ARITHMETIC OF BLOCK MONOIDS

WOLFGANG A. SCHMID

ABSTRACT. We investigate block monoids, the monoid of zero-sum sequences,
over abelian groups and their divisor-closed submonoids. We derive some
results that can be used as tools when investigating the arithmetic of such
monoids. Moreover, we investigate block monoids over so-called simple sets,
the somehow simplest kind of sets with the property that the block monoid
has non-unique factorization.

1. INTRODUCTION

We are interested in the arithmetic of Krull monoids with finite class group where
every class contains a prime divisor. In particular, the multiplicative monoids of
rings of integers are monoids with these properties. To understand the arithmetic
of such monoids we investigate the arithmetic of block monoids over the divisor
class group and of its divisor-closed submonoids.

Let G be an additively written, abelian group and Gy C G some subset. We
denote by F(Gq) the free abelian monoid with basis Gy and we refer to its el-
ements as sequences. Then B(Gy), the block monoid over Gy, is the set of all
zero-sum sequences, i.e. sequences S = Hé:l g9i € F(Gyp) such that the sum
o(S) = 22:1 gi = 0 € G. Since the embedding B(Gy) — F(Gy) is a divisor
homomorphism, every block monoid is a Krull monoid (respectively a semigroup
with divisor theory).

Block monoids were introduced in [Nar79] and are used, via the notion of the
divisor class group and appropriate transfer homomorphisms, to investigate various
phenomena of non-unique-factorization for arbitrary Krull monoids and especially
for algebraic number fields (cf. e.g. [GH92]). In particular, if one is only interested
in lengths of factorizations, then studying the associated block monoid is equivalent
to studying the Krull monoid itself.

For a detailed description of the notion of the associated block monoid of a
Krull monoid and further examples of Krull monoids respectively the application
of block monoids we refer to the survey articles [HK97] and [CG97] in [And97] and
the references given there. For the algebraic theory of Krull monoids cf. [HK9S8,
Chapter 22 and Chapter 23].

In this article we do not investigate a particular phenomenon of non-unique-
factorization in block monoids, but the results we obtain can be seen as tools
suitable for application to different types of problems related to block monoids,
such as half-factorial sets or differences in sets of lengths cf. [Sch03b].

In particular, we will construct for some given Gy C G a set G§; such that B(Gy)
and B(G§) have the same arithmetic, but G§ is easier to handle from a group
theoretical point of view (cf. Theorem 3.17).

In Section 4 we investigate the sets of atoms of block monoids over so-called
simple sets (cf. Theorem 4.7). Sets which are simple sets in our terminology
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can be found in various contexts in treatise on factorization problems (cf. e.g.
[CS03, GGI8, GGO0, Ger87, Sli76]). Hence, it seems worthwhile to investigate
them independently and beyond the needs of some particular problem.

2. PRELIMINARIES

In this section we fix some notations and terminology, in particular for monoids
and abelian groups. They mostly will be consistent with the usual ones in factor-
ization theory (cf. the survey articles [HK97] and [CG97] in [And97]).

Let Q denote the rational numbers, Z the integers, N the set of positive integers,
Np = NU{0} and P C N the set of prime numbers. For r, s € Z we set [r,s] = {z €
Z|r<z<s}

For a set P we denote by |P| € Ng U {oo} its cardinality. For z € Q let [z] =
min{z € Z |z <z} and |z] =max{z € Z | x > z}.

A monoid is a commutative cancellative semigroup with identity element and we
use multiplicative notation.

Let A, B be two subsets of some semigroup with operation *, then Ax B = {axb |
a € A and b € B}. In particular we will use this for subsets of Ny and addition as
operation.

Let H be a monoid with identity element 1z = 1 € H. We denote by H*
the group of invertible elements of H, and we call H reduced if H* = {1}. Let
H,, Hy, C H be submonoids. Then we write H = Hy X Hs, if for each a € H, there
exist uniquely determined b € H; and ¢ € Hs, such that a = be. For some subset
E C H we denote by [E] C H the submonoid generated by E and we call H finitely
generated, if there exists some finite E/ C H such that [E'] = H.

A submonoid S C H is called divisor-closed, if a € S and b,¢c € H such that
a = bc implies b € S and ¢ € 5, i.e. for each a € S all divisors of a in H are
elements of S. An element v € H \ H* is called irreducible (or an atom), if for
all a,b € H, uw = ab implies a € H* or b € H* and it is called prime (or a prime
element), if for all a,b € H, uw = ab implies u | a or u | b. Let A(H) C H denote
the set of atoms and P(H) C H the set of primes. Then P(H) C A(H) and we
call H atomic (respectively factorial), if every a € H \ H* has a factorization into
a product of atoms (respectively primes).

Let a € H\ H* and a = uy - ... - u, a factorization of a into atoms uq,...,u €
A(H). Then k is called the length of the factorization and Ly(a) = {k € N |
a has a factorization of length £} C N denotes the set of lengths of a. We set
L(a) = {0} for all a € H*. The monoid H is called BF-monoid, if it is atomic and
IL(a)| < oo for all @ € H, and it is called half-factorial monoid, if it is atomic and
|L(a)] =1 for all a € H.

Let H be an atomic monoid. Then £(H) = {L(a) | a € H} denotes the system
of sets of lengths of H.

For a set P we denote by F(P) the free abelian monoid with basis P. Every
a € F(P) has a unique representation in the form

a = H pr(ll)

peP

where v, (a) € Ny and vp(a) = 0 for all but finitely many p € P.

A monoid homomorphism ¢ : H — D is called a divisor homomorphism, if for
all a,b € H, ¢(a) | ¢(b) implies a | b. The monoid H is called Krull monoid, if it has
a divisor homomorphism into a free monoid (cf. Section 22.8 and 23.4 in [HK98]).
Every Krull monoid is a BF-monoid (cf. [CG97, Lemma 2.7]).

Let G be an additively written abelian group and Gy C G a subset. Then
(Go) < G denotes the subgroup generated by Gy, where (#) = {0}.
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The set Gy (respectively its elements) is called independent, if 0 ¢ Gy, 0 # Gy

and given distinct elements eq, ..., e, € Gy and my,...,m, € Z, then 22:1 m;e; =
0 implies that mqie; = --- = my,e, = 0. If we say that {e1,...,e,.} is independent,
then we will assume that the elements eq,...,e, are distinct.

An element g € G is called torsion element, if there exists some n € N such that
ng = 0. If g is a torsion element, then we denote by ord(g) = min{n € N | ng = 0}
its order. G is called abelian torsion group, if all elements of G are torsion elements.

For n € N let C), denote a cyclic group with n elements. Let G be a finite abelian
group. Then there exist a uniquely determined r € N and uniquely determined
ni,...,n, € N such that G 2 Cp,, & --- @ C,, and either 1 < ny | --- | n, or
r =1 and n, = 1. r(G) = r is called the rank of G and exp(G) = n, is called the
exponent of G.

Furthermore if |G| > 1, then there exist a uniquely determined r* € N and up to
order uniquely determined prime powers g1, ..., ¢«, such that G =2 Cy, @--- @ Cy,.
and r*(G) = r* is called the total-rank of G.

G is called p-group if exp(G) = p* with p € P and k € N and G is called
elementary p-group if exp(G) = p € P. Elementary p-groups are in a natural way
vector spaces over the field F), with p elements.

An element

1

S=]]gi= [] 9® € 7(Go)
=1 g€Go

is called a sequence in Gy, and for g € Gy we call v,(S) the multiplicity of g in

S. A sequence T is called subsequence of S, if T divides S (in F(Gy)). Let T be

a subsequence of S, then we denote by T~1S the codivisor of T, i.e. the sequence

T' € F(Gy) such that TT" = S. We denote by

|S| =1 € Ny the length of S.

o(S) = Zé=1 gi € G the sum of S.

[ ]
e supp(S) = {g: | i € [1,1]} C Gy the support of S.
o k(S) = 22:1 ﬁ(qi) the cross number of S.
Note that the sequence 1, the identity element of F(Gy), has length 0, sum
0, support () and cross number 0. If we consider |- |, v4, o and k as maps from

F(Gyp) to (Ng,+), G and (Q>p,+) respectively, then these maps define monoid-
homomorphisms.

The sequence S is called a zero-sum sequence (a block), if o(S) = 0, and S
is called zero-sumfree, if o(T") # 0 for all subsequences 1 # T of S. A zero-sum
sequence 1 # S is called minimal zero-sum sequence, if for each proper subsequence
T (i.e. with T # S), T is zero-sumfree. The empty sequence is the only zero-sum
sequence that is zero-sumfree, but it is not a minimal zero-sum sequence.

The set B(Gp) cousisting of all zero-sum sequences in Gy is a submonoid of
F(Gyp), called the block monoid over Gy. It is a Krull monoid, thus it is a BF-
monoid and its atoms are just the minimal zero-sum sequences. If G; C Gy, then
B(G1) C B(Gy) is a divisor-closed submonoid. For ease of notation, we will write
A(Gy) instead of A(B(Gy)) and do analogously for P(Gg) and L(G).

3. SUBMONOIDS OF B(G)

In this section we will investigate submonoids of B(G). As a first result we
will show that the divisor-closed submonoids of B(G) are just the block monoids
generated by subsets Gy C . Having this at hand we give methods to find, for
some H = B(Gy), related monoids that are easier to handle, yet having the same
systems of sets of lengths.

We start with a definition.
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Definition 3.1. (1) A reduced monoid H is called
(a) minimal non-half-factorial, if H is not half-factorial, but each divisor-
closed submonoid H' C H is half-factorial.
(b) decomposable, if there exist divisor-closed submonoids

{1} 7é H17H2 -,C«- Ha

such that H = Hy x Hy (otherwise indecomposable).
(2) A subset Gy of an abelian group G is called factorial (half-factorial, non-
half-factorial, minimal non-half-factorial, decomposable, indecomposable),
if the block monoid B(Gy) has this property.

The following lemma will underline the importance of Definition 3.1.

Lemma 3.2. Let G be an abelian group and let H C B(G) be a submonoid. Then H
is divisor-closed if and only if there exists a subset Gy C G, such that H = B(Gy).
Moreover, if G is an abelian torsion group, then G is uniquely determined.

Proof. Clearly for each Gy C G the monoid B(Gy) is a divisor-closed submonoid of
B(G). Let H C B(G) be a divisor-closed submonoid. We set

Go = | supp(B).
BeH

We will prove that H = B(Gg). Obviously H C B(Gjp). To prove the other inclusion
we note, that for each g € Gy there exist some S, € H, such that vy(S,) > 0. If
C = Hézl gi € B(Gyp), then C | Hé:l Sy, in B(Gy), and since Hézl Sg, € H we
obtain C' € H.

If G is an abelian torsion group, we have that ¢g°*d(9) ¢ B(Gy) if and only if
g € Gy. Clearly, this implies that G is uniquely determined. O

In Definition 3.1 we assigned monoid-theoretical properties to subsets of abelian
groups. Next we will characterize subsets with these properties by their group-
theoretical properties.

Proposition 3.3. Let G be an abelian group and let Gy C G a non-empty subset
of torsion elements.

(1)
P(Go) = {g” [ (Go) = (9) ® (Go \ {g})}-
(2) Gy is factorial if and only if Go \ {0} is independent.

Proof. 1. Let g € Gy such that (Go) = (9) ® (Go \ {g}) and By, Bs € B(Gy) such
that g°*4) | By By. Clearly v (B;) > 0 or v,(Bs) > 0. Without restriction we
assume vg(B1) > 0. We get 0(B1) = vg(B1)g + h with h € (Go \ {g}), hence
vy(Bi1)g = 0 and ord(g) | vy(Bi). Thus g°49) | By and we get

{749 | {Go) = (9) ® (Go \ {g})} € P(Gh).

Conversely, let P € P(Gy). We first prove, that |supp(P)| = 1. Assume to the
contrary, there exist distinct elements g, h € Gy with g | P and h | P. We consider
Pord(@)  (gvo(Pord@) 3 with B ¢ B(Go \ {g}). Clearly P { B and P { g"s(P)ord(a)
but P | (gvs(P)erd9))B = pordl9) 4 contradiction. Thus P = ¢°*49) with some
g c Go.

It remains to verify that (g)N(Go\{g}) = {0}. Assume to the contrary, that there
exists some n € [1,ord(g) — 1] and some h € (G \ {g}) such that ng+ h = 0. Then
there is some S € F(Go \ {g}) such that ¢(S) = h. Thus we obtain ¢S € B(Gy),
Ptg¢"S but P | (g"S)°*49) a contradiction.
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2. Clearly, we have {g°*99) | g € Gy} C A(Gyp) and
A(Go) € {g” 9 | g € Go}

if and only if Gy \ {0} is independent. Since block monoids are atomic, B(Gy) is
factorial if and only if A(Go) = P(Gy). Consequently, if B(Gy) is factorial, then by
1.

A(Go) = P(Go) C {gord(g) | g € Go},

hence Gy \ {0} is independent. Conversely, if Go \ {0} is independent, then (Gy) =
(g9) ® (Go \ {g}) for every g € Gy, hence P(Gy) = A(Gy). O

For a further characterization of factorial sets cf. [GH92, Proposition 3]. At
this point we give a group-theoretical characterization of half-factorial sets. The
structure of half-factorial sets is in general not known (cf. [GG98] for various
results on half-factorial sets). The fact that the characterization of half-factorial sets
involves the cross numbers of atoms may serve as motivation for the investigations
on atoms of simple sets. Moreover, we give some results on minimal non-half-
factorial subsets.

The first part of the following Proposition was obtained independently by several
authors (cf. [Sku76, Theorem 3.1], [Sli76, Lemma 2] and [Zak76, Proposition 1]).

Proposition 3.4. Let G be an abelian group and Gy C G a non-empty subset of
torsion elements.

(1) The following conditions are equivalent:
(a) Go is half-factorial.
(b) k(A) =1 for each A € A(Gy).
(2) The following conditions are equivalent:
(a) Go is minimal non-half-factorial.
(b) Go is not half-factorial and every proper subset G1 < Go is half-
factorial.
(c) There exists some A € A(Gp) with

k(A) # 1 and supp(A) = Gy
and for each U € A(Gq) with supp(U) € Gy
k(U) =1.

(3) Ewvery minimal non-half-factorial set is finite.
(4) Ewvery non-half-factorial set contains a minimal non-half-factorial subset.

Proof. 1. cf. [CG97, Proposition 5.4] for a proof in the terminology of this article.

2. (a) = (b) Clearly, G is not half-factorial. Let G; € Go. Then B(G1) € B(Gp)
is a divisor-closed submonoid, hence it is half-factorial and consequently G; is half-
factorial.

(b) = (c¢) For each U € A(Gy) with supp(U) € G we get that supp(U) is half-
factorial. Since U € A(supp(U)), we get k(U) = 1. Since Gy is not half-factorial,
there exists some block A € A(Gy) with k(A) # 1 and clearly supp(A) = Go.

(¢) = (a) If A € A(Gp) with k(A) # 1, then B(supp(A4)) is non-half-factorial.
Therefore Gy is not half-factorial. Let H C B(Gg) be a divisor-closed submonoid.
By Lemma 3.2 there exists some Gy C Gy, such that H = B(G1). Let U € A(Gh).
Clearly supp(U) C G1 € Gy, hence k(U) =1 and H is half-factorial.

3. follows immediately from 2.c.

4. is obvious for finite sets and clearly every non-half-factorial set contains some
finite non-half-factorial set, e.g. supp(A) for some atom A with k(A) # 1. O
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Proposition 3.4 can be used to determine all abelian torsion groups G, that are
half-factorial respectively factorial. This result was obtained in [Car60] as result
on number-fields and in [Zak76, Theorem 8] it is formulated for Krull domains. In
[Sku76, Proposition 3.2] the result was formulated for monoids. For convenience
we state the proof.

Proposition 3.5. Let G be an abelian torsion group. Then the following statements
are equivalent:

(1) G is factorial.

(2) G is half-factorial.

(3) 1G] <2.

Proof. (1) = (2) Obvious.

(2) = (3) Let G be half-factorial. By Proposition 3.4.1 k(A) = 1 for each
A € A(G). Assume there exists some g € G with ord(g) =n > 2, then —gg € A(G)
and k(—gg) = % # 1. Thus ord(g) < 2 for each g € G. Assume there exist two
independent elements g, h € G, then (g + h)gh € A(G) and k((g + h)gh) = 3 # 1.
Consequently, if G is half-factorial, then |G| < 2.

(3) = (1) Let |G| < 2. By Proposition 3.3.2 we get that G is factorial. O

Next we investigate decomposable and indecomposable monoids respectively
sets.

Lemma 3.6. [Ger94a, Lemma 2] Let H be a reduced atomic monoid.

(1) If P ="P(H) is the set of all primes of H and T C H the set of allb € H
satisfying pt b for each p € P, then H = F(P) x T.

(2) Let Hi,Hy C H be two submonoids. If H = Hy x Hy and a = a1a2 € H
with an € H1 and ay € Ho, then

L (a) = La,(a1) + Lo, (a2).
(3) If H = Hy x Hy, then H s half-factorial if and only if Hy and Hy are

half-factorial.
(4) If H is minimal non-half-factorial, then H is indecomposable.

Proof. 1. cf. [Ger94a, Lemma 2].

2. From the definition of x it follows that for each a € H there exist uniquely
determined a; € Hy and ay € Hjy such that a = ajas and we obtain A(H) =
A(H1)UA(H,). Thus the statement follows easily.

3. follows immediately from 2..

4. Let H be minimal non-half-factorial and assume to the contrary that there
exist {1} # Hy, Hy C H such that H = Hy x Hs. If Hy and H, are half-factorial,
then by 3. H is half-factorial, a contradiction. However, if H; is not half-factorial
for some ¢ € [1,2], then H is not minimal non-half-factorial, since H; is a proper
divisor-closed submonoid, a contradiction. Consequently, H is indecomposable. [

This lemma implies, that for almost all problems concerning sets of length one
can restrict to monoids without prime elements. In particular, for any Gy C G with
0 € Go, we get that by Proposition 3.3.1, 0 € P(Gy). Consequently, it is sufficient
to investigate subsets not containing the 0 element.

The following result gives a characterization of indecomposable sets. Using this
we will prove that every finitely generated, divisor-closed submonoid of B(G) can
be uniquely written as product of indecomposable submonoids (cf. Theorem 3.11).

Proposition 3.7. Let G be an abelian group and Go C G a non-empty subset of
torsion elements. Then the following conditions are equivalent:

(1) Gy is decomposable.
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(2) Go has a partition Go = G1UGs with non-empty sets G1,Gs, such that
B(Go) = B(G1) x B(G2).

(3) Go has a partition Go = G1UGs with non-empty sets Gy, Gs, such that
(Go) = (G1) ® (Ga).

Proof. 1. and 2. are equivalent by Lemma 3.2, and clearly 3. implies 2.. It remains
to prove that 2. implies 3.. Let Gy = G1UG2 be a partition with non-empty
subsets G1,G2 C Gy, such that B(Gg) = B(G1) x B(G2). We have to verify that
(G1) N (G2) = {0}. Let

9= ngg= Y (~ngg € (G1)N(Ga)

9€G1 geG2

with ny € Ny for each g € Gy and ngy = 0 for all but finitely many. (To consider
just non-negative n, is no restriction, since the order of all elements is finite.)
Then B = [[,cq, 9" € B(Go) has a factorization of the form B = BiBs,

with B; € B(G;) for each i € [1,2]. Obviously, we have B; = [ ¢, g™, hence
gt = deGl ngg = 0. O

Definition 3.8. Let G be an abelian group and Gy C G a non-empty subset of
torsion elements. A non-empty subset G; C Gy is called a component of Gy, if
(Go) = (G1) & (Go \ G).
Lemma 3.9. Let G be an abelian group and let Gy C G be a subset of torsion
elements.

(1) If |Go| = 1, then Gy is indecomposable.

(2) If |Go| > 1 and P(Go) # 0, then Gq is decomposable.

Proof. The first part of the lemma is obvious. Let |Go| > 1 and P € P(Gp).
From Proposition 3.3.1 we know that P = ¢°"4(9) with some g € Gy such that
(Go) = (9)®D(Go\{g}), hence setting G1 = {g} we get that Gy is decomposable. [

Proposition 3.10. Let G be an abelian group and Gy C G a non-empty and finite
subset of torsion elements. Then there exist a uniquely determined d € N and (up
to order) uniquely determined indecomposable sets § # G1,...,Gq C Gg such that

d

Go = U;Gi and (Go) = (G-

=1

Proof. We prove the existence of such sets via induction on |Gg|. For |Go| =1 it is
obvious that Gy is indecomposable, hence we set d = 1 and Gg = G;. Let |Gp| > 1.
If Gy is indecomposable we set d = 1 and Gy = G;. Let Gy be decomposable.
Hence there exists some () # G, € Gy, such that

(Go) = (Gp) © (Go \ Gp)-
Since |G| < |Go| and |Gy \ Gy| < |Go| we get that there exist d',d” € N and
indecomposable sets ) # G, ..., G, C G, such that

d’

(G =EPar,

i=1
as-well as indecomposable sets 0 # GY,..., Gl C Go \ G, such that

4"’

(Go\ G) = EP(GY).

i=1
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. d/ . . d//

Clearly, Go = U,_,G;UU,_,GY and

d/ d//

(Go) = EPlai) e PGy,
i=1 i=1
It remains to prove uniqueness. We proceed by induction on the minimal number
d* for which there exist non-empty, indecomposable sets Gy, ..., Gy« having the
required properties. If d* = 1, then G is indecomposable and the assertion follows.
Suppose d* > 1 and let
@#Gla"de* CGO

be indecomposable sets with the required properties. Furthermore, let d € N and
@#Hh...,HgCGO

indecomposable sets with

. d d
Go = U:;Hi and (Go) = @<Hi>.

We assert that there exists some j € [1,d] such that G4« = H;. We have
Gy = Gae NGy = Gg- N (UL H,) = UL (Gye 0 H)

and hence (Gg») = @le (Gg~ N H;). Since G4~ is indecomposable, Proposition 3.7

implies that there is some j € [1,d] such that G4» = G4 N H; and Gg- N H; = {)
for each ¢ € [1,d] \ {j}. Consequently, Gq4- C Hj;.
Similarly, we obtain H; C Gy for some k € [1,d*]. This implies that G4« C

H; C G} and hence k = d* and G4~ = H;.

*

s dr—1
We consider the set Gy \ G- = J,_; Gi. By induction hypothesis we get that

d* —1=d—1 and that the indecomposable sets are uniquely determined. O

Theorem 3.11. Let G be an abelian torsion group and let {1} # H C B(G) be
a finitely generated, divisor-closed submonoid. Then there ezist a uniquely deter-
mined d € N and up to order uniquely determined indecomposable, divisor-closed

submonoids {1} # Hy, ..., Hq C B(G) such that H = Hy x --- x Hy.

Proof. By Lemma 3.2 there exists a uniquely determined subset Gy C H such that
H = B(Gy) and, since {1} # H and H is finitely generated, we have that 0 < |G| <
0o. By Proposition 3.10 we obtain that there exist a uniquely determined d € N
and (up to order) uniquely determined indecomposable sets ) # G1,...,Gq C Gy
such that

. d d
Go = UizlGi and (Go) = P(Gs)-

i=1
By Proposition 3.7 and induction on d we obtain B(U?:1Gi) = B(G1) x---xB(Gy).
Clearly, B(G;) is indecomposable for each ¢ € [1,d], which proves the existence of

the decomposition.

Conversely, for any decomposition d € N and indecomposable, divisor-closed
submonoids {1} # Hj,...,H) C H such that H = H{ X --- x HJ},, we obtain, for
each j € [1,d'], by Lemma 3.2 that H; = B(G) with some uniquely determined

- d
indecomposable set G’ # (). Clearly, Gy = (J;_,G’; and again by induction on d’

and Proposition 3.7 we obtain that (Go) = @?;NG;) By Proposition 3.10 we
have d’ = d and for each i € [1,d] there exists some j € [1,d] such that G; = G
and thus H; = HJ’ O
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In the sequel we recall the notion of transfer homomorphisms (cf. [HK97] for a
detailed treatment). We will apply transfer homomorphisms to construct, for some
set Gg C G, an associated subset that has an easier structure, yet the same system
of sets of lengths (cf. Lemma 3.15 and Theorem 3.17). Moreover, we will show
how this procedure can be used to construct sets with prescribed properties (e.g.
half-factorial sets).

We demonstrate this procedure in a simple special case.

Example 3.12. Let pe P, G = 022, {e1, e2} an independent generating subset of
G and Gy = {e1 + ea,pe1, pea}. Then

A(Go) = {(e1 + e2)’(pe1)? ™ (pe2)? ™7 | j € [1,p]} U {(per)”, (pe2)?}.
In particular, for each B € B(Gg) we get p | Ve, +e, (B). Hence for G = {p(e1 +
e2), pe1, pez} the map

o {B(GO) —B(G)
(e1 + e2)®(pe1)?(pe2)® + (p(e1 + e2))? (pe1)”(pez)*

is an isomorphism.

Definition 3.13. A monoid epimorphism © : H — B of reduced monoids is called
a transfer homomorphism, if the following two conditions are satisfied:
(1) ©71(1) = {1}.
(2) If a € H and ©(a) = By with 3,7 € B, then there exist b,c € H such that
a =be, O(b) = 6 and O(c) = .

Lemma 3.14. Let © : H — B be a transfer homomorphism of reduced atomic
monoids.

(1) Lu(a) =Lp(©(a)) for each a € H.

(2) H is half-factorial if and only if B is half-factorial.

(3) If H is minimal non-half-factorial, then B is minimal non-half-factorial.

Proof. 1. is proved in [HK97, Lemma 5.4]. 2. is obvious from 1..

3. Let H be minimal non-half-factorial. Clearly B is not half-factorial. Let
B’ C B be a divisor-closed submonoid. We need to prove that B’ is half-factorial.
We show that

H =07YB) cH,
is a proper divisor-closed submonoid. Thus H’ is half-factorial, hence by 2. B’ =
©(H') is half-factorial.

Since O is surjective, we get H' C H, and since © is a homomorphism, we get
H'’ is a submonoid of H. It remains to prove that H’ is divisor-closed. Let a € H’
and a = be. We get O(a) = O(b)O(c) € B’. Since B’ is divisor-closed, we get
0(b),0(c) € B, consequently b,c € H and H' is divisor-closed. O

Lemma 3.15. Let G be an abelian group, Gy C G a non-empty subset of torsion
elements, g € Go and m = min{m’ € N|m’g € (Go \ {¢9})}. Then m | ord(g) and
B(Go) — B(Go\ {g} U {mg})
O =0gm:

Vg(B)

B — g7 B)(mg)™ B
is a transfer homomorphism.

Proof. Let n = ord(g) and G = Go \ {g} U {mg}. Since 0 = ng € (Go \ {g}), we
get m € [1,n].

If m =1, we get Go = G, © = idg(q,) and the statement is obvious. Suppose
that 1 < m < n. First we prove that © is well-defined. This means we need to
prove, that for any B € B(Gy) we get m | vy(B).
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Let B € B(Gy). Since B has sum zero, it follows that v,(B)g € (Go \ {g}). If
x,y € Z with am + yvy(B) = ged(m, vy4(B)), then

ged(m,vy(B))g = x(myg) + y(ve(B)g) € (Go \ {g})-

Thus the minimality of m implies that m = ged(m,v4(B)). Setting B = g" we
infer that m | n.

Obviously © is an epimorphism and ©71(1) = {1}.

Let B € B(Gy) and C,C1,Cy € B(G}), such that ¢(B) = C and C = C1Cs.
We need to prove that there exist By, By € B(Gy), such that O(B;) = C; for each
i € [1,2] and B = By By. We set t = min{v,n,(C1), “222}. Then

vq(B
ng(C1C2) = iy (B) + 222
implies that
vy (B vq(B
g C2) = v (B) + Ly 0y > By
Thus
By = g™ (mg)~'C1 € B(Gy)
and -
vg (B
B2 — gvg(B)—mt(mg)— s +t02 c B(GQ)
have the required properties.
Consequently, © is a transfer homomorphism. O

The converse of Lemma 3.14.3 is not true, as the following example will show.

Example 3.16. Let p € P and G = C},> with generating element e and let Gy =
{e,pe,2pe}. The set Gy is not minimal non-half-factorial, since the proper subset
{pe, 2pe} is non-half-factorial. If we consider g = e, using the notation of Lemma
3.15, we get m = p and

G§ = Go \ {e} U {pe} = {pe, 2pe}.

Clearly, G} is a minimal non-half-factorial set.

Theorem 3.17. Let G be an abelian group and let Go C G a non-empty, finite
subset of torsion elements. Then there exists a non-empty, finite subset G C G,
such that

g9 € (G \ {g}) for each g € Gg
and a transfer homomorphism © : B(Gy) — B(G}).

Proof. We proceed by induction on I[(Go) = >~ ¢, ord(g) € N.

If I(Go) = 1, then Gy = {0} and 0 € (G \ {0}), hence the assertion holds with
Gy = Go.

Suppose that {(Gg) > 1 and assume that the assertion holds for all () # G, C G
of torsion elements with [(Gf) < I[(Gy). If g € (Go \ {g}) for all g € Go, we set
GS = G().

Suppose there exists some g € Go with g ¢ (Gp \ {¢9}). By Lemma 3.15 there
exists some m € N>y with m | ord(g) and a transfer homomorphism

Wité{ Go = Go \ {g} U {mg}.
1(Gg) = U(Go) — ord(g) + ord(mg) < (Gh),
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there exists some non-empty, finite set Gj; such that g € (G§\ {g}) for each g € G}
and a transfer homomorphism

O3 : B(Go \ {g} U {mg}) — B(Gp)-
Since the composition of transfer homomorphism is again a transfer homomorphism,
we get
@2 o @1 : B(Go) — B(GS)
is a transfer homomorphism. O

Lemma 3.18. [GG98, Lemma 3.3] Let G be an abelian torsion group, Go C G a
half-factorial set and g € G\ (Gy) such that pg € Gq for some p € P. Then GoU{g}
is half-factorial.

Proof. Since g ¢ (Gp) and p is prime, we get that p = min{m’ € N | m’g € (Gy)}.
Consequently, by Lemma 3.14.2 and Lemma 3.15, Gy U {g} is half-factorial if and
only if Go \ {g} U {pg} = Gy is half-factorial. O

4. SIMPLE SETS

Let G be an abelian torsion group and Gy C G a non-empty subset. By Propo-
sition 3.3.2 we know that B(G)p) is factorial if and only if Gg \ {0} is independent.
Thus a subset Gy C G \ {0}, for which B(Gy) is not factorial, but is most simple
from a group theoretical point of view, consists of independent elements and one
additional element.

As mentioned in the Introduction such sets have been frequently investigated. In
particular, they are used as examples for minimal non-half-factorial sets (cf. [GGO00,
Proposition 5.2]). However, there are several classes of groups, for example cyclic
groups of prime power order (cf. [Ger87, Proposition 6]) and elementary p-groups
with p < 7 (cf. [Nar79, Problem II] for p = 2 and [Sch03a]), in which every minimal
non-half-factorial set is of this type.

This motivates the following definition.

Definition 4.1. Let G be an abelian group. A non-empty set Go C G \ {0} of
torsion elements is called simple, if there exist some g € G such that Gy \ {g} is
independent, g € (Go \ {g}), but g ¢ (G;) for any G; C Go \ {g}-

In the following lemma we prove some basic results on simple sets.

Lemma 4.2. Let G be an abelian group and Gy C G a simple set.
(1) 2 <|Go| < o0.
(2) If G is finite, then |Go| < r*(G) + 1. In particular, if G is cyclic of prime
power order, then |Gyl = 2.
(3) Gy is indecomposable.

Proof. 1. The set G \ {g} is independent hence non-empty. Since g € Gy we get
|Go| > 2. By definition g € (Go \ {g}), but g ¢ (G1) for any G1 C Go \ {g}. Hence

g = Z Zhh

heGo\{g}

with z, € Z for all h € Gy \ {g} and z, = 0 for all but finitely many. However,
g ¢ (Gy) for any G1 € Gy \ {g}. Consequently, z, # 0 for all h € Gg \ {g}. This
means that Go \ {g} must be finite.

2. Let G be finite. Any independent subset of G has not more than r*(G)
elements, hence |Gy \ {g}| < r*(G). If G is cyclic of prime power order, then
r*(G) =1.

3. Assume to the contrary that Gy is decomposable. By Proposition 3.7 there
exist non-empty subsets G, Ga C Gg such that Gg = G1UG» and B(Ggo) = B(G1) x
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B(G2). Since g € (Go \ {g}), there exists some A € A(Gy) with v,(A) = 1. Since
A(Go) = A(G1)UA(G2), we may suppose without restriction that A € A(Gy). This
implies that g € (G1 \ {¢}), a contradiction. O

The arithmetic of block monoids generated by simple sets is not as simple, as
one might expect. We start with an example.

Example 4.3. (1) Let G = (Z/4Z)® with independent and generating ele-
ments {e1,e2,e3}. Then Gy = {g,e1,e2,e3} with g = —(2e1 + e2 + e3) is
simple. Since U = g?e3e3 is an atom with k(U) = 2 and supp(U) < Gy,
Proposition 3.4.1 shows that GG is non-half-factorial, but not minimal non-
half-factorial.

(2) Let G =Z/30Z and Gy = {1+ 30Z, 6+ 30Z, 10+ 30Z, 15+ 30Z}. Then G

is simple and minimal non-half-factorial.

However, if G is an elementary p-group, then simple subsets of G are either
half-factorial or minimal non-half-factorial.

Lemma 4.4. Let G be an elementary p-group.

(1) Let G1 C G be independent, g € G\ G1 and Gy = G1 U {g}. Then the
following conditions are equivalent:
(a) Gy is indecomposable.
(b) Gy is simple.
In particular, if Go is minimal non-half-factorial, then Gy is simple.

(2) Let Gy C G be simple. Then for every h € Go the set Go \ {h} is indepen-
dent, h € (Go \ {h}) and h ¢ (G1) for every G1 C Gy \ {h}.

(3) Fuvery simple set is either half-factorial or minimal non-half-factorial.

Proof. 1. (a) = (b) Let Go be indecomposable. Then g # 0 and Gy is not inde-
pendent. Hence (g) N {(G1) # {0} and consequently g € (G1). Assume g € (Gy) for
some G2 C G;1. Then G3U{g} is a component of Gy, a contradiction. Consequently,
G is simple.

(b) = (a) Let Gq be simple, then Gy is indecomposable by Lemma 4.2.3.

If Gy is minimal non-half-factorial, then it is indecomposable by Lemma 3.6.4
and hence simple.

2. Let g € Gy such that Go \ {9} = {e1,..., e} is independent, g € (Go \ {g})
and g ¢ (G,) for every G1 € Gy \ {g}. Then g = >"'_, a;e; with a; € [1,p—1]. We
consider G as a IFp-vector space and by linear algebra we infer that dimp, (Go) =
|Go|l — 1 and for every h € Gy we have (Go) = (Go \ {h}). Thus Gy \ {h} is
independent, h € (Go \ {h}) and h ¢ (G}) for every G| C Go \ {h}.

3. Suppose G is simple. By 2. every proper subset of G is independent and
consequently half-factorial. Thus if Gy is not half-factorial, then Gg is minimal
non-half-factorial. O

The following theorem will prove that the notion of simple sets is not too re-
strictive.

Theorem 4.5. Let G be an abelian group, Go C G a subset of torsion elements
and g € Gy such that Gy = G U {g} with G, C G independent. Then there exist a
set G C G and a transfer homomorphism

© : B(Gy) — B(GYy),

where G§ \ {0} is simple or empty.
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Proof. If Gy \ {0} is independent, then by Proposition 3.3.2 Gy is factorial. In this
case we set G = {0} and the map

o, [BGy) —B(G)
B 0w

is a transfer homomorphism.

Hence we may suppose without restriction that G\ {0} is not independent. Thus
we get (g) N (Go \ {g}) # {0}. Let m € N be minimal such that mg € (Go \ {¢}).
By Lemma 3.15 there exists a transfer homomorphism

©1: B(Go) — B(Go \ {g} U{mg}).
Thus from now on we may suppose that m = 1.

Let G1 C Gy be a minimal subset such that g € Gy and g € (G1\{g}). Thus G; is
simple. If G = Gy, we set G, = Gy and are done. Suppose that Gy = G\ G1 # 0.
Since Go \ {g} is independent and g € (G1 \ {g}), it follows that (G1) N (G2) = {0}.
Proposition 3.7 implies that B(Gg) = B(G1) x B(G2). Since G4 is independent and
B(G2) is factorial, the map

o, - {B(Go) = B(G1) x B(Gs) — B(G,U{0})
"B = BB, s B,0K(B2)

is a transfer homomorphism. Hence we set Gfj = G1 U {0} and are done. O

In the last part of this section we study the set of atoms A(Gy) for simple sets
Gy C G. For simple sets consisting of two elements, this set was determined in
[Ger87] and [CS03] (cf. Proposition 4.8).

Definition 4.6. Let G be an abelian group and Gy C G a simple set. Suppose that
Go = G1 U{g} with G; = {ey,...,e,} independent, ord(e;) = n; for each i € [1,7]
and g = — > _._, be; with b; € [1,n; — 1] for each i € [1,7].
(1) For j € N let W;(G1,9) = W; € B(Go) denote the unique block with
vg(W;) = j and v, (W;) € [0,n; — 1] for each i € [1,7] (clearly, v, (W;) =
jb; mod n;).
(2) ((G1,9) ={j e N| W; € A(Go)}-

Theorem 4.7. Let G be an abelian group, r € N, G1 = {e1, ..., e, } an independent
set with ord(e;) = n; for each i € [1,7], g = — > i_, bie; with b; € [1,n; — 1] for
each i € [1,r] and Go = G1 U {g}.
(1) A(Go) = {e;" [i € [L,r]} U{W; | j €i(G1,9)}-
(2) i(G1,9) ={j € [1,0rd(9)] | Wk t W, for each k € [1,j — 1]}. In particular,
{L,ord(g)} Ci(G1,9) C [1,0rd(g)].
(3) Let I ={ie[1,7r] | b; #n; — 1} and N = max({0} U {n; | ¢ € [1,7]\ I}).

Then
UU ({e;}, —bie;) C (G, 9),
iel
and if ny =---=mn, and by = =b,., then equality holds.

(4) min(i(G1,9) \ {1}) = min{[ 5 1 \Z e [1,7]}.
(5) i(G1,9) = {1,0rd(g)} if and only if ord(g) | n; and b; =
iell,r.
(6) Ifi(Gr.g) # {1, 01d(9)}, then min(i(G1,g) \ {1}) < [*52].
Thus in an important special case, i(G1,¢) (and hence A(Gy)) is completely
determined by associated i(.,.) for sets G|, with |G| = 2. We mentioned already

that for these sets two descriptions are known. We cite the description given in
[CS03, Theorem 2.1] (cf. [Ger87, Lemma 1] for a similar description).

o d for each



14 WOLFGANG A. SCHMID

Proposition 4.8. [CS03, Theorem 2.1] Let G be an abelian group, e € G with
ord(e) =n >3, a € [2,n — 1] and d = ged(a,n). For k € [1,4] let g € Ng and
ri € [0,a — 1] such that kn = gya + 1. Then

i({e}, ae) = [1, L%J —1U{qr | & < 7i for each i € [1,k — 1]}.

Now we formulate a corollary to Proposition 4.8, which we need in the proof of
Theorem 4.7. For convenience we will give an independent proof for it.

Corollary 4.9. Let G be an abelian group, e € G withord(e) =n > 3,b € [1,n—2],
d = ged(b,n) and b’ € [1,ord(—be) — 1] such that b’ = d mod n. Then

{131,6} € i(fe}, —be).

Proof. Obviously, {—be, e} is a simple set. In order to show that & € i({e}, —be),
we have to verify that Wy = (—be)? e? is an atom. Since for every B € B({—be, e})
we have d | v.(B), and because b’ = min{v € N | o((—be)?e?) = 0} it follows that
Wy is an atom.

In order to show that [¢] € i({e}, —be), we have to verify that

b

b

1
is an atom. Since for each j € [1,[%] — 1] we get W; = (—be)?e’® and because
[31b—n <b, it follows that Waq is an atom. O

In [Ger87, Proposition 10] a more explicit description of i(.,.) for simple sets
with two elements is given. It uses continued fraction expansions and is quite
complicated to formulate. Since we will not need this explicit description, we do
not cite this result. However, we give as an example the two easiest cases.

Example 4.10. Let e € G with ord(e) =p € P and b € [2,p — 2].

(1) Ifb | p+ 1, say gb = p+ 1, then i({e}, —be) = {1, q, p}.
(2) Let g =[#] and r = [P] —p. If r | b+ 1, say sr = b+ 1, then i({e}, —be) =
{la q,5q — 1ap}
Next we give some lemmata that will be used in the proof of Theorem 4.7. Let

all notations be as in Theorem 4.7.
Lemma 4.11. [GG02, Lemma 2.2]
n; .
ord(g) =lem({———— | i € [1,7]}).
(0) = lem({__g5t—s |i € [Lr]})

Lemma 4.12. Let j € N.
(1) If W € B(Gy) with vg(W) = j, then W; | W.
(2) If A € A(Go) with vg(A) = j, then W; = A.
(3) If W; ¢ A(Gy), then there exists some k € [1,5 — 1] such that W; =
WiW; .

Proof. 1. Let W € B(Gy) with vy(W) = j. Then
D Ve (W)es = —jig =Y ve, (W))ei.
i=1 i=1
Since (1 is independent, it follows that for all ¢ € [1,r] there are k; € Z such that
Ve, W) = v, (W;) + k;n;. Since v, (W) € Ny and v, (W;) € [0,n; — 1], it follows
that k; € Ny for all ¢ € [1,7]. Hence we obtain that W, | W.
2. follows immediately from 1..
3. Suppose that W; ¢ A(Gy). Then there exists some A € A(Gy) with A | Wj.
Clearly, v4(A) < j and by 2. v,(A) # j. Assume vy(A) = 0, then A € A(Gy).
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Since G7 is independent, we get A = e;* for some ¢ € [1,r]. However, we know
ve, (W;) < n; and A W,. Thus v,(A) € [1,5 — 1] and by 2. we get A = W}, for
some k € [1,5 — 1]. Clearly, vy(W,'W;) = j — k > 0 and v,, (W, 'W;) < n; for all
i € [1,7], hence W,;lVVj =W;_&. O

Lemma 4.13. Let 7> 2, ¢’ = — Y7 " bes, Gy = {er,...,e,_1} and {g} UG a
simple set. Then
I( /179/) C i(Gl,g)v

and equality holds, if there exists some i’ € [1,7—1] such that n;y = n, and by = b,.

Proof. We set Wi = W(G,g’) for each j € N. Let k € i(G},¢') and assume
k ¢ i(G1,g). Then Wy, ¢ A(Gy) and by Lemma 4.12.3 there exists some [ € [1,k—1]
such that W; | Wy. This implies W] | W/, a contradiction. Hence k € i(G1,g) and
(G, g) Ci(Gr9)

Let ¢’ € [1,r — 1] such that n;; = n, and by = b,.. Let k € N with k ¢ i(GY,¢').
There exists some [ € [1,k — 1] such that W} | W;. Consequently, we obtain that

Ve, (Wl) = Vei/ (Wl) S Vei/ (Wk) = Ve, (Wk)
which implies that W; | W}, and k € i(G1,g). Thus (G4, ¢") = i(G1,9). O
Lemma 4.14. Let by =ny — 1 for some i’ € [1,r]. Then
[]wni’} - I(Glag)

Proof. Let j € [1,ny]. Clearly v, (W;) = ny — j, hence Wy t W; for each k €
[1,7 —1]. Thus W; is an atom. O

Proof of Theorem 4.7. 1. Let A € A(Gy) with v4(A) > 0. Then Lemma 4.12.2
gives immediately
Aef{W;|jeilG9)}

Let A’ € A(Gy) with vg(A") = 0. Then supp(A’) C G1 and since G is independent,
we get from Proposition 3.3.2 that G is factorial and A(G1) = {e" | i € [1,7]}.

2. Let j > ord(g). Then g°*4(9) | W;, hence j ¢ i(G1,g) and i(G1,g) C [1,0rd(g)].
The other statements follow by 1. and Lemma 4.12.3.

3. First we show that [1, N] C i(G1,g). If I =[1,7], then N =0 and [1, N] = 0.
If I C [1,r], then Lemma 4.14 implies the assertion.

Suppose that I # () and let ¢ € I, say i = 1.

We have to show that i({e1}, —bie1) Ci(G1,g). For s € [1,r] we set

S
g =— Zbiei and Ggs) ={e1,...,es5},
i=1
hence G((JS) = Ggs) U {g®®)} is simple.

We assert that i({e1}, —bier) C i(Ggs),g(S)) for every s € [1,r]. We proceed by
induction on s. For s = 1 the assertion is clear. Suppose that s > 1 and that
i({e1}, —bie1) C i(GgSil),g(‘s_l)). Since G5~' is simple Lemma 4.13 shows that
i(GgS_l),g(Sfl)) C i(Ggs),g(S)) hence the assertion follows.

Now let by = -+ =b, and ny = --- = n,. If b = n; — 1, then we get, applying
Lemma 4.12.3, [1,n1] C i(G1,9) C [1,n1]. If by < ny — 1, we start with the set
{—bie1,e1} and apply r — 1 times Lemma 4.13.

4. Corollary 4.9 and 3. imply that

{511 € (L]} CilGrg)\ {1).

(3
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Hence it suffices to verify that W; ¢ A(Go) for j € [2,m—1], where m = min{[3*] |
i€ [1,7]}. Let j € [2,m — 1]. Since jb; < n; for each ¢ € [1, 7], we obtain

-

] jbi

W;=g Hei .
i=1

Therefore Wy | W; and W; ¢ A(Gy).

5. If ord(g) | ns and b; = Gty for each i € (1,7], then 4. implies that

min(i(Gy, g) \ {1}) = ord(g), hence i(G1,g) = {1,0rd(g)} by 2..
Conversely, let i(G1,g9) = {1,ord(g)} and let ¢ € [1,7]. Then 4. and Lemma 4.11
imply that

n; n,
(g = VTR 1 = ord
gl = e,y [V € L) = ordlg)
. i
:mln{[b—] lve(lr]} < (biw
If b; Tni, then ng(bi7ni) < %’ hence
n; n; n; n;
2 < gl < B B T
ng

a contradiction. Thus b; | n; and ord(g) = 3*.

6. Let m = min(i(Go,g) \ {1}) and suppose m < ord(g). We need to show
that m < f%@] By 4. we have m = min{[3*] | i € [L,r]}, hence we may
suppose without restriction that m = [1]. By Lemma 4.11 we have ord(g) =
1cm({m | v € [1,7]}), hence ord(g) is a multiple of ey U ord(g) >

@1 < n < ord(g)
b1 gcd(bl,nl) 2
ey I ged(bi,n1) = by, then m = 3 = ord(g),

a contradiction. Thus 2ged(by,n1) < by and 2—11 < 2gcd7(Lb11,n1) — ordz(g), hence

m=[2] < (249, O

m=|

Suppose that ord(g) =

In general, equality does not hold in Theorem 4.7.3. We will illustrate this by
the following example.

Example 4.15. Let all notations be as in Theorem 4.7. Suppose that r = 2,
ny=ng=n>3o0ddand g =2e; —2e3. Then I ={i € [1,2] | b; #n — 1} =[1, 2],
N =0 and
. n . n
i({er}, 2e1) = [1, [ 5]]U {n} and i({er}, =2e1) = {1, [ 5] +1,n}.
However, for j € [1, [ ]] we get
W =gler Ve’ and Wiy ) = g/ 13l 77 ey 7

hence i({e1,ea},9) = [1,n].
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