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Abstract

The inverse problem associated to the Davenport constant for some finite abelian group is the
problem of determining the structure of all minimal zero-sum sequences of maximal length over this
group, and more generally of long minimal zero-sum sequences. Results on the maximal multiplicity
of an element in a long minimal zero-sum sequence for groups with large exponent are obtained. For
groups of the form Cr−1

2 ⊕ C2n the results are optimal up to an absolute constant. And, the inverse
problem, for sequences of maximal length, is solved completely for groups of the form C2

2 ⊕ C2n.
Some applications of this latter result are presented. In particular, a characterization, via the

system of sets of lengths, of the class group of rings of algebraic integers is obtained for certain types
of groups, including C2

2 ⊕ C2n and C3 ⊕ C3n; and the Davenport constants of groups of the form
C2

4 ⊕ C4n and C2
6 ⊕ C6n are determined.
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1 Introduction

Let G be an additive finite abelian group. The Davenport constant of G, denoted D(G), can be defined
as the maximal length of a minimal zero-sum sequence over G, that is the largest ` such that there exists
a sequence g1 . . . g` with gi ∈ G such that

∑`
i=1 gi = 0 and

∑
i∈I gi 6= 0 for each ∅ 6= I ( {1, . . . , `}.

Another common way to define this constant is via zero-sum free sequences, i.e., one defines d(G) as the
maximal length of a zero-sum free sequence; clearly D(G) = d(G) + 1.

The problem of determining this constant was popularized by P. C. Baayen, H. Davenport, and
P. Erdős in the 1960s. Still its actual value is only known for a few types of groups. If G ∼= ⊕r

i=1Cni
with

cyclic group Cni
of order ni and ni | ni+1, then let D∗(G) = 1 +

∑r
i=1(ni − 1). It is well-known and not

hard to see that D(G) ≥ D∗(G). Since the end of the 1960s it is known that in fact D(G) = D∗(G) in
case G is a p-group or G has rank at most two (see [44, 45, 53]). Yet, already at that time it was noticed
that D(G) = D∗(G) does not hold for all finite abelian groups. The first example asserting inequality is
due to P.C. Baayen (cf. [53]) and, now, it is known that for each r ≥ 4 infinitely many groups with rank
r exist such that this equality does not hold (see [34], and also see [19] for further examples).

There are presently two main additional classes of groups for which the equality D(G) = D∗(G) is
conjectured to be true, namely groups of rank three and groups of the form Cr

n (see, e.g., [23, Conjecture
3.5] and [1]; the problems are also mentioned in [41, 4]). Both conjectures are only confirmed in special
cases. The latter conjecture is confirmed only if r = 3 and n = 2pk for prime p, if r = 3 and n = 32k

(see [53, 54] as a special case of results for groups of rank three), and if n is a prime power or r ≤ 2 by the
above mentioned results. Since to summarize all results asserting equality for groups of rank three in a
brief and concise way seems impossible, we now only mention—additional information on results towards
this conjecture is recalled in Section 4 and see [53, 54, 18, 11, 7, 6]—that it is well-known to hold true for
groups of the form C2

2 ⊕C2n (see [53]), was only recently determined for groups of the form C2
3 ⊕C3n (see

[7]), and is established in the present paper for C2
4 ⊕ C4n and C2

6 ⊕ C6n as an application of our inverse
result for C2

2 ⊕ C2n (cf. below).
For groups of rank greater than three there is not even a conjecture regarding the precise value of

D(G). The equality D(G) = D∗(G) is known to hold for p-groups (as mentioned above), for groups of the
form C3

2 ⊕ C2n (see [3]), and groups that are in a certain sense similar to groups of rank two, cf. (3.2).
However, for G = Cr−1

2 ⊕C2n with r ≥ 5 and n odd it is known that D(G) > D∗(G); we refer to [42] for
lower bounds for the gap between these two constants. And, we mention that, via a computer-aided yet
not purely computational argument (see [46]), it is known that D(G) = D∗(G) + 1 for Cr−1

2 ⊕ C6 where
r ∈ {5, 6, 7}, for C4

2 ⊕ C10, and for C3
3 ⊕ C6; and D(G) = D∗(G) + 2 for C7

2 ⊕ C6.
In addition to the direct problem of determining the Davenport constant the associated inverse prob-

lem, i.e., the problem of determining the structure of minimal zero-sum sequences over G of length
D(G) (and more generally long minimal zero-sum sequences)—essentially equivalently, the problem of
determining the structure of maximal length (and long) zero-sum free sequences—received considerable
attention as well (see, e.g., [23] for an overview). On the one hand, it is traditional to study inverse
problem associated to the various direct problems of Combinatorial Number Theory. On the other hand,
in certain applications knowledge on the inverse problem is crucial (cf. below).

An answer to this inverse problem is well-known, and not hard to obtain, in case G is cyclic; yet,
the refined problem of determining the structure of minimal zero-sum sequences over cyclic groups that
are long, yet do not have maximal length, recently received considerable attention see [48, 55, 43, 28].
Moreover, the structure of minimal zero-sum sequence over elementary 2-groups (of arbitrary length) is
well-known and easy to establish.

Yet, already for elementary p-groups of rank two the inverse problem is not yet solved, tough there is
at least a well-supported conjecture and various partial results towards this conjecture. And, assuming
this conjecture holds true the inverse problem is solved for all groups of rank two (see Section 3.2 for
details, and [21] and [13] for earlier unconditional results for C2 ⊕ C2n and C3 ⊕ C3n, respectively).

For groups of rank three or greater, except of course elementary 2-groups, so far no results and not
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even conjectures are known. In this paper we solve this inverse problem for groups of the form C2
2 ⊕C2n,

the first class of groups of rank three. Our actual result is quite lengthy, thus we defer the precise
statement to Section 3.5. Moreover, our investigations of this problem are imbedded in more general
investigations on the maximal multiplicity of an element in long minimal zero-sum sequences, i.e., the
height of the sequence, over certain types of groups, expanding on investigations of this type carried out
in [19] and [6] (for details see the Section 3).

The investigations on this and other inverse zero-sum problems are in part motivated by applications
to Non-Unique Factorization Theory, which among others is concerned with the various phenomena of
non-uniqueness arising when considering factorizations of algebraic integers, or more generally elements of
Krull monoids, into irreducibles (see, e.g., the monograph [32], the lecture notes [31], and the proceedings
[10], for detailed information on this subject; and see [25] for a recent application of the above mentioned
results on cyclic groups to Non-Unique-Factorization Theory). For an overview of other applications of the
Davenport constant and related problems see, e.g., [23, Section 1]. In Section 5 we present an application
of the above mentioned result to a central problem in Non-Unique Factorization Theory, namely to the
problem of characterizing the ideal class group of the ring of integers of an algebraic number field by
its system of sets of lengths (see [32, Chapter 7]). We refer to Sections 2 and 5 for terminology and a
more detailed discussion of this problem. For the moment, we only point out why the inverse problem
associated to C2

2 ⊕ C2n is relevant to that problem. We need the solution of this inverse problem to
distinguish the system of sets of lengths of the ring of integers of an algebraic number field with class
group of the form C2

2 ⊕ C6n from that of one with class group of the form C3 ⊕ C6n. The relevance of
distinguishing precisely these two types of groups is due to the fact that a priori the likelihood that the
system of sets of lengths in this case are not distinct was exceptionally high; a detailed justification for
this assertion is given in Section 5.

In addition, in Section 4, we discuss some other applications of our inverse result, in particular (as
already mentioned) we use it to determine the value of the Davenport constant for two new types of
groups (of rank three), and discuss our results in the context of the problem of determining the order
of elements in long minimal zero-sum sequences and the cross number, i.e., a weighted length, of these
sequences (see [19, 21, 36, 37] for results on this problem).

2 Preliminaries

We recall some terminology and basic facts. We follow [32, 23, 31] to which we refer for further details.
We denote the non-negative and positive integers by N0 and N, respectively. By [a, b] we always mean

the interval of integers, that is the set {z ∈ Z : a ≤ z ≤ b}. We set max ∅ = 0.
By Cn we denote a cyclic group of order n; by Cr

n we denote the direct sum of r groups Cn. Let G
be a finite abelian group; throughout we use additive notation for finite abelian groups. For g ∈ G, the
order of g is denoted by ord(g). For a subset G0 ⊂ G, the subgroup generated by G0 is denote by 〈G0〉.
A subset E ⊂ G \ {0} is called independent if

∑
e∈E aee = 0, with ae ∈ Z, implies that aee = 0 for each

e ∈ E. An independent generating subset of G is called a basis of G. We point out that if G0 ⊂ G \ {0}
and

∏
g∈G0

ord(g) = |〈G0〉|, then G0 is independent. There exist uniquely determined 1 < n1 | · · · | nr

and prime powers qi 6= 1 such that G ∼= Cn1 ⊕· · ·⊕Cnr
∼= Cq1 ⊕· · ·⊕Cqr∗ . Then exp(G) = nr, r(G) = r,

and r∗(G) = r∗ is called the exponent, rank, and total rank of G, respectively; moreover, for a prime p
the number of qis that are powers of this p is called the p-rank of G, denoted rp(G). The group G is
called a p-group if its exponent is a prime power, and it is called an elementary group if its exponent
is squarefree. For subset A,B ⊂ G, we denote by A ± B = {a ± b : a ∈ A, b ∈ B} the sum-set and the
difference-set of A and B, respectively.

A sequence S over G is an element of the multiplicatively written free abelian monoid over G, which
is denoted by F(G), that is S =

∏
g∈G gvg with vg ∈ N0. Moreover, for each sequence S there exist up

to ordering uniquely determined g1, . . . , g` ∈ G such that S =
∏`

i=1 gi. The neutral element of F(G) is
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called the empty sequences, and denoted by 1. Let S =
∏

g∈G gvg ∈ F(G). A divisor T | S is called a
subsequence of S; the subsequence T is called proper if T 6= S. If T | S, then T−1S denotes the co-divisor
of T in S, i.e., the unique sequence fulfilling T (T−1S) = S. Moreover, for sequences S1, S2 ∈ F(G), the
notation gcd(S1, S2) is used to denote the greatest common divisor of S1 and S2 in F(G), which is well-
defined, since F(G) is a free monoid. One calls vg(S) = vg the multiplicity of g in S, |S| =

∑
g∈G vg(S) the

length of S, k(S) =
∑

g∈G vg(S)/ ord(g) the cross number of S, h(S) = max{vg(S) : g ∈ G} the height of
S, and σ(S) =

∑
g∈G vg(S)g the sum of S. The sequence S ∈ F(G) is called short if 1 ≤ |S| ≤ exp(G) and

it is called squarefree if vg(S) ≤ 1 for each g ∈ G. The set of subsums of S is Σ(S) = {σ(T ) : 1 6= T | S},
and the support of S is supp(S) = {g ∈ G : vg(S) ≥ 1}. The sequence S is called zero-sumfree if 0 /∈ Σ(S).
For S =

∏`
i=1 gi, the notation −S is used to denote the sequence

∏`
i=1(−gi), and for f ∈ G, f +S denotes

the sequence
∏`

i=1(f + gi). One says that S is a zero-sum sequence if σ(S) = 0, and one denotes the
set of all zero-sum sequences over G by B(G); the set B(G) is a submonoid of F(G). A non-empty
zero-sum sequences S is called a minimal zero-sum sequence if σ(T ) 6= 0 for each non-empty and proper
subsequence of S, and the set of all minimal zero-sum sequences is denoted by A(G). Clearly, each map
f : G → G′ between abelian groups G and G′ can be extended in a unique way to a monoid homorphism
of F(G) → F(G′), which we also denote by f ; if f is a group homomorphism, then f(B(G)) ⊂ B(G′).

We recall some definitions on factorizations over monoids. Let M be an atomic monoid, i.e., M is a
commutative cancelative semigroup with neutral element (i.e., an abelian monoid) such that each non-
invertible element a ∈ M is the product of finitely many irreducible elements (atoms). If a = u1 . . . un

with ui ∈ M irreducible, then n is called the length of this factorization of a. Moreover, the set of lengths
of a, denoted L(a), is the set of all n such that a has a factorization into irreducibles of length n. For
e ∈ M an invertible element, one defines L(e) = {0}. The set L(M) = {L(a) : a ∈ M} is called the system
of sets of lengths of M . Note that B(G) is an atomic monoid and its irreducible elements are the minimal
zero-sum sequences, i.e., the elements of A(G). For convenience of notation, we write L(G) instead of
L(B(G)) and refer to it as the system of sets of lengths of G. We exclusively use the term factorization
to refer to a factorization into irreducible elements (of some atomic monoid that is mentioned explicitly
or clear from context). In particular, if we say that for a zero-sum sequence B ∈ B(G) we consider a
factorization B =

∏`
i=1 Ai we always mean a factorization into irreducible elements in the monoid B(G),

i.e., Ai ∈ A(G) for each i. Yet, if we consider, for some S ∈ F(G), a product decomposition S =
∏`

i=1 Si

with sequences Si ∈ F(G) this is not a factorization (except if |Si| = 1 for each i) and we thus refer to it
as a decomposition.

Next, we recall some definitions and results on the Davenport constant and related notions.
Let G be a finite abelian group. Let D(G) = max{|A| : A ∈ A(G)} denote the Davenport constant

and let K(G) = max{k(A) : A ∈ A(G)} denote the cross number of G. Moreover, for k ∈ N, let Dk(G) =
max{|B| : B ∈ B(G), max L(B) ≤ k} denote the generalized Davenport constants introduced in [39] in the
context of Analytic Non-Unique Factorization Theory; for the relevance in the present context, originally
noticed in [14], see (3.1). For an overview on results on this constant see [32] and for recent results [7]
and [17]. Observe that D1(G) = D(G). Additionally, let η(G) denote the smallest ` ∈ N such that each
S ∈ F(G) with |S| ≥ ` has a short zero-sum subsequence. Essentially by definition, we have D(G) ≤ η(G).
We recall that η(G) ≤ |G|, which is sharp for cyclic groups and elementary 2-groups; see [29] for this
bound, also see [31, 32] for proofs of this and other results on η(G); and, e.g., [16, 15] for lower bounds.

It is well known that, with ni and qi as above,

D(G) ≥ D∗(G) = 1 +
r∑

i=1

(ni − 1) and K(G) ≥ 1
exp(G)

+
r∗∑

i=1

qi − 1
qi

. (2.1)

For G a p-group equality holds in both inequalities, and for r(G) ≤ 2 equality holds for the Davenport
constant. And, we recall the well-known upper bound K(G) ≤ 1/2 + log |G| (see [35]).

Moreover, we recall that for finite abelian groups G1 and G2, we have D(G1⊕G2) ≥ D(G1)+D(G2)−1,
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and if G1 ( G2 then D(G1) < D(G2). In particular, the support of a minimal zero-sum sequence of lengths
D(G) is a generating set of G. Additionally, we recall the lower bound D(G) ≥ 4 r∗(G)−3 r(G)+1, which
is relevant in Section 5 (see [17]).

We recall some results on Dk(G). Setting

D′
0(G) = max{D(G)− exp(G), η(G)− 2 exp(G)}

and letting G1 denote a group such that G ∼= G1 ⊕ Cexp(G), we have

k exp(G) + (D(G1)− 1) ≤ Dk(G) ≤ k exp(G) + D′
0(G) (2.2)

for each k ∈ N. Moreover, there exists some D0(G) such that for all sufficiently large k, depending on
G, Dk(G) = k exp(G) + D0(G). Clearly, we have D0(G) ≤ D′

0(G). Also, note that by the bounds recalled
above D′

0(G) ≤ |G| − exp(G). For groups of rank at most two and in closely related situations both
inequalities in (2.2) are in fact equalities (see [39, 32]), yet in general neither one is an equality (see, e.g.,
[17] and cf. below). In particular, in general the precise value of Dk(G) and D0(G) are not known, not
even for p-groups; see [7] for recent precise results for C3

3 .
In case G is an elementary 2-group it is known for all k that Dk(G) ≤ k exp(G) + D0(G). Moreover,

it is known that D0(Cr
2) = 2r/3 + O(2r/2), where explicit bounds for the implied constant are known

and one thus can infer that D0(Cr
2) < 2r−1 for each r ∈ N, which is more convenient though less precise

for our applications. Additionally, we recall that Dk(C3
2 ) = 2k + 3 for each k ≥ 2 (see [14]); for similar

results for r ∈ {4, 5} and the upper bound see [17].
Finally, we point out that by the definition of Dk(G), we know, for each k ∈ N, that if |A| > Dk(G),

then max L(A) > k. In particular, we get that

if
|A| − D′

0(G)
exp(G)

> k , then max L(A) > k . (2.3)

In case we know that Dk(G) ≤ k exp(G) + D0(G), in particular for elementary 2-groups, we can replace
D′

0(G) by D0(G) in this inequality.

3 On the structure of long minimal zero-sum sequences

We start by giving an overview of the results to be established in this section. To put them into context
and since it is relevant for the subsequent discussion, we recall some known results; including a brief, and
thus rather ahistorical, discussion of the direct problem.

As mentioned in Section 1, the problem of determining the Davenport constant for p-groups was
solved at the end of the 1960s. Yet, since that time the method used to prove this result was neither
generalized to more general types of groups nor modified to yield an answer to the inverse problem. In
fact, now for p-groups other proofs and refinements of that proof are known (see, e.g., [1, 32, 24]), but
the same limitations seem to apply.

Thus, to obtain information on the Davenport constant for other types of groups one tries to leverage
the information available for p-groups (and cyclic groups), via an ‘inductive’ argument, reducing the
problem of determining D(G), or the associated inverse problem, to a problem over a subgroup H of G,
a problem over the factor group G/H, and the problem of recombining the information, i.e., on tries
to combine knowledge on groups G1 and G2 to gain information on a group G that is an extension of
G1 and G2. This is one of the most frequently applied and classical techniques in the investigation of
the Davenport constant and the associated inverse problems (see [47, 45, 53] for classical contributions,
in particular, for groups of rank two, and [32] for an overview). In fact, essentially all results on the
exact value of the Davenport constant for non-p-groups—cyclic groups and isolated examples obtained
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by purely computational means seem to be the only exceptions—and various bounds were obtained via
some form of this method (see [23] and [32] for an overview).

To discuss the inductive method in more detail, we fix some notation. Let G be a finite abelian group,
let H ⊂ G be a subgroup, and let ϕ : G → G/H denote the canonical map. In applications frequently the
factor group G/H is ‘fixed’ and only H ‘varies.’ Say, for some group K investigations are carried out for
all the groups Gn that are extensions—to be precise, typically only extensions fulfilling some additional
condition are considered, see the discussion below—of K by groups of the same type but with a varying
parameter n, e.g., cyclic groups of order n or groups of the form C2

n (cf. the types of groups mentioned in
in Sections 1, 3.4, and 4). In view of this, the present setup, which makes the ‘fixed’ group G/H depend
on the two ‘varying’ groups G and H, is somewhat counter-intuitive. Yet, to use this setup, rather than
the dual one, has several technical advantages that (it is hoped) outweigh this. Thus, we are mainly
interested in the situation that |H| is large relative to |G/H|; in fact, as detailed below, we are mainly
concerned with the situation that even the exponent of H is large relative to |G/H|.

We recall the following key-formula (see [14]), which encodes several classical applications of inductive
arguments (cf. below and see Step 1 of the Proof of Theorem 3.1 for a related reasoning),

D(G) ≤ DD(H)(G/H). (3.1)

The relevance of this formula is at least twofold. On the one hand, for certain types of groups G and
a suitably chosen proper subgroup H the inequality in (3.1) is in fact an equality. And, the subproblems
of determining the Davenport constant of H and the generalized Davenport constants of G/H can be
solved; e.g., by iteratively applying this formula to eventually attain a situation where all groups are
p-groups or cyclic. To assert this equality, one combines the formula with the well-known lower bound
for D(G) to obtain the chain of inequalities D∗(G) ≤ D(G) ≤ DD(H)(G/H). In this way, the problem
of determining the Davenport constant of groups of rank at most two, can be reduced to a problem on
elementary p-groups of rank at most three; groups of rank three are used, to determine the generalized
Davenport constants via an imbedding argument. Indeed, this is the original—and still the only known—
argument, slightly rephrased, to determine the Davenport constant for groups of rank two. A similar
approach still works in related situations. In particular, it can be used to show that

D(G′ ⊕ Cn) = D∗(G′ ⊕ Cn) (3.2)

where G′ is a p-group with D(G′) ≤ 2 exp(G′) − 1 and n is co-prime to exp(G′) (see [53], and [11] for a
generalization).

On the other hand, this formula is useful to decide which choice for the subgroup H is ‘suitable’ and
to highlight limitations of this form—strictly limiting to the consideration of direct problems—of the
inductive approach. We recall, cf. (2.2), that DD(H)(G/H) ≥ exp(G/H)(D(H) − 1) + D∗(G/H). So, at
least exp(G/H)(D∗(H) − 1) + D∗(G/H) ≤ D∗(G) should hold. Recalling that we are mainly interested
in the case that (the exponent of) H is large relative to G/H, we see that in our context we effectively
have to restrict to considering subgroups H such that exp(G) = exp(H) exp(G/H), since otherwise the
upper bound in (3.1) can be much too large. Conversely, if exp(G) = exp(H) exp(G/H) and H is cyclic,
then we see that exp(G/H)(D∗(H)− 1) + D∗(G/H) = D∗(G) and thus any error in the estimate (3.1) is
only due to the inaccuracy of the lower bound (2.2) and thus can be bounded in terms of G/H only, i.e.,
in our context is relatively small. However, as discussed, for groups of rank greater than two the lower
bound in (2.2) is often not accurate. For example, for the group G = C2

2 ⊕ C2p for some odd prime p,
we get by the result on Dk(C3

2 ) recalled in Section 2 (also, note that all other choices of subgroups will
result in much worse estimates)

2p + 2 = D∗(G) ≤ D(G) ≤ DD(Cp)(C3
2 ) = 2p + 3.

Thus, D(C2
2 ⊕ C2p) cannot be determined by (3.1) alone.
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However, it is known that a refined inductive argument allows to prove that D(C2
2 ⊕C2n) = 2n+2 for

each n ∈ N (cf. Section 1). Yet, some information on the inverse problems associated to the subproblems
in C3

2 and Cn is required; for example, knowing ν(Cn) (so that Proposition 4.2, a result given in [53, 54], is
applicable) and having some information on the inverse problem associated to the generalized Davenport
constant for C3

2 (to prove this proposition) allows to prove this.
More recently, results were obtained that solve the inverse problem associated to the Davenport

constant via inductive arguments, or at least give conditional or partial answers to this problem. The
first results of this form are due to W.D. Gao and A. Geroldinger (see [21, 22]), where this problem
is solved for C2 ⊕ C2n and C2

2n, in the latter case assuming n has Property B, i.e., a solution to the
inverse problem for C2

n (see Section 3.2 for the definition). In Section 3.2 we recall very recent results
obtained via the inductive method, fully reducing the inverse problem for groups of rank two to the case
of elementary p-groups of rank two; for recent progress on this remaining problem see, e.g., [40, 27, 5].

The purpose of our investigations on the inverse problem is twofold. On the one hand, we obtain a
full solution to the inverse problem for groups of the form C2

2 ⊕ C2n for each n ∈ N. The motivation
for and relevance of these investigations already has been discussed in Section 1; additionally we recall
that, for this class of groups, in contrast to groups of rank at most two, it is necessary to operate below
the upper bound that can be inferred from (3.1). On the other hand, we imbed these investigations into
a more general investigation of one main aspect of the structure of long minimal zero-sum sequences,
namely their height, over certain types of groups. In Section 4 we briefly discuss implications of our
results for the two other main aspects, namely the cardinality of the support and the order of elements
in the sequence (see [23]). We recall that to impose some condition on the relative size of the exponent
is essentially inevitable when considering this question; for example, for G an elementary p-groups it is
known that if the rank is large relative to the exponent (yet, not imposing any absolute upper bound on
the exponent), then there exist minimal zero-sum sequence of maximal length that are squarefree, i.e.,
have height 1 (see [19] for this and more general results of this type).

Investigations of this type were started in [19]. And, in the recent decidability result for the Davenport
constant of groups of the form Cr−1

m ⊕Cmn with gcd(m,n) = 1 (see [6]) this question was investigated as
well, since it was relevant for that argument. First, we consider this problem in a very general setting,
expanding on known results of this form. We highlight which parameters are relevant and discuss in
which ways this result can be improved in specific situations. Second, we restrict to the case that G has
a large exponent (in a relative sense), mainly focusing on the case that G has a cyclic subgroup H such
that |H| is large relative to |G/H|, implementing some of the improvements only sketched for the general
case. Third, we turn to a more restricted class of groups, namely groups of the form Cr−1

2 ⊕C2n. In this
case, we establish bounds for the height of long minimal zero-sum sequences that are optimal up to an
absolute constant; inspecting our proof, yields 7 as the value for this constant (and this could be slightly
improved). One reason for focusing on this particular class of groups is the fact that, for reasons explained
above, we want a precise understanding of the inverse problem associated to C2

2 ⊕ C2n. However, this is
not the only reason. This type of groups is an interesting extremal case. We apply the inductive method
with H cyclic and G/H an elementary 2-group. On the one hand, this combines, when considering the
relative size of exponent versus rank, the two most extreme cases; and, from a theoretical point of view,
the case that G/H is an elementary 2-group can thus be considered as a worst-case scenario. On the
other hand, from a practical point of view, certain of the arising subproblems are easier to address or
better understood for elementary 2-groups than, say, for arbitrary elementary p-groups. Finally, we apply
the thus gained insight with some ad hoc arguments to obtain a complete solution of the inverse problem
for C2

2 ⊕ C2n (for sequences of maximal length).

3.1 General groups

We start the investigations by considering the problem of establishing lower bounds for the height in
the general situation. Our result, Theorem 3.1—to be precise, refinements of it—turns out to be fairly
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accurate in certain cases. Yet, as discussed above, due to the nature of the problem, the result has
to be essentially empty if we do not impose restrictions on the group G, the subgroup H, and the
length of the sequence A; the result depends on the length of A via the size of the elements of L(ϕ(A)),
cf. (2.3). Additionally, our arguments in the general case are not optimized (see below for a discussion of
refinements).

To formulate our results we introduce some notions. Let G be a finite abelian group. For ` ∈ [1,D(G)],
let h(G, `) = min{h(A) : A ∈ A(G), |A| ≥ `} denote the minimal height of a minimal zero-sum sequences
of lengths at least ` over G; though not explicitly named, this quantity has been investigated frequently
(see below). For k ∈ Z, let suppk(S) = {g ∈ G : vg(S) ≥ k} denote the support of level k; for k = 1,
this yields the usual definition of the support of a sequence, and for k ≤ 0 we have suppk(S) = G. For
` ∈ [1,D(G)] and δ ∈ N0, let ci(G, `, δ) = max{| supph(A)−δ(A)| : A ∈ A(G), |A| ≥ `} denote the maximal
cardinality of the set of −δ-important elements for minimal zero-sum sequences of length at least `; this
terminology is inspired by [6] where elements occurring with high multiplicity are called important, also
cf. [26, Section 3] for the relevance of elements appearing with high multiplicity in this context. In Section
3.2, we point out information that is available on these quantities via known results, illustrating that this
result is actually applicable (in suitable situations).

Theorem 3.1. Let G be a finite abelian group and let {0} 6= H ( G be a subgroup, and ϕ : G → G/H
the canonical map. Let A ∈ A(G) and k ∈ L(ϕ(A)). With δ0 = 1 if 2 - |H| and δ0 = 2 if 2 | |H|, we have

h(A) ≥ h(H, k)− D(G/H)|G/H|
(2 ci(H, k, δ0)− 1)|G/H|

.

Since similar general results are already known (see [19, 6]), we point out the main novelty of our
result. We take the situation that there can be more than one important element in long minimal zero-
sum sequences over H into account, via the parameter ci(H, k, δ0). This additional generality is useful,
since it allows to apply the result for non-cyclic H and additionally makes it applicable in the situation
that the subgroup H is cyclic yet the sequence A is not long enough to guarantee the existence of some
k ∈ L(ϕ(A)) for which ci(H, k, δ0) = 1 (see Section 3.2 for details). In other aspects our result, as
formulated, is weaker than the other general results, yet after its proof we discuss that these weaknesses
can be overcome with some modifications (yet, of course, not achieving the precision of certain non-general
results, such as [26, 49], where various facts specific to the situation at hand are taken into account); we
do not take these modifications into account in the result, since we believe that to introduce even more
parameters is not desirable. Yet, we take them into account in our more specialized investigations in the
subsequent sections.

We write the proof of Theorem 3.1 in a structured way, since we frequently refer to this proof in the
proofs of more specific result, to avoid redoing identical arguments.

Proof of Theorem 3.1.
Step 1, Generating minimal zero-sum sequences over H:
Since k ∈ L(ϕ(A)), there exist F1, . . . , Fk ∈ F(G) such that A = F1 . . . Fk and ϕ(F1) . . . ϕ(Fk) is a
factorization of ϕ(A); in particular, we have σ(Fi) ∈ H for each i ∈ [1, k]. We note that C =

∏k
i=1 σ(Fi) ∈

A(H), since
∑

i∈J σ(Fi) = 0 for some J ⊂ [1, k] is equivalent to σ(
∏

i∈J Fi) = 0.
Step 2, Choosing a minimal zero-sum sequence over H:
Let

∏k
i=1 σ(Fi) =

∏s
i=1 hvi

i with pairwise distinct elements hi such that v1 ≥ · · · ≥ vs > 0, and let
t ∈ [1, s] be maximal such that vi = v1 for each i ∈ [1, t]. We assume that the Fi are chosen in such
a way that the sequence, in the traditional sense, (v1, . . . , vs, 0, . . . ) is minimal, in the lexicographic
order, among all these sequences defined via decompositions A = F ′

1 . . . F ′
k such that ϕ(F ′

1) . . . ϕ(F ′
k) is a

factorization of ϕ(A); in particular, v1 = h(
∏k

i=1 σ(Fi)) is minimal and moreover t is minimal among all
sequences that yield this minimal v1.
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Step 3, Identifying a ‘large fibre’:
Since C ∈ A(H) and since v1 = h(C), we have v1 ≥ h(H, k). Moreover, for δ ∈ {1, 2} let tδ ∈ [1, s] be
maximal such that vi ≥ v1 − δ for each i ∈ [1, tδ]; note that tδ ∈ [1, ci(H, k, δ)].

Let I ⊂ [1, k] such that
∏

i∈I σ(Fi) = hv1
1 . Let g ∈ G/H such that vg(ϕ(

∏
i∈I Fi)) = h(ϕ(

∏
i∈I Fi)).

Clearly, h(ϕ(
∏

i∈I Fi)) ≥ |
∏

i∈I Fi|/|G/H|.
Step 4, Investigating the ‘large fibre’:
Let g1 |

∏
i∈I Fi, say g1 | Fk1 , with ϕ(g1) = g.

Let k2 ∈ I \ {k1} such that there exists some g2 | Fk2 with ϕ(g2) = g. We note that since |Fk1 | ≤
D(G/H) and vg(ϕ(

∏
i∈I Fi)) ≥ |

∏
i∈I Fi|/|G/H| ≥ v1/|G/H|, our claim is trivially true if such a k2 does

not exist.
Let F ′

ki
= g−1

i gjF
′
ki

for {i, j} = {1, 2} and let Fi = F ′
i for i ∈ [1, k] \ {k1, k2}. We note that

σ(F ′
k1

) = h1 − (g1 − g2) and that σ(F ′
k2

) = h1 + (g1 − g2); since g1 − g2 ∈ H, both sums are elements of
H.

We consider D =
∏k

i=1 σ(F ′
i ) ∈ A(H). We have D = Ch−2

1 σ(F ′
k1

)σ(F ′
k2

). By our constraints on h(C)
and t, it follows that at least one of the following two statements has to hold (for clarity, we disregard
some slight improvements achievable by distinguishing more cases).

• σ(F ′
ki

) ∈ {h1, . . . , ht1} for some i ∈ {1, 2}.

• σ(F ′
k1

) = σ(F ′
k2

) ∈ {ht1+1, . . . , ht2}.

We note that the second statement can only hold if g1 − g2 has order 2, i.e., only if 2 | |H|.
Let H0 = {h1, . . . , htδ0

}. We get that σ(F ′
k1

) = h1 − (g1 − g2) ∈ H0 or σ(F ′
k2

) = h1 + (g1 − g2) ∈ H0.
Thus, (g2 − g1) ∈ (−h1 + H0) ∪ (h1 −H0) = H ′

0. We have |H ′
0| ≤ 2|H0| − 1 = 2tδ0 − 1.

Thus, it follows that
ϕ−1(g) ∩ supp(

∏
i∈I\{k1}

Fi) ⊂ g1 + H ′
0. (3.3)

Thus, there exists some g′ ∈ G with ϕ(g′) = g such that

vg′(
∏

i∈I\{k1}

Fi) ≥
vg(ϕ(

∏
i∈I\{k1} Fi))

|H ′
0|

≥
(|

∏
i∈I Fi|/|G/H|)− D(G/H)

2tδ0 − 1

≥ v1 − D(G/H)|G/H|
|G/H|(2tδ0 − 1)

.

Recalling that v1 ≥ h(H, k) and tδ0 ≤ ci(H, k, δ0), the claim follows (obviously, we can ignore the scenario
that the numerator is negative).

Next, we discuss how this result can be expanded and improved (if more assumptions are imposed).

Remark 3.2. In a more restricted context one can assert that the lengths of most of the sequences Fi

are equal to exp(G/H) (see Lemma 3.7). Thus, the estimate |
∏

i∈I Fi| ≥ v1 can be improved, almost by
a factor of exp(G/H).

In the important special case ci(H, k, δ0) = 1 the following improvement is possible.

Remark 3.3. If |H0| = 1, i.e., H ′
0 = {0}, then we can repeat the argument of Step 4 with k2 (instead of

k1) as ‘distinguished’ index, to get that also ϕ−1(g) ∩ supp(Fk1) = {g1}; note that in this case we know
already g2 = g1. Thus, in this case we get h(H, k) instead of h(H, k)−D(G/H)|G/H| in the numerator of
our lower bound for h(A). Yet, note that then we have to impose some (in our context) mild additional
assumption to guarantee the existence of two distinct k1, k2 ∈ I with g ∈ supp(Fki

), e.g., assuming that
h(H, k) > D(G/H)|G/H| guarantees this.
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In Theorem 3.13 we see, on the one hand, that some condition such as g ∈ supp(Fki
) for distinct

k1, k2 is essential to guarantee that elements with the same image under ϕ are actually equal or closely
related; and on the other hand, that the actual condition can be weakened in that context.

Moreover, not only information on the height of the sequence can be obtained in this way.

Remark 3.4. Inspecting the proof of Theorem 3.1 the following assertions are clear.

1. The assertion made in (3.3) holds for each element g ∈ G/H. And, in the situation of Remark 3.3,
for each g ∈ G/H with vg(ϕ(

∏
i∈I Fi)) > D(G/H). Thus, we could gain information on all elements

of the ‘large fibre’ with at most D(G/H)|G/H| exceptions, i.e., a number that just depends on G/H
and thus in our context is small.

2. If there is more than one ‘large fibre,’ i.e., t > 1, then we can apply the argument to each of these
fibres (yet, note that H ′

0 depends on the fibre).

Thus, via this method more detailed insight, beyond the height, into the structure of the sequences
could be obtained. Indeed, one can expand on the second assertion by noting that the argument can
even be expanded to the product of all ‘large fibres’; yet, instead of the set H ′

0 we need to consider
the set H0 − H0, again ignoring slight improvements. Thus, using |H0 − H0| ≤ |H0|(|H0| − 1) + 1, we
see that depending on the relative size of t and tδ0 , this can yield a better or a worse result. And,
in case one has detailed knowledge on the structure of long minimal zero-sum sequences over H, it is
possible to extend these considerations to fibres corresponding to elements with high yet not maximal
multiplicity in C (cf. the proof of Theorem 3.6). Finally, we add that apparently the structure of the set
H0 is relevant too, e.g., since with such knowledge better bounds for |H0 − H0| might be obtained, or
additional restrictions inferred. However, examples show that without imposing additional restrictions,
the structure of H0 can be drastically different; namely, all elements of H0 can be independent but they
can also form an ‘interval’ (see Section 3.2), which are both rather extreme examples regarding |H0−H0|,
yet at opposite ends of the spectrum. Thus, we do not pursue these ideas any further in this general
setting; yet, this is considered in our investigations for cyclic H.

Remark 3.5. Somewhat oversimplifying, for certain types of groups G/H the size of max L(ϕ(A))
(relative to |A|) is ‘large’ if supp(ϕ(A)) is ‘large’ and conversely. In situations where this is the case
one can get improved results via taking this correlation into account, since then one can argue that
max L(ϕ(A)) is not as small as possible (among all sequences B ∈ B(G/H) of length |A|) or supp(ϕ(A))
is not as large as possible (among all sequences B′ ∈ B(G/H) of length |A|), and each of these has a
positive effect on the estimates for the height.

We refer to [22, Theorem 7.1] for a result of this form for C2
m and to [49] for an application of it in this

context, and to [26, Section 4]. Yet, elementary 2-groups do not have this property and only a minimal
improvement could be achieved in this way. Thus, in this case we give a different type of argument that
in combination with the above reasoning still allows to assert that for sufficiently long A the support of
ϕ(A) is not too large (see Section 3.4).

3.2 On h(H, k) and ci(H, k, δ)

Let H be a finite abelian group, k ∈ [1,D(H)], and δ ∈ N0. Apparently, the two parameters h(H, k) and
ci(H, k, δ) are crucial for the quality of the estimate in Theorem 3.1. We summarize some results on these
invariants.

It is clear that h(H, k) ≤ exp(H) and if equality holds then k = exp(H). Thus, equality holds if
and only H is cyclic and k = |H|, exp(H) = 2 and k = 2, or exp(H) = 1 and k = 1. Moreover, for
δ < h(H, k), we have ci(H, k, δ) ≤ (D(H)− δ)/(h(H, k)− δ).
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Over cyclic groups the structure of long minimal zero-sum sequences is well-understood. A zero-
sum sequence B over Cn is said to have index 1 if there exists some generating element e ∈ Cn and
b1, . . . b|B| ∈ [1, n]

with
|B|∑
i=1

bi = n such that B =
|B|∏
i=1

(bie). (3.4)

Each zero-sum sequence of index 1 is a minimal zero-sum sequences, yet the converse is in general not
true. However, all long minimal zero-sum sequences have index 1 and recently in [48] and [55] (improving
on various earlier results, originating in a result of [8], and see [31] for an overview; and cf. Section 1 for
references to further results) the precise threshold-value was determined. Namely, it is known that if A
is a minimal zero-sum sequence over Cn and |A| ≥ bn/2c+ 2, then A has index 1, and this bound on the
length is best possible (except for n ∈ [1, 7]\{6}, since in these cases all minimal zero-sum sequences have
index 1). From this result one can infer (see the above mentioned papers for details) that for k ≥ (n+3)/2
we have h(Cn, k) ≥ (3k−n)/3 and ci(Cn, k, 2) ≤ 2, and for k ≥ (2n+3)/3 we have h(Cn, k) = 2k−n and
ci(Cn, k, 2) = 1. Moreover, for each A ∈ A(Cn) with |A| ≥ (n + 3)/2 we have that supph(A)−2 ⊂ {e, 2e}
for some generating element e ∈ Cn, with the single exception n = 6 and A = e3(3e).

Over non-cyclic groups much less is known on the structure of minimal zero-sum sequences and thus
on h(H, k) and ci(H, k, δ); yet, partial results document that these invariants remain relevant beyond the
case of cyclic groups. We discuss the present state of knowledge for groups of rank two. We recall that
n ∈ N is said to have Property B if h(C2

n,D(C2
n)) = n− 1. If n has Property B, then a short argument

yields a full characterization of all minimal zero-sum sequences of maximal length over C2
n, and it is

conjectured that each n ∈ N has Property B (see, e.g., [23, 22]). By [26] it is known that if each prime
divisor of n has Property B, then so does n. Thus, in combination with results of [5] it is known that
Property B holds for each n ∈ N that is not divisible by a prime greater than 23. And, by [49] it follows,
for m,n ∈ N \ {1}, that if m has Property B, then h(Cm ⊕ Cmn,D(Cm ⊕ Cmn)) = max{m − 1, n + 1}.
Also, note that if n ≥ 5 has Property B, then ci(C2

n,D(C2
n), 2) = 2; that 2 is an upper bound follows

by the general inequality given above and recall that for independent e1, e2 of order n the sequence
en−1
1 en−1

2 (e1 + e2) is a minimal zero-sum sequence.
Moreover, it is known by [5] that there exists some positive constant δ such that for each (sufficiently

large) prime p we have h(C2
p ,D(C2

p)) ≥ δp; indeed, it is even known that for each ε > 0 there exists some
δε > 0 such that h(C2

p , k) ≥ δεp for k ≥ (1 + ε)p for all sufficiently large primes p. We point out that for
our applications knowledge on h(H, k) for k (slightly) below D(H), such as provided by that result is of
particular relevance. The class of groups for which, using the notation of Theorem 3.1, there exists some
k ∈ L(ϕ(A)) such that k is close to D(H) (in a relative sense) is much larger than the class of groups for
which such a k with k = D(H) exists (cf. the discussion at the beginning of this section). Extrapolating
from the cyclic case, one can hope that h(C2

n,D(C2
n)− `) = n− 1− 2` for each ` ≤ cn for some positive

constant c; at least, it seems quite likely that h(C2
n,D(C2

n)− `) is still close to n− 1 for sufficiently small
` ∈ N.

Additional information on h(H, k) for k close to D(H) for groups with large exponent is available via
results in [19].

Finally, note that the structure of minimal zero-sum sequences over elementary 2-groups is completely
understood, namely A is a minimal zero-sum sequence if and only if A = (e1 + · · · + es)

∏s
i=1 ei for

independent elements ei. So, we have h(Cr
2 ,D(Cr

2)) = 1 for r ≥ 2. Hence, we typically cannot (in
a meaningful way) apply Theorem 3.1 (or related results) with H an elementary 2-group. Moreover,
note that replacing h(·) and ci(·) by different parameters describing the structure of minimal zero-sum
sequence will not change this. The actual problem is the fact that long minimal zero-sum sequences
over elementary 2-groups (and more generally groups with large rank) can be much less rigid than long
minimal zero-sum sequences over groups with large exponent. For example, consider a zero-sum free
sequence S of length D(H)− 2; if H is cyclic, then S can be extended to a minimal zero-sum sequence in

11



at most two ways, whereas if H is an elementary 2-group of rank r ≥ 2, then this can be done in 1+2r−2

ways. Our parameters are merely a way to quantify this phenomenon.

3.3 Groups with large exponent

In this section we obtain refined results on the height of long minimal zero-sum sequences over groups
with ‘large exponent’. We mainly focus on the case that G has a cyclic subgroup H such that |H| is large
relative to |G/H|, since in this case precise information on the structure of minimal zero-sum sequences
over H is available. Additionally, we consider the case that G has a large subgroup of the form C2

p for
prime p.

Theorem 3.6. Let G be a finite abelian group, {0} 6= H ( G be a cyclic subgroup such that exp(G) =
exp(H) exp(G/H).

1. For each ` ∈ [1,D(G)] with

` >
exp(G/H)

exp(G/H) + 1
exp(G) + D′

0(G/H) +
(|G/H|+ 1) D(G/H)

exp(G/H) + 1
,

we have

h(G, `) >
exp(G)
|G/H|

− (exp(G/H) + 1)
|G/H|

(exp(G)− `)− (exp(G/H) + 1).

2. Suppose that |H| ≥ 12. For each ` ∈ [1,D(G)] with

` >
exp(G)

2
+ D′

0(G/H) + exp(G/H) D(G/H)|G/H|,

we have

h(G, `) ≥ 2 exp(G)
3 exp(G/H)|G/H|

− exp(G)− `

exp(G/H)|G/H|
− 2

exp(G/H)
.

Note that the trivial bound D(G) ≥ exp(G) and the fact that D′
0(G/H) < η(G/H) ≤ |G/H| (see

Section 2) readily implies that ` fulfilling the condition actually exist if exp(G) is ‘large’ relative to |G|
(and H is chosen in a suitable way), yet this is not the case without such a condition. The condition
|H| ≥ 12 is a purely technical condition to avoid corner-cases in the argument; in view of the above
assertion, imposing it is almost no loss.

The two statements of the result address orthogonal issues. The aim of the first statement is to
establish a good lower bound (see Example 3.8 for some details on the quality of this bound) on the
height of fairly long minimal zero-sum sequences over G; however, note that even this statement is valid
for sequences of length slightly less than the exponent of G, as usual assuming that the exponent is
large. Whereas the aim of the second statement is to establish some bound for considerably shorter
sequences. To establish the former statement, we use Lemma 3.7, implementing Remark 3.2 (note that in
the lemma we do not require that H is cyclic); to establish the latter one, we basically use Theorem 3.1
in combination with the results on cyclic groups recalled in Section 3.2, and in particular use knowledge
on the structure of the set H0 to improve the result, cf. the discussion after Remark 3.4.

Lemma 3.7. Let G be a finite abelian group an H ⊂ G a subgroup. Let A ∈ A(G) and A = F1 . . . Fk

such that ϕ(F1) . . . ϕ(Fk) is a factorization of ϕ(A). Let I>, I<, and I= denote the subsets of [1, k] such
that for i in the respective subset we have |Fi| is greater than, less than, and equal to, resp., the exponent
of G/H.

1. Then max L(
∏

i∈I>∪I=
ϕ(Fi))+ |I<| ≤ D(H). In particular, |I<| ≤ (D(H) exp(G/H)+D′

0(G/H))−
|A|.
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2. If k = max L(ϕ(A)), then |
∏

i∈I>
ϕ(Fi)| ≤ D|I>|(G/H); in particular, |I>| ≤ D′

0(G/H).

In this lemma, we can replace D′
0(G/H) by D0(G/H) for the same groups for which we can do so in

(2.3).

Proof. We recall that
∏k

i=1 σ(Fi) ∈ A(H).
1. Let ` ∈ [0, k] such that, say, I< = [` + 1, k]. Let B =

∏`
i=1 Fi and let B = F ′

1 . . . F ′
`′ such that

ϕ(F ′
1) . . . ϕ(F ′

`′) is a factorization of ϕ(B) and `′ = max L(ϕ(B)). We note that
∏`′

i=1 σ(F ′
i )

∏k
j=`+1 σ(Fi)

is a minimal zero-sum sequence over H. Thus, `′ + (k− `) ≤ D(H), establishing the claim. It remains to
assert the additional statement. Since max L(ϕ(B)) ≤ D(H)− |I<|, it follows by (2.3) that

|ϕ(B)| − D′
0(G/H)

exp(G/H)
≤ D(H)− |I<|.

Noting that |ϕ(B)| ≥ |A| − (exp(G/H)− 1)|I<| and combining the inequalities, the claim follows.
2. If k = max L(ϕ(A)), then max L(

∏
i∈I>

ϕ(Fi)) = |I>|, and the claim follows by definition of
D|I>|(G/H). The additional claim follows by using the upper bound (2.2) for D|I>|(G/H) and noting
that |

∏
i∈I>

ϕ(Fi)| ≥ (exp(G/H) + 1)|I>|.

Of course, this lemma is only relevant if (D(H) exp(G/H) + D′
0(G/H))− |A| is small. Yet, this is the

case, in particular, if H is a large cyclic subgroup with exp(G) = exp(H) exp(G/H) and |A| is not too
much smaller than D(G) (cf. (3.1) and the subsequent discussion).

Proof of Theorem 3.6. Let ϕ : G → G/H denote the canonical map. Let ` ∈ [1,D(G)] fulfilling the
respective condition on its size and let A ∈ A(G) with |A| ≥ `. Let k = max L(ϕ(A)). We note that
k ≥ (|A| − D′

0(G/H))/ exp(G/H) (see (2.2)).
1. We note that by our assumption on |A| we have k ≥ (2|H| + 3)/3 and thus h(H, k) = 2k − |H|

and ci(H, k, 2) = 1 (see Section 3.2). First, we use the exact same argument as in Steps 1–3 in the
proof of Theorem 3.1; we continue using the notation of that proof below. Yet, in Step 4 we estimate
|
∏

i∈I Fi| in another way. Namely, we note that by Lemma 3.7 at most (D(H) exp(G/H) + D′
0(G/H))−

|A| = (exp(G) + D′
0(G/H)) − |A| of the sequences Fi do not have length at least exp(G/H). Thus,

|
∏

i∈I Fi| ≥ exp(G/H)|I| − (exp(G/H)− 1)(exp(G) + D′
0(G/H)− |A|). Using the fact that |I| ≥ h(H, k)

and the assertions made above, we get |
∏

i∈I Fi| ≥ (exp(G/H)+1)(|A|−D′
0(G/H))− exp(G/H) exp(G).

By the assumption on |A|, we get |
∏

i∈I Fi|/|G/H| > D(G/H). Thus, as in Step 4 of the proof of
Theorem 3.1 and taking Remark 3.3 into account we get

h(A) ≥
|
∏

i∈I Fi|
|G/H|

≥ (exp(G/H) + 1)(|A| − D′
0(G/H))− exp(G/H) exp(G)
|G/H|

=
exp(G)
|G/H|

+
(exp(G/H) + 1)(|A| − exp(G)− D′

0(G/H))
|G/H|

.

Recalling that D′
0(G/H) < |G/H|, the claim follows.

2. Again, we proceed as in the proof of Theorem 3.1 and use the same notation. We note that by
our assumption on |A| we have k ≥ (|H| + 3)/2 and thus h(H, k) ≥ (3k − |H|)/3 and ci(H, k, 2) ≤ 2
(see Section 3.2). We get |

∏
i∈I Fi| ≥ |I| ≥ (3k − |H|)/3 > |G/H|D(G/H), the last inequality by our

assumption on |A|. We distinguish two case.
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Suppose tδ = 1. Then it follows that

h(A) ≥ |
∏
i∈I

Fi|/|G/H| ≥ (3k − |H|)/(3|G/H|)

≥ 2 exp(G)
3 exp(G/H)|G/H|

+
|A| − exp(G)− D′

0(G/H)
exp(G/H)|G/H|

.

Suppose tδ = 2. As discussed in Section 3.2 we know that {h1, h2} = {e, 2e} for some generating
element e ∈ H. Let j ∈ {1, 2} such that hj = e and J ⊂ [1, k] such that

∏
i∈J σ(Fi) = h

vj

j . We know
that vj ≥ h(H, k)− δ. By our assumption on |A| and arguing as above we get that |J | > |G/H|D(G/H).

We argue analogously to the beginning of Step 4 in the proof of Theorem 3.1 where h
vj

j has the role
of the ‘large fiber’. Yet, note that possibly hj is not the element with maximal multiplicity in

∏
i∈I σ(Fi)

However, since by the results mentioned in Section 3.2 we know that the multiplicity of the element with
the third highest multiplicity in this sequence is less than vj − 2, we can still apply this argument (cf. the
discussion after Remark 3.4).

We define F ′
k1

and F ′
k2

analogously as in that proof. Yet, here we can infer that σ(F ′
k1

) = σ(F ′
k2

) = e
has to hold, since otherwise, by the minimality assumption on the vi and in view of the above remark on
the third highest multiplicity, we get that, say, σ(F ′

k1
) = 2e and thus σ(F ′

k2
) = 0, which is absurd as A

is a minimal zero-sum sequences. Thus, we get

h(A) ≥
∏

i∈J Fi

|G/H|
≥ |J |
|G/H|

≥ 3k − |H| − 3δ

3|G/H|

≥ 2 exp(G)
3 exp(G/H)|G/H|

+
|A| − exp(G)− D′

0(G/H)− 2 exp(G/H)
exp(G/H)|G/H|

.

Noting in each case that D′
0(G/H) + exp(G/H) ≤ |G/H|, the claim follows.

To discuss the quality of our result, we point out the following examples.

Example 3.8. Let G = G′ ⊕ 〈f〉 with ord(f) = exp(G), and let ` ∈ [exp(G),D∗(G)]. We observe that
there exist sequences S1, S2 ∈ F(G′) with |Si| = exp(G), h(Si) ≤ 1+max{b exp(G)

|G′| c, 1}, and ord(σ(S1)) =
exp(G′) and σ(S2) = 0. In case ` > exp(G), let T ∈ F(G′) be a zero-sum free sequence with |T | =
` − exp(G) and σ(T ) = σ(S), which exists due to the condition on the order of σ(S). Then, T (f + S1)
and (f + S2) are minimal zero-sum sequence over G with length ` and exp(G), respectively, and height
at most b exp(G)

|G′| c+ 1.

Thus, we see that the bound established in Theorem 3.6, for sequence of length in [exp(G),D∗(G)], is
off by approximately a factor of exp(G/H) (assuming that exp(G) is large). In Section 3.4, we improve
this bound for groups of the form Cr−1

2 ⊕ C2n.
Now, we consider a different type of group. Here, it is crucial that we can deal with the situation that

minimal zero-sum sequences over the subgroup H can contain more than one important element.

Theorem 3.9. Let n1, n2 ∈ N with n1 | n2 and let p be a prime. Let G = G′ ⊕ Cn1p ⊕ Cn2p with
exp(G′) | n1 and let K = G′ ⊕ Cn1 ⊕ Cn2 . For each positive ε there exist positive δ′, δ′′ (depending
only on ε) such that if p is sufficiently large (depending on ε and K), then for each ` ∈ [1,D(G)] with
` ≥ (1 + ε) exp(G) + D′

0(K) we have

h(G, `) ≥ δ′ exp(G)
exp(K)|K|

− δ′′ D(K).

Note that since D(G) ≥ (n1 +n2)p− 1 elements ` fulfilling our conditions actually exist for ε < n1/n2

(and sufficiently large p).
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Proof. Let H be a subgroup of G isomorphic to C2
p such that G/H ∼= K and let ϕ : G → G/H denote

the canonical map. Let ε > 0 and let ` ∈ [1,D(G)] fulfilling the assumption on it size. Let A ∈ A(G)
with |A| ≥ ` and let k = max L(ϕ(A)).

By (2.3), we know that k ≥ (|A| − D′
0(K))/ exp(K) ≥ (1 + ε)p. We apply Theorem 3.1, to get that

(we assume p > 2)

h(A) ≥
h(C2

p , k)− D(K)|K|
(2 ci(C2

p , k, 1)− 1)|K|
.

As recalled in Section 3.2, by [5], there exists some δ (depending on ε only) such that if p is sufficiently
large, then h(H, k) ≥ δp. Moreover, we get that ci(C2

p , k, 1) ≤ (2p− 1)/(δp− 1) ≤ c/δ for any c > 2 and
sufficiently large p. So, we have (assuming p is sufficiently large that the numerator is positive)

h(A) ≥ δp− D(K)|K|
(2c/δ − 1)|K|

=
(δp− D(K)|K|)δ/(2c)

|K|
=

δ2p/(2c)
|K|

− δ D(K)/(2c).

Setting δ′ = δ2/(2c) and δ′′ = δ/(2c), the claim follows.

From the proof it readily follows that we can choose for δ′ any value that is less than δ2/4 where δ has
to fulfil h(C2

p , k) ≥ δp for k ≥ (1+ε)p, and likewise for δ′′ any value less than δ/4. Presently, h(C2
p , k) ≥ δp

is only known to hold for very small δ even for k = D(C2
p), and thus our result is presently only interesting

from a qualitative point of view; thus, we directly applied Theorem 3.1 and, e.g., disregarded Lemma
3.7. Yet, as discussed in Section 3.2 it is fairly likely that for k close to D(C2

p) the value of h(C2
p , k) is

actually close to p− 1, i.e., δ is close to 1. Recall that for n1 = n2 and, say, |A| = D∗(G), the difference
D(C2

p)−max L(ϕ(A)) is bounded above by a value independent of p.

3.4 Groups of the form Cr−1
2 ⊕ C2n

We improve the estimate for h(G, k) obtained in Theorem 3.13 for G of the form Cr−1
2 ⊕C2n with r, n ∈ N.

We see in Corollary 3.12 that for k ∈ [exp(G),D∗(G)] our result is optimal up to an absolute constant.

Theorem 3.10. Let r, n ∈ N with n ≥ 8 and G = Cr−1
2 ⊕ C2n. For each ` ∈ [1,D(G)] with ` ≥

2 exp(G)/3 + 2 + D0(Cr
2), we have

h(G, `) >
exp(G)
2r−1

− exp(G)− |A|
2r−3

− 6.

Again, the result is only relevant if n is large relative to r, and it is thus essentially no loss, yet helpful
in the proof, to impose the condition n ≥ 8. The key to this improvement is to apply the following
observation. Additionally, we can perform certain estimates in a more precise way, since in this case
more is known on Dk(G/H) than in the general case.

Lemma 3.11. Let r, n ∈ N, G = Cr−1
2 ⊕ C2n, and let H ⊂ G be a cyclic subgroup of order n such that

G/H ∼= Cr
2 . Let T ∈ F(G) such that there exists some e ∈ H with 2g = e for each g | T . If F | T such

that σ(F ) ∈ H, then,

1. in case n is even, |F | is even and σ(F ) ∈ { |F |
2 e, |F |+n

2 e}.

2. in case n is odd, σ(F ) = |F |
2 e if |F | is even, and σ(F ) = |F |+n

2 e if |F | is odd.

Proof. Let F | T such that σ(F ) ∈ H. We consider σ(F 2). We note, since 2g = e for each g | T , that
σ(F 2) = |F |e. Thus, 2σ(F ) = |F |e, and the claim follows.

Clearly, analogues of this lemma hold for more general classes of groups. Yet, their application to our
problem would be less direct, and we thus restrict to considering this special case.
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Proof of Theorem 3.10. Let H ⊂ G be a cyclic subgroup of order n such that G/H ∼= Cr
2 , and let

ϕ : G → G/H denote the canonical map. Let ` ∈ [1,D(G)] fulfilling the condition on the size, and let
A ∈ A(G) with |A| ≥ `. Let k = max L(ϕ(A)). We note that k ≥ (|A|−D0(Cr

2))/2 (as discussed in Section
2, we can use here and below D0(·) instead of D′

0(·), since G/H is an elementary 2-group). In particular,
k ≥ (2n + 3)/3. Thus, v1 ≥ 2k − n and ci(H, k, 2) = 1. Again, we proceed as in the proof of Theorem
3.1 and use the same notation. We note that by Lemma 3.7, with I<, I>, and I= as defined there, we
get that |I<| ≤ 2n + D0(Cr

2) − |A| and |I>| ≤ D0(Cr
2). Thus, all except at most 2n + 2D0(Cr

2) − |A|
of the sequences Fi have length 2, i.e., ϕ(Fi) = f2 for some f ∈ G/H \ {0}. Let I ′ = I ∩ I=, i.e., the
maximal subset of I such that |Fi| = 2 for each i ∈ I ′. We note that |I ′| ≥ 2|A| − 3n − 3 D0(Cr

2). We
assert that ϕ(supp(

∏
i∈I′ Fi)) is sumfree, i.e., the equation x+ y = z has no solution in that set. Assume

to the contrary, there exist f1, f2, f3 such that f1 + f2 = f3. Since 0 /∈ ϕ(supp(
∏

i∈I′ Fi)), it follows that
f1, f2, f3 are pairwise distinct. Let j1, j2, j3 ∈ I ′ such that ϕ(Fji

) = f2
i for i ∈ [1, 3]. We apply Lemma

3.11 with f1f2f3 |
∏

i∈I′ Fi. It follows that n is odd and σ(f1f2f3) = n+3
2 h1. Yet, this is impossible since

(n+3
2 h1)2(

∏
i∈[1,k]\{j1,j2,j3} σ(Fi)) has length at least (n + 3)/2, recall n ≥ 9, but does not have index 1

(cf. Section 3.2); this is obvious with respect to the generating element h1, yet is also true with respect
to each other generating element.

Thus ϕ(supp(
∏

i∈I′ Fi)) is sumfree. Since the maximal cardinality of a sumfree subset of Cr
2 is |Cr

2 |/2,
we get that there exists some g ∈ G/H such that vg(ϕ(

∏
i∈I′ Fi)) ≥ |

∏
i∈I′ Fi|/(|G/H|/2). Hence, as in

Step 4 of the proof of Theorem 3.1, and cf. Remark 3.3 we get (now, at first, we consider again the full
‘large fibre’),

h(A) ≥ vg(ϕ(
∏
i∈I

Fi)) ≥
|
∏

i∈I′ Fi|
|G/H|/2

=
2|I ′|

|G/H|/2

≥ 4(2|A| − 3n− 3 D0(Cr
2))

|G/H|

=
exp(G)
2r−1

+
|A| − exp(G)

2r−3
− 12 D0(Cr

2)
2r

.

Recalling that D0(Cr
2) < 2r−1 (see Section 2), the claim follows.

We now assert that Theorem 3.10 is quite precise.

Corollary 3.12. We have
h(Cr−1

2 ⊕ C2n, k) =
n

2r−2
+ O(1)

for n, r ∈ N and k ∈ [2n, 2n + r − 1].

Proof. We may assume n ≥ 8. On the one hand, by Example 3.8 we know that h(Cr−1
2 ⊕ C2n, k) ≤

max{b n
2r−2 c+ 1, 2} for k ∈ [2n, 2n + r − 1]. On the other hand, by Theorem 3.10 we know that if 2n ≥

2
32n+2+D0(Cr

2), then h(Cr−1
2 ⊕C2n, k) > 2n

2r−1 −6 for k ∈ [2n, 2n+r−1]. Yet, if 2n < 2
32n+2+D0(Cr

2),
then 2n

3 < D0(Cr
2) < 2r−1, implying that max{b n

2r−2 c+ 1, 2} ≤ 3, which in combination with the trivial
lower bound h(Cr−1

2 ⊕ C2n, k) ≥ 1 implies the claim.

Indeed, inspecting the proof and using the trivial lower bound of 1 for the height for n ≤ 7, we see
that 0 ≤ max{b n

2r−2 c + 1, 2} − h(Cr−1
2 ⊕ C2n, k) ≤ 7. Recalling for n ≤ 7 the results of Section 3.2 for

r ≤ 2, this bound can be improved to 6 and using that 12 D0(C
r
2 )

2r = 4+ o(1) (instead of using the estimate
6), a further slight improvement for large r would be possible; the latter is the case for Theorem 3.10 as
well.

We end by pointing out two related facts. By (3.2) we know that for each r there exist infinitely
many n such that D(Cr−1

2 ⊕ C2n) = D∗(Cr−1
2 ⊕ C2n), namely all n divisible by a sufficiently high

16



power of 2. For these n, our result provides a quite satisfactory answer, since it addresses the structure
of all sufficiently long minimal zero-sum sequences. Yet, for example, if r ≥ 5 and n is odd, then
D(Cr−1

2 ⊕ C2n) > D∗(Cr−1
2 ⊕ C2n) (see Section 1) and thus though Theorem 3.10 also yields a lower

bound on the height of sequences of length greater than D∗(Cr−1
2 ⊕C2n) we cannot apply Example 3.8 to

get an upper bound for the height of these sequences. Indeed, it might well be the case that the structure
of these exceptionally long sequences is more restricted and thus they have a larger height. The author
considers the question whether this is the case or not to be an interesting one, which however will not be
pursued here. Yet, he hopes (and believes) that some insight on it can be obtained, based on the thus
presented methods and the very recent results of [17] that are in part motivated by this problem.

3.5 Groups of the form C2
2 ⊕ C2n

Using the methods and results outlined in the preceding sections and some ad hoc arguments, we derive
an explicit description of the structure of minimal zero-sum sequences of maximal length over C2

2 ⊕C2n.
As mentioned in Section 1 D(C2

2⊕C2n) = 2n+2 is well-known; yet, since it causes essentially no additional
effort, we formulate our proof in such a way that it does not make use of this fact, and thus contains a
proof of this result as well.

Theorem 3.13. Let n ∈ N and G = C2
2⊕C2n. Then A ∈ F(G) is a minimal zero-sum sequence of length

D(G) if and only if there exists a basis {f1, f2, f3} of G, where ord(f1) = ord(f2) = 2 and ord(f3) = 2n,
such that A is equal to one of the following sequences:

1. fv3
3 (f3 + f2)v2(f3 + f1)v1(−f3 + f2 + f1) with vi ∈ N odd v3 ≥ v2 ≥ v1 and v3 + v2 + v1 = 2n + 1.

2. fv3
3 (f3 + f2)v2(af3 + f1)(−af3 + f2 + f1) with v2, v3 ∈ N odd v3 ≥ v2 and v2 + v3 = 2n and

a ∈ [2, n− 1].

3. f2n−1
3 (af3 +f2)(bf3 +f1)(cf3 +f2 +f1) with a+b+c = 2n+1 where a ≤ b ≤ c, and a, b ∈ [2, n−1],

c ∈ [2, 2n− 3] \ {n, n + 1}.

4. f2n−1−2v
3 (f3 + f2)2vf2(af3 + f1)((1− a)f3 + f2 + f1) with v ∈ [0, n− 1] and a ∈ [2, n− 1].

5. f2n−2
3 (af3 + f2)((1− a)f3 + f2)(bf3 + f1)((1− b)f3 + f1) with a, b ∈ [2, n− 1] and a ≥ b.

6.
∏2n

i=1(f3 + di)f2f1 where S =
∏2n

i=1 di ∈ F(〈f1, f2〉) with σ(S) = f1 + f2.

Introducing more redundancy in the classification of the sequences, we could relax the conditions on
the parameters a, b and v, vi in the above description; however, the parity of the vi is crucial. Yet, besides
avoiding redundancy, to have these restrictive conditions is convenient when applying this result (see
Section 4). We point out that there is still some redundancy in this classification, e.g., since we do not
restrict the sequences S in 6., which however could be avoided easily at the expense of an even longer
classification. Moreover, the case n = 1 is included for the sake of completeness only; it is of course
well-known.

Proof of Theorem 3.13. For n = 1 the claim is well-known and simple (cf. the discussion at the end of
Section 3.2). We assume n ≥ 2. It is clear that all the listed sequences have length 2n + 2 and have
sum 0. First, we show that they are indeed minimal zero-sum sequences. We only address the case that
the sequence is of the form given in 1. and 2. as example, the other cases are fairly analogous; and for
6. also see Example 3.8. For i ∈ [1, 3], let πi : G → 〈fi〉 denote the projection with respect to the basis
{f1, f2, f3}. Let A be of the form given in 1., and let 1 6= U | A a zero-sum sequence. If (−f3+f2+f1) - U ,
then 2 | vf3+fi

(U) for i ∈ {1, 2}, since otherwise σ(πi(U)) 6= 0. Yet, this implies vf3+f1(U) + vf3+f2(U) +
vf3(U) < 2n, and thus σ(π3(U)) 6= 0, a contradiction. Thus, suppose (−f3 + f2 + f1) | U . Then, then
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2 - vf3+fi
(U) for i ∈ {1, 2}. Thus, σ(π3(U)) = 0, implies vf3+f1(U) + vf3+f2(U) + vf3(U) = 2n + 1, i.e.,

U = A.
Let A be of the form given in 2., and let 1 6= U | A a zero-sum sequence. First, suppose (af3 +

f1)(−af3 +f2 +f1) | U . Then (f3 +f2) | U , since otherwise σ(π2(U)) 6= 0. Thus vf3+f2(U)+vf3(U) = 2n,
i.e., U = A. Second, suppose (af3 + f1)(−af3 + f2 + f1) - U . If (af3 + f1) | U or (−af3 + f2 + f1) | U ,
then (af3 + f1)(−af3 + f2 + f1) | U , since otherwise σ(π1(U)) 6= 0. So, we have U = fw3

3 (f3 + f2)w2 . We
note that 2 | w2. Yet, this implies vf3+f2(U) + vf3(U) < 2n, a contradiction.

Thus, to complete the proof our result it remains to show that each minimal zero-sum sequences of
maximal lengths over G is indeed of the form given in 1. to 6., in particular we have to show that its
length is 2n + 2.

Let H be a subgroup of G isomorphic to Cn such that G/H ∼= C3
2 and let ϕ : G → G/H denote

canonical map. Let A ∈ A(G) with |A| = D(G). By (2.1), or the above argument, we have |A| ≥ 2n + 2.
Conversely, by (3.1) and the result on Dk(C3

2 ) recalled in Section 2, we have |A| ≤ 2n + 3.
We start by investigating the structure of B = ϕ(A). By (2.3) and D0(C3

2 ) = 3 we get that max L(B) =
n. Let B = S1 . . . SkT1 . . . T` be a factorization, where the Si denote the short minimal zero-sum sequence
and the, possibly empty, zero-sum sequence T = T1 . . . T` is not divisible by a short zero-sum sequence.
We have that T is squarefree and 0 - T . Note that since |T | ≤ 7, we get k + ` = n. Moreover,
let A = F1 . . . FkR1 . . . R` such that ϕ(Fi) = Si and ϕ(Rj) = Tj ; furthermore set F = F1 . . . Fk and
R = R1 . . . R`.

Since n ≥ k ≥ (|B| − |T |)/2, we have |T | 6= 0, and thus in fact n− 1 ≥ k ≥ (|B| − |T |)/2. This implies
that |T | ≥ 4 and so |T | ∈ {4, 7}, since there are no squarefree zero-sum sequences of length 5 or 6 over
C3

2 that do not contain 0. Additionally, note that if |A| = 2n + 3, then |T | = 7.
We assert that 0 - B, i.e., |Si| = 2 for each i, and that |A| = 2n + 2, i.e., D(G) = 2n + 2. Suppose

that 0 | B. By Lemma 3.7 we get that |A| = 2n + 2 and v0(B) = 1. Moreover, we have n− 2 ≥ k − 1 ≥
(|B| − 1− |T |)/2 and thus |T | = 7.

Thus, if 0 | B or |A| = 2n + 3, then |T | = 7. We assume that |T | = 7, i.e., supp(T ) = G/H \ {0}.
We observe that σ(F1) . . . σ(Fn−2) σ(R1) σ(R2) = gn for some g ∈ H with H = 〈g〉 (see Section

3.2). We use the following notation. Let R =
∏

∅6=I⊂{1,2,3} gI where ϕ(gI) =
∑

i∈I ei and {e1, e2, e3}
is a basis of G/H; yet, we write gi instead of g{i} for i ∈ {1, 2, 3}. In the same way we see that if
R = R′

1R
′
2 with non-empty R′

i such that σ(R′
i) ∈ H, i.e., σ(ϕ(R′

i)) = 0, then σ(R′
i) = g. Consequently,

g{1,2,3} +
∑3

i=1 gi = g{i,j} + gk + g{1,2,3} for {i, j, k} = {1, 2, 3}. Thus, g{i,j} = gi + gj . Moreover,
gi + gj + g{i,j} = g and thus 2g{i,j} = g. Yet, g{1,2} + g{1,3} + g{2,3} = g as well. This implies that
3g = 2g, a contradiction.

Consequently, we have |A| = 2n + 2 and 0 - B. Moreover, |T | = 4 and T is a minimal zero-sum
sequence; in particular, k = n− 1 and ` = 1. Note that for each T ′ | T of length 3 the set supp(T ′) is a
basis of G/H.

Again, we have σ(F1) . . . σ(Fn−1) σ(R) = gn for some generating element g of H. For convenience of
notation we set Fn = R.

Next, we show that if ϕ(h) = ϕ(h′) for hh′ | A then h = h′. First, suppose h and h′ occur in distinct
subsequences, i.e., h | Fi and h′ | Fj for i 6= j. In this case the assertion follows as in Step 4 of the proof
of Theorem 3.1.

Now, suppose hh′ | Fi for some i. We note that i 6= n, say i = n− 1. There exists some U | Fn such
that σ(ϕ(U)) = −ϕ(h). Let U ′ = U−1Fn. Then σ(ϕ(U ′)) = σ(ϕ(U)). Thus, we consider F ′

n−1 = hU
and F ′

n = h′U ′ as well as F ′′
n−1 = h′U and F ′′

n = hU ′. As above, we get σ(F ′
n−1) = σ(F ′

n) = g and
σ(F ′′

n−1) = σ(F ′′
n ) = g. Thus, σ(F ′

n) = σ(F ′′
n ) and the claim follows.

We point out two consequences of the above reasoning.

C1 The elements in supp(R) occur with odd multiplicity in A and the multiplicities of all other elements
are even. Thus, the decomposition A = FR is unique. Moreover, the decomposition F = F1 . . . Fn−1

is unique (up to ordering) as well.
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C2 For each h ∈ supp(F ) we have ord(2h) = n and, since ϕ(h) 6= 0, the order of h is even. Thus
ord(h) = 2n. Moreover, there exists some generating element g ∈ H such that we have, for each i,
σ(Fi) = g and σ(R) = g.

In a similar way we establish the following additional facts, which we use frequently in the remainder
of the proof.

F1 If ϕ(h0) = ϕ(h1) + ϕ(h2) with h0 | F and h1h2 | R, then h0 = h1 + h2.

F2 supp(ϕ(F )) is sumfree, i.e., the equation x + y = z has no solution in supp(ϕ(F )).

F3 For each h ∈ supp(F ) ∩ supp(R) we have h = σ(h−1R) and moreover for each R′ | R with |R′| = 3
and h | R′ we have G = 〈supp(R′)〉.

Ad F1. Suppose ϕ(h0) = ϕ(h1) + ϕ(h2) with h0 | F and h1h2 | R, say h0 | Fn−1, i.e., h2
0 = Fn−1.

Let h3h4 = (h1h2)−1R. We note that ϕ(h1) + ϕ(h2) = ϕ(h3) + ϕ(h4). We set F ′
n−1 = h0h1h2 and

F ′
n = h0h3h4. Then σ(F1) . . . σ(Fn−2) σ(F ′

n−1)σ(F ′
n) = gn. In particular, σ(F ′

n) = σ(R) and thus
h0 = h1 + h2.

Ad F2. Compare Lemma 3.11.
Ad F3. Suppose h ∈ supp(F ). Then h2 | F and we thus have 2h = g = σ(R), implying the

first part of the claim. Now, let h | R′ | R where |R′| = 3, and let h′ | R such that R = R′h′.
We have h′ = σ(R) − σ(R′) = 2h − σ(R′) ∈ 〈supp(R′)〉. Thus, supp(R) ⊂ 〈supp(R′)〉. Moreover,
each non-zero element of G/H is the sum of two distinct elements of supp(ϕ(R)), implying by F1, that
supp(F ) ⊂ supp(R)+supp(R) ⊂ 〈supp(R′)〉. Recalling that supp(A) is a generating set of G (see Section
2), the claim follows.

Having established these facts we start the detailed investigation of the sequence A. We distinguish
several case according to the number of elements in supp(F ) ∩ supp(R). Let N = | supp(F ) ∩ supp(R)|.
Note that in case n = 2 we have | supp(F )| = 1 and thus N ≤ 1.

Suppose N = 4. By this assumption we have R2 | F . By C2, on the one hand σ(R2) = σ(Fi1) +
σ(Fi2)+σ(Fi3)+σ(Fi4) = |R|g = 4g, yet on the other hand σ(R2) = 2 σ(R) = 2g, a contradiction. (Also,
compare Lemma 3.11.)

Suppose N = 3. Let g1g2g3 = gcd(F,R) such that vg3(A) ≥ vg2(A) ≥ vg1(A) and g{1,2,3} =
gcd(F,R)−1R. Moreover, by F2 (and F1) and since by assumption g{1,2,3} - F , we know that supp(F ) =
{g1, g2, g3}. We set f3 = g3 and f2 = g2 − g3 , f1 = g1 − g3. Since 2gi = g for each i ∈ {1, 2, 3}, we have
ord(f1) = ord(f2) = 2. Moreover, by F2 ord(f3) = 2n and by F3 it follows that {f1, f2, f3} is a generating
set of G and, due to the orders of the elements (see the remark in Section 2), a basis. Recalling that by
F3 we have g{1,2,3} = g3 − g2 − g1, we get

A = fv3
3 (f3 + f2)v2(f3 + f1)v1(−f3 + f2 + f1),

where v3 ≥ v2 ≥ v1 by assumption and each vi is odd by C1. Thus, A is of the form given in 1.
Suppose N = 2. Let g2g3 = gcd(F,R) and g1g{1,2,3} = gcd(F,R)−1R. If there exists some g′ ∈

supp(F ) \ {g2, g3}, then, by F2, ϕ(g′) 6= ϕ(g2) + ϕ(g3). Thus, ϕ(g′) = ϕ(gi) + ϕ(gJ) with i ∈ {2, 3} and
J ∈ {1, {1, 2, 3}}. Without restriction we assume that, in case supp(F ) \ {g2, g3} 6= ∅, this set contains
an element g{1,3} with ϕ(g{1,3}) = ϕ(g1) + ϕ(g3). By F1 we have g{1,3} = g1 + g3.

Similarly as above, we set f3 = g3 and f2 = g2 − g3. Since 2g3 = 2g2, we have ord(f2) = 2, and again
g{1,2,3} = g3 − g2 − g1. There exists some a ∈ [0, n− 1] such that the order of g1 − af3 = f1 is two (note
that it cannot be one). Again, the set {f1, f2, f3} is a generating set for G and thus a basis.

If | supp(F )| = 2, then

A = fv3
3 (f3 + f2)v2(af3 + f1)(−af3 + f2 + f1)
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where again vi ≥ 3 is odd. Possibly changing the basis, we obtain v3 ≥ v2. We note that in case a = 0
or a = 1 the sequence is of the form given in 6. and 1., resp., and otherwise it is of the form given in 2.

Now, suppose | supp(F )| = 3. By assumption, the third element in supp(F ) is g{1,3} = g1 + g3.
Moreover since 2g{1,3} = 2g3, it follows that 2g1 = 0 and thus a = 0. Therefore,

A = fv3
3 (f3 + f2)v2(f3 + f1)v1f1(f2 + f1)

where v2, v3 ≥ 3 odd, and v1 ≥ 2 even. Thus, the sequence is, after change of basis, of the form given in
6.

Finally, if | supp(F )| = 4, then again by assumption g{1,3} ∈ supp(F ) and as above we get that the
fourth element in supp(F ) is equal to g1 + g2, that is

A = fv3
3 (f3 + f2)v2(f3 + f1)v1(f3 + f2 + f1)v4f1(f2 + f1)

v2, v3 ≥ 3 odd, and v1, v4 ≥ 2 even. Thus again the sequence is, after change of basis, of the form given
in 6.

Suppose N = 1. Let g3 = gcd(F,R). We know that each element of supp(F ) \ {g3} is the sum of
two distinct elements of supp(R), in fact it is the sum of g3 and some other element. If | supp(F )| ≥ 2,
then let g2 | g−1

3 R such that g{2,3} = g2 + g3 ∈ supp(F ) and if | supp(F )| = 3, then let additionally
g1 | (g2g3)−1R such that g{1,3} = g1 + g3 ∈ supp(F ). Note that by F2 we have | supp(F )| ≤ 3. We denote
the remaining element(s) in supp(R) by g1, g2, g{1,2,3}; g1, g{1,2,3}; or g{1,2,3}, respectively.

Let f3 = g3. As above there exist a, b ∈ [0, n − 1] such that the order of g2 − af3 = f2 and of
g1 − bf3 = f1 are two. The set {f1, f2, f3} is a basis of G. Again, by F3 we have g3 = g1 + g2 + g{1,2,3}.
Thus, if | supp(F )| = 1, then

A = f2n−1
3 (af3 + f2)(bf3 + f1)(cf3 + f2 + f1)

where c ∈ [0, 2n−1] and (a+b+c)f3 = f3. Possibly changing the basis, we obtain a ≤ b ≤ c. To show that
the sequence is of the form 3., it remains to discuss some special cases. If a = b = 0, then the sequence is
of the form given in 6. If a = 0 and b ≥ 2 (note that a = 0 and b = 1 is impossible), it is of the form 4. If
a = b = 1, then it is of the form 1. If a = 1 and b ≥ 2, then it is if the form 2. It remains to consider the
case a ≥ 2; note that this implies a + b + c = 2n + 1. If c = n or c = n + 1, then we get that the sequence
is of the form given in 4. and 2., resp., with respect to the basis {f ′1 = f2, f

′
2 = nf3 +f2 +f1, f2, f

′
3 = f3}.

Suppose that | supp(F )| ≥ 2. Since 2g{3,2} = 2g3, we have ord(g2) = 2, that is a = 0. If | supp(F )| = 2,
we thus have

A = f2n−1−2v
3 (f3 + f2)2vf2(bf3 + f1)(cf3 + f2 + f1)

with (b + c)f3 = f3. If b ∈ {0, 1}, the sequence is if the form 6., and otherwise it is of the form 4.
Now, suppose | supp(F )| = 3. Then, additionally, by the same argument ord(g1) = 2, that is b = 0.

Thus,
A = f2n−1−2v−2w

3 (f3 + f2)2v(f3 + f1)2wf2f1(f3 + f2 + f1)

and the sequence is of the form given in 6.
Suppose N = 0. Let g3 | R. By assumption and F1, we know that each element of supp(F ) is the sum

of g3 and some other element in supp(R). Moreover, we know that | supp(F )| ≤ 2. Thus, let g2 | g−1
3 R

such that g{2,3} = g2 + g3 ∈ supp(F ) and, in case | supp(F )| = 2 let g1 ∈ supp(R) \ {g2, g3} such that
g1+g3 ∈ supp(F ). We denote the remaining element(s) of supp(R) by g1, g{1,2,3}, or g{1,2,3}, respectively.

Let f3 = g{2,3} and f1, f2 ∈ G such that {f1, f2, f3} is a basis of G. For I ∈ {1, 2, 3, {1, 2, 3}}, let
gI = aIf3+bIf2+cIf1 with aI ∈ [0, 2n−1] and bI , cI ∈ {0, 1}. Since by F2 g{2,3} = g2+g3 = g1+g{1,2,3},
it follows that a2 + a3 ≡ 1 (mod 2n), b2 = b3, and c2 = c3; as well as a1 + a{1,2,3} ≡ 1 (mod 2n),
b1 = b{1,2,3}, and c1 = c{1,2,3}. Moreover, {g1, g2, g3} is a generating set of G.
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Since neither g2 nor g3 is an element of H, it follows that (b3, c3) 6= (0, 0). By change of basis, we
may assume b3 = 1 and c3 = 0. Since {g1, g2, g3} is a generating set of G, it follows that c1 6= 0, and by
change of basis, we may assume that b1 = 0.

If supp(F ) = {g{2,3}}, then

A = f2n−2
3 (a3f3 + f2)((1− a3)f3 + f2)(a1f3 + f1)((1− a1)f3 + f1).

Possibly changing the basis, we obtain a1, a3 ∈ [0, n − 1] and a3 ≥ a1. If a3 ∈ {0, 1} the sequence is of
the form 6., if a3 ≥ 2 and a1 ∈ {0, 1} it is of the form 4., and otherwise it is of the form 5.

Now, suppose | supp(F )| = 2. By assumption this means g{1,3} = g1 + g3 ∈ supp(F ). Let g{1,3} =
a{1,3}f3 + b{1,3}f2 + c{1,3}f1 with a{1,3} ∈ [0, 2n− 1] and b{1,3}, c{1,3} ∈ {0, 1}. We have 2g{1,3} = 2g{2,3}
and g{1,3} = g1 + g3 = g2 + g{1,2,3}. Thus a{1,3} ∈ {1, 1 + n} and b{1,3} = c{1,3} = 1.

We observe that σ(g{1,3}g1g2) ∈ 〈f3〉. Let k ∈ N such that 2k = vf3(A). We observe that Σ(g−2
{1,3}F )∩

〈f3〉 = {if3+j(2f3) : (i, j) ∈ [0, 2k]×[0, n−2−k]\{(0, 0)}} = {jf3 : j ∈ [1, 2n−4]}. Since−σ(g{1,3}g1g2) /∈
Σ(g−2

{1,3}F )∪{0}, it follows that σ(g{1,3}g1g2) ∈ {f3, 2f3, 3f3}. Using g{1,3} = g1+g3 and a2f3 = (1−a3)f3,
it follows that σ(g{1,3}g1g2) = (1+2a1)f3. Consequently, a1 ∈ {0, 1, n, 1+n}. Moreover, if a1 ∈ {δ, δ+n}
for δ ∈ {0, 1}, then, since a{1,3} ∈ {1, 1 + n}, we have a3 ∈ {1 − δ, 1 − δ + n}. Let a1 = δ + εn and
a3 = 1 − δ + ε′n with ε, ε′ ∈ {0, 1}. Changing the basis to {f ′1 = f1 + εnf3, f

′
2 = f2 + ε′nf3, f3} and

recalling that g{1,3} = g1 + g3, we have

A = f2v
3 (f3 + f ′2 + f ′1)

2n−2−2v(f3 + f ′2)f
′
2(f3 + f ′1)f

′
1

and the sequence is of the form 6.

The examples of minimal zero-sum sequences over C2
2⊕C2n can readily be ‘extrapolated’ to Cr−1

2 ⊕C2n

for each r ≥ 4 to yield numerous examples of minimal zero-sum sequences of length D∗(Cr−1
2 ⊕ C2n),

which is known to equal D(Cr−1
2 ⊕C2n) for suitable n. In Section 4, we give an example how potentially

interesting examples can be constructed in this way. This extrapolation also yields an informal ‘lower
bound’ on the length a characterization at the level of detail of Theorem 3.13, even for fairly small r > 3,
has to have. And, this ‘lower bound’ is definitely not sharp, since for each r ≥ 5 the characterization of
minimal zero-sum sequences of maximal length cannot be so uniform in n anymore, as it is known that
their lengths, as a function of n, also depends on the 2-valuation of n and not just the size of n. Thus, in
the author’s opinion, results giving only a somewhat rougher classification than Theorem 3.13 seem the
more feasible and relevant way to expand on this result. Indeed, a main reason for giving a description
at this level of detail for C2

2 ⊕ C2n at all is an immediate application where these details are helpful;
simplifications of Theorem 3.13 would almost directly cause complications in the proof of Lemma 4.7.

4 Applications of Theorem 3.13

In this section we discuss applications of Theorem 3.13. First, we show that this result in combination
with classical results essentially directly yields the exact value of D(C2

4 ⊕C4n) and D(C2
6 ⊕C6n) for each

n ∈ N. Second, we discuss implications of this result to questions, other than the height, on the structure
of long minimal zero-sum sequences over groups of the form Cr−1

2 ⊕ C2n. Finally, we prove a result on
the system of set of lengths of C2

2 ⊕ C2n; this result is very technical, yet crucial in Section 5, indeed to
get this result was a main motivation for proving Theorem 3.13.

4.1 The Davenport constant for some groups of rank three

As mentioned in Section 1 it is conjectured that D(G) = D∗(G) for groups of rank three. However, this
conjecture is wide open and so far was only confirmed for several special types of groups (see below for
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an overview); we contribute two new special types of groups (to be precise, the first assertion is new for
odd n ≥ 5 and the second one is new except for n a multiple of 64, a multiple of 81, a power of 2, or a
power of 3; cf. below).

Theorem 4.1. Let n ∈ N.

1. D(C2
4 ⊕ C4n) = D∗(C2

4 ⊕ C4n).

2. D(C2
6 ⊕ C6n) = D∗(C2

6 ⊕ C6n).

Our proof combines a classical method with Theorem 3.13. We recall this method and related notions.
Let G be a finite abelian group. Let ν(G) denote the smallest ` ∈ N such that for each zero-sum free

S ∈ F(G) with |S| ≥ ` we have G \ (Σ(S)∪{0}) ⊂ a+N for some subgroup N ( G and some a ∈ G \N .
The group G is said to have Property Q if ν(G) = D∗(G) − 2 and for each zero-sum free S ∈ F(G)

with |S| ≥ ν(G) we have G \ (Σ(S) ∪ {0}) ⊂ a + N for some subgroup N ( G of index two and some
a ∈ G \N .

It is known that
D(G)− 2 ≤ ν(G) ≤ D(G)− 1 (4.1)

and conjectured that equality always holds at the lower bound, except for the trivial group (see [18]).
This conjecture is known to hold true for p-groups and cyclic groups (see [53]). Moreover, it is known to
hold for certain groups of rank two, and if Property B is true for all n ∈ N—in fact, Property C that is
implied by Property B would suffice—then it holds for all groups of rank two (see [53] and [18]). Clearly,
Property Q can only hold for groups of even order. It is known that it holds for 2-groups, cyclic groups
of even order, and for certain groups of rank two whose 2-rank is two, and again assuming Property B
for all n, it is know to hold for all groups of rank two whose 2-rank is two (cf. [54]).

Yet, the only non-p-group of rank greater than two for which this conjecture was confirmed is the
group C2

2 ⊕ C6 (see [54]). As a direct consequence of Theorem 3.13, we can confirm this conjecture for
C2

2 ⊕ C2n for each n ∈ N and assert that they have Property Q (see Lemma 4.3).
The relevance of these notions is due to the following result established by P. C. Baayen, J. H. van Lint,

and P. van Emde Boas, D. Kruyswijk, respectively (see [53, 54]).

Proposition 4.2. Let G = ⊕3
i=1Cni

with n1 | n2 | n3.

1. If ν(G) = D∗(G)− 2, then D(⊕3
i=1C2ni) = D∗(⊕3

i=1C2ni).

2. If G has Property Q, then D(⊕3
i=1C3ni

) = D∗(⊕3
i=1C3ni

).

Note that the condition ν(G) = D∗(G)− 2, and thus also Property Q, implies that D(G) = D∗(G).
A considerable part of all known results on the equality D(G) = D∗(G) for groups of rank three is

obtained via combining this result with the results on ν(·) and Property Q recalled above. In addition
to the groups for which the equality D(G) = D∗(G) can be established in this way, the equality is known
for the following groups:

• p-groups (by the general result on p-groups).

• groups of rank three of the form G′ ⊕ Cn with G′ a p-group with D(G′) ≤ 2 exp(G′)− 1 and n co-
prime to exp(G) (see (3.2) and the discussion there) and if G ∼= Cn1 ⊕Cn2 ⊕Cn3m with n1 | n2 | n3

and m ∈ N and it is known that D(⊕3
i=1Cni

) = D∗(⊕3
i=1Cni

) and (n1n
2
2 − 2n2 − n1 − 2) ≤ n3 (see

[11]).

• C2
3 ⊕ C3n and C3 ⊕ C2

3n, the latter assuming n has Property B and n is co-prime to 6 (see [7, 6]).

For specific n these results allow to determine C2
4 ⊕ C4n and C2

6 ⊕ C6n (cf. the n we mentioned above),
yet not for general n. Thus, we prove the following result for C2

2 ⊕ C2n.
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Lemma 4.3. Let n ∈ N. Then ν(C2
2 ⊕ C2n) = D∗(C2

2 ⊕ C2n) − 2 and more precisely C2
2 ⊕ C2n has

Property Q.

Proof. By (4.1), it suffices to show the following. If S ∈ F(C2
2 ⊕C2n) with |S| ≥ D∗(C2

2 ⊕C2n)− 2, then
there exists a subgroup N ⊂ C2

2⊕C2n of index 2 and some y /∈ N such that C2
2⊕C2n\(Σ(S)∪{0}) ⊂ y+N .

We assume that Σ(S) 6= C2
2 ⊕ C2n \ {0}, since otherwise the claim is trivial. Thus, there exists some

g ∈ C2
2⊕C2n such that gS is zero-sum free, and hence (−σ(gS))gS is a minimal zero-sum sequence. Since

D(C2
2 ⊕C2n) ≥ |(−σ(gS))gS| = 2 + |S| ≥ D∗(C2

2 ⊕C2n) = D(C2
2 ⊕C2n). We get that S is a subsequence

of length D(C2
2 ⊕C2n)− 2 of a minimal zero-sum sequence of length D(C2

2 ⊕C2n). By Theorem 3.13 we
know the structure of all these minimal zero-sum sequences explicitly. Thus, we merely have to check,
via determining their set of subsums, that all these sequences actually fulfil these conditions.

We distinguish cases according to the type of minimal zero-sum sequences and then subcases according
to the type of the two missing elements. Additionally, we note that, say, for w3, w2 ∈ N we have
Σ(fw3

3 (f3 + f2)2w2) ⊃ {f3, 2f3, 3f3, . . . , (2w2 + w3)f3}. Thus, the set of subsums of the subsequence of
elements occurring with high multiplicity depends only in a mild way on the actual multiplicities of the
elements and this set of subsums contains almost the entire subgroup 〈f3〉 (or some other cyclic subgroup
of order 2n). The remaining details of the argument are a completely routine but long computation.
Thus, we omit them.

Now, Theorem 4.1 follows directly.

Proof of Theorem 4.1. Clear, by Proposition 4.2 and Lemma 4.3.

4.2 Some further implications of Theorem 3.13

We discuss implications of Theorem 3.13 regarding typical questions on the structure of minimal zero-sum
sequences (see [23]). We exclude the case n = 1 from our considerations, since this case is well-known
and to include it would require to treat it separately.

We start with a result on the support and the maximal multiplicity of an element in minimal zero-sum
sequences of maximal lengths.

Corollary 4.4. Let n ≥ 2. Let A ∈ A(C2
2 ⊕ C2n) with |A| = D(C2

2 ⊕ C2n).

1. | supp(A)| ∈ [4, 6]. This is optimal for n ≥ 3, yet for n = 2 we have | supp(A)| ≤ 5.

2. There exists some g ∈ supp(A) such that vg(A) > 2n/4, and this bound is best possible.

Proof. We use the notation introduced in Theorem 3.13.
1. If A is of the form as given by 1.–5. of Theorem 3.13 it is clear that 4 ≤ | supp(A)| ≤ 5. Suppose
A is of the form 6. Since σ(S) 6= 0 it follows that | supp(S)| > 1, and clearly | supp(S)| ≤ 4, thus
4 ≤ | supp(A)| ≤ 6. Moreover, note that in case n = 2 we have | supp(S)| ≤ 3. To see that the result is
optimal, it suffices to consider the sequences 02n−1(f1 + f2), 02n−2f1f2, and 02n−4f1f2(f1 + f2)2, which,
for n ≥ 3, shows that the support of the sequences of the form 6. indeed can be any of 4, 5, or 6; where
as for n = 2 we get 4 and 5.
2. Let g ∈ supp(A) such that w = vg(A) is maximal. Inspecting the classification in Theorem 3.13, we
see that w is at least as large as claimed in the case 1.–5. and for 6. we directly get w ≥ n/2. Yet, we note
that in case n is even, the only sequence S ∈ F(〈f1, f2〉) compatible with w = n/2 is (0f1f2(f1 + f2))n/2,
which has sum 0. Thus, in 6. actually w > n/2 holds. The optimality is clear by Example 3.8.

W. Gao and A. Geroldinger [19, 21] started to investigate the order of elements in minimal zero-sum
sequences of maximal lengths; recently these investigations have been expanded by B. Girard [36, 37]. We
explore how our result relates to results and conjectures obtained in the context of these investigations.
For A ∈ A(G) let SA =

∏
g∈supp(A), ord(g)=exp(G) gvg(A) the subsequences of elements of order equal to the

exponent.

23



Corollary 4.5. Let n ≥ 2, and let A ∈ A(C2
2 ⊕ C2n) with |A| = D(C2

2 ⊕ C2n).

1. |SA| ≥ 2n− 2, in particular there exists some g ∈ supp(A) with ord(g) = exp(G).

2. k(A) ≤ 2.

Proof. We use the notation introduced in Theorem 3.13.
1. Clear, by Theorem 3.13.
2. For A of the form 1., 2., and 6. in Theorem 3.13 this is clear. In case A is of the form 3. we note that
the order of each of the elements af3+f2, bf3+f1, and cf3+f2+f1 is a multiple of 2, and by the conditions
on a, b, c none of these orders is equal to 2, thus k((af3 + f2)(bf3 + f1)(cf3 + f2 + f1)) ≤ 3/4, and the
claim follows. In case A is of the form 4. or 5., it suffices to show that k((af3 + f2)((1−a)f3 + f2)) ≤ 1/2
for each a ∈ [2, n− 1]. Again, we have that the order of af3 + f2 and of (1− a)f3 + f2 is a multiple of 2
but not equal to 2, and the claim follows.

The first statement of this corollary, for this type of groups, confirms [19, Conjecture 6.1], stating that
each minimal zero-sum sequence of maximal length contains some element of order exp(G); additionally,
we note that our lower bound 2n − 2, for certain n, cannot be improved (also cf. Corollary 4.6). The
second statement confirms, for this types of groups, [36, Conjecture 1.2], stating that if S ∈ F(⊕r

i=1Cni
),

where ni | ni+1, and S is zero-sumfree with |S| ≥
∑r

i=1(ni − 1), then k(S) ≤
∑r

i=1(ni − 1)/ni; note that
2 = (2n − 1)/(2n) + 1/2 + 1/2 + 1/(2n), and that we consider a minimal zero-sum sequence of length
1 +

∑r
i=1(ni − 1), which explains the additional 1/(2n).

We end with a result, obtained via extrapolating an example of a minimal zero-sum sequences found
in Theorem 3.13, that gives an example of a group for which minimal zero-sum sequence of maximal
length can contain relatively few elements of order equal to the exponent.

Corollary 4.6. For each N ∈ N there exists a finite abelian group G with exp(G) ≥ N that has the
following property. There exists some A ∈ A(G) with |A| = D(G) such that |SA| ≤ 2 exp(G)/3 + 1.

Proof. Let N ∈ N and suppose N ≥ 3. Let n = 2`−13 with ` ≥ log2 N . Let r = 2` and G = Cr−1
2 ⊕C2n =

⊕r
i=1〈fi〉 with ord(fr) = 2n and ord(fi) = 2 for i ∈ [1, r − 1]. By (3.2), note that G ∼= G′ ⊕ C3 with

G′ = C2`−1
2 ⊕ C2` , we know that D(G) = D∗(G). Let, cf. the sequence of type 5. in Theorem 3.13,

A = f2n−(r−1)
r

r−1∏
i=1

(4fr + fi)(−3fr + fi).

Then A ∈ A(G) with |A| = D(G) and SA = f
2n−(r−1)
r . Thus |SA| = 2`3 − r + 1 = 2`+1 + 1 =

2 exp(G)/3 + 1.

This result is in sharp contrast with a recent result of B. Girard [37], asserting that for G a p-group
and A ∈ A(G) with |A| = D(G) one has |SA| ≥ exp(G). A construction of exceptionally long minimal
zero-sum sequences (of lengths greater than D∗(G)) over Cr−1

2 ⊕C12 containing few elements of maximal
order was recently given by S. Griffiths [38].

Moreover, note that if we impose the condition that |A| = D∗(G) instead of |A| = D(G), then SA

can be empty, since in the above construction no condition on r needs to be imposed—we do not need
to apply (3.2)—and we thus can choose r to equal 2n + 1. These observations reinforce the believe that
to confirm [19, Conjecture 6.1], mentioned above, in general is difficult, as such an argument, at least
implicitly, has to contain fairly detailed information on the phenomenon D(G) > D∗(G); and this not
only for groups of the form Cr−1

2 ⊕ C2n as the above construction can be generalized, e.g., consider
the sequence f

pn−(r−1)
r

∏r−1
i=1 (p2fr + fi)p−1((1 − (p − 1)p2)fr + fi) over Cr−1

p ⊕ Cpn = ⊕r
i=1〈fi〉 where

p(1− (p− 1)p2) | n.
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4.3 A result on L(C2
2 ⊕ C2n)

Intensely using Theorem 3.13, we prove the following result, which is crucial in Section 5.

Lemma 4.7. Let n ∈ N. Then {2, 3, 2n, 2n + 1, 2n + 2} /∈ L(C2
2 ⊕ C2n).

We recall two technical results used in its proof (for the first see [30] or [52, Lemma 9.4], for the second
see [32, Lemma 6.4.5]).

Lemma 4.8. Let B ∈ B(G). If {2,D(G)} ⊂ L(B) then B = (−A)A with A ∈ A(G) and |A| = D(G).
Moreover, if additionally D(G)− 1 ∈ L(B), then there exists (possibly equal) g, h ∈ G with gh(g + h) | A.

Lemma 4.9. Let A ∈ A(G) with |A| ≥ 2. Let W ∈ A(G) such that W | (−A)A. Then |A| − |W |+ 2 ∈
L((−A)A).

Proof of Lemma 4.7. Assume to the contrary that there exists some B ∈ B(C2
2 ⊕ C2n) with L(B) =

{2, 3, 2n, 2n+1, 2n+2}. Since D(C2
2 ⊕C2n) = 2n+2 and {2, 2n+2} ⊂ L(B) it follows by Lemma 4.8 that

B = (−A)A with A ∈ A(C2
2⊕C2n) and |A| = 2n+2. By Theorem 3.13 we have precise information on the

structure of A; we use the notation introduced there. Additionally, we observe that, since 2n + 1 ∈ L(B)
and by Lemma 4.8, there exist g, h ∈ C2

2 ⊕C2n such that gh(g +h) | A. Thus we may assume that n ≥ 2,
since for n = 1 we have σ(gh(g + h)) = 0, a contradiction.

First, we assert that A is not of the form given 1., 2., and 3. of Theorem 3.13, by showing that
A does not have a subsequence of the form gh(g + h). For 1. this is clear. For 2. we note that
(f3 + f2) + (af3 + f1) = −af3 + f2 + f1 is equivalent to (2a − 1)f3 = 0, which is impossible; the other
cases are analogous. The reasoning for 3. is analogous to the one for 2.

Now, suppose A is of the form given in 4. Let W = f2((1− a)f3 + f2 + f1)(−(af3 + f1))fv
3 (f3 + f2)w

where v+w = 2a−1 and 2 | w. Then W ∈ A(C2
2 ⊕C2n) and W | (−A)A. We have |W | = 2a+2 and thus

by Lemma 4.9 |A|−|W |+2 = 2n+2−(2a+2)+2 ∈ L(B). So, we have 2(n−a+1) ∈ {2, 3, 2n, 2n+1, 2n+2}
and consequently n − a + 1 ∈ {1, n, n + 1}. Yet, this means that a ∈ {n, 1, 0}, a contradiction, since
a ∈ [2, n− 1].

Next, suppose A is of the form given in 5. We proceed similarly as above. Let W = ((1 − a)f3 +
f2)(−(af3 + f2))f2a−1

3 . We have W ∈ A(C2
2 ⊕ C2n), W | (−A)A, and |W | = 2a + 1. Consequently,

2n + 3− 2a ∈ L(B), implying that a ∈ {1, n}, a contradiction.
Finally, suppose A is of the form given in 6. We show that 3 /∈ L(B). Assume to the contrary

B = A1A2A3 with Ai ∈ A(C2
2 ⊕ C2n). Let π : C2

2 ⊕ C2n → 〈f3〉 denote the canonical projection with
respect to the basis {f1, f2, f3}.

First, we assert that Ai /∈ {f2
1 , f2

2 } for each i. Assume to the contrary that, say, A1 = f2
1 . We

note that Ai 6= f2
2 for i ∈ {2, 3}, since otherwise the remaining minimal zero-sum sequence would

have length 4n > 2n + 2, a contradiction. Thus, f2 | A2 and f2 | A3. We note that vf3(π(Ai)) 6= n
for i ∈ {2, 3}. Thus vf3(π(Ai)) = v−f3(π(Ai)) and the length of Ai is odd for i ∈ {2, 3}. Consequently
|A2| = |A3| = 2n+1. Let g1g2h1h2 | A3 such that π(gi) = f3 and π(hi) = −f3. Then (gi+hi) ∈ 〈{f1, f2}〉,
and the sequence (g1 + h1)(g2 + h2)f2 has a zero-sum subsequence, which yields a zero-sum subsequence
of A3. Since A3 is a minimal zero-sum subsequence, it follows that A3 = g1g2h1h2f2, implying n = 2.
Clearly supp(A2) cannot contain two elements that are inverse to each other. Thus, it follows that
(g1 − f3)(g2 − f3)(h1 + f3)(h2 + f3) = S, with S as defined in Theorem 3.13, and thus σ(S) = f2, a
contradiction to σ(S) = f1 + f2.

So, we may assume that f1 | A1, f2 | A2, and f1f2 | A3. We note that, for each i ∈ {1, 2, 3},
Ai /∈ {−A,A}, thus vf3(π(Ai)) = v−f3(π(Ai)) > 0. Similarly as above, let gh | A3 such that π(g) = f3

and π(h) = −f3. It follows that (g + h)f1f2 has a zero-sum subsequence, which by the minimality of A3

implies that A1 = ghf1f2. Since |A1|+ |A2| = 4n and the lengths of A1 and A2 is odd, we may assume
that |A2| ≥ 2n + 1. Again, let g1g2h1h2 | A2 such that π(gi) = f3 and π(hi) = −f3. As above, it follows
that A2 = g1g2h1h2f2, yielding a contradiction.
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5 Characterization of class groups

As mentioned in Section 1 we apply Theorem 3.13 to the problem of characterizing the class group of a
Krull monoid with finite class group where each class contains a prime divisor via the system of sets of
lengths, for specific types of groups. We imbed these investigation into a more general analysis of this
problem for groups of large exponent. In this more general case, we do not obtain a full answer, yet we
can show that at least the exponent of the group is determined by the system of sets of length.

We refer to, e.g., [32, 31] for detailed information on Krull monoids (as well as other notions briefly
discussed below) and we recall that the multiplicative monoid of the ring of algebraic integers of a number
field (and its ideal class group) are the classical example of a Krull monoid with the above properties;
for further examples see, e.g., [32], in particular Example 2.3.2, Sections 2.10 and 2.11, also cf. Example
7.4.2.

It is well-known that for M a Krull monoid with class group G where each class contains a prime
divisor, one has L(M) = L(B(G)). A first version of this result is due to W. Narkiewicz and the latter
developments mainly due to A. Geroldinger and F. Halter-Koch (see, e.g., [32, Chapter 3] for this and
related results). Thus, the problem of characterizing the class group of M via the system of sets of lengths
is reduced to the problem of characterizing G via L(B(G)). Recall that we write L(G) instead of L(B(G))
and refer to it as the system of sets of lengths of G.

The problem for which types of finite abelian groups the system of sets determines the group, i.e., for
which G the fact that L(G) = L(G′) implies that G ∼= G′, was originally considered by A. Geroldinger
[30]. Various of the investigations on sets of lengths undertaken since that time are motivate by the
aim of making progress on this problem (see, e.g., [32, Chapters 6 and 7]). For detailed information on
the general problem of giving arithmetical definitions of class groups (not necessarily restricted to sets
of lengths only), a problem raised by W. Narkiewicz, we refer to [32, Chapter 7]. For recent related
investigations see, e.g., [2, 12].

In [30] a characterization via the system of sets of lengths was obtained in case the group is a cyclic
group, an elementary 2-group, or of the form C2 ⊕ C2n, and its Davenport constant is at least 4; and
additionally in case the Davenport constant of the class group is at most 7. For further results on this
problem see [52, 51], where this problem is solved for groups of the form C2

n and in case the Davenport
constant is at most 10. For the four groups whose Davenport constant is less than 4, the situation is
slightly different. Namely, it is only possible to determine from the system of sets of lengths whether the
group is isomorphic to one of the groups C1 and C2, and whether it is isomorphic to one of the groups
C2

2 and C3; the first is essentially due to L. Carlitz [9] the latter due to A. Geroldinger [30]. Presently,
these two pairs of groups are the only known examples for the phenomenon that non-isomorphic groups
yield the same system of sets of lengths, and it is thus an open problem whether all other types of groups
are characterized by the system of sets of length or whether there are more ‘exceptions’.

Here, we obtain such a characterization via the system of sets of lengths for several other types of
groups (see Theorems 5.3 and 5.6). As indicated in Section 1 the author believes that the most relevant
aspect of these results is the fact that C2

2 ⊕C6n and C3 ⊕C6n can be distinguished by the system of sets
of length. In this case the ‘large’ group C6n is only slightly ‘perturbed’ in two distinct ways in such a
way that both ‘perturbations’ have the same effect on those invariants that were used in essentially all
characterization results established so far, namely the Davenport constant and the large elements of the
set ∆1(G); additionally, note that in this case the ‘perturbations’ C2

2 and C3 even have the same system
of sets of lengths. No other result of this form was known so far; note that for C2n

∼= C1 ⊕ C2n and
C2 ⊕C2n the Davenport constants are different and C2

n can be treated as one ‘large’ group that remains
‘unperturbed’. Thus, to address this problem for C2

2 ⊕ C6n and C3 ⊕ C6n for n ∈ N seems of particular
relevance in this context.

The proofs of such characterization results are often informally split into two steps. First, via general
considerations, it is asserted that only a few groups can have the same system of sets of lengths as the
(type of) group under consideration. Second, via more explicit arguments, one distinguishes these few
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remaining groups.
For our investigations we need some additional notation and results. We recall them very briefly, for

details see, e.g., [32, Section 7.3] and [52].
Let G be a finite abelian group. It is well-know that the Davenport constant of G, for |G| ≥ 2,

is determined by L(G); recall that D(G) = max{max L : L ∈ L(G), 2 ∈ L} (see [30, Lemma 7]). The
set ∆1(G), introduced in [30], is the set of all d ∈ N such that L(G) contains arbitrarily long almost
arithmetical progressions with difference d; almost arithmetical progression informally means an arith-
metical progression where a globally bounded number of elements at the beginning and the end of the
arithmetical progressions may be missing. Thus, obviously ∆1(G) is determined by L(G).

In particular, we have that if G and G′ are finite abelian groups with at least two elements such that
L(G) = L(G′), then

D(G) = D(G′) and ∆1(G) = ∆1(G′). (5.1)

The relevance of the set ∆1(G) in this context is due to the fact that via the Structure Theorem for
Sets of Lengths (see, e.g., [32, Chapter 4]) this set ∆1(G) is known to be closely linked to a set ∆∗(G)—we
omit the definition—which can be investigated more directly than ∆1(G) itself. Namely, ∆∗(G) ⊂ ∆1(G)
and ∆1(G) consist of divisors of elements of ∆∗(G); thus, all elements of ∆1(G) that are greater than
half of the maximum of this set are directly determined by ∆∗(G), yet not all its elements (see [20]).

We recall some results on ∆1(G) that we need in our investigations (all these results are actually
result on ∆∗(G), suitably transcribed).

It is well-known that ∆1(G) 6= ∅ if and only if |G| ≥ 3; specifically, if |G| ≥ 3, then 1 ∈ ∆1(G)
(see [30]). Moreover, it is known that [1, r(G) − 1] ⊂ ∆1(G), exp(G) − 2 ∈ ∆1(G) if exp(G) ≥ 3, and
max ∆1(G) ≤ D(G)−2 except for the trivial group (see, e.g., [32]). Thus, if G is cyclic with |G| ≥ 3, then
max ∆1(G) = exp(G)−2, and more generally it is known (see [20]) that if |G| ≤ exp(G)2 and exp(G) ≥ 3,
then max ∆1(G) = exp(G)− 2 (for more precise results on ∆1(Cn) cf. [33] and for recent results related
to the latter assertion cf. [51]).

Furthermore, we have
max ∆1(G) = max{exp(G)− 2,m(G)} (5.2)

where m(G) is a certain constant that fulfills m(G) ≤ max{r∗(G) − 1,K(G) − 1}. And, if G is a p-
group, then m(G) = r(G) − 1, in particular max∆1(G) = max{exp(G) − 2, r(G) − 1}; additionally, if
r(G) ≥ exp(G)− 1, then ∆1(G) = [1, r(G)− 1] (see [51]).

Additionally, we recall that if G does not have a subgroup isomorphic to C2
exp(G) and exp(G) ≥ 5,

then (cf. [51, Theorem 3.2])

max(∆1(G) \ {exp(G)− 2}) = max{bexp(G)
2

c − 1,m(G)}. (5.3)

Using the fact that L(G) = L(G′) implies that D(G) = D(G′), excluding the trivial group, and the
fact that only finitely many (up to isomorphy) groups can have the same Davenport constant, some
restriction on the groups that possibly can have the same system of sets of lengths can readily and
generally be inferred. However, except when limiting to the consideration of groups with a very small
Davenport constant this restriction alone is in general too weak, to allow to address all groups fulfilling
it via more explicit considerations. And, an analogous statement holds true replacing D(G) = D(G′) by
max ∆1(G) = max ∆1(G′).

Yet, combining information on D(G) and max ∆1(G), in certain cases, considerably more restrictive
conditions can be inferred.

Proposition 5.1. Let G 6= {0} be a finite abelian group. Let d = max ∆1(G) and R = D(G) − d. At
least one of the following statements holds.

1. There exists a finite abelian group G1 with D(G1) ≤ R − 1 and exp(G1) | (d + 2) such that G ∼=
G1 ⊕ Cd+2.
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2. r(G) ≥ min{8d− 6R + 13, d−R/3 + 5/3} and exp(G) < d + 2.

Proof. By (5.2) we have d = max{exp(G)− 2,m(G)}.
First, suppose that d = exp(G)−2. Then, there exists a finite abelian group G1 with exp(G1) | (d+2)

such that G ∼= G1 ⊕ Cd+2. Since d + R = D(G) ≥ (d + 2) + D(G1)− 1, the first statement holds true.
Second, suppose that d 6= exp(G) − 2. Then d = m(G) and m(G) > exp(G) − 2, in particular

exp(G) < d + 2. Then, by the remark after (5.2), we have d ≤ K(G)− 1 or d ≤ r∗(G)− 1.
Suppose the former holds true. We get R − 1 ≥ D(G) − K(G). Let A =

∏`
i=1 gi ∈ A(G) with

k(A) = k(G) and assume that 0 - A. It follows that

R− 1 ≥ |A| − k(A) =
∑̀
i=1

ord(gi)− 1
ord(gi)

.

Suppose that `2 of the gis have order 2. Then, we get R− 1 ≥ `2/2 + 2(`− `2)/3, and using the fact that
` ≥ 2 k(A) and the assumption d ≤ K(G)− 1, this yields that `2 ≥ 8d− 6R +14. We observe that r(G) ≥
r2(G) ≥ `2−1. Now, suppose d ≤ r∗(G)−1. Recalling that D(G) ≥ 4 r∗(G)−3 r(G)+1 (see Section 2) and
since d = D(G)−R, it follows that r(G) ≥ d−R/3+5/3. Thus, r(G) ≥ min{8d−6R+13, d−R/3+5/3}.

Note that, except for the trivial group, since max∆1(G) ≤ D(G)− 2 we have R ≥ 2. In Proposition
5.5 we expand on this result for R = 4; the case R = 2 and R = 3 are not considered in detail, since
they correspond to the problem of characterizing cyclic groups, elementary 2-groups, and groups of the
form C2 ⊕ C2n, which is well-known. However, note that the characterization of C2

n does not directly
correspond to the case R = n + 1, though closely related arguments are used.

Next, we apply Proposition 5.1 to groups with a relatively large exponent.

Proposition 5.2. Let G be a finite abelian group with exp(G) = n ≥ 4, say G ∼= G1 ⊕ Cn. Let G′ be a
finite abelian group with L(G′) = L(G). Suppose at least one of the following conditions holds.

1. The rank of G is at most two.

2. D(G) ≤ 7n/4− (3 log2 n + 18)/4.

Then, exp(G) = exp(G′) and more precisely G′ ∼= G′
1⊕Cn with exp(G′

1) | n and D(G′
1) ≤ D(G)− (n−1).

The first condition is almost, yet not entirely, a special case of the second one.

Proof. 1. Suppose the first condition holds. Let m ∈ N such that G ∼= Cm ⊕ Cn.
If m = n or n = 4, the claim follows by [51] and [30], respectively; indeed, in this case we have G ∼= G′

(cf. the discussion at the beginning of this section). Thus, we assume that m 6= n and that n ≥ 5.
Since G is a group of rank at most two, we know that D(G) = D∗(G) = n+m−1, max∆1(G) = n−2,

and bn/2c /∈ ∆1(G) (see (5.3)). Since L(G) = L(G′) and by (5.1), we know that ∆1(G) = ∆1(G′) and
that D(G) = D(G′).

We apply Proposition 5.1 to G′. We need to assert that the first statement holds. Assume to the
contrary that r(G′) ≥ min{8(n − 2) − 6R + 13, (n − 2) − R/3 + 5/3} where R = m + 1. Noting that
m ≤ n/2, it follows that r(G′) ≥ bn/2c+ 1. By (5.1) we get that bn/2c ∈ ∆1(G′), a contradiction.
2. Suppose the second condition holds. The argument is similar. We start by bounding m(G). As recalled
above, we know that m(G) ≤ max{K(G)−1, r∗(G)−1}. We recall the upper bounds K(G) ≤ 1/2+log |G|
(see Section 2) and r∗(G) ≤ log2 |G|. For G1

∼= ⊕s
i=1Cmi

with mi | mi+1 we have D(G)−n ≥ D(G1)−1 ≥∑s
i=1(mi−1). Since m−1 ≥ log2 m ≥ log m for each m ∈ N, we get that m(G) ≤ max{log n+(D(G)−n)−

1/2, log2 n+(D(G)−n)−1} = log2 n+D(G)−n+1. In particular, by our assumption on D(G), we have
m(G) ≤ n−4. Again, by the condition on D(G), we know that G has no subgroup isomorphic to C2

n, and
thus by (5.2) and (5.2) we have that max∆1(G) = n−2 and max(∆1(G)\{n−2}) = max{m(G), bn/2c−1}.
We set R = D(G)− (n− 2).
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Again, we have ∆1(G) = ∆1(G′) and that D(G) = D(G′), and we apply Proposition 5.1 to G′.
It suffices to show that the second statement cannot hold. Assume to the contrary that the second
statement holds, i.e., r(G′) ≥ min{8(n − 2) − 6R + 13, (n − 2) − R/3 + 5/3} = (n − 2) − R/3 + 5/3.
Again, we show that in this case ∆1(G′) contains some element not contained in ∆1(G), yielding a
contradiction and thus establishing our result. Since [1, r(G′) − 1] ⊂ ∆1(G′), it suffices to show that
r(G′) − 1 ≥ max{m(G) + 1, bn/2c}; recall that max{m(G) + 1, bn/2c} < n − 2 and the result on ∆1(G)
established above. By the above upper bound on m(G), the lower bound on r(G′), and the condition on
R implied by the assumption on D(G′) = D(G), this inequality holds.

Now, we formulate the first of our characterization results.

Theorem 5.3. Let G and G′ be be finite abelian groups such that L(G) = L(G′).

1. If G ∼= C2
2 ⊕ C2n for some n ∈ N, then G ∼= G′.

2. If G ∼= C3 ⊕ C3m for some m ∈ N, then G ∼= G′.

3. If G ∼= Cr−1
2 ⊕ C4 for some r ∈ N, then G ∼= G′.

Applying Proposition 5.1, we see in Proposition 5.5 that the groups appearing in this result are
precisely the groups with D(G) = max∆1(G) + 4. This can be seen as the ‘first step’, in the informal
sense mentioned above. Yet, additional arguments are required to distinguish these three types of groups.
To distinguish Cr−1

2 ⊕ C4 from the two other groups Proposition 5.2 is almost sufficient, yet it is not
applicable for C2

2 ⊕C2n for some small n. Thus, we use a result on the ∆1-sets instead (see below), which
we need anyway for proving Proposition 5.5. Yet, to distinguish C2

2 ⊕ C2n and C3 ⊕ C3m requires more
detailed knowledge on the system of sets of lengths (available via Lemma 4.7).

Lemma 5.4. Let m,n, r ∈ N.

1. If n ≥ 3, then max ∆1(C2
2 ⊕ C2n) = 2n− 2 and 2n− 3 /∈ ∆1(C2

2 ⊕ C2n).

2. max ∆1(C3 ⊕ C3m) = 3m− 2 and 3m− 3 /∈ ∆1(C3 ⊕ C3m).

3. max ∆1(Cr−1
2 ⊕ C4) = max{2, r − 1} and more precisely ∆1(Cr−1

2 ⊕ C4) = [1,max{2, r − 1}].

Proof. 1. For n = 3 this is proved in [52, Propostion 9.1]. For n ≥ 4, using the inequalities r∗(C2
2⊕C2n) ≤

3 + log n and K(C2
2 ⊕C2n) ≤ 1/2 + log(8n) (see Section 2), we get that m(C2

2 ⊕C2n) < 2n− 3. Thus, the
result on max ∆1(C2

2 ⊕ C2n) follows by (5.2). The other claim follows by (5.3).
2. For m = 1, this follows by the results on ∆1 for p-groups recalled above; note that 0 /∈ ∆1(C2

3 ) by
definition. For m ≥ 2, see [50, Corollary 6.4]; or, for m ≥ 3, this can be obtained similarly to 1.
3. This follows by the results on ∆1 for p-groups and the fact 1 ∈ ∆1(Cr−1

2 ⊕C4) recalled above; also see
[30].

Proposition 5.5. Let G be a finite abelian group. Let d ∈ N. The following statements are equivalent.

1. max ∆1(G) = d and D(G) = d + 4.

2. G is isomorphic to C2
2 ⊕ Cd+2 with 2 | d, C3 ⊕ Cd+2 with 3 | (d + 2), or Cd

2 ⊕ C4 with d ≥ 2.

Proof. First, assume that G is of the form given in 2. We observe that D(G) = d+4 (cf. the remark after
(2.1) and, e.g., Theorem 3.13). By Lemma 5.4 it follows that max∆1(G) = d. Thus, 2. implies 1.

Second, assume max ∆1(G) = d and D(G) = d + 4. First, we observe that if d = 1, then by the
results recalled at the beginning of this section we have exp(G) ≤ 3 and r(G) ≤ 2, and by assumption
we have D(G) = 5, implying that G ∼= C2

3 . Thus, we assume d ≥ 2. Since for n, r ∈ N we have
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max ∆1(Cn) = max{0, n − 2} and max∆1(Cr
2) = r − 1 whereas D(Cn) = n and D(Cr

2) = r + 1, we get
that G is neither cyclic nor an elementary 2-group.

We apply Proposition 5.1. First, suppose that exp(G) = d + 2. Then G ∼= G1 ⊕ Cd+2 with exp(G1) |
(d + 2) and D(G1) ≤ 3. Thus, G1 is isomorphic to C1, C2, C2

2 , or C3. Yet, if G1 is isomorphic to C1 or
C2, then, by the remark after (2.1), D(G) is equal to exp(G) or exp(G) + 1, resp., a contradiction. So, G
is isomorphic to C2

2 ⊕ Cd+2 with 2 | d or C3 ⊕ Cd+2 with 3 | (d + 2).
Second, suppose that exp(G) < d + 2. Then, we get r(G) ≥ d + 1/3, and since r(G) − 1 ≤ d we

have r(G) = d + 1. Since as recalled in Section 2, we have D(G) ≥ 4 r∗(G) − 3 r(G) + 1, it follows that
r∗(G) = r(G), i.e., G is a p-group. Since D(G) = r(G) + 3, we get by (2.1) that G ∼= Cd

2 ⊕C4; recall that
max ∆1(C2

3 ) = 1 and that G is neither cyclic nor an elementary 2-group.

Now, we proof Theorem 5.3. In view of the preparatory results, it remains to distinguish the systems
of sets of lengths of the three types of groups we want to characterize, i.e., the ‘second step’ of our
argument. We recall that, since up to Davenport constant 10 the problem of characterization via the
system of sets of lengths is solved (cf. above), we can assume that the Davenport constant of each involved
group is at least 8; to make the stronger assumption that it is 11 is not helpful. In this proof we see the
crucial role of Lemma 4.7.

Proof of Theorem 5.3. As noted above we may assume D(G) ≥ 8, i.e., n ≥ 3, m ≥ 2, and r ≥ 5,
respectively. By Proposition 5.5 we have, in each of the three cases, D(G) = max∆1(G) + 4. We set
d = max∆1(G) and note that d ≥ 4. Thus, by (5.1) D(G′) = max ∆1(G′) + 4. Again, by Proposition 5.5
G′ is isomorphic to C2

2 ⊕ Cd+2 with 2 | d, C3 ⊕ Cd+2 with 3 | (d + 2), or Cd
2 ⊕ C4. By Lemma 5.4

we get that ∆1(Cd
2 ⊕ C4) is an interval, whereas the ∆1-sets for the two other groups are not intervals.

Thus, L(Cd
2 ⊕ C4) is distinct from the sets of lengths of the two other types of groups and it remains

to show that L(C3 ⊕ Cd+2) 6= L(C2
2 ⊕ Cd+2) for 6 | (d + 2). We recall that by [32, Lemma 6.6.4]

we have {2, 3, 3`, 3` + 1, 3` + 2} ∈ L(C3 ⊕ C3`) for each ` ∈ N; one considers L((−A)A) where A =
e3`−1
2 e2

1(e1 + e2) and C3 ⊕C3` = 〈e1〉 ⊕ 〈e2〉 and the orders of e1 and e2 are 3 and 3`, respectively. Thus
{2, 3, 6k, 6k + 1, 6k + 2} ∈ L(C3 ⊕ C6k) for each k ∈ N. Yet, by Lemma 4.7 with n = 3k we get that
{2, 3, 6k, 6k + 1, 6k + 2} /∈ L(C2

2 ⊕ C6k) for each k ∈ N, and the claim follows.

We end with an additional characterization result and some discussion. Proposition 5.2 shows that
for a group G with a relatively large exponent (in the sense of that proposition) if G′ is a finite abelian
group with L(G) = L(G′), then exp(G) = exp(G′). Moreover, we know that D(G) = D(G′). In the result
below, we illustrate that in certain cases this information is sufficient to fully characterize the group via
its system of sets of lengths.

Theorem 5.6. Let p be a prime and r ∈ N.

1. Let n ∈ N \ {1} such that d - n for each d ∈ [2, p]. If L(Cp ⊕ Cpn) = L(G) for some finite abelian
group G, then G ∼= Cp ⊕ Cpn.

2. There exists some Np,r ∈ N such that for each n ∈ N \ {1} with d - n for each d ∈ [2, Np,r] we have
the following. If L(Cr−1

p ⊕ Cpn) = L(G) for some finite abelian group G, then G ∼= Cr−1
p ⊕ Cpn.

Proof. 1. Suppose that L(Cp ⊕ Cpn) = L(G). By Proposition 5.2 we get that G ∼= G1 ⊕ Cpn with
exp(G1) | pn and D(G1) ≤ p. Since exp(G1) = 1 is easily seen to be impossible, e.g., compare the
Davenport constants, and clearly exp(G1) ≤ D(G1), we get by our assumption on n that exp(G1) = p,
and thus G1

∼= Cp establishing the claim.
2. We set Np,r = 2pr, which is not optimized. We know that max ∆1(G) = np − 2, e.g., observe that
|G| ≤ (np)2. Suppose that L(Cr−1

p ⊕Cpn) = L(G). We observe that by (3.1) and (2.2) D(Cr−1
p ⊕Cpn) ≤

DD(Cn)(Cr
p) ≤ np+D′

0(C
r
p); and we recall D′

0(C
r
p) ≤ η(Cr

p) ≤ pr (see Section 2). By Proposition 5.2, note
that by our assumption on n and the above bound for the Davenport constant it is applicable, we get
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that G ∼= G1 ⊕ Cpn with exp(G1) | pn and D(G1) ≤ D′
0(C

r
p). As in 1. we see that exp(G1) = p. Thus

G ∼= Cs−1
p ⊕ Cpn for some s ∈ N \ {1}. Yet, as recalled in Section 2 D(Cs−1

p ⊕ Cpn) = D(Cr−1
p ⊕ Cpn)

only if r = s, the claim follows.

We note that the only problem impeding a full generalization of the characterization result to all
groups with large exponent (including groups of rank two), is the problem of distinguishing (or asserting
the equality) of the system of sets of lengths of groups G1 ⊕ Cn and G2 ⊕ Cn where exp(Gi) | n and the
Davenport constants are equal. Yet, to overcome this problem in general might be difficult; in particular,
in the case that G1 and G2 are too large (in an absolute sense) to allow an explicit approach, as carried
out in the present paper for C2

2 and C3, yet are too small relative to n to have a significant effect on the
system of sets of lengths.
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