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Abstract. We investigate block monoids, the monoid of zero-sum sequences,
over abelian groups and their divisor-closed submonoids. We derive some
results that can be used as tools when investigating the arithmetic of such
monoids. Moreover, we investigate block monoids over so-called simple sets,
the somehow simplest kind of sets with the property that the block monoid
has non-unique factorization.

1. Introduction

We are interested in the arithmetic of Krull monoids with finite class group where
every class contains a prime divisor. In particular, the multiplicative monoids of
rings of integers are monoids with these properties. To understand the arithmetic
of such monoids we investigate the arithmetic of block monoids over the divisor
class group and of its divisor-closed submonoids.

Let G be an additively written, abelian group and G0 ⊂ G some subset. We
denote by F(G0) the free abelian monoid with basis G0 and we refer to its el-
ements as sequences. Then B(G0), the block monoid over G0, is the set of all
zero-sum sequences, i.e. sequences S =

∏l
i=1 gi ∈ F(G0) such that the sum

σ(S) =
∑l

i=1 gi = 0 ∈ G. Since the embedding B(G0) ↪→ F(G0) is a divisor
homomorphism, every block monoid is a Krull monoid (respectively a semigroup
with divisor theory).

Block monoids were introduced in [Nar79] and are used, via the notion of the
divisor class group and appropriate transfer homomorphisms, to investigate various
phenomena of non-unique-factorization for arbitrary Krull monoids and especially
for algebraic number fields (cf. e.g. [GH92]). In particular, if one is only interested
in lengths of factorizations, then studying the associated block monoid is equivalent
to studying the Krull monoid itself.

For a detailed description of the notion of the associated block monoid of a
Krull monoid and further examples of Krull monoids respectively the application
of block monoids we refer to the survey articles [HK97] and [CG97] in [And97] and
the references given there. For the algebraic theory of Krull monoids cf. [HK98,
Chapter 22 and Chapter 23].

In this article we do not investigate a particular phenomenon of non-unique-
factorization in block monoids, but the results we obtain can be seen as tools
suitable for application to different types of problems related to block monoids,
such as half-factorial sets or differences in sets of lengths cf. [Sch03b].

In particular, we will construct for some given G0 ⊂ G a set G∗0 such that B(G0)
and B(G∗0) have the same arithmetic, but G∗0 is easier to handle from a group
theoretical point of view (cf. Theorem 3.17).

In Section 4 we investigate the sets of atoms of block monoids over so-called
simple sets (cf. Theorem 4.7). Sets which are simple sets in our terminology
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can be found in various contexts in treatise on factorization problems (cf. e.g.
[CS03, GG98, GG00, Ger87, Sli76]). Hence, it seems worthwhile to investigate
them independently and beyond the needs of some particular problem.

2. Preliminaries

In this section we fix some notations and terminology, in particular for monoids
and abelian groups. They mostly will be consistent with the usual ones in factor-
ization theory (cf. the survey articles [HK97] and [CG97] in [And97]).

Let Q denote the rational numbers, Z the integers, N the set of positive integers,
N0 = N∪{0} and P ⊂ N the set of prime numbers. For r, s ∈ Z we set [r, s] = {z ∈
Z | r ≤ z ≤ s}.

For a set P we denote by |P | ∈ N0 ∪ {∞} its cardinality. For x ∈ Q let dxe =
min{z ∈ Z | x ≤ z} and bxc = max{z ∈ Z | x ≥ z}.

A monoid is a commutative cancellative semigroup with identity element and we
use multiplicative notation.

Let A,B be two subsets of some semigroup with operation ∗, then A∗B = {a∗b |
a ∈ A and b ∈ B}. In particular we will use this for subsets of N0 and addition as
operation.

Let H be a monoid with identity element 1H = 1 ∈ H. We denote by H×

the group of invertible elements of H, and we call H reduced if H× = {1}. Let
H1, H2 ⊂ H be submonoids. Then we write H = H1 ×H2, if for each a ∈ H, there
exist uniquely determined b ∈ H1 and c ∈ H2, such that a = bc. For some subset
E ⊂ H we denote by [E] ⊂ H the submonoid generated by E and we call H finitely
generated, if there exists some finite E′ ⊂ H such that [E′] = H.

A submonoid S ⊂ H is called divisor-closed, if a ∈ S and b, c ∈ H such that
a = bc implies b ∈ S and c ∈ S, i.e. for each a ∈ S all divisors of a in H are
elements of S. An element u ∈ H \ H× is called irreducible (or an atom), if for
all a, b ∈ H, u = ab implies a ∈ H× or b ∈ H× and it is called prime (or a prime
element), if for all a, b ∈ H, u = ab implies u | a or u | b. Let A(H) ⊂ H denote
the set of atoms and P(H) ⊂ H the set of primes. Then P(H) ⊂ A(H) and we
call H atomic (respectively factorial), if every a ∈ H \H× has a factorization into
a product of atoms (respectively primes).

Let a ∈ H \H× and a = u1 · . . . · uk a factorization of a into atoms u1, . . . , uk ∈
A(H). Then k is called the length of the factorization and LH(a) = {k ∈ N |
a has a factorization of length k} ⊂ N denotes the set of lengths of a. We set
L(a) = {0} for all a ∈ H×. The monoid H is called BF-monoid, if it is atomic and
|L(a)| < ∞ for all a ∈ H, and it is called half-factorial monoid, if it is atomic and
|L(a)| = 1 for all a ∈ H.

Let H be an atomic monoid. Then L(H) = {L(a) | a ∈ H} denotes the system
of sets of lengths of H.

For a set P we denote by F(P ) the free abelian monoid with basis P . Every
a ∈ F(P ) has a unique representation in the form

a =
∏

p∈P

pvp(a)

where vp(a) ∈ N0 and vp(a) = 0 for all but finitely many p ∈ P .
A monoid homomorphism φ : H → D is called a divisor homomorphism, if for

all a, b ∈ H, φ(a) | φ(b) implies a | b. The monoid H is called Krull monoid, if it has
a divisor homomorphism into a free monoid (cf. Section 22.8 and 23.4 in [HK98]).
Every Krull monoid is a BF-monoid (cf. [CG97, Lemma 2.7]).

Let G be an additively written abelian group and G0 ⊂ G a subset. Then
〈G0〉 < G denotes the subgroup generated by G0, where 〈∅〉 = {0}.
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The set G0 (respectively its elements) is called independent, if 0 /∈ G0, ∅ 6= G0

and given distinct elements e1, . . . , er ∈ G0 and m1, . . . ,mr ∈ Z, then
∑r

i=1 miei =
0 implies that m1e1 = · · · = mrer = 0. If we say that {e1, . . . , er} is independent,
then we will assume that the elements e1, . . . , er are distinct.

An element g ∈ G is called torsion element, if there exists some n ∈ N such that
ng = 0. If g is a torsion element, then we denote by ord(g) = min{n ∈ N | ng = 0}
its order. G is called abelian torsion group, if all elements of G are torsion elements.

For n ∈ N let Cn denote a cyclic group with n elements. Let G be a finite abelian
group. Then there exist a uniquely determined r ∈ N and uniquely determined
n1, . . . , nr ∈ N such that G ∼= Cn1 ⊕ · · · ⊕ Cnr and either 1 < n1 | · · · | nr or
r = 1 and nr = 1. r(G) = r is called the rank of G and exp(G) = nr is called the
exponent of G.

Furthermore if |G| > 1, then there exist a uniquely determined r∗ ∈ N and up to
order uniquely determined prime powers q1, . . . , qr∗ , such that G ∼= Cq1⊕· · ·⊕Cqr∗
and r∗(G) = r∗ is called the total-rank of G.

G is called p-group if exp(G) = pk with p ∈ P and k ∈ N and G is called
elementary p-group if exp(G) = p ∈ P. Elementary p-groups are in a natural way
vector spaces over the field Fp with p elements.

An element

S =
l∏

i=1

gi =
∏

g∈G0

gvg(S) ∈ F(G0)

is called a sequence in G0, and for g ∈ G0 we call vg(S) the multiplicity of g in
S. A sequence T is called subsequence of S, if T divides S (in F(G0)). Let T be
a subsequence of S, then we denote by T−1S the codivisor of T , i.e. the sequence
T ′ ∈ F(G0) such that TT ′ = S. We denote by

• |S| = l ∈ N0 the length of S.
• σ(S) =

∑l
i=1 gi ∈ G the sum of S.

• supp(S) = {gi | i ∈ [1, l]} ⊂ G0 the support of S.
• k(S) =

∑l
i=1

1
ord(gi)

the cross number of S.

Note that the sequence 1, the identity element of F(G0), has length 0, sum
0, support ∅ and cross number 0. If we consider | · |, vg, σ and k as maps from
F(G0) to (N0, +), G and (Q≥0, +) respectively, then these maps define monoid-
homomorphisms.

The sequence S is called a zero-sum sequence (a block), if σ(S) = 0, and S
is called zero-sumfree, if σ(T ) 6= 0 for all subsequences 1 6= T of S. A zero-sum
sequence 1 6= S is called minimal zero-sum sequence, if for each proper subsequence
T (i.e. with T 6= S), T is zero-sumfree. The empty sequence is the only zero-sum
sequence that is zero-sumfree, but it is not a minimal zero-sum sequence.

The set B(G0) consisting of all zero-sum sequences in G0 is a submonoid of
F(G0), called the block monoid over G0. It is a Krull monoid, thus it is a BF-
monoid and its atoms are just the minimal zero-sum sequences. If G1 ⊂ G0, then
B(G1) ⊂ B(G0) is a divisor-closed submonoid. For ease of notation, we will write
A(G0) instead of A(B(G0)) and do analogously for P(G0) and L(G0).

3. Submonoids of B(G)

In this section we will investigate submonoids of B(G). As a first result we
will show that the divisor-closed submonoids of B(G) are just the block monoids
generated by subsets G0 ⊂ G. Having this at hand we give methods to find, for
some H = B(G0), related monoids that are easier to handle, yet having the same
systems of sets of lengths.

We start with a definition.
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Definition 3.1. (1) A reduced monoid H is called
(a) minimal non-half-factorial, if H is not half-factorial, but each divisor-

closed submonoid H ′ ( H is half-factorial.
(b) decomposable, if there exist divisor-closed submonoids

{1} 6= H1,H2 ( H,

such that H = H1 ×H2 (otherwise indecomposable).
(2) A subset G0 of an abelian group G is called factorial (half-factorial, non-

half-factorial, minimal non-half-factorial, decomposable, indecomposable),
if the block monoid B(G0) has this property.

The following lemma will underline the importance of Definition 3.1.

Lemma 3.2. Let G be an abelian group and let H ⊂ B(G) be a submonoid. Then H
is divisor-closed if and only if there exists a subset G0 ⊂ G, such that H = B(G0).
Moreover, if G is an abelian torsion group, then G0 is uniquely determined.

Proof. Clearly for each G0 ⊂ G the monoid B(G0) is a divisor-closed submonoid of
B(G). Let H ⊂ B(G) be a divisor-closed submonoid. We set

G0 =
⋃

B∈H

supp(B).

We will prove that H = B(G0). Obviously H ⊂ B(G0). To prove the other inclusion
we note, that for each g ∈ G0 there exist some Sg ∈ H, such that vg(Sg) > 0. If
C =

∏l
i=1 gi ∈ B(G0), then C | ∏l

i=1 Sgi in B(G0), and since
∏l

i=1 Sgi ∈ H we
obtain C ∈ H.

If G is an abelian torsion group, we have that gord(g) ∈ B(G0) if and only if
g ∈ G0. Clearly, this implies that G0 is uniquely determined. ¤

In Definition 3.1 we assigned monoid-theoretical properties to subsets of abelian
groups. Next we will characterize subsets with these properties by their group-
theoretical properties.

Proposition 3.3. Let G be an abelian group and let G0 ⊂ G a non-empty subset
of torsion elements.

(1)
P(G0) = {gord(g) | 〈G0〉 = 〈g〉 ⊕ 〈G0 \ {g}〉}.

(2) G0 is factorial if and only if G0 \ {0} is independent.

Proof. 1. Let g ∈ G0 such that 〈G0〉 = 〈g〉 ⊕ 〈G0 \ {g}〉 and B1, B2 ∈ B(G0) such
that gord(g) | B1B2. Clearly vg(B1) > 0 or vg(B2) > 0. Without restriction we
assume vg(B1) > 0. We get σ(B1) = vg(B1)g + h with h ∈ 〈G0 \ {g}〉, hence
vg(B1)g = 0 and ord(g) | vg(B1). Thus gord(g) | B1 and we get

{gord(g) | 〈G0〉 = 〈g〉 ⊕ 〈G0 \ {g}〉} ⊂ P(G0).

Conversely, let P ∈ P(G0). We first prove, that |supp(P )| = 1. Assume to the
contrary, there exist distinct elements g, h ∈ G0 with g | P and h | P . We consider
P ord(g) = (gvg(P )ord(g))B with B ∈ B(G0 \ {g}). Clearly P - B and P - gvg(P )ord(g)

but P | (gvg(P )ord(g))B = P ord(g), a contradiction. Thus P = gord(g) with some
g ∈ G0.

It remains to verify that 〈g〉∩〈G0\{g}〉 = {0}. Assume to the contrary, that there
exists some n ∈ [1, ord(g)− 1] and some h ∈ 〈G0 \ {g}〉 such that ng +h = 0. Then
there is some S ∈ F(G0 \ {g}) such that σ(S) = h. Thus we obtain gnS ∈ B(G0),
P - gnS but P | (gnS)ord(g), a contradiction.



ARITHMETIC OF BLOCK MONOIDS 5

2. Clearly, we have {gord(g) | g ∈ G0} ⊂ A(G0) and

A(G0) ⊂ {gord(g) | g ∈ G0}
if and only if G0 \ {0} is independent. Since block monoids are atomic, B(G0) is
factorial if and only if A(G0) = P(G0). Consequently, if B(G0) is factorial, then by
1.

A(G0) = P(G0) ⊂ {gord(g) | g ∈ G0},
hence G0 \ {0} is independent. Conversely, if G0 \ {0} is independent, then 〈G0〉 =
〈g〉 ⊕ 〈G0 \ {g}〉 for every g ∈ G0, hence P(G0) = A(G0). ¤

For a further characterization of factorial sets cf. [GH92, Proposition 3]. At
this point we give a group-theoretical characterization of half-factorial sets. The
structure of half-factorial sets is in general not known (cf. [GG98] for various
results on half-factorial sets). The fact that the characterization of half-factorial sets
involves the cross numbers of atoms may serve as motivation for the investigations
on atoms of simple sets. Moreover, we give some results on minimal non-half-
factorial subsets.

The first part of the following Proposition was obtained independently by several
authors (cf. [Sku76, Theorem 3.1], [Sli76, Lemma 2] and [Zak76, Proposition 1]).

Proposition 3.4. Let G be an abelian group and G0 ⊂ G a non-empty subset of
torsion elements.

(1) The following conditions are equivalent:
(a) G0 is half-factorial.
(b) k(A) = 1 for each A ∈ A(G0).

(2) The following conditions are equivalent:
(a) G0 is minimal non-half-factorial.
(b) G0 is not half-factorial and every proper subset G1 ( G0 is half-

factorial.
(c) There exists some A ∈ A(G0) with

k(A) 6= 1 and supp(A) = G0

and for each U ∈ A(G0) with supp(U) ( G0

k(U) = 1.

(3) Every minimal non-half-factorial set is finite.
(4) Every non-half-factorial set contains a minimal non-half-factorial subset.

Proof. 1. cf. [CG97, Proposition 5.4] for a proof in the terminology of this article.
2. (a) ⇒ (b) Clearly, G0 is not half-factorial. Let G1 ( G0. Then B(G1) ( B(G0)

is a divisor-closed submonoid, hence it is half-factorial and consequently G1 is half-
factorial.

(b) ⇒ (c) For each U ∈ A(G0) with supp(U) ( G0 we get that supp(U) is half-
factorial. Since U ∈ A(supp(U)), we get k(U) = 1. Since G0 is not half-factorial,
there exists some block A ∈ A(G0) with k(A) 6= 1 and clearly supp(A) = G0.

(c) ⇒ (a) If A ∈ A(G0) with k(A) 6= 1, then B(supp(A)) is non-half-factorial.
Therefore G0 is not half-factorial. Let H ( B(G0) be a divisor-closed submonoid.
By Lemma 3.2 there exists some G1 ( G0, such that H = B(G1). Let U ∈ A(G1).
Clearly supp(U) ⊂ G1 ( G0, hence k(U) = 1 and H is half-factorial.

3. follows immediately from 2.c.
4. is obvious for finite sets and clearly every non-half-factorial set contains some

finite non-half-factorial set, e.g. supp(A) for some atom A with k(A) 6= 1. ¤
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Proposition 3.4 can be used to determine all abelian torsion groups G, that are
half-factorial respectively factorial. This result was obtained in [Car60] as result
on number-fields and in [Zak76, Theorem 8] it is formulated for Krull domains. In
[Sku76, Proposition 3.2] the result was formulated for monoids. For convenience
we state the proof.

Proposition 3.5. Let G be an abelian torsion group. Then the following statements
are equivalent:

(1) G is factorial.
(2) G is half-factorial.
(3) |G| ≤ 2.

Proof. (1) ⇒ (2) Obvious.
(2) ⇒ (3) Let G be half-factorial. By Proposition 3.4.1 k(A) = 1 for each

A ∈ A(G). Assume there exists some g ∈ G with ord(g) = n > 2, then −gg ∈ A(G)
and k(−gg) = 2

n 6= 1. Thus ord(g) ≤ 2 for each g ∈ G. Assume there exist two
independent elements g, h ∈ G, then (g + h)gh ∈ A(G) and k((g + h)gh) = 3

2 6= 1.
Consequently, if G is half-factorial, then |G| ≤ 2.

(3) ⇒ (1) Let |G| ≤ 2. By Proposition 3.3.2 we get that G is factorial. ¤
Next we investigate decomposable and indecomposable monoids respectively

sets.

Lemma 3.6. [Ger94a, Lemma 2] Let H be a reduced atomic monoid.
(1) If P = P(H) is the set of all primes of H and T ⊂ H the set of all b ∈ H

satisfying p - b for each p ∈ P , then H = F(P )× T .
(2) Let H1,H2 ⊂ H be two submonoids. If H = H1 ×H2 and a = a1a2 ∈ H

with a1 ∈ H1 and a2 ∈ H2, then

LH(a) = LH1(a1) + LH2(a2).

(3) If H = H1 × H2, then H is half-factorial if and only if H1 and H2 are
half-factorial.

(4) If H is minimal non-half-factorial, then H is indecomposable.

Proof. 1. cf. [Ger94a, Lemma 2].
2. From the definition of × it follows that for each a ∈ H there exist uniquely

determined a1 ∈ H1 and a2 ∈ H2 such that a = a1a2 and we obtain A(H) =
A(H1)∪̇A(H2). Thus the statement follows easily.

3. follows immediately from 2..
4. Let H be minimal non-half-factorial and assume to the contrary that there

exist {1} 6= H1,H2 ( H such that H = H1 ×H2. If H1 and H2 are half-factorial,
then by 3. H is half-factorial, a contradiction. However, if Hi is not half-factorial
for some i ∈ [1, 2], then H is not minimal non-half-factorial, since Hi is a proper
divisor-closed submonoid, a contradiction. Consequently, H is indecomposable. ¤

This lemma implies, that for almost all problems concerning sets of length one
can restrict to monoids without prime elements. In particular, for any G0 ⊂ G with
0 ∈ G0, we get that by Proposition 3.3.1, 0 ∈ P(G0). Consequently, it is sufficient
to investigate subsets not containing the 0 element.

The following result gives a characterization of indecomposable sets. Using this
we will prove that every finitely generated, divisor-closed submonoid of B(G) can
be uniquely written as product of indecomposable submonoids (cf. Theorem 3.11).

Proposition 3.7. Let G be an abelian group and G0 ⊂ G a non-empty subset of
torsion elements. Then the following conditions are equivalent:

(1) G0 is decomposable.
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(2) G0 has a partition G0 = G1∪̇G2 with non-empty sets G1, G2, such that
B(G0) = B(G1)× B(G2).

(3) G0 has a partition G0 = G1∪̇G2 with non-empty sets G1, G2, such that
〈G0〉 = 〈G1〉 ⊕ 〈G2〉.

Proof. 1. and 2. are equivalent by Lemma 3.2, and clearly 3. implies 2.. It remains
to prove that 2. implies 3.. Let G0 = G1∪̇G2 be a partition with non-empty
subsets G1, G2 ⊂ G0, such that B(G0) = B(G1) × B(G2). We have to verify that
〈G1〉 ∩ 〈G2〉 = {0}. Let

g∗ =
∑

g∈G1

ngg =
∑

g∈G2

(−ng)g ∈ 〈G1〉 ∩ 〈G2〉

with ng ∈ N0 for each g ∈ G0 and ng = 0 for all but finitely many. (To consider
just non-negative ng is no restriction, since the order of all elements is finite.)

Then B =
∏

g∈G0
gng ∈ B(G0) has a factorization of the form B = B1B2,

with Bi ∈ B(Gi) for each i ∈ [1, 2]. Obviously, we have Bi =
∏

g∈Gi
gng , hence

g∗ =
∑

g∈G1
ngg = 0. ¤

Definition 3.8. Let G be an abelian group and G0 ⊂ G a non-empty subset of
torsion elements. A non-empty subset G1 ⊂ G0 is called a component of G0, if
〈G0〉 = 〈G1〉 ⊕ 〈G0 \G1〉.
Lemma 3.9. Let G be an abelian group and let G0 ⊂ G be a subset of torsion
elements.

(1) If |G0| = 1, then G0 is indecomposable.
(2) If |G0| > 1 and P(G0) 6= ∅, then G0 is decomposable.

Proof. The first part of the lemma is obvious. Let |G0| > 1 and P ∈ P(G0).
From Proposition 3.3.1 we know that P = gord(g) with some g ∈ G0 such that
〈G0〉 = 〈g〉⊕〈G0\{g}〉, hence setting G1 = {g} we get that G0 is decomposable. ¤

Proposition 3.10. Let G be an abelian group and G0 ⊂ G a non-empty and finite
subset of torsion elements. Then there exist a uniquely determined d ∈ N and (up
to order) uniquely determined indecomposable sets ∅ 6= G1, . . . , Gd ⊂ G0 such that

G0 =
⋃̇d

i=1
Gi and 〈G0〉 =

d⊕

i=1

〈Gi〉.

Proof. We prove the existence of such sets via induction on |G0|. For |G0| = 1 it is
obvious that G0 is indecomposable, hence we set d = 1 and G0 = G1. Let |G0| > 1.
If G0 is indecomposable we set d = 1 and G0 = G1. Let G0 be decomposable.
Hence there exists some ∅ 6= G′0 ( G0, such that

〈G0〉 = 〈G′0〉 ⊕ 〈G0 \G′0〉.
Since |G′0| < |G0| and |G0 \ G′0| < |G0| we get that there exist d′, d′′ ∈ N and
indecomposable sets ∅ 6= G′1, . . . , G

′
d′ ⊂ G′0, such that

〈G′0〉 =
d′⊕

i=1

〈G′i〉,

as-well as indecomposable sets ∅ 6= G′′1 , . . . , G′′d′′ ⊂ G0 \G′0, such that

〈G0 \G′0〉 =
d′′⊕

i=1

〈G′′i 〉.
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Clearly, G0 =
⋃̇d′

i=1G
′
i∪̇

⋃̇d′′

i=1G
′′
i and

〈G0〉 =
d′⊕

i=1

〈G′i〉 ⊕
d′′⊕

i=1

〈G′′i 〉.

It remains to prove uniqueness. We proceed by induction on the minimal number
d∗ for which there exist non-empty, indecomposable sets G1, . . . , Gd∗ having the
required properties. If d∗ = 1, then G0 is indecomposable and the assertion follows.
Suppose d∗ > 1 and let

∅ 6= G1, . . . , Gd∗ ⊂ G0

be indecomposable sets with the required properties. Furthermore, let d̄ ∈ N and

∅ 6= H1, . . . , Hd̄ ⊂ G0

indecomposable sets with

G0 =
⋃̇d̄

i=1
Hi and 〈G0〉 =

d̄⊕

i=1

〈Hi〉.

We assert that there exists some j ∈ [1, d̄] such that Gd∗ = Hj . We have

Gd∗ = Gd∗ ∩G0 = Gd∗ ∩ (∪̇d̄
i=1Hi) = ∪̇d̄

i=1(Gd∗ ∩Hi)

and hence 〈Gd∗〉 =
⊕d̄

i=1〈Gd∗ ∩Hi〉. Since Gd∗ is indecomposable, Proposition 3.7
implies that there is some j ∈ [1, d̄] such that Gd∗ = Gd∗ ∩Hj and Gd∗ ∩Hi = ∅
for each i ∈ [1, d̄] \ {j}. Consequently, Gd∗ ⊂ Hj .

Similarly, we obtain Hj ⊂ Gk for some k ∈ [1, d∗]. This implies that Gd∗ ⊂
Hj ⊂ Gk and hence k = d∗ and Gd∗ = Hj .

We consider the set G0 \Gd∗ =
⋃̇d∗−1

i=1 Gi. By induction hypothesis we get that
d∗ − 1 = d̄− 1 and that the indecomposable sets are uniquely determined. ¤

Theorem 3.11. Let G be an abelian torsion group and let {1} 6= H ⊂ B(G) be
a finitely generated, divisor-closed submonoid. Then there exist a uniquely deter-
mined d ∈ N and up to order uniquely determined indecomposable, divisor-closed
submonoids {1} 6= H1, . . . , Hd ⊂ B(G) such that H = H1 × · · · ×Hd.

Proof. By Lemma 3.2 there exists a uniquely determined subset G0 ⊂ H such that
H = B(G0) and, since {1} 6= H and H is finitely generated, we have that 0 < |G0| <
∞. By Proposition 3.10 we obtain that there exist a uniquely determined d ∈ N
and (up to order) uniquely determined indecomposable sets ∅ 6= G1, . . . , Gd ⊂ G0

such that

G0 =
⋃̇d

i=1
Gi and 〈G0〉 =

d⊕

i=1

〈Gi〉.

By Proposition 3.7 and induction on d we obtain B(
⋃̇d

i=1Gi) = B(G1)×· · ·×B(Gd).
Clearly, B(Gi) is indecomposable for each i ∈ [1, d], which proves the existence of
the decomposition.

Conversely, for any decomposition d′ ∈ N and indecomposable, divisor-closed
submonoids {1} 6= H ′

1, . . . , H
′
d ⊂ H such that H = H ′

1 × · · · ×H ′
d′ , we obtain, for

each j ∈ [1, d′], by Lemma 3.2 that H ′
j = B(G′j) with some uniquely determined

indecomposable set G′j 6= ∅. Clearly, G0 =
⋃̇d′

i=1G
′
j and again by induction on d′

and Proposition 3.7 we obtain that 〈G0〉 =
⊕d′

j=1〈G′j〉. By Proposition 3.10 we
have d′ = d and for each i ∈ [1, d] there exists some j ∈ [1, d] such that Gi = G′j
and thus Hi = H ′

j . ¤
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In the sequel we recall the notion of transfer homomorphisms (cf. [HK97] for a
detailed treatment). We will apply transfer homomorphisms to construct, for some
set G0 ⊂ G, an associated subset that has an easier structure, yet the same system
of sets of lengths (cf. Lemma 3.15 and Theorem 3.17). Moreover, we will show
how this procedure can be used to construct sets with prescribed properties (e.g.
half-factorial sets).

We demonstrate this procedure in a simple special case.

Example 3.12. Let p ∈ P, G = C2
p2 , {e1, e2} an independent generating subset of

G and G0 = {e1 + e2, pe1, pe2}. Then

A(G0) = {(e1 + e2)jp(pe1)p−j(pe2)p−j | j ∈ [1, p]} ∪ {(pe1)p, (pe2)p}.
In particular, for each B ∈ B(G0) we get p | ve1+e2(B). Hence for G∗0 = {p(e1 +
e2), pe1, pe2} the map

φ :

{
B(G0) → B(G∗0)
(e1 + e2)x(pe1)y(pe2)z 7→ (p(e1 + e2))

x
p (pe1)y(pe2)z

is an isomorphism.

Definition 3.13. A monoid epimorphism Θ : H → B of reduced monoids is called
a transfer homomorphism, if the following two conditions are satisfied:

(1) Θ−1(1) = {1}.
(2) If a ∈ H and Θ(a) = βγ with β, γ ∈ B, then there exist b, c ∈ H such that

a = bc, Θ(b) = β and Θ(c) = γ.

Lemma 3.14. Let Θ : H → B be a transfer homomorphism of reduced atomic
monoids.

(1) LH(a) = LB(Θ(a)) for each a ∈ H.
(2) H is half-factorial if and only if B is half-factorial.
(3) If H is minimal non-half-factorial, then B is minimal non-half-factorial.

Proof. 1. is proved in [HK97, Lemma 5.4]. 2. is obvious from 1..
3. Let H be minimal non-half-factorial. Clearly B is not half-factorial. Let

B′ ( B be a divisor-closed submonoid. We need to prove that B′ is half-factorial.
We show that

H ′ = Θ−1(B′) ⊂ H,

is a proper divisor-closed submonoid. Thus H ′ is half-factorial, hence by 2. B′ =
Θ(H ′) is half-factorial.

Since Θ is surjective, we get H ′ ( H, and since Θ is a homomorphism, we get
H ′ is a submonoid of H. It remains to prove that H ′ is divisor-closed. Let a ∈ H ′

and a = bc. We get Θ(a) = Θ(b)Θ(c) ∈ B′. Since B′ is divisor-closed, we get
Θ(b),Θ(c) ∈ B′, consequently b, c ∈ H ′ and H ′ is divisor-closed. ¤
Lemma 3.15. Let G be an abelian group, G0 ⊂ G a non-empty subset of torsion
elements, g ∈ G0 and m = min{m′ ∈ N | m′g ∈ 〈G0 \ {g}〉}. Then m | ord(g) and

Θ = Θg,m :

{
B(G0) → B(G0 \ {g} ∪ {mg})
B 7→ g−vg(B)(mg)

vg(B)
m B

is a transfer homomorphism.

Proof. Let n = ord(g) and G∗0 = G0 \ {g} ∪ {mg}. Since 0 = ng ∈ 〈G0 \ {g}〉, we
get m ∈ [1, n].

If m = 1, we get G0 = G∗0, Θ = idB(G0) and the statement is obvious. Suppose
that 1 < m < n. First we prove that Θ is well-defined. This means we need to
prove, that for any B ∈ B(G0) we get m | vg(B).
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Let B ∈ B(G0). Since B has sum zero, it follows that vg(B)g ∈ 〈G0 \ {g}〉. If
x, y ∈ Z with xm + yvg(B) = gcd(m, vg(B)), then

gcd(m, vg(B))g = x(mg) + y(vg(B)g) ∈ 〈G0 \ {g}〉.
Thus the minimality of m implies that m = gcd(m, vg(B)). Setting B = gn we
infer that m | n.

Obviously Θ is an epimorphism and Θ−1(1) = {1}.
Let B ∈ B(G0) and C,C1, C2 ∈ B(G∗0), such that φ(B) = C and C = C1C2.

We need to prove that there exist B1, B2 ∈ B(G0), such that Θ(Bi) = Ci for each
i ∈ [1, 2] and B = B1B2. We set t = min{vmg(C1),

vg(B)
m }. Then

vmg(C1C2) = vmg(B) +
vg(B)

m

implies that

vmg(C2) = vmg(B) +
vg(B)

m
− vmg(C1) ≥ vg(B)

m
− t.

Thus
B1 = gmt(mg)−tC1 ∈ B(G0)

and
B2 = gvg(B)−mt(mg)−

vg(B)
m +tC2 ∈ B(G0)

have the required properties.
Consequently, Θ is a transfer homomorphism. ¤

The converse of Lemma 3.14.3 is not true, as the following example will show.

Example 3.16. Let p ∈ P and G = Cp2 with generating element e and let G0 =
{e, pe, 2pe}. The set G0 is not minimal non-half-factorial, since the proper subset
{pe, 2pe} is non-half-factorial. If we consider g = e, using the notation of Lemma
3.15, we get m = p and

G∗0 = G0 \ {e} ∪ {pe} = {pe, 2pe}.
Clearly, G∗0 is a minimal non-half-factorial set.

Theorem 3.17. Let G be an abelian group and let G0 ⊂ G a non-empty, finite
subset of torsion elements. Then there exists a non-empty, finite subset G∗0 ⊂ G,
such that

g ∈ 〈G∗0 \ {g}〉 for each g ∈ G∗0
and a transfer homomorphism Θ : B(G0) → B(G∗0).

Proof. We proceed by induction on l(G0) =
∑

g∈G0
ord(g) ∈ N.

If l(G0) = 1, then G0 = {0} and 0 ∈ 〈G0 \ {0}〉, hence the assertion holds with
G∗0 = G0.

Suppose that l(G0) > 1 and assume that the assertion holds for all ∅ 6= G′0 ⊂ G
of torsion elements with l(G′0) < l(G0). If g ∈ 〈G0 \ {g}〉 for all g ∈ G0, we set
G∗0 = G0.

Suppose there exists some g ∈ G0 with g /∈ 〈G0 \ {g}〉. By Lemma 3.15 there
exists some m ∈ N≥2 with m | ord(g) and a transfer homomorphism

Θ1 : B(G0) → B(G′0)

with G′0 = G0 \ {g} ∪ {mg}.
Since

l(G′0) = l(G0)− ord(g) + ord(mg) < l(G0),
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there exists some non-empty, finite set G∗0 such that g ∈ 〈G∗0 \ {g}〉 for each g ∈ G∗0
and a transfer homomorphism

Θ2 : B(G0 \ {g} ∪ {mg}) → B(G∗0).

Since the composition of transfer homomorphism is again a transfer homomorphism,
we get

Θ2 ◦Θ1 : B(G0) → B(G∗0)
is a transfer homomorphism. ¤
Lemma 3.18. [GG98, Lemma 3.3] Let G be an abelian torsion group, G0 ⊂ G a
half-factorial set and g ∈ G\〈G0〉 such that pg ∈ G0 for some p ∈ P. Then G0∪{g}
is half-factorial.

Proof. Since g /∈ 〈G0〉 and p is prime, we get that p = min{m′ ∈ N | m′g ∈ 〈G0〉}.
Consequently, by Lemma 3.14.2 and Lemma 3.15, G0 ∪ {g} is half-factorial if and
only if G0 \ {g} ∪ {pg} = G0 is half-factorial. ¤

4. Simple Sets

Let G be an abelian torsion group and G0 ⊂ G a non-empty subset. By Propo-
sition 3.3.2 we know that B(G0) is factorial if and only if G0 \ {0} is independent.
Thus a subset G0 ⊂ G \ {0}, for which B(G0) is not factorial, but is most simple
from a group theoretical point of view, consists of independent elements and one
additional element.

As mentioned in the Introduction such sets have been frequently investigated. In
particular, they are used as examples for minimal non-half-factorial sets (cf. [GG00,
Proposition 5.2]). However, there are several classes of groups, for example cyclic
groups of prime power order (cf. [Ger87, Proposition 6]) and elementary p-groups
with p ≤ 7 (cf. [Nar79, Problem II] for p = 2 and [Sch03a]), in which every minimal
non-half-factorial set is of this type.

This motivates the following definition.

Definition 4.1. Let G be an abelian group. A non-empty set G0 ⊂ G \ {0} of
torsion elements is called simple, if there exist some g ∈ G0 such that G0 \ {g} is
independent, g ∈ 〈G0 \ {g}〉, but g /∈ 〈G1〉 for any G1 ( G0 \ {g}.

In the following lemma we prove some basic results on simple sets.

Lemma 4.2. Let G be an abelian group and G0 ⊂ G a simple set.
(1) 2 ≤ |G0| < ∞.
(2) If G is finite, then |G0| ≤ r∗(G) + 1. In particular, if G is cyclic of prime

power order, then |G0| = 2.
(3) G0 is indecomposable.

Proof. 1. The set G0 \ {g} is independent hence non-empty. Since g ∈ G0 we get
|G0| ≥ 2. By definition g ∈ 〈G0 \ {g}〉, but g /∈ 〈G1〉 for any G1 ( G0 \ {g}. Hence

g =
∑

h∈G0\{g}
zhh

with zh ∈ Z for all h ∈ G0 \ {g} and zh = 0 for all but finitely many. However,
g /∈ 〈G1〉 for any G1 ( G0 \ {g}. Consequently, zh 6= 0 for all h ∈ G0 \ {g}. This
means that G0 \ {g} must be finite.

2. Let G be finite. Any independent subset of G has not more than r∗(G)
elements, hence |G0 \ {g}| ≤ r∗(G). If G is cyclic of prime power order, then
r∗(G) = 1.

3. Assume to the contrary that G0 is decomposable. By Proposition 3.7 there
exist non-empty subsets G1, G2 ⊂ G0 such that G0 = G1∪̇G2 and B(G0) = B(G1)×
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B(G2). Since g ∈ 〈G0 \ {g}〉, there exists some A ∈ A(G0) with vg(A) = 1. Since
A(G0) = A(G1)∪̇A(G2), we may suppose without restriction that A ∈ A(G1). This
implies that g ∈ 〈G1 \ {g}〉, a contradiction. ¤

The arithmetic of block monoids generated by simple sets is not as simple, as
one might expect. We start with an example.

Example 4.3. (1) Let G = (Z/4Z)3 with independent and generating ele-
ments {e1, e2, e3}. Then G0 = {g, e1, e2, e3} with g = −(2e1 + e2 + e3) is
simple. Since U = g2e2

2e
2
3 is an atom with k(U) = 3

2 and supp(U) ( G0,
Proposition 3.4.1 shows that G0 is non-half-factorial, but not minimal non-
half-factorial.

(2) Let G = Z/30Z and G0 = {1 + 30Z, 6 + 30Z, 10 + 30Z, 15 + 30Z}. Then G0

is simple and minimal non-half-factorial.

However, if G is an elementary p-group, then simple subsets of G are either
half-factorial or minimal non-half-factorial.

Lemma 4.4. Let G be an elementary p-group.

(1) Let G1 ⊂ G be independent, g ∈ G \ G1 and G0 = G1 ∪ {g}. Then the
following conditions are equivalent:
(a) G0 is indecomposable.
(b) G0 is simple.
In particular, if G0 is minimal non-half-factorial, then G0 is simple.

(2) Let G0 ⊂ G be simple. Then for every h ∈ G0 the set G0 \ {h} is indepen-
dent, h ∈ 〈G0 \ {h}〉 and h /∈ 〈G1〉 for every G1 ( G0 \ {h}.

(3) Every simple set is either half-factorial or minimal non-half-factorial.

Proof. 1. (a) ⇒ (b) Let G0 be indecomposable. Then g 6= 0 and G0 is not inde-
pendent. Hence 〈g〉 ∩ 〈G1〉 6= {0} and consequently g ∈ 〈G1〉. Assume g ∈ 〈G2〉 for
some G2 ( G1. Then G2∪{g} is a component of G0, a contradiction. Consequently,
G0 is simple.

(b) ⇒ (a) Let G0 be simple, then G0 is indecomposable by Lemma 4.2.3.
If G0 is minimal non-half-factorial, then it is indecomposable by Lemma 3.6.4

and hence simple.
2. Let g ∈ G0 such that G0 \ {g} = {e1, . . . , er} is independent, g ∈ 〈G0 \ {g}〉

and g /∈ 〈G1〉 for every G1 ( G0 \ {g}. Then g =
∑r

i=1 aiei with ai ∈ [1, p− 1]. We
consider G as a Fp-vector space and by linear algebra we infer that dimFp〈G0〉 =
|G0| − 1 and for every h ∈ G0 we have 〈G0〉 = 〈G0 \ {h}〉. Thus G0 \ {h} is
independent, h ∈ 〈G0 \ {h}〉 and h /∈ 〈G′1〉 for every G′1 ( G0 \ {h}.

3. Suppose G0 is simple. By 2. every proper subset of G0 is independent and
consequently half-factorial. Thus if G0 is not half-factorial, then G0 is minimal
non-half-factorial. ¤

The following theorem will prove that the notion of simple sets is not too re-
strictive.

Theorem 4.5. Let G be an abelian group, G0 ⊂ G a subset of torsion elements
and g ∈ G0 such that G0 = G′0 ∪ {g} with G′0 ⊂ G independent. Then there exist a
set G∗0 ⊂ G and a transfer homomorphism

Θ : B(G0) → B(G∗0),

where G∗0 \ {0} is simple or empty.



ARITHMETIC OF BLOCK MONOIDS 13

Proof. If G0 \ {0} is independent, then by Proposition 3.3.2 G0 is factorial. In this
case we set G∗0 = {0} and the map

Θ :

{
B(G0) → B(G∗0)
B 7→ 0k(B)

is a transfer homomorphism.
Hence we may suppose without restriction that G0\{0} is not independent. Thus

we get 〈g〉 ∩ 〈G0 \ {g}〉 6= {0}. Let m ∈ N be minimal such that mg ∈ 〈G0 \ {g}〉.
By Lemma 3.15 there exists a transfer homomorphism

Θ1 : B(G0) → B(G0 \ {g} ∪ {mg}).
Thus from now on we may suppose that m = 1.

Let G1 ⊂ G0 be a minimal subset such that g ∈ G1 and g ∈ 〈G1\{g}〉. Thus G1 is
simple. If G1 = G0, we set G∗0 = G0 and are done. Suppose that G2 = G0 \G1 6= ∅.
Since G0 \{g} is independent and g ∈ 〈G1 \{g}〉, it follows that 〈G1〉∩ 〈G2〉 = {0}.
Proposition 3.7 implies that B(G0) = B(G1)×B(G2). Since G2 is independent and
B(G2) is factorial, the map

Θ2 :

{
B(G0) = B(G1)× B(G2) → B(G1 ∪ {0})
B = B1B2 7→ B10k(B2)

is a transfer homomorphism. Hence we set G∗0 = G1 ∪ {0} and are done. ¤

In the last part of this section we study the set of atoms A(G0) for simple sets
G0 ⊂ G. For simple sets consisting of two elements, this set was determined in
[Ger87] and [CS03] (cf. Proposition 4.8).

Definition 4.6. Let G be an abelian group and G0 ⊂ G a simple set. Suppose that
G0 = G1 ∪ {g} with G1 = {e1, . . . , er} independent, ord(ei) = ni for each i ∈ [1, r]
and g = −∑r

i=1 biei with bi ∈ [1, ni − 1] for each i ∈ [1, r].
(1) For j ∈ N let Wj(G1, g) = Wj ∈ B(G0) denote the unique block with

vg(Wj) = j and vei(Wj) ∈ [0, ni − 1] for each i ∈ [1, r] (clearly, vei(Wj) ≡
jbi mod ni).

(2) i(G1, g) = {j ∈ N | Wj ∈ A(G0)}.
Theorem 4.7. Let G be an abelian group, r ∈ N, G1 = {e1, . . . , er} an independent
set with ord(ei) = ni for each i ∈ [1, r], g = −∑r

i=1 biei with bi ∈ [1, ni − 1] for
each i ∈ [1, r] and G0 = G1 ∪ {g}.

(1) A(G0) = {eni
i | i ∈ [1, r]} ∪ {Wj | j ∈ i(G1, g)}.

(2) i(G1, g) = {j ∈ [1, ord(g)] | Wk - Wj for each k ∈ [1, j − 1]}. In particular,
{1, ord(g)} ⊂ i(G1, g) ⊂ [1, ord(g)].

(3) Let I = {i ∈ [1, r] | bi 6= ni − 1} and N = max({0} ∪ {ni | i ∈ [1, r] \ I}).
Then

[1, N ] ∪
⋃

i∈I

i({ei},−biei) ⊂ i(G1, g),

and if n1 = · · · = nr and b1 = · · · = br, then equality holds.
(4) min(i(G1, g) \ {1}) = min{dni

bi
e | i ∈ [1, r]}.

(5) i(G1, g) = {1, ord(g)} if and only if ord(g) | ni and bi = ni

ord(g) for each
i ∈ [1, r].

(6) If i(G1, g) 6= {1, ord(g)}, then min(i(G1, g) \ {1}) ≤ d ord(g)
2 e.

Thus in an important special case, i(G1, g) (and hence A(G0)) is completely
determined by associated i(., .) for sets G′0 with |G′0| = 2. We mentioned already
that for these sets two descriptions are known. We cite the description given in
[CS03, Theorem 2.1] (cf. [Ger87, Lemma 1] for a similar description).
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Proposition 4.8. [CS03, Theorem 2.1] Let G be an abelian group, e ∈ G with
ord(e) = n ≥ 3, a ∈ [2, n − 1] and d = gcd(a, n). For k ∈ [1, a

d ] let qk ∈ N0 and
rk ∈ [0, a− 1] such that kn = qka + rk. Then

i({e}, ae) = [1, bn
a
c − 1] ∪ {qk | rk < ri for each i ∈ [1, k − 1]}.

Now we formulate a corollary to Proposition 4.8, which we need in the proof of
Theorem 4.7. For convenience we will give an independent proof for it.

Corollary 4.9. Let G be an abelian group, e ∈ G with ord(e) = n ≥ 3, b ∈ [1, n−2],
d = gcd(b, n) and b′ ∈ [1, ord(−be)− 1] such that bb′ ≡ d mod n. Then

{dn
b
e, b′} ⊂ i({e},−be).

Proof. Obviously, {−be, e} is a simple set. In order to show that b′ ∈ i({e},−be),
we have to verify that Wb′ = (−be)b′ed is an atom. Since for every B ∈ B({−be, e})
we have d | ve(B), and because b′ = min{v ∈ N | σ((−be)ved) = 0} it follows that
Wb′ is an atom.

In order to show that dn
b e ∈ i({e},−be), we have to verify that

Wdn
b e = (−be)d

n
b eed

n
b eb−n

is an atom. Since for each j ∈ [1, dn
b e − 1] we get Wj = (−be)jejb and because

dn
b eb− n < b, it follows that Wdn

b e is an atom. ¤

In [Ger87, Proposition 10] a more explicit description of i(., .) for simple sets
with two elements is given. It uses continued fraction expansions and is quite
complicated to formulate. Since we will not need this explicit description, we do
not cite this result. However, we give as an example the two easiest cases.

Example 4.10. Let e ∈ G with ord(e) = p ∈ P and b ∈ [2, p− 2].
(1) If b | p + 1, say qb = p + 1, then i({e},−be) = {1, q, p}.
(2) Let q = dp

b e and r = dp
b e− p. If r | b + 1, say sr = b + 1, then i({e},−be) =

{1, q, sq − 1, p}.
Next we give some lemmata that will be used in the proof of Theorem 4.7. Let

all notations be as in Theorem 4.7.

Lemma 4.11. [GG02, Lemma 2.2]

ord(g) = lcm({ ni

gcd(bi, ni)
| i ∈ [1, r]}).

Lemma 4.12. Let j ∈ N.
(1) If W ∈ B(G0) with vg(W ) = j, then Wj | W .
(2) If A ∈ A(G0) with vg(A) = j, then Wj = A.
(3) If Wj /∈ A(G0), then there exists some k ∈ [1, j − 1] such that Wj =

WkWj−k.

Proof. 1. Let W ∈ B(G0) with vg(W ) = j. Then
r∑

i=1

vei(W )ei = −jg =
r∑

i=1

vei(Wj)ei.

Since G1 is independent, it follows that for all i ∈ [1, r] there are ki ∈ Z such that
vei(W ) = vei(Wj) + kini. Since vei(W ) ∈ N0 and vei(Wj) ∈ [0, ni − 1], it follows
that ki ∈ N0 for all i ∈ [1, r]. Hence we obtain that Wj | W .

2. follows immediately from 1..
3. Suppose that Wj /∈ A(G0). Then there exists some A ∈ A(G0) with A | Wj .

Clearly, vg(A) ≤ j and by 2. vg(A) 6= j. Assume vg(A) = 0, then A ∈ A(G1).
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Since G1 is independent, we get A = eni
i for some i ∈ [1, r]. However, we know

vei(Wj) < ni and A - Wj . Thus vg(A) ∈ [1, j − 1] and by 2. we get A = Wk for
some k ∈ [1, j − 1]. Clearly, vg(W−1

k Wj) = j − k > 0 and vei(W
−1
k Wj) < ni for all

i ∈ [1, r], hence W−1
k Wj = Wj−k. ¤

Lemma 4.13. Let r ≥ 2, g′ = −∑r−1
i=1 biei, G′1 = {e1, . . . , er−1} and {g′} ∪ G′1 a

simple set. Then
i(G′1, g

′) ⊂ i(G1, g),

and equality holds, if there exists some i′ ∈ [1, r−1] such that ni′ = nr and bi′ = br.

Proof. We set W ′
j = W (G′1, g

′) for each j ∈ N. Let k ∈ i(G′1, g
′) and assume

k /∈ i(G1, g). Then Wk /∈ A(G0) and by Lemma 4.12.3 there exists some l ∈ [1, k−1]
such that Wl | Wk. This implies W ′

l | W ′
k, a contradiction. Hence k ∈ i(G1, g) and

i(G′1, g
′) ⊂ i(G1, g).

Let i′ ∈ [1, r − 1] such that ni′ = nr and bi′ = br. Let k ∈ N with k /∈ i(G′1, g
′).

There exists some l ∈ [1, k − 1] such that W ′
l | W ′

k. Consequently, we obtain that

ver (Wl) = vei′ (Wl) ≤ vei′ (Wk) = ver (Wk)

which implies that Wl | Wk and k /∈ i(G1, g). Thus i(G′1, g
′) = i(G1, g). ¤

Lemma 4.14. Let bi′ = ni′ − 1 for some i′ ∈ [1, r]. Then

[1, ni′ ] ⊂ i(G1, g).

Proof. Let j ∈ [1, ni′ ]. Clearly vei′ (Wj) = ni′ − j, hence Wk - Wj for each k ∈
[1, j − 1]. Thus Wj is an atom. ¤

Proof of Theorem 4.7. 1. Let A ∈ A(G0) with vg(A) > 0. Then Lemma 4.12.2
gives immediately

A ∈ {Wj | j ∈ i(G1, g)}.
Let A′ ∈ A(G0) with vg(A′) = 0. Then supp(A′) ⊂ G1 and since G1 is independent,
we get from Proposition 3.3.2 that G1 is factorial and A(G1) = {eni

i | i ∈ [1, r]}.
2. Let j > ord(g). Then gord(g) | Wj , hence j /∈ i(G1, g) and i(G1, g) ⊂ [1, ord(g)].

The other statements follow by 1. and Lemma 4.12.3.
3. First we show that [1, N ] ⊂ i(G1, g). If I = [1, r], then N = 0 and [1, N ] = ∅.

If I ( [1, r], then Lemma 4.14 implies the assertion.
Suppose that I 6= ∅ and let i ∈ I, say i = 1.
We have to show that i({e1},−b1e1) ⊂ i(G1, g). For s ∈ [1, r] we set

g(s) = −
s∑

i=1

biei and G
(s)
1 = {e1, . . . , es},

hence G
(s)
0 = G

(s)
1 ∪ {g(s)} is simple.

We assert that i({e1},−b1e1) ⊂ i(G(s)
1 , g(s)) for every s ∈ [1, r]. We proceed by

induction on s. For s = 1 the assertion is clear. Suppose that s > 1 and that
i({e1},−b1e1) ⊂ i(G(s−1)

1 , g(s−1)). Since Gs−1
0 is simple Lemma 4.13 shows that

i(G(s−1)
1 , g(s−1)) ⊂ i(G(s)

1 , g(s)) hence the assertion follows.
Now let b1 = · · · = br and n1 = · · · = nr. If b1 = n1 − 1, then we get, applying

Lemma 4.12.3, [1, n1] ⊂ i(G1, g) ⊂ [1, n1]. If b1 < n1 − 1, we start with the set
{−b1e1, e1} and apply r − 1 times Lemma 4.13.

4. Corollary 4.9 and 3. imply that

{dni

bi
e | i ∈ [1, r]} ⊂ i(G1, g) \ {1}.
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Hence it suffices to verify that Wj /∈ A(G0) for j ∈ [2,m−1], where m = min{dni

bi
e |

i ∈ [1, r]}. Let j ∈ [2,m− 1]. Since jbi < ni for each i ∈ [1, r], we obtain

Wj = gj
r∏

i=1

ejbi

i .

Therefore W1 | Wj and Wj /∈ A(G0).
5. If ord(g) | ni and bi = ni

ord(g) for each i ∈ [1, r], then 4. implies that
min(i(G1, g) \ {1}) = ord(g), hence i(G1, g) = {1, ord(g)} by 2..

Conversely, let i(G1, g) = {1, ord(g)} and let i ∈ [1, r]. Then 4. and Lemma 4.11
imply that

ni

gcd(bi, ni)
≤ lcm({ nν

gcd(bν , nν)
| ν ∈ [1, r]}) = ord(g)

= min{dnν

bν
e | ν ∈ [1, r]} ≤ dni

bi
e.

If bi - ni, then gcd(bi, ni) ≤ bi

2 , hence

2
ni

bi
≤ ni

gcd(bi, ni)
≤ dni

bi
e <

ni

bi
+ 1,

a contradiction. Thus bi | ni and ord(g) = ni

bi
.

6. Let m = min(i(G0, g) \ {1}) and suppose m < ord(g). We need to show
that m ≤ d ord(g)

2 e. By 4. we have m = min{dni

bi
e | i ∈ [1, r]}, hence we may

suppose without restriction that m = dn1
b1
e. By Lemma 4.11 we have ord(g) =

lcm({ nν

gcd(bν ,nν) | ν ∈ [1, r]}), hence ord(g) is a multiple of n1
gcd(b1,n1)

. If ord(g) ≥
2 n1

gcd(b1,n1)
, then

m = dn1

b1
e ≤ n1

gcd(b1, n1)
≤ ord(g)

2
.

Suppose that ord(g) = n1
gcd(b1,n1)

. If gcd(b1, n1) = b1, then m = n1
b1

= ord(g),

a contradiction. Thus 2 gcd(b1, n1) ≤ b1 and n1
b1

≤ n1
2 gcd(b1,n1)

= ord(g)
2 , hence

m = dn1
b1
e ≤ d ord(g)

2 e. ¤

In general, equality does not hold in Theorem 4.7.3. We will illustrate this by
the following example.

Example 4.15. Let all notations be as in Theorem 4.7. Suppose that r = 2,
n1 = n2 = n > 3 odd and g = 2e1 − 2e2. Then I = {i ∈ [1, 2] | bi 6= n− 1} = [1, 2],
N = 0 and

i({e1}, 2e1) = [1, bn
2
c] ∪ {n} and i({e1},−2e1) = {1, bn

2
c+ 1, n}.

However, for j ∈ [1, bn
2 c] we get

Wj = gjen−2j
1 e2j

2 and Wj+bn
2 c = gj+bn

2 cen−1−2j
1 e2j−1

2 ,

hence i({e1, e2}, g) = [1, n].
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