]). Yet, Example 4.19 or an easy argument shows that none of them fulfills
Γω,fin(Gi) = {0}.

We show the converse direction. If G is an elementary 2-group, then G0 ⊂ G
is half-factorial if and only if G0\{0} is independent (cf. [26, Problem II]). Thus,
indeed Γ1(G0) = {0} (see Example 4.14). If G is a p-group of rank one and
G0 ⊂ G a half-factorial set, then, by [15, Corollary 5.4], each finite subset
G1 ⊂ G0 is contained in a set H0 = {pne : n ∈ [0, ord(e)]} for some e ∈ G.
Thus, Γω(H0) ⊂ {0} (cf. Example 4.15) and the claim follows.
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